101
|
Shichijo K, Watanabe M, Hisaeda Y, Shimakoshi H. Development of Visible Light-Driven Hybrid Catalysts Composed of Earth Abundant Metal Ions Modified TiO 2 and B 12 Complex. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keita Shichijo
- Department of Applied Chemistry, Graduated School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| | - Midori Watanabe
- Center of Advanced Instrumental Analysis, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| | - Yoshio Hisaeda
- Department of Applied Chemistry, Graduated School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| | - Hisashi Shimakoshi
- Department of Applied Chemistry, Graduated School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395
| |
Collapse
|
102
|
Song J, Kim Y, Bae HE, Kang SY, Lee J, Karuppannan M, Sung YE, Cho YH, Kwon OJ. Effect of Precursor Status on the Transition from Complex to Carbon Shell in a Platinum Core-Carbon Shell Catalyst. ACS OMEGA 2022; 7:15615-15624. [PMID: 35571819 PMCID: PMC9096943 DOI: 10.1021/acsomega.2c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Encapsulating platinum nanoparticles with a carbon shell can increase the stability of core platinum nanoparticles by preventing their dissolution and agglomeration. In this study, the synthesis mechanism of a platinum core-carbon shell catalyst via thermal reduction of a platinum-aniline complex was investigated to determine how the carbon shell forms and identify the key factor determining the properties of the Pt core-carbon shell catalyst. Three catalysts originating from the complexes with different platinum to carbon precursor ratios were synthesized through pyrolysis. Their structural characteristics were examined using various analysis techniques, and their electrochemical activity and stability were evaluated through half-cell and unit-cell tests. The relationship between the nitrogen to platinum ratio and structural characteristics was revealed, and the effects on the electrochemical activity and stability were discussed. The ratio of the carbon precursor to platinum was the decisive factor determining the properties of the platinum core-carbon shell catalyst.
Collapse
Affiliation(s)
- Jihyeok Song
- Department
of Energy and Chemical Engineering, Incheon
National University, 119 Academi-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Youngkwang Kim
- Department
of Energy and Chemical Engineering, Incheon
National University, 119 Academi-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- School
of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyo Eun Bae
- Department
of Energy and Chemical Engineering, Incheon
National University, 119 Academi-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
- School
of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Young Kang
- School
of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jongmin Lee
- School
of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Mohanraju Karuppannan
- Department
of Energy and Chemical Engineering, Incheon
National University, 119 Academi-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Yung-Eun Sung
- School
of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Yong-Hun Cho
- Department
of Chemical Engineering, Kangwon Nataional
University, Samcheok 25913, Republic of Korea
| | - Oh Joong Kwon
- Department
of Energy and Chemical Engineering, Incheon
National University, 119 Academi-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
103
|
Biphenyl appended non-noble metal complexes as electrocatalysts for the electrochemical oxygen reduction reaction. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
104
|
Sonochemical decoration of palladium on graphene carpet for electrochemical methanol oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
105
|
Zhu G, Yang H, Jiang Y, Sun Z, Li X, Yang J, Wang H, Zou R, Jiang W, Qiu P, Luo W. Modulating the Electronic Structure of FeCo Nanoparticles in N-Doped Mesoporous Carbon for Efficient Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200394. [PMID: 35322604 PMCID: PMC9130874 DOI: 10.1002/advs.202200394] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/05/2022] [Indexed: 05/03/2023]
Abstract
The development of highly efficient and stable oxygen reduction electrocatalysts and revealing their underlying catalytic mechanism are crucial in expanding the applications of metal-air batteries. Herein, an excellent FeCo alloy nanoparticles (NPs)-decorated N-doped mesoporous carbon electrocatalyst (FeCo/NC) for oxygen reduction reaction, prepared through the pyrolysis of a dual metal containing metal-organic framework composite scaffold is reported. Benefiting from the highly exposed bimetal active sites and the carefully designed structure, the Fe0.25 Co0.75 /NC-800 catalyst exhibits a promising electrocatalytic activity and a superior durability, better than those of the state-of-the-art catalysts. Suggested by both the X-ray absorption fine structures and the density functional theoretical calculation, the outstanding catalytic performance is originated from the synergistic effects of the bimetallic loading in NC catalysts, where the electronic modulation of the Co active sites from the nearby Fe species leads to an optimized binding strength for reaction intermediates. This work demonstrates a class of highly active nonprecious metals electrocatalysts and provides valuable insights into investigating the structure-performance relationship of transition metal-based alloy catalysts.
Collapse
Affiliation(s)
- Guihua Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Haoyu Yang
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)BrisbaneQLD4000Australia
| | - Ying Jiang
- Materials Genome InstituteShanghai UniversityShanghai200444P. R. China
| | - Ziqi Sun
- School of Chemistry and PhysicsCentre for Materials ScienceQueensland University of Technology (QUT)BrisbaneQLD4000Australia
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringInstitute of Functional MaterialsDonghua UniversityShanghai201620China
| |
Collapse
|
106
|
Hong YR, Dutta S, Jang SW, Ngome Okello OF, Im H, Choi SY, Han JW, Lee IS. Crystal Facet-Manipulated 2D Pt Nanodendrites to Achieve an Intimate Heterointerface for Hydrogen Evolution Reactions. J Am Chem Soc 2022; 144:9033-9043. [PMID: 35486818 DOI: 10.1021/jacs.2c01589] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the Pt-catalyzed alkaline hydrogen evolution reaction (HER) progressing via oxophilic metal-hydroxide surface hybridization, maximizing Pt reactivity alongside operational stability is still unsatisfactory due to the lack of well-designed and optimized interface structures. Producing atomically flat two-dimensional Pt nanodendrites (2D-PtNDs) through our 2D nanospace-confined synthesis strategy, this study tackles the insufficient interfacial contact effect during HER catalysis by realizing an area-maximized and firmly bound lateral heterointerface with NiFe-layered double hydroxide (LDH). The well-oriented {110} crystal surface exposure of Pt promotes electronic interplay that bestows strong LDH binding. The charge-relocated interfacial bond in 2D-PtND/LDH accelerates the hydrogen generation steps and achieves nearly the highest reported Pt mass activity enhancement (∼11.2 times greater than 20 wt % Pt/C) and significantly improved long-term operational stability. This work uncovers the importance of the shape and facet of Pt to create heterointerfaces that provide catalytic synergy for efficient hydrogen production.
Collapse
Affiliation(s)
- Yu-Rim Hong
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sun Woo Jang
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Odongo Francis Ngome Okello
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Hyeonae Im
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Si-Young Choi
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
107
|
Wang Z, Wang W, Wamsley M, Zhang D, Wang H. Colloidal Polydopamine Beads: A Photothermally Active Support for Noble Metal Nanocatalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17560-17569. [PMID: 35380793 DOI: 10.1021/acsami.2c03183] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polydopamine (PDA) is a unique bioinspired synthetic polymer that integrates broadband light absorption, efficient photothermal transduction, and versatile surface-adhesion functions in a single material entity. Here, we utilize colloidal PDA beads in the submicron particle size regime as an easily processable and photothermally active support for sub-10 nm Pd nanocatalysts to construct a multifunctional material system that allows us to kinetically boost thermal catalytic reactions through visible and near-infrared light illuminations. Choosing the Pd-catalyzed nitrophenol reduction by ammonium formate as a model transfer hydrogenation reaction exhibiting temperature-dependent reaction rates, we demonstrate that interfacial molecule-transforming processes on metal nanocatalyst surfaces can be kinetically modulated by harnessing the thermal energy produced through photothermal transduction in the PDA supports.
