101
|
Wang X, Ke J, Zhu Y, Deb A, Xu Y, Zhang XP. Asymmetric Radical Process for General Synthesis of Chiral Heteroaryl Cyclopropanes. J Am Chem Soc 2021; 143:11121-11129. [PMID: 34282613 PMCID: PMC8399893 DOI: 10.1021/jacs.1c04655] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly efficient catalytic method has been developed for asymmetric radical cyclopropanation of alkenes with in situ-generated α-heteroaryldiazomethanes via Co(II)-based metalloradical catalysis (MRC). Through fine-tuning the cavity-like environments of newly-synthesized D2-symmetric chiral amidoporphyrins as the supporting ligand, the optimized Co(II)-based metalloradical system is broadly applicable to α-pyridyl and other α-heteroaryldiazomethanes for asymmetric cyclopropanation of wide-ranging alkenes, including several types of challenging substrates. This new catalytic methodology provides a general access to valuable chiral heteroaryl cyclopropanes in high yields with excellent both diastereoselectivities and enantioselectivities. Combined computational and experimental studies further support the underlying stepwise radical mechanism of the Co(II)-based olefin cyclopropanation involving α- and γ-metalloalkyl radicals as the key intermediates.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jing Ke
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Arghya Deb
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yijie Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
102
|
Yang N, Tian Y, Zhang M, Peng X, Li F, Li J, Li Y, Fan B, Wang F, Song H. Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnol Adv 2021; 54:107808. [PMID: 34324993 DOI: 10.1016/j.biotechadv.2021.107808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/26/2021] [Accepted: 07/21/2021] [Indexed: 11/02/2022]
Abstract
Enzymes catalyse target reactions under mild conditions with high efficiency, as well as excellent regional-, stereo-, and enantiomeric selectivity. Photocatalysis utilises sustainable and environment-friendly light power to realise efficient chemical conversion. By combining the interdisciplinary advantages of photo- and enzymatic catalysis, the photocatalyst-enzyme hybrid systems have proceeded various light-driven biotransformation with high efficiency under environmentally benign conditions, thus, attracting unparalleled focus during the last decades. It has also been regarded as a promising pathway towards green chemistry utilising ubiquitous solar energy. This systematic review gives insight into this research field by classifying the existing photocatalyst-enzyme hybrid systems into three sections based on different hybridizing modes between photo- and enzymatic catalysis. Furthermore, existing challenges and proposed strategies are discussed within this context. The first system summarised is the cofactor-mediated hybrid system, in which natural/artificial cofactors act as reducing equivalents that connect photocatalysts with enzymes for light-driven enzymatic biotransformation. Second, the direct contact-based photocatalyst-enzyme hybrid systems are described, including two different kinds of electron exchange sites on the enzyme molecules. Third, some cases where photocatalysts and enzymes are integrated into a reaction cascade with specific intermediates will be discussed in the following chapter. Finally, we provide perspective concerning the future of this field.
Collapse
Affiliation(s)
- Nan Yang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yao Tian
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Mai Zhang
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiting Peng
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Feng Li
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| | - Hao Song
- Frontier Science Centre for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
103
|
9a-Phenyl-2,3,3a,3b,9a,9b-hexahydro-4H-furo[3‘,2’:3,4]cyclobuta- [1,2-b]chromen-4-one: A Flavone-Based [2 + 2]-Photocycloadduct. MOLBANK 2021. [DOI: 10.3390/m1256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The intermolecular [2 + 2]-photocycloaddition of the parent flavone molecule (4) as the triplet energy-accepting species and the electron-rich alkene 2, 3-dihydrofuran (5) was performed by visible-light-mediated triplet-sensitization with an iridium-based organometallic sensitizer. The reaction proceeds with high diastereo- and regioselectivity (>98:2 for the regiochemical orientation and with 95% d.s.). In contrast to numerous other ene/enone combinations that are described in the literature and were also performed by us, the reaction between 4 and 5 almost solely afforded the cis-syn-cis cyclobutane 6, whereas analogous conjugated six- and five-membered cycloalkenones preferentially react to cis-anti-cis cyclobutanes or a mixture of both diastereoisomers (e.g., for the cyclohexanone-derived example 9).
Collapse
|
104
|
Gant Kanegusuku AL, Roizen JL. Recent Advances in Photoredox‐Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Jennifer L. Roizen
- Department of Chemistry Duke University Box 90346 Durham NC 27708-0354 USA
| |
Collapse
|
105
|
Jung H, Hong M, Marchini M, Villa M, Steinlandt PS, Huang X, Hemming M, Meggers E, Ceroni P, Park J, Baik MH. Understanding the mechanism of direct visible-light-activated [2 + 2] cycloadditions mediated by Rh and Ir photocatalysts: combined computational and spectroscopic studies. Chem Sci 2021; 12:9673-9681. [PMID: 34349938 PMCID: PMC8293808 DOI: 10.1039/d1sc02745j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 01/21/2023] Open
Abstract
The mechanism of [2 + 2] cycloadditions activated by visible light and catalyzed by bis-cyclometalated Rh(iii) and Ir(iii) photocatalysts was investigated, combining density functional theory calculations and spectroscopic techniques. Experimental observations show that the Rh-based photocatalyst produces excellent yield and enantioselectivity whereas the Ir-photocatalyst yields racemates. Two different mechanistic features were found to compete with each other, namely the direct photoactivation of the catalyst-substrate complex and outer-sphere triplet energy transfer. Our integrated analysis suggests that the direct photocatalysis is the inner working of the Rh-catalyzed reaction, whereas the Ir catalyst serves as a triplet sensitizer that activates cycloaddition via an outer-sphere triplet excited state energy transfer mechanism.
Collapse
Affiliation(s)
- Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Marianna Marchini
- Department of Chemistry "Giacomo Ciamician", University of Bologna via Selmi 2 40126 Bologna Italy
| | - Marco Villa
- Department of Chemistry "Giacomo Ciamician", University of Bologna via Selmi 2 40126 Bologna Italy
| | - Philipp S Steinlandt
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Xiaoqiang Huang
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Marcel Hemming
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Paola Ceroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna via Selmi 2 40126 Bologna Italy
| | - Jiyong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
106
|
Petek N, Brodnik H, Grošelj U, Svete J, Požgan F, Štefane B. Visible-Light Driven Selective C-N Bond Scission in anti-Bimane-Like Derivatives. Org Lett 2021; 23:5294-5298. [PMID: 34077227 PMCID: PMC8832495 DOI: 10.1021/acs.orglett.1c01376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we report the photochemical transformation of pyrazolo[1,2-a]pyrazolone substrates that reach an excited state upon irradiation with visible light to initiate the homolytic C-N bond cleavage process that yields the corresponding N1-substituted pyrazoles. Moreover, chemoselective heterolytic C-N bond cleavage is possible in the pyrazolo[1,2-a]pyrazole core in the presence of bromomalonate.
