101
|
Besharova O, Suchanek VM, Hartmann R, Drescher K, Sourjik V. Diversification of Gene Expression during Formation of Static Submerged Biofilms by Escherichia coli. Front Microbiol 2016; 7:1568. [PMID: 27761132 PMCID: PMC5050211 DOI: 10.3389/fmicb.2016.01568] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022] Open
Abstract
Many bacteria primarily exist in nature as structured multicellular communities, so called biofilms. Biofilm formation is a highly regulated process that includes the transition from the motile planktonic to sessile biofilm lifestyle. Cellular differentiation within a biofilm is a commonly accepted concept but it remains largely unclear when, where and how exactly such differentiation arises. Here we used fluorescent transcriptional reporters to quantitatively analyze spatio-temporal expression patterns of several groups of genes during the formation of submerged Escherichia coli biofilms in an open static system. We first confirm that formation of such submerged biofilms as well as pellicles at the liquid-air interface requires the major matrix component, curli, and flagella-mediated motility. We further demonstrate that in this system, diversification of gene expression leads to emergence of at least three distinct subpopulations of E. coli, which differ in their levels of curli and flagella expression, and in the activity of the stationary phase sigma factor σS. Our study reveals mutually exclusive expression of curli fibers and flagella at the single cell level, with high curli levels being confined to dense cell aggregates/microcolonies and flagella expression showing an opposite expression pattern. Interestingly, despite the known σS-dependence of curli induction, there was only a partial correlation between the σS activity and curli expression, with subpopulations of cells having high σS activity but low curli expression and vice versa. Finally, consistent with different physiology of the observed subpopulations, we show striking differences between the growth rates of cells within and outside of aggregates.
Collapse
Affiliation(s)
- Olga Besharova
- Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)Marburg, Germany
| | - Verena M. Suchanek
- Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)Marburg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH AllianceHeidelberg, Germany
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)Marburg, Germany
| |
Collapse
|
102
|
Fluorescent and Bioluminescent Reporter Myxoviruses. Viruses 2016; 8:v8080214. [PMID: 27527209 PMCID: PMC4997576 DOI: 10.3390/v8080214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/16/2022] Open
Abstract
The advent of virus reverse genetics has enabled the incorporation of genetically encoded reporter proteins into replication-competent viruses. These reporters include fluorescent proteins which have intrinsic chromophores that absorb light and re-emit it at lower wavelengths, and bioluminescent proteins which are luciferase enzymes that react with substrates to produce visible light. The incorporation of these reporters into replication-competent viruses has revolutionized our understanding of molecular virology and aspects of viral tropism and transmission. Reporter viruses have also enabled the development of high-throughput assays to screen antiviral compounds and antibodies and to perform neutralization assays. However, there remain technical challenges with the design of replication-competent reporter viruses, and each reporter has unique advantages and disadvantages for specific applications. This review describes currently available reporters, design strategies for incorporating reporters into replication-competent paramyxoviruses and orthomyxoviruses, and the variety of applications for which these tools can be utilized both in vitro and in vivo.
Collapse
|
103
|
Breen M, Nogales A, Baker SF, Martínez-Sobrido L. Replication-Competent Influenza A Viruses Expressing Reporter Genes. Viruses 2016; 8:v8070179. [PMID: 27347991 PMCID: PMC4974514 DOI: 10.3390/v8070179] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo.
Collapse
Affiliation(s)
- Michael Breen
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
104
|
Davis KM, Isberg RR. Defining heterogeneity within bacterial populations via single cell approaches. Bioessays 2016; 38:782-90. [PMID: 27273675 DOI: 10.1002/bies.201500121] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial populations are heterogeneous, which in many cases can provide a selective advantage during changes in environmental conditions. In some instances, heterogeneity exists at the genetic level, in which significant allelic variation occurs within a population seeded by a single cell. In other cases, heterogeneity exists due to phenotypic differences within a clonal, genetically identical population. A variety of mechanisms can drive this latter strategy. Stochastic fluctuations can drive differential gene expression, but heterogeneity in gene expression can also be driven by environmental changes sensed by individual cells residing in distinct locales. Utilizing multiple single cell approaches, workers have started to uncover the extent of heterogeneity within bacterial populations. This review will first describe several examples of phenotypic and genetic heterogeneity, and then discuss many single cell approaches that have recently been applied to define heterogeneity within bacterial populations.