Collapse
Affiliation(s)
- Zixin Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Max Wamsley
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dongmao Zhang
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Hui Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
108
|
Zhao H, Yang S, Yang W, Zhao C, Cao M, Cao R. Ultrasmall Mo2C embedded in N‐doped Holey Carbon Derived from Macrocycle Supramolecular Self‐assembly for High‐efficiency Electrochemical Oxygen Reduction Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huali Zhao
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Shuaibing Yang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Weiguang Yang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry CHINA
| | - Chuan Zhao
- University of New South Wales school of chemistry AUSTRALIA
| | - Minna Cao
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Yangqiao Road West 155# 350002 Fuzhou CHINA
| | - Rong Cao
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry YangQiao street NO. 155Gulou District 350002 Fuzhou CHINA
| |
Collapse
|
109
|
A DFT study of the oxygen reduction reaction mechanism on be doped graphene. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
110
|
Wei L, Zhang Y, Yang Y, Ye M, Li CC. Manipulating the Electronic Structure of Graphite Intercalation Compounds for Boosting the Bifunctional Oxygen Catalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107667. [PMID: 35098643 DOI: 10.1002/smll.202107667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Developing highly efficient bifunctional catalysts for the oxygen reduction and oxygen evolution reaction (ORR/OER) can open possibilities for future zinc air batteries (ZABs). Herein, cost-effective and highly conductive few-layer ferric and nickel chloride co-intercalated graphite intercalation compounds (FeCl3 -NiCl2 -GIC) are designed as bifunctional oxygen catalysts for ZAB. The optimized few-layer FeCl3 -NiCl2 -GIC catalyst exhibits a small overpotential of 276 mV at 10 mA cm-2 for the OER and achieves a high onset potential of 0.89 V for the ORR. The theoretical analysis demonstrates the electron-rich state on the carbon layers of FeCl3 -NiCl2 -GIC during the catalytic process favors the kinetics of electron transfer and lowers the absorption energy barriers for intermediates. Impressively, the ZAB assembled with few-layer FeCl3 -NiCl2 -GIC catalyst displays a 160 h cycling stability and a high energy efficiency of 72.6%. This work also suggests the possibility of utilizing layer electronic structure regulation on graphite intercalation compounds as effective bifunctional catalysts for ZABs.
Collapse
Affiliation(s)
- Licheng Wei
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Minghui Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
111
|
Zeng T, Meng X, Huang H, Zheng L, Chen H, Zhang Y, Yuan W, Zhang LY. Controllable Synthesis of Web-Footed PdCu Nanosheets and Their Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107623. [PMID: 35152558 DOI: 10.1002/smll.202107623] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/09/2022] [Indexed: 05/13/2023]
Abstract
Morphological control of noble-metal-based nanocrystals has attracted enormous attention because their catalytic behaviors can be optimized well by adjusting the size and shape. Herein, the controllable synthesis of web-footed PdCu nanosheets via a facile surfactant-free method is reported. It is discovered that the Cu(II) precursor in this synthetic system displays a critical role in growing branches along the lateral of nanosheets. This work demonstrates a Pd-based alloy nanoarchitecture for efficient and stable electrocatalysis of both ethanal and formic acid oxidation reactions.
Collapse
Affiliation(s)
- Tiantian Zeng
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaomin Meng
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Haowei Huang
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Linwei Zheng
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Haibo Chen
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Yun Zhang
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
| | - Weiyong Yuan
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
| | - Lian Ying Zhang
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, P. R. China
- Chongqing Key Laboratory for Advanced Materials & Technologies of Clean Energies, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
112
|
PtCo-Based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
113
|
Johnson HM, Dasher AM, Monahan M, Seifert S, Moreau LM. Mapping the effects of physical and chemical reduction parameters on local atomic distributions within bimetallic nanoparticles. NANOSCALE 2022; 14:4519-4530. [PMID: 35266465 DOI: 10.1039/d1nr06231j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimetallic nanoparticles prove advantageous over their monometallic counterparts due to the tunable, hybrid properties that result from combining different atomic species in a controlled way. The favorable optical and catalytic properties resulting from AgAu nanoparticle formation have been widely attributed to the existence of Ag-Au bonds, the maximization of which assumes the formation of a homogeneous alloy. Despite the importance of atomic scale structure in these systems, synthetic studies are typically not paired with structural characterization at the atomic scale. Herein, a comprehensive synthetic exploration of physical and chemical reduction parameters of resulting nanoparticle products is complemented with thorough X-ray characterization to probe how these parameters affect atomic scale alloy distributions within AgAu nanoparticles. Presented evidence shows Ag is substantially underincorporated into nanoparticle constructs compared with solution Ag : Au ratios regardless of precursor : reductant ratio or volume of reductant added. Both Ag and Au exhibit significant local clustering, with Ag distributed preferentially towards the nanoparticle surface. Most significantly, the results of this investigation suggest that reduction parameters alone can affect the local alloy distributions and homogeneity within bimetallic nanoparticles, even when the ratio of metallic precursors remains constant. Overall, this investigation presents the ability to control alloy distributions using kinetics and provides new considerations for optimizing synthetic methods to produce functional bimetallic nanoparticles.
Collapse
Affiliation(s)
- Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Acacia M Dasher
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Madison Monahan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Soenke Seifert
- X-ray Sciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Liane M Moreau
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
114
|
Huang L, Shen B, Lin H, Shen J, Jibril L, Zheng CY, Wolverton C, Mirkin CA. Regioselective Deposition of Metals on Seeds within a Polymer Matrix. J Am Chem Soc 2022; 144:4792-4798. [PMID: 35258289 DOI: 10.1021/jacs.1c11118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We use scanning probe block copolymer lithography in a two-step sequential manner to explore the deposition of secondary metals on nanoparticle seeds. When single element nanoparticles (Au, Ag, Cu, Co, or Ni) were used as seeds, both heterogeneous and homogeneous growth occurred, as rationalized using the thermodynamic concepts of bond strength and lattice mismatch. Specifically, heterogeneous growth occurs when the heterobond strength between the seed and growth atoms is stronger than the homobond strength between the growth atoms. Moreover, the resulting nanoparticle structure depends on the degree of lattice mismatch between the seed and growth metals. Specifically, a large lattice mismatch (e.g., 13.82% for Au and Ni) typically resulted in heterodimers, whereas a small lattice mismatch (e.g., 0.19% for Au and Ag) resulted in core-shell structures. Interestingly, when heterodimer nanoparticles were used as seeds, the secondary metals deposited asymmetrically on one side of the seed. By programming the deposition conditions of Ag and Cu on AuNi heterodimer seeds, two distinct nanostructures were synthesized with (1) Ag and Cu on the Au domain and (2) Ag on the Au domain and Cu on the Ni domain, illustrating how this technique can be used to predictively synthesize structurally complex, multimetallic nanostructures.