Collapse
Affiliation(s)
- Nejc Petek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Helena Brodnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Uroš Grošelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Franc Požgan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
107
|
A catalytic asymmetric cross-coupling approach to the synthesis of cyclobutanes. Nat Chem 2021; 13:880-886. [PMID: 34211118 DOI: 10.1038/s41557-021-00725-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
Stereodefined four-membered rings are common motifs in bioactive molecules and versatile intermediates in organic synthesis. However, the synthesis of complex, chiral cyclobutanes is a largely unsolved problem and there is a need for general and modular synthetic methods. Here we report a series of asymmetric cross-coupling reactions between cyclobutenes and arylboronic acids which are initiated by Rh-catalysed asymmetric carbometallation. After the initial carborhodation, Rh-cyclobutyl intermediates undergo chain-walking or C-H insertion so that overall a variety of additions such as reductive Heck reactions, 1,5-addition and homoallylic substitution are observed. The synthetic applicability of these highly stereoselective transformations is demonstrated in the concise syntheses of the drug candidates Belaperidone and PF-04862853. We anticipate this approach will be widely adopted by synthetic and medicinal chemists. While the carbometallation approach reported here is exemplified with Rh and arylboronic acids, it is likely to be applicable to other metals and nucleophiles.
Collapse
|
108
|
Pecho F, Sempere Y, Gramüller J, Hörmann FM, Gschwind RM, Bach T. Enantioselective [2 + 2] Photocycloaddition via Iminium Ions: Catalysis by a Sensitizing Chiral Brønsted Acid. J Am Chem Soc 2021; 143:9350-9354. [PMID: 34156845 PMCID: PMC8251699 DOI: 10.1021/jacs.1c05240] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N,O-Acetals derived from α,β-unsaturated β-aryl substituted aldehydes and (1-aminocyclohexyl)methanol were found to undergo a catalytic enantioselective [2 + 2] photocycloaddition to a variety of olefins (19 examples, 54-96% yield, 84-98% ee). The reaction was performed by visible light irradiation (λ = 459 nm). A chiral phosphoric acid (10 mol %) with an (R)-1,1'-bi-2-naphthol (binol) backbone served as the catalyst. The acid displays two thioxanthone groups attached to position 3 and 3' of the binol core via a meta-substituted phenyl linker. NMR studies confirmed the formation of an iminium ion which is attached to the acid counterion in a hydrogen-bond assisted ion pair. The catalytic activity of the acid rests on the presence of the thioxanthone moieties which enable a facile triplet energy transfer and an efficient enantioface differentiation.
Collapse
Affiliation(s)
- Franziska Pecho
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Yeshua Sempere
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Johannes Gramüller
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Fabian M Hörmann
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Ruth M Gschwind
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
109
|
Jiang Y, Yang M, Wu Y, López-Arteaga R, Rogers CR, Weiss EA. Chemo- and Stereoselective Intermolecular [2+2] Photocycloaddition of Conjugated Dienes using Colloidal Nanocrystal Photocatalysts. CHEM CATALYSIS 2021; 1:106-116. [PMID: 34337591 DOI: 10.1016/j.checat.2021.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The use of visible-light photosensitizers to power [2+2] photocycloadditions that produce complex tetrasubstituted cyclobutanes is a true success of photochemistry, but the scope of this reaction has been limited to activated α, β-unsaturated carbonyls. This paper describes selective intermolecular homo- and hetero-[2+2] photocycloadditions of terminal and internal aryl conjugated dienes - substrates historically unsuited for this reaction because of their multiple possible reaction pathways and product configurations - through triplet-triplet energy transfer from CdSe nanocrystal photocatalysts, to generate valuable and elusive syn-trans aryl vinylcyclobutanes. The negligible singlet-triplet splitting of nanocrystals' excited states allows them to drive the [2+2] pathway over the competing [4+2] photoredox pathway, a chemoselectivity not achievable with any known molecular photosensitizer. Reversible tethering of the cyclobutane product to the nanocrystal surface results in near quantitative yield of the syn-trans product. Flat colloidal CdSe nanoplatelets produce cyclobutanes coupled at the terminal alkenes of component dienes with up to 89% regioselectivity.
Collapse
Affiliation(s)
- Yishu Jiang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Muwen Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Yue Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Rafael López-Arteaga
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Cameron R Rogers
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA.,Lead contact
| |
Collapse
|
110
|
Cindy Lee WC, Wang DS, Zhang C, Xie J, Li B, Zhang XP. Asymmetric Radical Cyclopropanation of Dehydroaminocarboxylates: Stereoselective Synthesis of Cyclopropyl α-Amino Acids. Chem 2021; 7:1588-1601. [PMID: 34693072 PMCID: PMC8528158 DOI: 10.1016/j.chempr.2021.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A catalytic radical process has been developed for asymmetric cyclopropanation of dehydroaminocarboxylates with in situ-generated α-aryldiazomethanes via Co(II)-based metalloradical catalysis (MRC). Through fine-tuning the environments of D 2-symmetric chiral amidoporphyrin platform as the supporting ligands, the Co(II)-metalloradical system can effectively activate various α-aryldiazomethanes to cyclopropanate different dehydroaminocarboxylates under mild conditions, enabling the stereoselective synthesis of chiral cyclopropyl α-amino acid derivatives. In addition to high yields and excellent enantioselectivities, the Co(II)-catalyzed asymmetric radical cyclopropanation exhibits (Z)-diastereoselectivity, which is the opposite of uncatalyzed thermal reaction. Combined computational and experimental studies support a stepwise radical mechanism for the Co(II)-catalyzed cyclopropanation reaction. The resulting enantioenriched (Z)-α-amino-β-arylcyclopropanecarboxylates, as showcased for the efficient synthesis of dipeptides, may serve as unique non-proteinogenic amino acid building blocks for the design and preparation of novel peptides with restricted conformations.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Congzhe Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bo Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
111
|
Alvarez EM, Karl T, Berger F, Torkowski L, Ritter T. Late-Stage Heteroarylation of Hetero(aryl)sulfonium Salts Activated by α-Amino Alkyl Radicals. Angew Chem Int Ed Engl 2021; 60:13609-13613. [PMID: 33835680 PMCID: PMC8251951 DOI: 10.1002/anie.202103085] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Indexed: 11/25/2022]
Abstract
We report a late‐stage heteroarylation of aryl sulfonium salts through activation with α‐amino alkyl radicals in a mechanistically distinct approach from previously reported halogen‐atom transfer (XAT). The new mode of activation of aryl sulfonium salts proceeds in the absence of light and photoredox catalysts, engaging a wide range of hetarenes. Furthermore, we demonstrate the applicability of this methodology in synthetically useful cross‐coupling transformations.