Collapse
Affiliation(s)
- Kimberly M Davis
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Ralph R Isberg
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA, USA.,Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
105
|
Abstract
The advent of fluorescent proteins (FPs) for genetic labeling of molecules and cells has revolutionized fluorescence microscopy. Genetic manipulations have created a vast array of bright and stable FPs spanning blue to red spectral regions. Common to autofluorescent FPs is their tight β-barrel structure, which provides the rigidity and chemical environment needed for effectual fluorescence. Despite the common structure, each FP has unique properties. Thus, there is no single 'best' FP for every circumstance, and each FP has advantages and disadvantages. To guide decisions about which FP is right for a given application, we have quantitatively characterized the brightness, photostability, pH stability and monomeric properties of more than 40 FPs to enable straightforward and direct comparison between them. We focus on popular and/or top-performing FPs in each spectral region.
Collapse
|
106
|
Segev H, Zenvirth D, Simpson-Lavy KJ, Melamed-Book N, Brandeis M. Imaging Cell Cycle Phases and Transitions of Living Cells from Yeast to Woman. Methods Mol Biol 2016; 1342:321-36. [PMID: 26254934 DOI: 10.1007/978-1-4939-2957-3_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The eukaryotic cell cycle is comprised of different phases that take place sequentially once, and normally only once, every division cycle. Such a dynamic process is best viewed in real time in living dividing cells. The insights that can be gained from such methods are considerably larger than any alternative technique that only generates snapshots. A great number of studies can gain from live cell imaging; however this method often feels somewhat intimidating to the novice. The purpose of this chapter is to demonstrate that imaging cell cycle phases in living cells from yeast to human is relatively easy and can be performed with equipment that is available in most research institutes. We present the different approaches, review different types of reporters, and discuss in depth all the aspects to be considered to obtain optimal results. We also describe our latest cell cycle markers, which afford unprecedented "sub"-phase temporal resolution.
Collapse
Affiliation(s)
- Hadas Segev
- The Department of Genetics and The Bio-Imaging Unit, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel
| | | | | | | | | |
Collapse
|
107
|
Halstead JM, Wilbertz JH, Wippich F, Lionnet T, Ephrussi A, Chao JA. TRICK: A Single-Molecule Method for Imaging the First Round of Translation in Living Cells and Animals. Methods Enzymol 2016; 572:123-57. [PMID: 27241753 DOI: 10.1016/bs.mie.2016.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The life of an mRNA is dynamic within a cell. The development of quantitative fluorescent microscopy techniques to image single molecules of RNA has allowed many aspects of the mRNA lifecycle to be directly observed in living cells. Recent advances in live-cell multicolor RNA imaging, however, have now made it possible to investigate RNA metabolism in greater detail. In this chapter, we present an overview of the design and implementation of the translating RNA imaging by coat protein knockoff RNA biosensor, which allows untranslated mRNAs to be distinguished from ones that have undergone a round of translation. The methods required for establishing this system in mammalian cell lines and Drosophila melanogaster oocytes are described here, but the principles may be applied to any experimental system.
Collapse
Affiliation(s)
- J M Halstead
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - J H Wilbertz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - F Wippich
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - T Lionnet
- Transcription Imaging Consortium, HHMI Janelia Research Campus, Ashburn, VA, United States
| | - A Ephrussi
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - J A Chao
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
108
|
Hamacher-Brady A, Brady NR. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci 2016; 73:775-95. [PMID: 26611876 PMCID: PMC4735260 DOI: 10.1007/s00018-015-2087-8] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
Abstract
Mitochondria are an essential source of ATP for cellular function, but when damaged, mitochondria generate a plethora of stress signals, which lead to cellular dysfunction and eventually programmed cell death. Thus, a major component of maintaining cellular homeostasis is the recognition and removal of dysfunctional mitochondria through autophagy-mediated degradation, i.e., mitophagy. Mitophagy further constitutes a developmental program, and undergoes a high degree of crosstalk with apoptosis. Reduced mitochondrial quality control is linked to disease pathogenesis, suggesting the importance of process elucidation as a clinical target. Recent work has revealed multiple mitophagy programs that operate independently or undergo crosstalk, and require modulated autophagy receptor activities at outer membranes of mitochondria. Here, we review these mitophagy programs, focusing on pathway mechanisms which recognize and target mitochondria for sequestration by autophagosomes, as well as mechanisms controlling pathway activities. Furthermore, we provide an introduction to the currently available methods for detecting mitophagy.