Collapse
Affiliation(s)
- Liliang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Bo Shen
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Haixin Lin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiahong Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Liban Jibril
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Cindy Y Zheng
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chris Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
115
|
Wang Y, Zheng M, Li Y, Ye C, Chen J, Ye J, Zhang Q, Li J, Zhou Z, Fu XZ, Wang J, Sun SG, Wang D. p-d Orbital Hybridization Induced by a Monodispersed Ga Site on a Pt 3 Mn Nanocatalyst Boosts Ethanol Electrooxidation. Angew Chem Int Ed Engl 2022; 61:e202115735. [PMID: 35001467 DOI: 10.1002/anie.202115735] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 12/22/2022]
Abstract
Constructing monodispersed metal sites in heterocatalysis is an efficient strategy to boost their catalytic performance. Herein, a new strategy using monodispersed metal sites to tailor Pt-based nanocatalysts is addressed by engineering unconventional p-d orbital hybridization. Thus, monodispersed Ga on Pt3 Mn nanocrystals (Ga-O-Pt3 Mn) with high-indexed facets was constructed for the first time to drive ethanol electrooxidation reaction (EOR). Strikingly, the Ga-O-Pt3 Mn nanocatalyst shows an enhanced EOR performance with achieving 8.41 times of specific activity than that of Pt/C. The electrochemical in situ Fourier transform infrared spectroscopy results and theoretical calculations disclose that the Ga-O-Pt3 Mn nanocatalyst featuring an unconventional p-d orbital hybridization not only promote the C-C bond-breaking and rapid oxidation of -OH of ethanol, but also inhibit the generation of poisonous CO intermediate species. This work discloses a promising strategy to construct a novel nanocatalysts tailored by monodispersed metal site as efficient fuel cell catalysts.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Meng Zheng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yunrui Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and environment, China University of Petroleum, Beijing, 102249, China
| | - Chenliang Ye
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and environment, China University of Petroleum, Beijing, 102249, China
| | - Jinyu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai, 201204, China
| | - Zhiyou Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
116
|
Dai J, Zhu Y, Chen Y, Wen X, Long M, Wu X, Hu Z, Guan D, Wang X, Zhou C, Lin Q, Sun Y, Weng SC, Wang H, Zhou W, Shao Z. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis. Nat Commun 2022; 13:1189. [PMID: 35246542 PMCID: PMC8897394 DOI: 10.1038/s41467-022-28843-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Improving the catalytic efficiency of platinum for the hydrogen evolution reaction is valuable for water splitting technologies. Hydrogen spillover has emerged as a new strategy in designing binary-component Pt/support electrocatalysts. However, such binary catalysts often suffer from a long reaction pathway, undesirable interfacial barrier, and complicated synthetic processes. Here we report a single-phase complex oxide La2Sr2PtO7+δ as a high-performance hydrogen evolution electrocatalyst in acidic media utilizing an atomic-scale hydrogen spillover effect between multifunctional catalytic sites. With insights from comprehensive experiments and theoretical calculations, the overall hydrogen evolution pathway proceeds along three steps: fast proton adsorption on O site, facile hydrogen migration from O site to Pt site via thermoneutral La-Pt bridge site serving as the mediator, and favorable H2 desorption on Pt site. Benefiting from this catalytic process, the resulting La2Sr2PtO7+δ exhibits a low overpotential of 13 mV at 10 mA cm−2, a small Tafel slope of 22 mV dec−1, an enhanced intrinsic activity, and a greater durability than commercial Pt black catalyst. While renewable H2 production offers a promising route for clean energy production, there is an urgent need to improve catalyst performances. Here, authors design a Pt-containing complex oxide that utilizes atomic-scale hydrogen spillover to promote H2 evolution electrocatalysis in acidic media.
Collapse
Affiliation(s)
- Jie Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Yu Chen
- Monash Centre for Electron Microscopy, Monash University, Clayton, VIC, 3800, Australia
| | - Xue Wen
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinhao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Daqin Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Chuan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Qian Lin
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Yifei Sun
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Shih-Chang Weng
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211800, China. .,WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
117
|
Liu JN, Zhao CX, Ren D, Wang J, Zhang R, Wang SH, Zhao C, Li BQ, Zhang Q. Preconstructing Asymmetric Interface in Air Cathodes for High-Performance Rechargeable Zn-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109407. [PMID: 34989032 DOI: 10.1002/adma.202109407] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Rechargeable zinc-air batteries afford great potential toward next-generation sustainable energy storage. Nevertheless, the oxygen redox reactions at the air cathode are highly sluggish in kinetics to induce poor energy efficiency and limited cycling lifespan. Air cathodes with asymmetric configurations significantly promote the electrocatalytic efficiency of the loaded electrocatalysts, whereas rational synthetic methodology to effectively fabricate asymmetric air cathodes remains insufficient. Herein, a strategy of asymmetric interface preconstruction is proposed to fabricate asymmetric air cathodes for high-performance rechargeable zinc-air batteries. Concretely, the asymmetric interface is preconstructed by introducing immiscible organic-water diphases within the air cathode, at which the electrocatalysts are in situ formed to achieve an asymmetric configuration. The as-fabricated asymmetric air cathodes realize high working rates of 50 mA cm-2 , long cycling stability of 3400 cycles at 10 mA cm-2 , and over 100 cycles under harsh conditions of 25 mA cm-2 and 25 mAh cm-2 . Moreover, the asymmetric interface preconstruction strategy is universal to many electrocatalytic systems and can be easily scaled up. This work provides an effective strategy toward advanced asymmetric air cathodes with high electrocatalytic efficiency and significantly promotes the performance of rechargeable zinc-air batteries.