Collapse
Affiliation(s)
- Eva Maria Alvarez
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Teresa Karl
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Florian Berger
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Luca Torkowski
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
112
|
Late‐Stage Heteroarylation of Hetero(aryl)sulfonium Salts Activated by α‐Amino Alkyl Radicals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
113
|
Abstract
Poly (vinyl ethers) are compounds with great value in the coating industry due to exhibiting properties such as high viscosity, soft adhesiveness, resistance to saponification and solubility in water and organic solvents. However, the main challenge in this field is the synthesis of vinyl ether monomers that can be synthetized by methodologies such as vinyl transfer, reduction of vinyl phosphate ether, isomerization, hydrogenation of acetylenic ethers, elimination, addition of alcohols to alkyne species etc. Nevertheless, the most successful strategy to access to vinyl ether derivatives is the addition of alcohols to alkynes catalyzed by transition metals such as molybdenum, tungsten, ruthenium, palladium, platinum, gold, silver, iridium and rhodium, where gold-NHC catalysts have shown the best results in vinyl ether synthesis. Recently, the hydrophenoxylation reaction was found to proceed through a digold-assisted process where the species that determine the rate of the reaction are PhO-[Au(IPr)] and alkyne-[Au(IPr)]. Later, the improvement of the hydrophenoxylation reaction by using a mixed combination of Cu-NHC and Au-NHC catalysts was also reported. DFT studies confirmed a cost-effective method for the hydrophenoxylation reaction and located the rate-determining step, which turned out to be quite sensitive to the sterical hindrance due to the NHC ligands.
Collapse
|
114
|
Mu X, Li Y, Zheng N, Long J, Chen S, Liu B, Zhao C, Yang Z. Stereoselective Synthesis of Cyclohepta[
b
]indoles by Visible‐Light‐Induced [2+2]‐Cycloaddition/retro‐Mannich‐type Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xin‐Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Yuan‐He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Jian‐Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Si‐Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Bing‐Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Chun‐Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| |
Collapse
|
115
|
Mu XP, Li YH, Zheng N, Long JY, Chen SJ, Liu BY, Zhao CB, Yang Z. Stereoselective Synthesis of Cyclohepta[b]indoles by Visible-Light-Induced [2+2]-Cycloaddition/retro-Mannich-type Reactions. Angew Chem Int Ed Engl 2021; 60:11211-11216. [PMID: 33683807 DOI: 10.1002/anie.202101104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Indexed: 12/12/2022]
Abstract
A novel method for the concise synthesis of cyclohepta[b]indoles in high yields was developed. The method involves a visible-light-induced, photocatalyzed [2+2]-cycloaddition/ retro-Mannich-type reaction of enaminones. Experimental and computational studies suggested that the reaction is a photoredox process initiated by single-electron oxidation of an enaminone moiety, which undergoes subsequent cyclobutane formation and rapidly fragmentation in a radical-cation state to form cyclohepta[b]indoles.
Collapse
Affiliation(s)
- Xin-Peng Mu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yuan-He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jian-Yu Long
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Si-Jia Chen
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Bing-Yan Liu
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chun-Bo Zhao
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China.,Shenzhen Bay Laboratory, Shenzhen, 518055, P. R. China
| |
Collapse
|
116
|
Kuan KY, Singleton DA. Isotope Effects and the Mechanism of Photoredox-Promoted [2 + 2] Cycloadditions of Enones. J Org Chem 2021; 86:6305-6313. [PMID: 33890775 DOI: 10.1021/acs.joc.1c00099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
13C kinetic isotope effects (KIEs) for the photoredox-promoted [2 + 2] cycloaddition of enones were determined in homocoupling and heterocoupling examples. The only significant KIEs were observed at the β carbon, indicating that Cβ-Cβ bond formation is irreversible. However, these KIEs were much lower than computational predictions, suggesting that product selectivity is determined in part by a step prior to Cβ-Cβ bond formation. The results are explained as arising from a competition between C-C bond formation and electron exchange between substrate alkenes. This idea is supported by a relatively small substituent effect on substrate selectivity. The possible rates for electron transfer and bond-forming steps are analyzed, and the competition appears plausible, particularly if the mechanism involves a complex between reduced and neutral enone molecules.
Collapse
Affiliation(s)
- Kai-Yuan Kuan
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| | - Daniel A Singleton
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
117
|
Rao M, Wu W, Yang C. Recent progress on the enantioselective excited-state photoreactions by pre-arrangement of photosubstrate(s). GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
118
|
Peschel MT, Kabaciński P, Schwinger DP, Thyrhaug E, Cerullo G, Bach T, Hauer J, Vivie‐Riedle R. Activation of 2‐Cyclohexenone by BF
3
Coordination: Mechanistic Insights from Theory and Experiment. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Martin T. Peschel
- Department Chemie Ludwig-Maximilians-Universität München 81377 München Germany
| | - Piotr Kabaciński
- IFN-CNR and Dipartimento di Fisica Politecnico di Milano 20133 Milano Italy
| | - Daniel P. Schwinger
- Department of Chemistry and Catalysis Research Center (CRC) Technische Universität München 85747 Garching Germany
| | - Erling Thyrhaug
- Department of Chemistry and Catalysis Research Center (CRC) Technische Universität München 85747 Garching Germany
| | - Giulio Cerullo
- IFN-CNR and Dipartimento di Fisica Politecnico di Milano 20133 Milano Italy
| | - Thorsten Bach
- Department of Chemistry and Catalysis Research Center (CRC) Technische Universität München 85747 Garching Germany
| | - Jürgen Hauer
- Department of Chemistry and Catalysis Research Center (CRC) Technische Universität München 85747 Garching Germany
| | - Regina Vivie‐Riedle
- Department Chemie Ludwig-Maximilians-Universität München 81377 München Germany
| |
Collapse
|
119
|
Peschel MT, Kabaciński P, Schwinger DP, Thyrhaug E, Cerullo G, Bach T, Hauer J, de Vivie-Riedle R. Activation of 2-Cyclohexenone by BF 3 Coordination: Mechanistic Insights from Theory and Experiment. Angew Chem Int Ed Engl 2021; 60:10155-10163. [PMID: 33595902 PMCID: PMC8252487 DOI: 10.1002/anie.202016653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Indexed: 11/22/2022]
Abstract
Lewis acids have recently been recognized as catalysts enabling enantioselective photochemical transformations. Mechanistic studies on these systems are however rare, either due to their absorption at wavelengths shorter than 260 nm, or due to the limitations of theoretical dynamic studies for larger complexes. In this work, we overcome these challenges and employ sub-30-fs transient absorption in the UV, in combination with a highly accurate theoretical treatment on the XMS-CASPT2 level. We investigate 2-cyclohexenone and its complex to boron trifluoride and analyze the observed dynamics based on trajectory calculations including non-adiabatic coupling and intersystem crossing. This approach explains all ultrafast decay pathways observed in the complex. We show that the Lewis acid remains attached to the substrate in the triplet state, which in turn explains why chiral boron-based Lewis acids induce a high enantioselectivity in photocycloaddition reactions.