Collapse
Affiliation(s)
- Anne Hamacher-Brady
- Lysosomal Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bioquant, University of Heidelberg, INF 267, BQ0045, 69120, Heidelberg, Germany.
| | - Nathan Ryan Brady
- Systems Biology of Cell Death Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Bioquant, University of Heidelberg, INF 267, BQ0045, 69120, Heidelberg, Germany.
| |
Collapse
|
109
|
Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies. PLoS One 2016; 11:e0147723. [PMID: 26809059 PMCID: PMC4725730 DOI: 10.1371/journal.pone.0147723] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/07/2016] [Indexed: 01/13/2023] Open
Abstract
Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer’s spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection.
Collapse
|
110
|
Abstract
Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo.
Collapse
Affiliation(s)
- Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
111
|
Wang H, Han S, Siao W, Song C, Xiang Y, Wu X, Cheng P, Li H, Jásik J, Mičieta K, Turňa J, Voigt B, Baluška F, Liu J, Wang Y, Zhao H. Arabidopsis Synaptotagmin 2 Participates in Pollen Germination and Tube Growth and Is Delivered to Plasma Membrane via Conventional Secretion. MOLECULAR PLANT 2015; 8:1737-50. [PMID: 26384245 DOI: 10.1016/j.molp.2015.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 08/18/2015] [Accepted: 09/05/2015] [Indexed: 05/15/2023]
Abstract
Arabidopsis synaptotagmin 2 (SYT2) has been reported to participate in an unconventional secretory pathway in somatic cells. Our results showed that SYT2 was expressed mainly in the pollen of Arabidopsis thaliana. The pollen of syt2 T-DNA and RNA interference mutant lines exhibited reduced total germination and impeded pollen tube growth. Analysis of the expression of SYT2-GFP fusion protein in the pollen tube indicates that SYT2 was localized to distinct, patchy compartments but could co-localize with the Golgi markers, BODIPY TR C5 ceramide and GmMan1-mCherry. However, SYT2-DsRed-E5 was localized to the plasma membrane in Arabidopsis suspension cells, in addition to the Golgi apparatus. The localization of SYT2 at the plasma membrane was further supported by immunofluorescence staining in pollen tubes. Moreover, brefeldin A treatment inhibited the transport of SYT2 to the plasma membrane and caused SYT2 to aggregate and form enlarged compartments. Truncation of the SYT2-C2AB domains also resulted in retention of SYT2 in the Golgi apparatus. An in vitro phospholipid-binding assay showed that SYT2-C2AB domains bind to the phospholipid membrane in a calcium-dependent manner. Take together, our results indicated that SYT2 was required for pollen germination and pollen tube growth, and was involved in conventional exocytosis.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Wei Siao
- Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Chunqing Song
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yun Xiang
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xiaorong Wu
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Pengyu Cheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Hongjuan Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Ján Jásik
- Comenius University Science Park, Comenius University, Bratislava, Mlynská dolina, 842 15 Bratislava 4, Slovakia
| | - Karol Mičieta
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02 Bratislava 1, Slovakia
| | - Ján Turňa
- Department of Molecular Biology, Comenius University, Faculty of Natural Sciences, Mlynská dolina, pavilion B-2, 842 15 Bratislava 4, Slovakia
| | - Boris Voigt
- Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - František Baluška
- Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, SK-84523 Bratislava, Slovak Republic.
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
112
|
Danhier P, Krishnamachary B, Bharti S, Kakkad S, Mironchik Y, Bhujwalla ZM. Combining Optical Reporter Proteins with Different Half-lives to Detect Temporal Evolution of Hypoxia and Reoxygenation in Tumors. Neoplasia 2015; 17:871-881. [PMID: 26696369 PMCID: PMC4688563 DOI: 10.1016/j.neo.2015.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023]
Abstract
Here we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF) activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc) and a variant of the enhanced green fluorescent protein (EGFP). Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE). The cells constitutively expressed tdTomato red fluorescent protein. For validating the imaging strategy, cells were incubated under hypoxia (1% O2) for 48 hours and then reoxygenated. The luciferase activity of PC3-HRE-EGFP/HRE-ODD-luc/tdtomato cells detected by bioluminescent imaging rapidly decreased after reoxygenation, whereas EGFP levels in these cells remained stable for several hours. After in vitro validation, PC3-HRE-EGFP/HRE-ODD-luc/tdtomato tumors were implanted subcutaneously and orthotopically in nude male mice and imaged in vivo and ex vivo using optical imaging in proof-of-principle studies to demonstrate differences in optical patterns between EGFP expression and bioluminescence. This novel "timer" imaging strategy of combining the short-lived ODD-luciferase and the long-lived EGFP can provide a time frame of HRE activation in PC3 prostate cancer cells and will be useful to understand the temporal changes in hypoxia and HIF activity during cancer progression and following treatments including HIF targeting strategies.