Collapse
Affiliation(s)
- Jia-Ning Liu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chang-Xin Zhao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ding Ren
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Juan Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Zhang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shu-Hao Wang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bo-Quan Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
118
|
Chen Y, Fan S, Chen J, Deng L, Xiao Z. Catalytic Membrane Nanoreactor with Cu-Ag x Bimetallic Nanoparticles Immobilized in Membrane Pores for Enhanced Catalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9106-9115. [PMID: 35143180 DOI: 10.1021/acsami.1c22753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A catalytic membrane nanoreactor (CMNR) with Cu-Agx (where x is the millimolar concentration of AgNO3) bimetallic catalysts immobilized in membrane pores has been fabricated via coupling flowing synthesis and replacement reaction. Surface characterization by transmission electron microscopy (TEM) gives obvious evidence of the formation of Cu-Ag bimetallic core-shell nanostructures with Ag islands deposited on the Cu core metal. An apparent high shift phenomenon for the Cu element and a low shift phenomenon for the Ag element was determined by X-ray photoelectron spectroscopy (XPS), indicating a close interaction with the transfer of electron density from the Cu atom to the Ag atom. The hydrogenation catalysis of p-nitrophenol (p-NP) was tested to evaluate the catalytic performance. During the catalytic process, the Cu core acts as an electron-deficient site to adsorb and activate the -NO2 group for p-NP, and the Ag shell is beneficial for enhancing active H spilling to the Cu surface and then performing hydrogenation. A volcano-shaped apparent reaction rate constant can be achieved, which rises initially with the increasing Ag content and subsequently drops with a further increase in the Ag content. The highest value of 1071 min-1 can be achieved for CMNR immobilized with Cu-Ag2 owing to the suitable adsorption activation behavior and the best hydrogen spillover behavior.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqin Fan
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jiaojiao Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Lei Deng
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|
119
|
Chen S, Xu Z, Li J, Yang J, Shen X, Zhang Z, Li H, Li W, Li Z. Nanostructured transition-metal phthalocyanine complexes for catalytic oxygen reduction reaction. NANOTECHNOLOGY 2022; 33:182001. [PMID: 35045406 DOI: 10.1088/1361-6528/ac4cef] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Oxygen reduction reaction (ORR) plays a key role in the field of fuel cells. Efficient electrocatalysts for the ORR are important for fuel cells commercialization. Pt and its alloys are main active materials for ORR. However, their high cost and susceptibility to time-dependent drift hinders their applicability. Satisfactory catalytic activity of nanostructured transition metal phthalocyanine complexes (MPc) in ORR through the occurrence of molecular catalysis on the surface of MPc indicates their potential as a replacement material for precious-metal catalysts. Problems of MPc are analyzed on the basis of chemical structure and microstructure characteristics used in oxygen reduction catalysis, and the strategy for controlling the structure of MPc is proposed to improve the catalytic performance of ORR in this review.
Collapse
Affiliation(s)
- Siyu Chen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Zhanwei Xu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Jiayin Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Jun Yang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Xuetao Shen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Ziwei Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Hongkui Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Wenyang Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Zhi Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
- Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| |
Collapse
|
120
|
Lan Y, Batmunkh M, Li P, Qian B, Bu D, Zhao Q, Huang H, Sun W, Zhang Y, Ma T, Song XM, Jia B. Smart Solar-Metal-Air Batteries Based on BiOCl Photocorrosion for Monolithic Solar Energy Conversion and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105668. [PMID: 34877809 DOI: 10.1002/smll.202105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Herein, a BiOCl hydrogel film electrode featuring excellent photocorrosion and regeneration properties acts as the anode to construct a novel type of smart solar-metal-air batteries (SMABs), which combines the characteristics of solar cells (direct photovoltaic conversion) and metal-air batteries (electric energy storage and release interacting with atmosphere). The cyclic photocorrosion processes between BiOCl (Bi3+ ) and Bi can simply be achieved by solar light illumination and standing in the dark. Upon illumination, the device takes open-circuit configuration to charge itself from the sunlight. Notably, in this system, the converted solar energy can be stored in the SMABs without the need of external assistance. In the discharging process in the dark, Bi0 spontaneously turns back to Bi3+ producing electrons to induce the oxygen reduction reaction. With an illumination of 15 min, the battery with an electrode area of 1 cm2 can be continuously discharged for ≈3000 s. Taking elemental Bi as the calculation object, the theoretical capacity of the SMABs is 384.75 mAh g-1 , showing its potential application in energy storage. This novel type of SMABs is developed based on the unique photocorrosive and self-oxidation reaction of BiOCl to achieve photochemical energy generation and storage.
Collapse
Affiliation(s)
- Yalin Lan
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
- Analysis Center, Shenyang University of Chemical Technology, Shenyang, 110141, China
| | - Munkhbayar Batmunkh
- Centre for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Peng Li
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Bingzhi Qian
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Degang Bu
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Qin Zhao
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Hongwei Huang
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yu Zhang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xi-Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| |
Collapse
|
121
|
Huang S, Lu S, Gong S, Zhang Q, Duan F, Zhu H, Gu H, Dong W, Du M. Sublayer Stable Fe Dopant in Porous Pd Metallene Boosts Oxygen Reduction Reaction. ACS NANO 2022; 16:522-532. [PMID: 34939416 DOI: 10.1021/acsnano.1c07574] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Engineering the morphology and electronic properties simultaneously of emerging metallene materials is an effective strategy for enhancing their performance as oxygen reduction reaction (ORR) electrocatalysts. Herein, a highly efficient and stable ORR electrocatalyst, Fe-doped ultrathin porous Pd metallene (Fe-Pd UPM) composed of a few layers of 2D atomic metallene layers, was synthesized using a simple one pot wet-chemical method and characterized. Fe-Pd UPM was measured to have enhanced ORR activity compared to undoped Pd metallene. Fe-Pd UPM exhibits a mass activity of 0.736 A mgPd-1 with a loss of mass activity of only 5.1% after 10 000 cycles at 0.9 V versus the reversible hydrogen electrode (vs RHE) in 0.1 M KOH solution. Density functional theory (DFT) calculations reveal that the stable Fe dopant in the inner atomic layers of Fe-Pd UPM delivers a much smaller overpotential during O* hydrogenation into OH*. The morphology, porous structure, and Fe doping were verified to have enhanced ORR activity. We believe that the rational design of metallene materials with porous structures and interlayer doping is promising for the development of efficient and stable electrocatalysts.
Collapse
Affiliation(s)
- Shaoda Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Shun Gong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Qiuju Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hongwei Gu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
122
|
Bhowmik T, Sadhukhan M, Kempasiddaiah M, Barman S. Highly Dispersed Palladium Nanoparticles Supported on Graphitic Carbon Nitride for Selective Hydrogenation of Nitro Compounds and Ullmann Coupling Reaction. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tanmay Bhowmik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Odisha
| | - Mriganka Sadhukhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Odisha
| | - Manjunatha Kempasiddaiah
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Odisha
| | - Sudip Barman
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI Odisha
| |
Collapse
|
123
|
Nickel-Based Selenides with a Fractal Structure as an Excellent Bifunctional Electrocatalyst for Water Splitting. NANOMATERIALS 2022; 12:nano12020281. [PMID: 35055299 PMCID: PMC8779249 DOI: 10.3390/nano12020281] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
Nickel-based selenides are believed to be promising non-precious metal electrocatalysts, and have been widely used for both oxygen evolution reactions (OER) and hydrogen evolution reactions (HER). Here, we control the aging time to prepare NixSey with different fractal structures as a bifunctional catalyst. An obtained sample with an aging time of 80 min shows outstanding electrocatalytic performance for hydrogen evolution reactions (HER) with an overpotential of 225 mV (η@10 mA/cm2) and for oxygen evolution reactions (OER) with an overpotential of 309 mV (η@50 mA/cm2). Moreover, to further improve catalytic activity, we doped Fe in NixSey to obtain the ternary nickel-based selenide, Fe0.2Ni0.8Se (FNSs). The HER activity of FNS increased two-fold at 10 mA/cm2, and the overpotential of OER decreased to 255 mV at 50 mA/cm2. The synthetic strategy and research results of this work have a certain reference value for other low-cost and high-efficiency transition metal catalysts for electrocatalytic water splitting.