Collapse
Affiliation(s)
- Martin T Peschel
- Department Chemie, Ludwig-Maximilians-Universität München, 81377, München, Germany
| | - Piotr Kabaciński
- IFN-CNR and Dipartimento di Fisica, Politecnico di Milano, 20133, Milano, Italy
| | - Daniel P Schwinger
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, 85747, Garching, Germany
| | - Erling Thyrhaug
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, 85747, Garching, Germany
| | - Giulio Cerullo
- IFN-CNR and Dipartimento di Fisica, Politecnico di Milano, 20133, Milano, Italy
| | - Thorsten Bach
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, 85747, Garching, Germany
| | - Jürgen Hauer
- Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, 85747, Garching, Germany
| | | |
Collapse
|
120
|
Riart-Ferrer X, Sang P, Tao J, Xu H, Jin LM, Lu H, Cui X, Wojtas L, Zhang XP. Metalloradical activation of carbonyl azides for enantioselective radical aziridination. Chem 2021; 7:1120-1134. [PMID: 33869888 DOI: 10.1016/j.chempr.2021.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Organic azides have been increasingly employed as nitrogen sources for catalytic olefine aziridination due to their ease of preparation and generation of benign N2 as the only byproduct. Among common organic azides, carbonyl azides have not been previously demonstrated as effective nitrogen sources for intermolecular olefin aziridination despite the synthetic utilities of N-carbonyl aziridines. As a new application of metalloradical catalysis, we have developed a catalytic system that can effectively employ the carbonyl azide TrocN3 for highly asymmetric aziridination of alkenes at room temperature. The resulting enantioenriched N-Trocaziridines have been shown as valuable chiral synthons for stereoselective synthesis of other chiral aziridines and various chiral amines. The Co(II)-based metalloradical system, which proceeds with distinctive stepwise radical mechanism, may provide a general method for asymmetric synthesis of chiral aziridines from alkenes with organic azides.
Collapse
Affiliation(s)
- Xavier Riart-Ferrer
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- These authors contributed equally
| | - Peng Sang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
- These authors contributed equally
| | - Jingran Tao
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
- These authors contributed equally
| | - Hao Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Li-Mei Jin
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
| | - Hongjian Lu
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Xin Cui
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA
- Lead contact
| |
Collapse
|
121
|
Liu Z, Zhong S, Ji X, Deng GJ, Huang H. Hydroarylation of Activated Alkenes Enabled by Proton-Coupled Electron Transfer. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00649] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhaosheng Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shuai Zhong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
122
|
Péter Á, Agasti S, Knowles O, Pye E, Procter DJ. Recent advances in the chemistry of ketyl radicals. Chem Soc Rev 2021; 50:5349-5365. [PMID: 33972956 PMCID: PMC8111543 DOI: 10.1039/d0cs00358a] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ketyl radicals are valuable reactive intermediates for synthesis and are used extensively to construct complex, functionalized products from carbonyl substrates. Single electron transfer (SET) reduction of the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O bond of aldehydes and ketones is the classical approach for the formation of ketyl radicals and metal reductants are the archetypal reagents employed. The past decade has, however, witnessed significant advances in the generation and harnessing of ketyl radicals. This tutorial review highlights recent, exciting developments in the chemistry of ketyl radicals by comparing the varied contemporary – for example, using photoredox catalysts – and more classical approaches for the generation and use of ketyl radicals. The review will focus on different strategies for ketyl radical generation, their creative use in new synthetic protocols, strategies for the control of enantioselectivity, and detailed mechanisms where appropriate. Ketyl radicals are valuable reactive intermediates for synthesis. This review highlights exciting recent developments in the chemistry of ketyl radicals by comparing contemporary and more classical approaches for their generation and use.![]()
Collapse
Affiliation(s)
- Áron Péter
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, UK.
| | | | | | | | | |
Collapse
|
123
|
Martínez-Gualda AM, Domingo-Legarda P, Rigotti T, Díaz-Tendero S, Fraile A, Alemán J. Asymmetric [2+2] photocycloaddition via charge transfer complex for the synthesis of tricyclic chiral ethers. Chem Commun (Camb) 2021; 57:3046-3049. [PMID: 33625423 DOI: 10.1039/d1cc00035g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The asymmetric synthesis of chiral polycyclic ethers by an intramolecular [2+2] photocycloaddition is described. This process proceeded through a photocatalytically active iminium ion-based charge transfer (CT) complex under visible light irradiation. In this way a stereocontrolled [2+2] photocycloaddition is enabled leading to tricyclic products with good enantiomeric ratios.
Collapse
|
124
|
Wang Y, Wang MF, Young DJ, Zhu H, Hu FL, Mi Y, Qin Z, Chen SL, Lang JP. Tuning the configuration of the flexible metal-alkene-framework affords pure cycloisomers in solid state photodimerization. Chem Commun (Camb) 2021; 57:1129-1132. [PMID: 33410438 DOI: 10.1039/d0cc06939f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The photochemical [2+2] cycloaddition of 3,5-bis-(2-(pyridin-4-yl)vinyl)pyridine (bpvp) in the flexible Cd-based metal-alkene frameworks produced different isomeric photoproducts depending on the auxiliary and guest molecules. The bulkiness of the guest molecules influenced the conformation of the ligand, and thus the outcome of the cycloaddition reaction.