Collapse
Affiliation(s)
- Pierre Danhier
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Santosh Bharti
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Samata Kakkad
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
113
|
Peng C, Rao W, Zhang L, Wang K, Hui H, Wang L, Su N, Luo P, Hao YL, Tu Y, Zhang S, Fei Z. Mitofusin 2 ameliorates hypoxia-induced apoptosis via mitochondrial function and signaling pathways. Int J Biochem Cell Biol 2015; 69:29-40. [PMID: 26434502 DOI: 10.1016/j.biocel.2015.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/18/2015] [Accepted: 09/30/2015] [Indexed: 02/08/2023]
Abstract
Mitochondrial dynamics play a critical role in mitochondrial function and signaling. Although mitochondria play a critical role in hypoxia/ischemia, the further mechanisms between mitochondrial dynamics and ischemia are still unclear. The current study aimed to determine the role of mitofusin 2, a key regulator of mitochondrial fusion, in a hypoxic model and to explore a novel strategy for cerebral ischemia via modulation of mitochondrial dynamics. To the best of our knowledge, this is the first study to investigate both mitochondrial function and molecular pathways to determine the role of mitofusin 2 in hypoxia-induced neuronal apoptosis. In vivo, C57BL/6 mice (male, 19-25g) underwent a permanent middle cerebral artery occlusion for 12 or 24h (n=6 per group). In vitro, cobalt chloride was used to mimic hypoxia in immortalized hippocampal neurons. Down- or up-regulation of Mfn2 was induced to investigate the role of Mfn2 in hypoxia, especially in mitochondrial function and signaling pathways. The findings demonstrated that decreased mitofusin 2 occurred both in vivo and in vitro hypoxic models; second, the anti-apoptotic effect of Mfn2 may work via restoration of mitochondrial function; third, the modulation of the B Cell Leukemia 2/Bcl-2 Associated X protein and extracellular signal-regulated kinase 1/2 signaling pathways highlight the role of Mfn2 in signaling pathways beyond fusion. In summary, depletion of mitofusin 2 would lead to apoptosis both in normal or hypoxic conditions; however, mitofusin 2 overexpression could attenuate hypoxia-induced apoptosis, which represents a potential novel strategy for neuroprotection against ischemic brain damage.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Wei Rao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Kai Wang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Hao Hui
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Li Wang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Ning Su
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Peng Luo
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Ye-lu Hao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Yue Tu
- Department of Neurosurgery, Affiliated Hospital of Logistics, University of Chinese Armed Police Forces, Chenglin Road, Tianjin 300162, PR China
| | - Sai Zhang
- Department of Neurosurgery, Affiliated Hospital of Logistics, University of Chinese Armed Police Forces, Chenglin Road, Tianjin 300162, PR China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
114
|
Uncovering the mechanisms of beta-cell neogenesis and maturation toward development of a regenerative therapy for diabetes. Diabetol Int 2015. [DOI: 10.1007/s13340-015-0233-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
115
|
Heung LJ, Jhingran A, Hohl TM. Deploying FLAREs to Visualize Functional Outcomes of Host-Pathogen Encounters. PLoS Pathog 2015; 11:e1004912. [PMID: 26158781 PMCID: PMC4497593 DOI: 10.1371/journal.ppat.1004912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Lena J. Heung
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Anupam Jhingran
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Tobias M. Hohl
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
116
|
Green to red photoconversion of GFP for protein tracking in vivo. Sci Rep 2015; 5:11771. [PMID: 26148899 PMCID: PMC4493561 DOI: 10.1038/srep11771] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
A variety of fluorescent proteins have been identified that undergo shifts in spectral emission properties over time or once they are irradiated by ultraviolet or blue light. Such proteins are finding application in following the dynamics of particular proteins or labelled organelles within the cell. However, before genes encoding these fluorescent proteins were available, many proteins have already been labelled with GFP in transgenic cells; a number of model organisms feature collections of GFP-tagged lines and organisms. Here we describe a fast, localized and non-invasive method for GFP photoconversion from green to red. We demonstrate its use in transgenic plant, Drosophila and mammalian cells in vivo. While genes encoding fluorescent proteins specifically designed for photoconversion will usually be advantageous when creating new transgenic lines, our method for photoconversion of GFP allows the use of existing GFP-tagged transgenic lines for studies of dynamic processes in living cells.