Collapse
|
124
|
Surfactant-Free Monodispersed Pd Nanoparticles Template for Core-Shell Pd@PdPt Nanoparticles as Electrocatalyst towards Methanol Oxidation Reaction (MOR). NANOMATERIALS 2022; 12:nano12020260. [PMID: 35055279 PMCID: PMC8778185 DOI: 10.3390/nano12020260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023]
Abstract
An eco-friendly two-step synthetic method for synthesizing Pd@PdPt/CNTs nanoparticles was introduced and studied for the methanol oxidation reaction. The Pd@PdPt alloy core-shell structure was synthesized by preparing a surfactant-free monodispersed Pd/CNTs precursor through the hydrolysis of tetrachloropalladate (II) ion ([PdCl4]2−) in the presence of carbon nanotubes (CNTs) and the subsequent hydrogen reduction and followed by a galvanic replacement reaction. This method opens up an eco-friendly, practical, and straightforward route for synthesizing monometallic or bimetallic nanoparticles with a clean surfactant-free electrocatalytic surface. It is quite promising for large-scale preparation. The Pd@PdPt/CNTs electrocatalyst demonstrated a high specific mass activity for methanol oxidation (400.2 mAmgPt−1) and excellent stability towards direct methanol oxidation compared to its monometallic counterparts.
Collapse
|
125
|
Guo J, Zhang M, Xu J, Fang J, Luo S, Yang C. Core-shell Pd-P@Pt-Ni nanoparticles with enhanced activity and durability as anode electrocatalyst for methanol oxidation reaction. RSC Adv 2022; 12:2246-2252. [PMID: 35425232 PMCID: PMC8979267 DOI: 10.1039/d1ra07998k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Pd-P@Pt-Ni core-shell nanoparticles, which consisted of a Pd-P alloy as a core and Pt-Ni thin layer as a shell, were explored as electrocatalysts for methanol oxidation reaction. The crystallographic information and the electronic properties were fully investigated by X-ray diffraction and X-ray photoelectron spectroscopy. In the methanol electrooxidation reaction, the particles showed high catalytic activity and strong resistance to the poisoning carbonaceous species in comparison with those of commercial Pt/C and the as-prepared Pt/C catalysts. The excellent durability was demonstrated by electrochemically active surface area loss and chronoamperometric measurements. These results would be due to the enhanced catalytic properties of Pt by the double synergistic effects from the core part and the nickel species in the shell part.
Collapse
Affiliation(s)
- Jiangbin Guo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 P. R. China
| | - Jing Xu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Jun Fang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Shuiyuan Luo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| |
Collapse
|
126
|
Wang Y, Zheng M, Li Y, Ye C, Chen J, Ye J, Zhang Q, Li J, Zhou Z, Fu XZ, Wang J, Sun SG, Wang D. P‐d orbital hybridization induced by monodispersed Ga site on Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yao Wang
- Tsinghua University Department of Chemistry CHINA
| | - Meng Zheng
- Shenzhen University School of Medicine CHINA
| | - Yunrui Li
- CUPB: China University of Petroleum Beijing Petroleum Engineering CHINA
| | | | - Juan Chen
- CUPB: China University of Petroleum Beijing Petroleum Engineering CHINA
| | - Jinyu Ye
- Xiamen University Chemistry CHINA
| | | | - Jiong Li
- SINAP: Shanghai Institute of Applied Physics Chinese Academy of Sciences Physics CHINA
| | | | - Xian-Zhu Fu
- Shenzhen University School of Medicine CHINA
| | - Jin Wang
- Shenzhen University School of Medicine CHINA
| | | | - Dingsheng Wang
- Tsinghua University Department of Chemistry Haidian 100084 Beijing CHINA
| |
Collapse
|
127
|
Abstract
Porous organic polymers (POPs) composed of organic building units linked via covalent bonds are a class of lightweight porous network materials with high surface areas, tuneable pores, and designable components and structures. Owing to their well-preserved characteristics in terms of structure and composition, POPs applied as electrocatalysts have shown promising activity and achieved considerable advances in numerous electrocatalytic reactions, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, N2 reduction reaction, nitrate/nitrite reduction reaction, nitrobenzene reduction reaction, hydrogen oxidation reaction, and benzyl alcohol oxidation reaction. Herein, we present a systematic overview of recent advances in the applications of POPs in these electrocatalytic reactions. The synthesis strategies, specific active sites, and catalytic mechanisms of POPs are summarized in this review. The fundamental principles of some electrocatalytic reactions are also concluded. We further discuss the current challenges of and perspectives on POPs for electrocatalytic applications. Meanwhile, the possible future directions are highlighted to afford guidelines for the development of efficient POP electrocatalysts.
Collapse
Affiliation(s)
- Dong-Hui Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - You Tao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
128
|
Ren W, Cheng C, Shao P, Luo X, Zhang H, Wang S, Duan X. Origins of Electron-Transfer Regime in Persulfate-Based Nonradical Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:78-97. [PMID: 34932343 DOI: 10.1021/acs.est.1c05374] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Persulfate-based nonradical oxidation processes (PS-NOPs) are appealing in wastewater purification due to their high efficiency and selectivity for removing trace organic contaminants in complicated water matrices. In this review, we showcased the recent progresses of state-of-the-art strategies in the nonradical electron-transfer regimes in PS-NOPs, including design of metal and metal-free heterogeneous catalysts, in situ/operando characterization/analytical techniques, and insights into the origins of electron-transfer mechanisms. In a typical electron-transfer process (ETP), persulfate is activated by a catalyst to form surface activated complexes, which directly or indirectly interact with target pollutants to finalize the oxidation. We discussed different analytical techniques on the fundamentals and tactics for accurate analysis of ETP. Moreover, we demonstrated the challenges and proposed future research strategies for ETP-based systems, such as computation-enabled molecular-level investigations, rational design of catalysts, and real-scenario applications in the complicated water environment. Overall, this review dedicates to sharpening the understanding of ETP in PS-NOPs and presenting promising applications in remediation technology and green chemistry.
Collapse
Affiliation(s)
- Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA5005, Australia
| | - Cheng Cheng
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hui Zhang
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA5005, Australia
| |
Collapse
|
129
|
Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Am J Cancer Res 2022; 12:574-602. [PMID: 34976202 PMCID: PMC8692915 DOI: 10.7150/thno.67184] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Lateral flow immunoassay (LFIA) with gold nanoparticles (AuNPs) as signal reporters is a popular point-of-care diagnostic technique. However, given the weak absorbance of traditional 20-40 nm spherical AuNPs, their sensitivity is low, which greatly limits the wide application of AuNP-based LFIA. With the rapid advances in materials science and nanotechnology, the synthesis of noble metal nanoparticles (NMNPs) has enhanced physicochemical properties such as optical, plasmonic, catalytic, and multifunctional activity by simply engineering their physical parameters, including the size, shape, composition, and external structure. Using these engineered NMNPs as an alternative to traditional AuNPs, the sensitivity of LFIA has been significantly improved, thereby greatly expanding the working range and application scenarios of LFIA, particularly in trace analysis. Therefore, in this review, we will focus on the design of engineered NMNPs and their demonstration in improving LFIA. We highlight the strategies available for tailoring NMNP designs, the effect of NMNP engineering on their performance, and the working principle of each engineering design for enhancing LFIA. Finally, current challenges and future improvements in this field are briefly discussed.