Collapse
Affiliation(s)
- Yong Wang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Pitre SP, Allred TK, Overman LE. Lewis Acid Activation of Fragment-Coupling Reactions of Tertiary Carbon Radicals Promoted by Visible-Light Irradiation of EDA Complexes. Org Lett 2021; 23:1103-1106. [PMID: 33492152 DOI: 10.1021/acs.orglett.1c00023] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The addition of tertiary carbon radicals generated from N-(acyloxy)phthalimide esters to cyclic α,β-unsaturated ketones and lactones is markedly enhanced by the addition of substoichiometric amounts of a Ln(OTf)3. The reaction is accomplished by irradiation with visible light in the absence of a photosensitizer and is suggested to proceed by excitation of a ternary electron donor-acceptor complex between the NHPI ester, Hantzsch ester, and a Ln(OTf)3.
Collapse
Affiliation(s)
- Spencer P Pitre
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, Oklahoma 74078, United States
| | - Tyler K Allred
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Larry E Overman
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
126
|
Liu Y, Han Z, Yang Y, Zhu R, Liu C, Zhang D. DFT study on synergetic Ir/Cu-metallaphotoredox catalyzed trifluoromethylation of aryl bromides. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
127
|
Xie X, Pan H, Zhou TP, Han MY, Wang L, Geng X, Ma Y, Liao RZ, Wang ZM, Yang J, Li P. ortho-Ethynyl group assisted regioselective and diastereoselective [2 + 2] cross-photocycloaddition of alkenes under photocatalyst-, additive-, and solvent-free conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo01017d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A highly regioselective and diastereoselective [2 + 2]-cross-photocycloaddition between electron-poor and electron-rich/electron-neutral alkenes under visible-light irradiation without a photocatalyst, additive and solvent was developed.
Collapse
Affiliation(s)
- Xiaofei Xie
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hong Pan
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Tai-Ping Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Man-Yi Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Xiao Geng
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Yongmin Ma
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhi-Ming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
128
|
Lin L, Dai C, Zhu J. Probing the origin of the stereoselectivity and enantioselectivity of cobalt-catalyzed [2 + 2] cyclization of ethylene and enynes. Org Chem Front 2021. [DOI: 10.1039/d0qo01412e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Theoretical calculations reveal the origin of the stereoselectivity and enantioselectivity of cobalt-catalyzed [2 + 2] cyclization of ethylene and enynes.
Collapse
Affiliation(s)
- Lu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
129
|
Sandoval BA, Clayman PD, Oblinsky DG, Oh S, Nakano Y, Bird M, Scholes GD, Hyster TK. Photoenzymatic Reductions Enabled by Direct Excitation of Flavin-Dependent “Ene”-Reductases. J Am Chem Soc 2020; 143:1735-1739. [DOI: 10.1021/jacs.0c11494] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Braddock A. Sandoval
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| | - Phillip D. Clayman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| | - Daniel G. Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| | - Seokjoon Oh
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Yuji Nakano
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| | - Matthew Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| | - Todd K. Hyster
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| |
Collapse
|
130
|
Gong L, Li Y, Ye Z, Cai J. Visible-Light-Promoted Asymmetric Catalysis by Chiral Complexes of First-Row Transition Metals. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/a-1344-2473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractThis short review presents an overview of visible-light-driven asymmetric catalysis by chiral complexes of first-row transition metals. The processes described here include dual catalysis by a chiral complex of copper, nickel, cobalt, or chromium and an additional photoredox or energy-transfer catalyst, and bifunctional catalysis by a single chiral copper or nickel catalyst. These methods allow valuable transformations with high functional group compatibility. They provide stereoselective construction of carbon–carbon or carbon–heteroatom bonds under mild conditions, and produce a diverse range of previously unknown enantioenriched compounds.1 Introduction2 Nickel-Based Photocatalytic Asymmetric Catalysis3 Copper-Based Photocatalytic Asymmetric Catalysis4 Photocatalytic Asymmetric Catalysis by Chiral Complexes of Cobalt or Chromium5 Conclusion
Collapse
|
131
|
He J, Bai ZQ, Yuan PF, Wu LZ, Liu Q. Highly Efficient Iridium-Based Photosensitizers for Thia-Paternò–Büchi Reaction and Aza-Photocyclization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c05005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhi-Qin Bai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pan-Feng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li-Zhu Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
132
|
Yu Y, Lu WF, Yang ZJ, Wang N, Yu XQ. Combining photo-redox and enzyme catalysis for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives in one pot. Bioorg Chem 2020; 107:104534. [PMID: 33339664 DOI: 10.1016/j.bioorg.2020.104534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
A novel strategy combining visible-light and enzyme catalysis in one pot for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives from alcohols is described for the first time. Fourteen 4H-pyrimido[2,1-b] benzothiazole derivatives were prepared with yields of up to 98% under mild reaction conditions by a simple operation. The photoorgano catalyst rose Bengal (rB) was employed to oxyfunctionalise alcohols to aldehydes. Compared with aldehydes, alcohols with more stable properties and lower cost, thus we used photocatalysis to oxidize alcohols into aldehydes. Next, the enzyme was used to further catalyze the reaction of Biginelli to produce the target product of 4H-pyrimidine [2,1-b] benzothiazole. Experimental results show that this method provides a more efficient and eco-friendly strategy for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives.
Collapse
Affiliation(s)
- Yuan Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Wei-Fan Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Zeng-Jie Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
133
|
Zeng L, Xu J, Zhang D, Yan Z, Cheng G, Rao W, Gao L. Catalytic Enantioselective [2+2] Cycloaddition of α-Halo Acroleins: Construction of Cyclobutanes Containing Two Tetrasubstituted Stereocenters. Angew Chem Int Ed Engl 2020; 59:21890-21894. [PMID: 32803881 DOI: 10.1002/anie.202008465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Indexed: 01/16/2023]
Abstract
A catalytic enantioselective formal [2+2] cycloaddition between α-halo acroleins and electronically diverse arylalkenes is described. In the presence of (S)-oxazaborolidinium cation as the catalyst, densely functionalized cyclobutanes containing two vicinal tetrasubstituted stereocenters were produced in high yields and high diastereoselectivities with excellent enantioselectivities. Mechanistic studies revealed that the cis isomer could be transformed into the trans isomer via an enantiocontrolled process. A gram-scale reaction of this catalytic method was used to demonstrate its synthetic potential.