Collapse
|
117
|
Sin J, Mangale V, Thienphrapa W, Gottlieb RA, Feuer R. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology 2015; 484:288-304. [PMID: 26142496 DOI: 10.1016/j.virol.2015.06.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/23/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
Coxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses - although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis.
Collapse
Affiliation(s)
- Jon Sin
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Vrushali Mangale
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Wdee Thienphrapa
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Roberta A Gottlieb
- Cedars-Sinai Heart Institute, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Ralph Feuer
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA.
| |
Collapse
|
118
|
Kreibich S, Hardt WD. Experimental approaches to phenotypic diversity in infection. Curr Opin Microbiol 2015; 27:25-36. [PMID: 26143306 DOI: 10.1016/j.mib.2015.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 12/16/2022]
Abstract
Microbial infections are burdening human health, even after the advent of antibiotics, vaccines and hygiene. Thus, infection biology has aimed at the molecular understanding of the pathogen-host interaction. This has revealed key virulence factors, host cell signaling pathways and immune responses. However, our understanding of the infection process is still incomplete. Recent evidence suggests that phenotypic diversity can have important consequences for the infection process. Diversity arises from the formation of distinct subpopulations of pathogen cells (with distinct virulence factor expression patterns) and host cells (with distinct response capacities). For technical reasons, such phenotypic diversity has often been overlooked. We are highlighting several striking examples and discuss the experimental approaches available for analyzing the different subpopulations. Single cell reporters and approaches from systems biology do hold much promise.
Collapse
Affiliation(s)
- Saskia Kreibich
- Institute of Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
119
|
Kuntam S, Puskás LG, Ayaydin F. Characterization of a new class of blue-fluorescent lipid droplet markers for live-cell imaging in plants. PLANT CELL REPORTS 2015; 34:655-65. [PMID: 25604989 DOI: 10.1007/s00299-015-1738-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/19/2014] [Accepted: 01/04/2015] [Indexed: 05/08/2023]
Abstract
The present work demonstrates the use and advantages of novel, live cell permeable, lipid droplet localizing, non toxic, blue fluorochromes for use in live plant cells. Lipid droplets (LDs) are ubiquitous components of both animal and plant cells. They consist of a core of neutral lipids surrounded by a monolayer of phospholipids, glycolipids and/or sterols with embedded amphipathic proteins. Although initially considered to be simple energy depots, they have recently emerged as organelles that serve important regulatory functions. Here we report three new fluorochromes as markers for LDs in plants. These bright blue fluorochromes with their unique spectral properties can easily be combined with other green and red fluorescent reporters for multicolor fluorescence imaging. The fluorochromes are non-toxic and photo-stable. All in all, they represent a reliable tool to use, for the investigation of dynamic LD biology within living plant cells using fluorescence microscopy.
Collapse
Affiliation(s)
- Soujanya Kuntam
- Cellular Imaging Laboratory, Biological Research Center, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | | | | |
Collapse
|
120
|
Takamura A, Hattori M, Yoshimura H, Ozawa T. Simultaneous time-lamination imaging of protein association using a split fluorescent timer protein. Anal Chem 2015; 87:3366-72. [PMID: 25679333 DOI: 10.1021/ac504583t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies of temporal behaviors of protein association in living cells are crucially important for elucidating the fundamental roles and the mechanism of interactive coordination for cell activities. We developed a method for investigating the temporal alternation of a particular protein assembly using monomeric fluorescent proteins, fluorescent timers (FTs), of which the fluorescent color changes from blue to red over time. We identified a dissection site of the FTs, which allows complementation of the split FT fragments. The split fragments of each FT variant recovered their fluorescence and maintained inherent rates of the color changes upon the reassembly of the fragments in vitro. We applied this method to visualize the aggregation process of α-synuclein in living cells. The size of the aggregates with the temporal information was analyzed from ratio values of the blue and red fluorescence of the reconstituted FTs, from which the aggregation rates were evaluated. This method using the split FT fragments enables tracing and visualizing temporal alternations of various protein associations by single fluorescence measurements at a given time point.