Collapse
|
130
|
Qiu J, Nguyen QN, Lyu Z, Wang Q, Xia Y. Bimetallic Janus Nanocrystals: Syntheses and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102591. [PMID: 34648198 DOI: 10.1002/adma.202102591] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/15/2021] [Indexed: 05/28/2023]
Abstract
Bimetallic Janus nanocrystals have received considerable interest in recent years owing to their unique properties and niche applications. The side-by-side distribution of two distinct metals provides a flexible platform for tailoring the optical and catalytic properties of nanocrystals. First, a brief introduction to the structural features of bimetallic Janus nanocrystals, followed by an extensive discussion of the synthetic approaches, is given. The strategies and experimental controls for achieving the Janus structure, as well as the mechanistic understandings, are specifically discussed. Then, a number of intriguing properties and applications enabled by the Janus nanocrystals are highlighted. Finally, this article is concluded with future directions and outlooks with respect to both syntheses and applications of this new class of functional nanomaterials.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Quynh N Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Qiuxiang Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
131
|
Ohnuma A, Takahashi K, Tsunoyama H, Inoue T, Zhao P, Velloth A, Ehara M, Ichikuni N, Tabuchi M, Nakajima A. Enhanced oxygen reduction activity of size-selected platinum subnanocluster catalysts: Ptn (n = 3–9). Catal Sci Technol 2022. [DOI: 10.1039/d1cy00573a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ptn subnanoclusters (n = 3–9) on a carbon substrate exhibit 1.6–2.2 times higher activity than the standard Pt/C catalysts. EXAFS experiments and DFT calculations show plausible structures and energetics for reaction intermediates in the processes.
Collapse
Affiliation(s)
- Akira Ohnuma
- New Field Pioneering Division, Toyota Boshoku Corporation, 1-1 Toyoda-cho, Kariya, Aichi 448-8651, Japan
| | - Koki Takahashi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hironori Tsunoyama
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Tomoya Inoue
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Pei Zhao
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Archana Velloth
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Masahiro Ehara
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Nobuyuki Ichikuni
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masao Tabuchi
- Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Atsushi Nakajima
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
132
|
MA Y, KAJIMA H, SHIMASAKI Y, NAGAI T, NAPPORN TW, WADA H, KURODA K, KURODA Y, ISHIHARA A, MITSUSHIMA S. Degradation Analysis of Pt/Nb–Ti<sub>4</sub>O<sub>7</sub> as PEFC Cathode Catalysts with Controlled Arc Plasma–deposited Platinum Content. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yongbing MA
- Graduate School of Engineering Science, Yokohama National University
| | - Hirokata KAJIMA
- Graduate School of Engineering Science, Yokohama National University
| | - Yuta SHIMASAKI
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University
| | - Takaaki NAGAI
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University
| | - Teko W. NAPPORN
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University
| | - Hiroaki WADA
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University
| | - Kazuyuki KURODA
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University
| | - Yoshiyuki KURODA
- Graduate School of Engineering Science, Yokohama National University
| | - Akimitsu ISHIHARA
- Advanced Chemical Energy Research Center, Institute of Advanced Sciences, Yokohama National University
| | | |
Collapse
|
133
|
Ge Y, Wang X, Chen B, Huang Z, Shi Z, Huang B, Liu J, Wang G, Chen Y, Li L, Lu S, Luo Q, Yun Q, Zhang H. Preparation of fcc-2H-fcc Heterophase Pd@Ir Nanostructures for High-Performance Electrochemical Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107399. [PMID: 34719800 DOI: 10.1002/adma.202107399] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
With the development of phase engineering of nanomaterials (PEN), construction of noble-metal heterostructures with unconventional crystal phases, including heterophases, has been proposed as an attractive approach toward the rational design of highly efficient catalysts. However, it still remains challenging to realize the controlled preparation of such unconventional-phase noble-metal heterostructures and explore their crystal-phase-dependent applications. Here, various Pd@Ir core-shell nanostructures are synthesized with unconventional fcc-2H-fcc heterophase (2H: hexagonal close-packed; fcc: face-centered cubic) through a wet-chemical seeded method. As a result, heterophase Pd66 @Ir34 nanoparticles, Pd45 @Ir55 multibranched nanodendrites, and Pd68 @Ir22 Co10 trimetallic nanoparticles are obtained via the phase-selective epitaxial growth of fcc-2H-fcc-heterophase Ir-based nanostructures on 2H-Pd seeds. Importantly, the heterophase Pd45 @Ir55 nanodendrites exhibit excellent catalytic performance toward electrochemical hydrogen evolution reaction (HER) under acidic conditions. An overpotential of only 11.0 mV is required to achieve a current density of 10 mA cm-2 on Pd45 @Ir55 nanodendrites, which is lower than those of the conventional fcc-Pd47 @Ir53 counterparts, commercial Ir/C and Pt/C. This work not only demonstrates an appealing route to synthesize novel heterophase nanomaterials for promising applications in the emerging field of PEN, but also highlights the significant role of the crystal phase in determining their catalytic properties.
Collapse
Affiliation(s)
- Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shiyao Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
134
|
Chang F, Liu Y, Yang L, Zhang Q, Wei J, Wang X, Bai Z. Modulating the intrinsic properties of platinum–cobalt nanowires for enhanced electrocatalysis of the oxygen reduction reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj01146h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to improve the intrinsic activity of nanoalloy electrocatalysts is essential for designing highly efficient electrocatalysts by optimizing the basic physical properties of the nanoalloy.
Collapse
Affiliation(s)
- Fangfang Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yongpeng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qing Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Juncai Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
135
|
Zhang J, Li S. Theoretical investigation on the Ni atom-pair supported by N-doped graphene for the oxygen reduction reaction. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
136
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
137
|
Zhou M, Liu J, Ling C, Ge Y, Chen B, Tan C, Fan Z, Huang J, Chen J, Liu Z, Huang Z, Ge J, Cheng H, Chen Y, Dai L, Yin P, Zhang X, Yun Q, Wang J, Zhang H. Synthesis of Pd 3 Sn and PdCuSn Nanorods with L1 2 Phase for Highly Efficient Electrocatalytic Ethanol Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106115. [PMID: 34601769 DOI: 10.1002/adma.202106115] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The crystal phase of nanomaterials is one of the key parameters determining their physicochemical properties and performance in various applications. However, it still remains a great challenge to synthesize nanomaterials with different crystal phases while maintaining the same composition, size, and morphology. Here, a facile, one-pot, wet-chemical method is reported to synthesize Pd3 Sn nanorods with comparable size and morphology but different crystal phases, that is, an ordered intermetallic and a disordered alloy with L12 and face-centered cubic (fcc) phases, respectively. The crystal phase of the as-synthesized Pd3 Sn nanorods is easily tuned by altering the types of tin precursors and solvents. Moreover, the approach can also be used to synthesize ternary PdCuSn nanorods with the L12 crystal phase. When used as electrocatalysts, the L12 Pd3 Sn nanorods exhibit superior electrocatalytic performance toward the ethanol oxidation reaction (EOR) compared to their fcc counterpart. Impressively, compared to the L12 Pd3 Sn nanorods, the ternary L12 PdCuSn nanorods exhibit more enhanced electrocatalytic performance toward the EOR, yielding a high mass current density up to 6.22 A mgPd -1 , which is superior to the commercial Pd/C catalyst and among the best reported Pd-based EOR electrocatalysts.