Collapse
Affiliation(s)
- Lei Zeng
- College of Materials Science and Engineering, Huaqiao University, No.668 Jimei Avenue, Xiamen, Fujian, China
| | - Jingjing Xu
- College of Materials Science and Engineering, Huaqiao University, No.668 Jimei Avenue, Xiamen, Fujian, China
| | - Dongsheng Zhang
- College of Materials Science and Engineering, Huaqiao University, No.668 Jimei Avenue, Xiamen, Fujian, China
| | - Zhongliang Yan
- College of Materials Science and Engineering, Huaqiao University, No.668 Jimei Avenue, Xiamen, Fujian, China
| | - Guolin Cheng
- College of Materials Science and Engineering, Huaqiao University, No.668 Jimei Avenue, Xiamen, Fujian, China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Lizhu Gao
- College of Materials Science and Engineering, Huaqiao University, No.668 Jimei Avenue, Xiamen, Fujian, China
| |
Collapse
|
134
|
Holtrop F, Jupp AR, Kooij BJ, van Leest NP, de Bruin B, Slootweg JC. Single-Electron Transfer in Frustrated Lewis Pair Chemistry. Angew Chem Int Ed Engl 2020; 59:22210-22216. [PMID: 32840947 PMCID: PMC7756365 DOI: 10.1002/anie.202009717] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/05/2023]
Abstract
Frustrated Lewis pairs (FLPs) are well known for their ability to activate small molecules. Recent reports of radical formation within such systems indicate single-electron transfer (SET) could play an important role in their chemistry. Herein, we investigate radical formation upon reacting FLP systems with dihydrogen, triphenyltin hydride, or tetrachloro-1,4-benzoquinone (TCQ) both experimentally and computationally to determine the nature of the single-electron transfer (SET) events; that is, being direct SET to B(C6 F5 )3 or not. The reactions of H2 and Ph3 SnH with archetypal P/B FLP systems do not proceed via a radical mechanism. In contrast, reaction with TCQ proceeds via SET, which is only feasible by Lewis acid coordination to the substrate. Furthermore, SET from the Lewis base to the Lewis acid-substrate adduct may be prevalent in other reported examples of radical FLP chemistry, which provides important design principles for radical main-group chemistry.
Collapse
Affiliation(s)
- Flip Holtrop
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| | - Andrew R. Jupp
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| | - Bastiaan J. Kooij
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| | - Nicolaas P. van Leest
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| | - J. Chris Slootweg
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamPO Box 941571090 GDAmsterdamThe Netherlands
| |
Collapse
|
135
|
Lang K, Li C, Kim I, Zhang XP. Enantioconvergent Amination of Racemic Tertiary C-H Bonds. J Am Chem Soc 2020; 142:20902-20911. [PMID: 33249845 DOI: 10.1021/jacs.0c11103] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Racemization is considered to be an intrinsic stereochemical feature of free radical chemistry as can be seen in traditional radical halogenation reactions of optically active tertiary C-H bonds. If the facile process of radical racemization could be effectively combined with an ensuing step of bond formation in an enantioselective fashion, then it would give rise to deracemizative functionalization of racemic tertiary C-H bonds for stereoselective construction of chiral molecules bearing quaternary stereocenters. As a demonstration of this unique potential in radical chemistry, we herein report that metalloradical catalysis can be successfully applied to devise Co(II)-based catalytic system for enantioconvergent radical amination of racemic tertiary C(sp3)-H bonds. The key to the success of the radical process is the development of Co(II)-based metalloradical catalyst with fitting steric, electronic, and chiral environments of the D2-symmetric chiral amidoporphyrin as the supporting ligand. The existence of optimal reaction temperature is recognized as an important factor in the realization of the enantioconvergent radical process. Supported by an optimized chiral ligand, the Co(II)-based metalloradical system can effectively catalyze the enantioconvergent 1,6-amination of racemic tertiary C(sp3)-H bonds at the optimal temperature, affording chiral α-tertiary amines in excellent yields with high enantiocontrol of the newly created quaternary stereocenters. Systematic studies, including experiments utilizing optically active deuterium-labeled C-H substrates as a model system, shed light on the underlying mechanistic details of this new catalytic process for enantioconvergent radical C-H amination. The remarkable power to create quaternary stereocenters bearing multiple functionalities from ubiquitous C-H bonds, as showcased with stereoselective construction of bicyclic N-heterocycles, opens the door for future synthetic applications of this new radical technology.
Collapse
Affiliation(s)
- Kai Lang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chaoqun Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Isaac Kim
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
136
|
Jin LM, Xu P, Xie J, Zhang XP. Enantioselective Intermolecular Radical C-H Amination. J Am Chem Soc 2020; 142:20828-20836. [PMID: 33238707 DOI: 10.1021/jacs.0c10415] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radical reactions hold a number of inherent advantages in organic synthesis that may potentially impact the planning and practice for construction of organic molecules. However, the control of enantioselectivity in radical processes remains one of the longstanding challenges. While significant advances have recently been achieved in intramolecular radical reactions, the governing of asymmetric induction in intermolecular radical reactions still poses challenging issues. We herein report a catalytic approach that is highly effective for controlling enantioselectivity as well as reactivity of the intermolecular radical C-H amination of carboxylic acid esters with organic azides via Co(II)-based metalloradical catalysis (MRC). The key to the success lies in the catalyst development to maximize noncovalent attractive interactions through fine-tuning of the remote substituents of the D2-symmetric chiral amidoporphyrin ligand. This noncovalent interaction strategy presents a solution that may be generally applicable in controlling reactivity and enantioselectivity in intermolecular radical reactions. The Co(II)-catalyzed intermolecular C-H amination, which operates under mild conditions with the C-H substrate as the limiting reagent, exhibits a broad substrate scope with high chemoselectivity, providing effective access to valuable chiral amino acid derivatives with high enantioselectivities. Systematic mechanistic studies shed light into the working details of the underlying stepwise radical pathway for the Co(II)-based C-H amination.
Collapse
Affiliation(s)
- Li-Mei Jin
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Pan Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
137
|
Abstract
Three- and four-membered rings, widespread motifs in nature and medicinal chemistry, have fascinated chemists ever since their discovery. However, due to energetic considerations, small rings are often difficult to assemble. In this regard, homogeneous gold catalysis has emerged as a powerful tool to construct these highly strained carbocycles. This review aims to provide a comprehensive summary of all the major advances and discoveries made in the gold-catalyzed synthesis of cyclopropanes, cyclopropenes, cyclobutanes, cyclobutenes, and their corresponding heterocyclic or heterosubstituted analogs.