Collapse
Affiliation(s)
- Ayari Takamura
- †Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuru Hattori
- †Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Yoshimura
- †Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- †Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
121
|
Zhu X, Zhang L, Kao YT, Xu F, Min W. A tunable fluorescent timer method for imaging spatial-temporal protein dynamics using light-driven photoconvertible protein. JOURNAL OF BIOPHOTONICS 2015; 8:226-232. [PMID: 24488612 DOI: 10.1002/jbio.201300174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/10/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
Cellular function is largely determined by protein behaviors occurring in both space and time. While regular fluorescent proteins can only report spatial locations of the target inside cells, fluorescent timers have emerged as an invaluable tool for revealing coupled spatial-temporal protein dynamics. Existing fluorescent timers are all based on chemical maturation. Herein we propose a light-driven timer concept that could report relative protein ages at specific sub-cellular locations, by weakly but chronically illuminating photoconvertible fluorescent proteins inside cells. This new method exploits light, instead of oxygen, as the driving force. Therefore its timing speed is optically tunable by adjusting the photoconverting laser intensity. We characterized this light-driven timer method both in vitro and in vivo and applied it to image spatiotemporal distributions of several proteins with different lifetimes. This novel timer method thus offers a flexible "ruler" for studying temporal hierarchy of spatially ordered processes with exquisite spatial-temporal resolution.
Collapse
Affiliation(s)
- Xinxin Zhu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
122
|
Mitochondrial quality control: Easy come, easy go. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2802-11. [PMID: 25596427 DOI: 10.1016/j.bbamcr.2014.12.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 02/03/2023]
Abstract
"Friends come and go but enemies accumulate." - Arthur Bloch Mitochondrial networks in eukaryotic cells are maintained via regular cycles of degradation and biogenesis. These complex processes function in concert with one another to eliminate dysfunctional mitochondria in a specific and targeted manner and coordinate the biogenesis of new organelles. This review covers the two aspects of mitochondrial turnover, focusing on the main pathways and mechanisms involved. The review also summarizes the current methods and techniques for analyzing mitochondrial turnover in vivo and in vitro, from the whole animal proteome level to the level of single organelle.
Collapse
|
123
|
|
124
|
MitoTimer: a novel protein for monitoring mitochondrial turnover in the heart. J Mol Med (Berl) 2014; 93:271-8. [PMID: 25479961 PMCID: PMC4333239 DOI: 10.1007/s00109-014-1230-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/19/2014] [Accepted: 11/12/2014] [Indexed: 01/17/2023]
Abstract
Mitochondrial quality control refers to the coordinated cellular systems involved in maintaining a population of healthy mitochondria. In addition to mitochondrial protein chaperones (Hsp10, Hsp60, and others) and proteases (Lon, AAA proteases) needed for refolding or degrading individual proteins, mitochondrial integrity is maintained through the regulation of protein import via the TOM/TIM complex and protein redistribution across the network via fusion and fission and through mitophagy and biogenesis, key determinants of mitochondrial turnover. A growing number of studies point to the importance of mitochondrial dynamics (fusion/fission) and mitochondrial autophagy in the heart. Mitochondrial biogenesis must keep pace with mitophagy in order to maintain a stable number of mitochondria. In this review, we will discuss the use of MitoTimer as a tool to monitor mitochondrial turnover.
Collapse
|
125
|
Miyatsuka T, Matsuoka TA, Sasaki S, Kubo F, Shimomura I, Watada H, German MS, Hara M. Chronological analysis with fluorescent timer reveals unique features of newly generated β-cells. Diabetes 2014; 63:3388-93. [PMID: 24834978 PMCID: PMC4392905 DOI: 10.2337/db13-1312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although numerous studies have uncovered the molecular mechanisms regulating pancreas development, it remains to be clarified how β-cells arise from progenitors and how recently specified β-cells are different from preexisting β-cells. To address these questions, we developed a mouse model in which the insulin 1 promoter drives DsRed-E5 Timer fluorescence that shifts its spectrum over time. In transgenic embryos, green fluorescent β-cells were readily detected by FACS and could be distinguished from mature β-cells only until postnatal day 0, suggesting that β-cell neogenesis occurs exclusively during embryogenesis. Transcriptome analysis with green fluorescent cells sorted by FACS demonstrated that newly differentiated β-cells highly expressed progenitor markers, such as Sox9, Neurog3, and Pax4, showing the progenitor-like features of newborn β-cells. Flow cytometric analysis of cell cycle dynamics showed that green fluorescent cells were mostly quiescent, and differentiated β-cells were mitotically active. Thus, the precise temporal resolution of this model enables us to dissect the unique features of newly specified insulin-producing cells, which could enhance our understanding of β-cell neogenesis for future cell therapy.