Collapse
Affiliation(s)
- Ming Zhou
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chongyi Ling
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Junze Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhengqing Liu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710000, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hongfei Cheng
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lei Dai
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials, Henan University, Kaifeng, 475004, China
| | - Pengfei Yin
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xiao Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
138
|
Chen A, Lu J, Zhu H, Zhang H, Zeng S, Zheng L, Liang HP. Construction of highly durable electrocatalysts by pore-confinement and anchoring effect for oxygen reduction reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj06098h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing highly stable and efficient catalysts towards the oxygen reduction reaction is important for the long-term operation in proton exchange membrane fuel cells. Herein, combined with the impregnation method, the...
Collapse
|
139
|
Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63886-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
140
|
Ma X, Deng L, Lu M, He Y, Zou S, Xin Y. Heterostructure of core-shell IrCo@IrCoO xas efficient and stable catalysts for oxygen evolution reaction. NANOTECHNOLOGY 2021; 33:125702. [PMID: 34874299 DOI: 10.1088/1361-6528/ac4068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Although researches on non-noble metal electrocatalysts have been made some progress recently, their performance in proton exchange membrane water electrolyzer is still incomparable to that of noble-metal-based catalysts. Therefore, it is a more practical way to improve the utilization of precious metals in electrocatalysts for oxygen evolution reaction (OER) in the acidic medium. Herein, nanostructured IrCo@IrCoOxcore-shell electrocatalysts composed of IrCo alloy core and IrCoOxshell were synthesized through a simple colloidally synthesis and calcination method. As expected, the hybrid IrCo-200 NPs with petal-like morphology show the best OER activities in acidic electrolytes. They deliver lower overpotential and better electrocatalytic kinetics than pristine IrCo alloy and commercial Ir/C, reaching a low overpotential (j = 10 mA cm-2) of 259 mV (versus RHE) and a Tafel slope of 59 mV dec-1. The IrCo-200 NPs displayed robust durability with life time of about 55 h in acidic solution under a large current density of 50 mA cm-2. The enhanced electrocatalytic activity may be associated with the unique metal/amorphous metal oxide core-shell heterostructure, allowing the improved charge transferability. Moreover, the *OH-rich amorphous shell functions as the active site for OER and prevents the further dissolution of the metallic core and thus ensures high stability.
Collapse
Affiliation(s)
- Xiaoping Ma
- School of Physical Science and Technology & Jiangsu Key Laboratory of Thin Films, People's Republic of China
- Soochow University, Suzhou 215006, People's Republic of China
| | - Lili Deng
- School of Physical Science and Technology & Jiangsu Key Laboratory of Thin Films, People's Republic of China
- Soochow University, Suzhou 215006, People's Republic of China
| | - Manting Lu
- School of Physical Science and Technology & Jiangsu Key Laboratory of Thin Films, People's Republic of China
- Soochow University, Suzhou 215006, People's Republic of China
| | - Yi He
- School of Physical Science and Technology & Jiangsu Key Laboratory of Thin Films, People's Republic of China
- Soochow University, Suzhou 215006, People's Republic of China
| | - Shuai Zou
- School of Physical Science and Technology & Jiangsu Key Laboratory of Thin Films, People's Republic of China
- Soochow University, Suzhou 215006, People's Republic of China
| | - Yu Xin
- School of Physical Science and Technology & Jiangsu Key Laboratory of Thin Films, People's Republic of China
- Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
141
|
Dachraoui W, Henninen TR, Keller D, Erni R. Multi-step atomic mechanism of platinum nanocrystals nucleation and growth revealed by in-situ liquid cell STEM. Sci Rep 2021; 11:23965. [PMID: 34907274 PMCID: PMC8671505 DOI: 10.1038/s41598-021-03455-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
The understanding of crystal growth mechanisms has broadened substantially. One significant advancement is based in the conception that the interaction between particles plays an important role in the growth of nanomaterials. This is in contrast to the classical model, which neglects this process. Direct imaging of such processes at atomic-level in liquid-phase is essential for establishing new theoretical models that encompass the full complexity of realistic scenarios and eventually allow for tailoring nanoparticle growth. Here, we investigate at atomic-scale the exact growth mechanisms of platinum nanocrystals from single atom to final crystals by in-situ liquid phase scanning transmission electron microscopy. We show that, after nucleation, the nanocrystals grow via two main stages: atomic attachment in the first stage, where the particles initially grow by attachment of the atoms until depletion of the surrounding zone. Thereafter, follows the second stage of growth, which is based on particle attachment by different atomic pathways to finally form mature nanoparticles. The atomic mechanisms underlying these growth pathways are distinctly different and have different driving forces and kinetics as evidenced by our experimental observations.
Collapse
Affiliation(s)
- Walid Dachraoui
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Trond R Henninen
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Debora Keller
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa--Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| |
Collapse
|
142
|
Nie Y, Li L, Wei Z. Achievements in Pt nanoalloy oxygen reduction reaction catalysts: strain engineering, stability and atom utilization efficiency. Chem Commun (Camb) 2021; 57:12898-12913. [PMID: 34797362 DOI: 10.1039/d1cc05534h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Pt nanoalloy surfaces often show unique electronic and physicochemical properties that are distinct from those of their parent metals, which provide significant room for manipulating their oxygen reduction reaction (ORR) behaviour. In this Feature Article, we present the progress of our recent research and that of other groups in Pt nanoalloy catalysts for ORR from three aspects, namely, strain engineering, stability and atom utilization efficiency. Some new insights into Pt surface strain engineering will be firstly introduced, with a focus on discussing the effect of compressive and tensile strain on the chemisorption properties. Secondly, the design concepts and synthetic methodologies to intensify the inherent stability of Pt nanoalloys will be summarized. Then, the exciting research push in developing nanostructured alloys with high atom utilization efficiency of Pt will be presented. Finally, a brief illumination of challenges and future developing perspectives of Pt nanoalloy catalysts will be provided.