Collapse
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Garcı A-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
138
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
139
|
Abstract
Metathesis reactions are one of the most reliable and prevalent ways of creating a C-C bond in synthesis. Photochemical variants exist, and they have proven extremely useful for the construction of complex molecules, from natural products to Möbius rings. A variety of starting materials can undergo photometathesis reactions, including alkenes, alkynes, carbonyls, thiocarbonyls, and ketenes. While many of these reactions proceed with UV light and require harsh conditions, a handful of new techniques for visible-light photometathesis reactions have appeared recently. Given the current developments in visible-light photocatalysis, we believe that many more visible light photometathesis reactions await discovery. In this first review on the subject of photometathesis, we have gathered the relevant literature to give the reader an in-depth understanding of the field, and to inspire further development and synthetic application of these fascinating reactions.
Collapse
Affiliation(s)
- Freya M Harvey
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| | - Christian G Bochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
140
|
Wang D, Pernik I, Keaveney ST, Messerle BA. Understanding the Synergistic Effects Observed When Using Tethered Dual Catalysts for Heat and Light Activated Catalysis. ChemCatChem 2020. [DOI: 10.1002/cctc.202000969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Danfeng Wang
- Department of Molecular Sciences Macquarie University North Ryde NSW, 2019 Australia
| | - Indrek Pernik
- Department of Molecular Sciences Macquarie University North Ryde NSW, 2019 Australia
- Current Address: School of Chemistry University of Sydney Sydney NSW, 2006 Australia
| | - Sinead T. Keaveney
- Department of Molecular Sciences Macquarie University North Ryde NSW, 2019 Australia
| | - Barbara A. Messerle
- Department of Molecular Sciences Macquarie University North Ryde NSW, 2019 Australia
- Current Address: School of Chemistry University of Sydney Sydney NSW, 2006 Australia
| |
Collapse
|
141
|
Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat Chem 2020; 12:990-1004. [DOI: 10.1038/s41557-020-00561-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/03/2020] [Indexed: 01/28/2023]
|
142
|
Affiliation(s)
- Tong Zhang
- ORSY Division Department of Chemistry University of Antwerp Campus Groenenborger Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Yu Zhang
- ORSY Division Department of Chemistry University of Antwerp Campus Groenenborger Groenenborgerlaan 171 2020 Antwerp Belgium
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Shoubhik Das
- ORSY Division Department of Chemistry University of Antwerp Campus Groenenborger Groenenborgerlaan 171 2020 Antwerp Belgium
| |
Collapse
|
143
|
Holtrop F, Jupp AR, Kooij BJ, Leest NP, Bruin B, Slootweg JC. Single‐Electron Transfer in Frustrated Lewis Pair Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Flip Holtrop
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - Andrew R. Jupp
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - Bastiaan J. Kooij
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - Nicolaas P. Leest
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - Bas Bruin
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| | - J. Chris Slootweg
- Van't Hoff Institute for Molecular Sciences University of Amsterdam PO Box 94157 1090 GD Amsterdam The Netherlands
| |
Collapse
|
144
|
Bhim A, Sasmal S, Gopalakrishnan J, Natarajan S. Visible-Light-Activated C-C Bond Cleavage and Aerobic Oxidation of Benzyl Alcohols Employing BiMXO 5 (M=Mg, Cd, Ni, Co, Pb, Ca and X=V, P). Chem Asian J 2020; 15:3104-3115. [PMID: 32790062 DOI: 10.1002/asia.202000814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/07/2020] [Indexed: 11/10/2022]
Abstract
The synthesis, structure, optical and photocatalytic studies of a family of compounds with the general formula, BiMXO5 ; M=Mg, Cd, Ni, Co, Pb, Ca and X=V, P is presented. The compounds were prepared by regular solid-state reaction of constituents in the temperature range of 720-810 °C for 24 h. The compounds were characterized by powder X-ray diffraction (PXRD) methods. The Rietveld refinement of the PXRD patterns have been carried out to establish the structure. The optical absorption spectra along with the colors in daylight have been explained employing the allowed d-d transition. In addition, the observed colors of some of the V5+ containing compounds were explained using metal-to-metal charge transfer (MMCT) from the partially filled transition-metal 3d orbitals to the empty 3d orbitals of V5+ ions. The near IR (NIR) reflectivity studies indicate that many compounds exhibit good NIR reflectivity, suggesting that these compounds can be employed as 'cool pigments'. The experimentally determined band gaps of the prepared compounds were found to be suitable to exploit them for visible light activated photocatalysis. Photocatalytic C-C bond cleavage of alkenes and aerobic oxidation of alcohols were investigated employing visible light, which gave good yields and selectivity. The present study clearly demonstrated the versatility of the Paganoite family of compounds (BiMXO5 ) towards new colored inorganic materials, visible-light photocatalysts and 'cool pigments'.
Collapse
Affiliation(s)
- Anupam Bhim
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Shreya Sasmal
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Jagannatha Gopalakrishnan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
145
|
Prentice C, Morrisson J, Smith AD, Zysman-Colman E. Recent developments in enantioselective photocatalysis. Beilstein J Org Chem 2020; 16:2363-2441. [PMID: 33082877 PMCID: PMC7537410 DOI: 10.3762/bjoc.16.197] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 01/02/2023] Open
Abstract
Enantioselective photocatalysis has rapidly grown into a powerful tool for synthetic chemists. This review describes the various strategies for creating enantioenriched products through merging enantioselective catalysis and photocatalysis, with a focus on the most recent developments and a particular interest in the proposed mechanisms for each. With the aim of understanding the scope of each strategy, to help guide and inspire further innovation in this field.