Collapse
Affiliation(s)
- Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taka-aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shugo Sasaki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumiyo Kubo
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Michael S German
- Diabetes Center, University of California San Francisco, San Francisco, CA
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, IL
| |
Collapse
|
126
|
Nienhaus K, Nienhaus GU. Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev 2014; 43:1088-106. [PMID: 24056711 DOI: 10.1039/c3cs60171d] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescent proteins (FPs) from the GFP family have become indispensable as marker tools for imaging live cells, tissues and entire organisms. A wide variety of these proteins have been isolated from natural sources and engineered to optimize their properties as genetically encoded markers. Here we review recent developments in this field. A special focus is placed on photoactivatable FPs, for which the fluorescence emission can be controlled by light irradiation at specific wavelengths. They enable regional optical marking in pulse-chase experiments on live cells and tissues, and they are essential marker tools for live-cell optical imaging with super-resolution. Photoconvertible FPs, which can be activated irreversibly via a photo-induced chemical reaction that either turns on their emission or changes their emission wavelength, are excellent markers for localization-based super-resolution microscopy (e.g., PALM). Patterned illumination microscopy (e.g., RESOLFT), however, requires markers that can be reversibly photoactivated many times. Photoswitchable FPs can be toggled repeatedly between a fluorescent and a non-fluorescent state by means of a light-induced chromophore isomerization coupled to a protonation reaction. We discuss the mechanistic origins of the effect and illustrate how photoswitchable FPs are employed in RESOLFT imaging. For this purpose, special FP variants with low switching fatigue have been introduced in recent years. Despite nearly two decades of FP engineering by many laboratories, there is still room for further improvement of these important markers for live cell imaging.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straβe 1, 76131 Karlsruhe, Germany
| | | |
Collapse
|
127
|
Gardiol A, St Johnston D. Staufen targets coracle mRNA to Drosophila neuromuscular junctions and regulates GluRIIA synaptic accumulation and bouton number. Dev Biol 2014; 392:153-67. [PMID: 24951879 PMCID: PMC4111903 DOI: 10.1016/j.ydbio.2014.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 11/28/2022]
Abstract
The post-synaptic translation of localised mRNAs has been postulated to underlie several forms of plasticity at vertebrate synapses, but the mechanisms that target mRNAs to these postsynaptic sites are not well understood. Here we show that the evolutionary conserved dsRNA binding protein, Staufen, localises to the postsynaptic side of the Drosophila neuromuscular junction (NMJ), where it is required for the localisation of coracle mRNA and protein. Staufen plays a well-characterised role in the localisation of oskar mRNA to the oocyte posterior, where Staufen dsRNA-binding domain 5 is specifically required for its translation. Removal of Staufen dsRNA-binding domain 5, disrupts the postsynaptic accumulation of Coracle protein without affecting the localisation of cora mRNA, suggesting that Staufen similarly regulates Coracle translation. Tropomyosin II, which functions with Staufen in oskar mRNA localisation, is also required for coracle mRNA localisation, suggesting that similar mechanisms target mRNAs to the NMJ and the oocyte posterior. Coracle, the orthologue of vertebrate band 4.1, functions in the anchoring of the glutamate receptor IIA subunit (GluRIIA) at the synapse. Consistent with this, staufen mutant larvae show reduced accumulation of GluRIIA at synapses. The NMJs of staufen mutant larvae have also a reduced number of synaptic boutons. Altogether, this suggests that this novel Staufen-dependent mRNA localisation and local translation pathway may play a role in the developmentally regulated growth of the NMJ.
Collapse
Affiliation(s)
- Alejandra Gardiol
- The WellcomeCRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
| | - Daniel St Johnston
- The WellcomeCRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom.