Collapse
Affiliation(s)
- Yao Nie
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Shapingba 174, Chongqing 400044, China.
| |
Collapse
|
143
|
Zhai P, Shi Y, Wang Q, Xia Y, Ding K. Elucidating the surface compositions of Pd@Pt nL core-shell nanocrystals through catalytic reactions and spectroscopy probes. NANOSCALE 2021; 13:18498-18506. [PMID: 34730167 DOI: 10.1039/d1nr05636k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The catalytic behaviors or properties of bimetallic catalysts are highly dependent on the surface composition, but it has been a grand challenge to acquire such information. In this work, we employ Pd@PtnL core-shell nanocrystals with an octahedral shape and tunable Pt shell thickness as a model system to elucidate their surface compositions using catalytic reactions based upon the selective hydrogenation of butadiene and acetylene. Our results indicate that the surface of the core-shell nanocrystals changed from Pt-rich to Pd-rich when they were subjected to calcination under oxygen, a critical step involved in the preparation of many industrial catalysts. The inside-out migration can be attributed to both atomic interdiffusion and the oxidation of Pd atoms during the calcination process. The changes in surface composition were further confirmed using infrared and X-ray photoelectron spectroscopy. This work offers insightful guidance for the development and optimization of bimetallic catalysts toward various reactions.
Collapse
Affiliation(s)
- Peng Zhai
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Qiuxiang Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Kunlun Ding
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| |
Collapse
|
144
|
Highly Enhanced Electrocatalytic Performances with Dendritic Bimetallic Palladium-Based Nanocrystals. Catalysts 2021. [DOI: 10.3390/catal11111337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The exploration of efficient nanocatalysts with high activity and stability towards water electrolysis and fuel cell applications is extremely important for the advancement of electrochemical reactions. However, it remains challenging. Controlling the morphology of bimetallic Pd–Pt nanostructures can be a great way to improve their electrocatalytic properties compared with previously developed catalysts. Herein, we synthesize bimetallic Pd–Pt nanodendrites, which consist of a dense matrix of unsaturated coordination atoms and high porosity. The concentration of cetyltrimethylammonium chloride was significant for the morphology and size of the Pd–Pt nanodendrites. Pd–Pt nanodendrites prepared by cetyltrimethylammonium chloride (200 mM) showed higher activities towards both the hydrogen evolution reaction and methanol oxidation reaction compared to their different Pd–Pt nanodendrite counterparts, commercial Pd, and Pt catalysts, which was attributed to numerous unsaturated surface atoms in well-developed single branches.
Collapse
|
145
|
Bian J, Wei C, Wen Y, Zhang B. Regulation of electrocatalytic activity by local microstructure: focusing on catalytic active zone. Chemistry 2021; 28:e202103141. [PMID: 34734654 DOI: 10.1002/chem.202103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/08/2022]
Abstract
Traditional regulation methods of active sites have been successfully optimized the performance of electrocatalysts, but seem unable to achieve further breakthrough in the catalytic activity. Unlike the conventional viewpoint of focusing on single active site, the concept of local microstructure active zone is more comprehensive and new suits of methods to regulate reaction zone for electrocatalytic reactions are developed accordingly. The local microstructure active zone refers to the zone with high catalytic activity formed by the interaction between active atoms and neighboring coordination atoms as well as the surrounding environment. Instead of the traditional single active atom site, the active zone is more suitable for the actual electrochemical reaction process. According to this concept, the activity of the electrocatalysts can be coordinated by multiple active atoms. This strategy is beneficial to understand the relationship between material, structure and catalysis, which realizes the scientific design and synthesis of high performance electrocatalysts. This review provides the research progress of this strategy in electrocatalytic reactions, with the emphasis on their important applications in oxygen evolution reaction, urea oxidation reaction and carbon dioxide reduction.
Collapse
Affiliation(s)
- Juanjuan Bian
- Fudan University, Department of Macromolecular Science, CHINA
| | - Chenyang Wei
- Fudan University, Department of Macromolecular Science, CHINA
| | - Yunzhou Wen
- Fudan University, Department of Macromolecular Science, CHINA
| | | |
Collapse
|
146
|
Liu D, Yang N, Zeng Q, Liu H, Chen D, Cui P, Xu L, Hu C, Yang J. Core-shell Ag–Pt nanoparticles: A versatile platform for the synthesis of heterogeneous nanostructures towards catalyzing electrochemical reactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
147
|
A high-temperature anion-exchange membrane fuel cell with a critical raw material-free cathode. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
148
|
LI H, WU R, LIU HB, HAN LY, YUAN WJ, HUA ZQ, Fan SR, WU Y. A novel catalytic-type gas sensor based on alumina ceramic substrates loaded with catalysts and printed electrodes. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
149
|
Proton exchange membrane fuel cells powered with both CO and H 2. Proc Natl Acad Sci U S A 2021; 118:2107332118. [PMID: 34663729 DOI: 10.1073/pnas.2107332118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
The CO electrooxidation is long considered invincible in the proton exchange membrane fuel cell (PEMFC), where even a trace level of CO in H2 seriously poisons the anode catalysts and leads to huge performance decay. Here, we describe a class of atomically dispersed IrRu-N-C anode catalysts capable of oxidizing CO, H2, or a combination of the two. With a small amount of metal (24 μgmetal⋅cm-2) used in the anode, the H2 fuel cell performs its peak power density at 1.43 W⋅cm-2 When operating with pure CO, this catalyst exhibits its maximum current density at 800 mA⋅cm-2, while the Pt/C-based cell ceases to work. We attribute this exceptional catalytic behavior to the interplay between Ir and Ru single-atom centers, where the two sites act in synergy to favorably decompose H2O and to further facilitate CO activation. These findings open up an avenue to conquer the formidable poisoning issue of PEMFCs.
Collapse
|
150
|
He Q, Hu H, Shao Y, Tang D, Zhao Z. Constructing 3D hierarchical MOFs nanospheres for oxygen evolution from high-throughput calculations. J Colloid Interface Sci 2021; 607:1944-1952. [PMID: 34695743 DOI: 10.1016/j.jcis.2021.09.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023]
Abstract
In order to realize outstanding electrochemical performance in oxygen evolution reactions (OER), it is important to construct 3D hierarchical nanospheres consisting of 2D bimetal metal-organic framework (MOF) nanosheets. Based on high-throughput density-functional theory (DFT) calculations, we chose Ni and V as central ions and prepared Ni-V bimetal MOFs nanospheres (NiV-MNs) assembled from ultrathin 2D MOFs nanosheets through a simple one-step solvothermal method. So far, V-based ultrathin 2D MOFs have been firstly reported. Gradient experiments demonstrated that NiV-MNs shows the best catalytic activity when the amount of Ni is equal to that of V (denoted as Ni1V1-MNs). The Ni1V1-MNs can deliver a high current density of 50 mA·cm-2 at a low over-potential of 370 mV in alkaline condition even after 10000 s continuous catalytic testing. Coincidentally, the DFT calculations further confirmed that the ΔG of Ni1V1-MNs is much lower compared with Ni1V2-MNs and Ni2V1-MNs. Based upon the experimental results and DFT calculations, we propose that the better performance of Ni1V1-MNs should be attributed to the grater intrinsic activity of Ni and the coupling effect between Ni and V, as they are crucial for tuning the electrochemical activity.
Collapse
Affiliation(s)
- Qing He
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Huihui Hu
- Suzhou Beike Nano Technology Co. Ltd., Suzhou 215000, China
| | - Yabin Shao
- School of Jia Yang, Zhejiang Shuren University, Hangzhou 310015, China
| | - Di Tang
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhengzhi Zhao
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|