Collapse
Affiliation(s)
- Callum Prentice
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| | - James Morrisson
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield SK102NA, United Kingdom
| | - Andrew D Smith
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| |
Collapse
|
146
|
Zeng L, Xu J, Zhang D, Yan Z, Cheng G, Rao W, Gao L. Catalytic Enantioselective [2+2] Cycloaddition of α‐Halo Acroleins: Construction of Cyclobutanes Containing Two Tetrasubstituted Stereocenters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lei Zeng
- College of Materials Science and Engineering Huaqiao University No.668 Jimei Avenue Xiamen Fujian China
| | - Jingjing Xu
- College of Materials Science and Engineering Huaqiao University No.668 Jimei Avenue Xiamen Fujian China
| | - Dongsheng Zhang
- College of Materials Science and Engineering Huaqiao University No.668 Jimei Avenue Xiamen Fujian China
| | - Zhongliang Yan
- College of Materials Science and Engineering Huaqiao University No.668 Jimei Avenue Xiamen Fujian China
| | - Guolin Cheng
- College of Materials Science and Engineering Huaqiao University No.668 Jimei Avenue Xiamen Fujian China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-Based Green Fuels and Chemicals College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Lizhu Gao
- College of Materials Science and Engineering Huaqiao University No.668 Jimei Avenue Xiamen Fujian China
| |
Collapse
|
147
|
Phylogeny and Structure of Fatty Acid Photodecarboxylases and Glucose-Methanol-Choline Oxidoreductases. Catalysts 2020. [DOI: 10.3390/catal10091072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucose-methanol-choline (GMC) oxidoreductases are a large and diverse family of flavin-binding enzymes found in all kingdoms of life. Recently, a new related family of proteins has been discovered in algae named fatty acid photodecarboxylases (FAPs). These enzymes use the energy of light to convert fatty acids to the corresponding Cn-1 alkanes or alkenes, and hold great potential for biotechnological application. In this work, we aimed at uncovering the natural diversity of FAPs and their relations with other GMC oxidoreductases. We reviewed the available GMC structures, assembled a large dataset of GMC sequences, and found that one active site amino acid, a histidine, is extremely well conserved among the GMC proteins but not among FAPs, where it is replaced with alanine. Using this criterion, we found several new potential FAP genes, both in genomic and metagenomic databases, and showed that related bacterial, archaeal and fungal genes are unlikely to be FAPs. We also identified several uncharacterized clusters of GMC-like proteins as well as subfamilies of proteins that lack the conserved histidine but are not FAPs. Finally, the analysis of the collected dataset of potential photodecarboxylase sequences revealed the key active site residues that are strictly conserved, whereas other residues in the vicinity of the flavin adenine dinucleotide (FAD) cofactor and in the fatty acid-binding pocket are more variable. The identified variants may have different FAP activity and selectivity and consequently may prove useful for new biotechnological applications, thereby fostering the transition from a fossil carbon-based economy to a bio-economy by enabling the sustainable production of hydrocarbon fuels.
Collapse
|
148
|
Cage-confined photocatalysis for wide-scope unusually selective [2 + 2] cycloaddition through visible-light triplet sensitization. Nat Commun 2020; 11:4675. [PMID: 32938933 PMCID: PMC7494878 DOI: 10.1038/s41467-020-18487-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Light-induced [2 + 2] cycloaddition is the most straightforward way to generate cyclobutanes, which are core structures of many natural products, drugs and bioactive compounds. Despite continuous advances in selective [2 + 2] cycloaddition research, general method for intermolecular photocatalysis of acyclic olefins with specific regio- and diastereoselectivity, for example, syn-head-to-head (syn-HH) cyclobutane derivatives, is still lack of development but highly desired. Herein, we report a cage-confined photocatalytic protocol to enable unusual intermolecular [2 + 2] cycloaddition for α,β-unsaturated carbonyl compounds. The syn-HH diastereomers are readily generated with diastereoselectivity up to 99%. The cage-catalyst is highly efficient and robust, covering a diverse substrate range with excellent substituent tolerance. The mimic-enzyme catalysis is proposed through a host-guest mediated procedure expedited by aqueous phase transition of reactant and product, where the supramolecular cage effect plays an important role to facilitate substrates inclusion and pre-orientation, offering a promising avenue for general and eco-friendly cycloaddition photocatalysis with special diastereoselectivity. Light-induced [2 + 2] cycloaddition is the most efficient way to generate cyclobutanes, while suffering from limitations of specific selectivity. Here the authors report a cage-confined photocatalytic [2 + 2] cycloaddition to enable the unusual production of syn-head-to-head cyclobutane derivatives selectively.
Collapse
|
149
|
Saha D. Catalytic Enantioselective Radical Transformations Enabled by Visible Light. Chem Asian J 2020; 15:2129-2152. [PMID: 32463981 DOI: 10.1002/asia.202000525] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Visible light has been recognized as an economical and environmentally benign source of energy that enables chemoselective molecular activation of chemical reactions and hence reveal a new horizon for the design and discovery of novel chemical transformations. On the other hand, asymmetric catalysis represents an economic method to satisfy the increasing need for enantioenriched compounds in the chemical and pharmaceutical industries. Therefore, combining visible light photocatalysis with asymmetric catalysis creates a wider range of opportunities for the development of mechanistically unique reaction schemes. However, there arise two main problems like undesirable photochemical background reactions and difficulties in controlling the stereochemistry with highly reactive photochemical intermediates which can pose a serious challenge to the development of asymmetric visible light photocatalysis. In recent years, several methods have been developed to overcome these challenges. This review summarizes the recent advances in visible light-induced enantioselective reactions. We divide our discussion into four categories: Asymmetric photoredox organocatalysis, asymmetric transition metal photoredox catalysis, asymmetric photoredox Lewis acid catalysis and asymmetric photoinduced energy transfer catalysis. Special emphasis has been given to different catalytic activation modes that enable the construction of challenging carbon-carbon and carbon-heteroatom bond in an enantioselective fashion. A brief analysis of substrate scope and limitation as well as reaction mechanism of these reactions has been included.
Collapse
Affiliation(s)
- Debajyoti Saha
- Department of Chemistry, Krishnagar Govt. College, Krishnagar, Nadia, 741101, India
| |
Collapse
|
150
|
Barham JP, König B. Synthetic Photoelectrochemistry. Angew Chem Int Ed Engl 2020; 59:11732-11747. [PMID: 31805216 PMCID: PMC7383880 DOI: 10.1002/anie.201913767] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Indexed: 01/06/2023]
Abstract
Photoredox catalysis (PRC) and synthetic organic electrochemistry (SOE) are often considered competing technologies in organic synthesis. Their fusion has been largely overlooked. We review state-of-the-art synthetic organic photoelectrochemistry, grouping examples into three categories: 1) electrochemically mediated photoredox catalysis (e-PRC), 2) decoupled photoelectrochemistry (dPEC), and 3) interfacial photoelectrochemistry (iPEC). Such synergies prove beneficial not only for synthetic "greenness" and chemical selectivity, but also in the accumulation of energy for accessing super-oxidizing or -reducing single electron transfer (SET) agents. Opportunities and challenges in this emerging and exciting field are discussed.
Collapse
Affiliation(s)
- Joshua P. Barham
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Burkhard König
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| |
Collapse
|