| |
Collapse
|
128
|
Claudi B, Spröte P, Chirkova A, Personnic N, Zankl J, Schürmann N, Schmidt A, Bumann D. Phenotypic Variation of Salmonella in Host Tissues Delays Eradication by Antimicrobial Chemotherapy. Cell 2014; 158:722-733. [DOI: 10.1016/j.cell.2014.06.045] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/15/2014] [Accepted: 06/06/2014] [Indexed: 11/24/2022]
|
129
|
Ji B, Higa KK, Kim M, Zhou L, Young JW, Geyer MA, Zhou X. Inhibition of protein translation by the DISC1-Boymaw fusion gene from a Scottish family with major psychiatric disorders. Hum Mol Genet 2014; 23:5683-705. [PMID: 24908665 DOI: 10.1093/hmg/ddu285] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The t(1; 11) translocation appears to be the causal genetic lesion with 70% penetrance for schizophrenia, major depression and other psychiatric disorders in a Scottish family. Molecular studies identified the disruption of the disrupted-in-schizophrenia 1 (DISC1) gene by chromosome translocation at chromosome 1q42. Our previous studies, however, revealed that the translocation also disrupted another gene, Boymaw (also termed DISC1FP1), on chromosome 11. After translocation, two fusion genes [the DISC1-Boymaw (DB7) and the Boymaw-DISC1 (BD13)] are generated between the DISC1 and Boymaw genes. In the present study, we report that expression of the DB7 fusion gene inhibits both intracellular NADH oxidoreductase activities and protein translation. We generated humanized DISC1-Boymaw mice with gene targeting to examine the in vivo functions of the fusion genes. Consistent with the in vitro studies on the DB7 fusion gene, protein translation activity is decreased in the hippocampus and in cultured primary neurons from the brains of the humanized mice. Expression of Gad67, Nmdar1 and Psd95 proteins are also reduced. The humanized mice display prolonged and increased responses to the NMDA receptor antagonist, ketamine, on various mouse genetic backgrounds. Abnormal information processing of acoustic startle and depressive-like behaviors are also observed. In addition, the humanized mice display abnormal erythropoiesis, which was reported to associate with depression in humans. Expression of the DB7 fusion gene may reduce protein translation to impair brain functions and thereby contribute to the pathogenesis of major psychiatric disorders.
Collapse
Affiliation(s)
- Baohu Ji
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kerin K Higa
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Minjung Kim
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lynn Zhou
- La Jolla High School, 750 Nautilus St., San Diego, CA 92037, USA and
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA, Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92037, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA, Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92037, USA
| | - Xianjin Zhou
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA, Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92037, USA
| |
Collapse
|
130
|
Combining RNAi and in vivo confocal microscopy analysis of the photoconvertible fluorescent protein Dendra2 to study a DNA repair protein. Biotechniques 2014; 55:198-203. [PMID: 24107251 DOI: 10.2144/000114088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/07/2013] [Indexed: 11/23/2022] Open
Abstract
Clinical approaches for tumor treatment often rely on combination therapy where a DNA damaging agent is used in combination with a DNA repair protein inhibitor. For this reason, great efforts have been made during the last decade to identify inhibitors of DNA repair proteins or, alternatively, small molecules that specifically alter protein stability or trafficking. Unfortunately, when studying these drug candidates, classical biochemical approaches are prone to artifacts. The apurinic/apyrimidinic endonuclease (APE1) protein is an essential component of the base excision repair (BER) pathway that is responsible for repairing DNA damage caused by oxidative and alkylating agents. In this work, we combined conditional gene expression knockdown of APE1 protein by RNA interference (RNAi) technology with re-expression of an ectopic recombinant form of APE1 fused with the photoconvertible fluorescent protein (PCFP) Dendra2. Dendra2 did not alter the subcellular localization or endonuclease activity of APE1. We calculated APE1 half-life and compared these results with the classical biochemical approach, which is based on cycloheximide (CHX) treatment. In conclusion, we combined RNAi and in vivo confocal microscopy to study a DNA repair protein demonstrating the feasibility and the advantage of this approach for the study of the cellular dynamic of a DNA repair protein.
Collapse
|
131
|
Knop M, Edgar BA. Tracking protein turnover and degradation by microscopy: photo-switchable versus time-encoded fluorescent proteins. Open Biol 2014; 4:140002. [PMID: 24740984 PMCID: PMC4043113 DOI: 10.1098/rsob.140002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Expanded fluorescent protein techniques employing photo-switchable and
fluorescent timer proteins have become important tools in biological research.
These tools allow researchers to address a major challenge in cell and
developmental biology, namely obtaining kinetic information about the processes
that determine the distribution and abundance of proteins in cells and tissues.
This knowledge is often essential for the comprehensive understanding of a
biological process, and/or required to determine the precise point of
interference following an experimental perturbation.
Collapse
Affiliation(s)
- Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | |
Collapse
|
132
|
Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog 2014; 10:e1004045. [PMID: 24722773 PMCID: PMC3983045 DOI: 10.1371/journal.ppat.1004045] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/17/2014] [Indexed: 01/08/2023] Open
Abstract
Coxsackievirus B3 (CVB3), a member of the picornavirus family and enterovirus genus, causes viral myocarditis, aseptic meningitis, and pancreatitis in humans. We genetically engineered a unique molecular marker, “fluorescent timer” protein, within our infectious CVB3 clone and isolated a high-titer recombinant viral stock (Timer-CVB3) following transfection in HeLa cells. “Fluorescent timer” protein undergoes slow conversion of fluorescence from green to red over time, and Timer-CVB3 can be utilized to track virus infection and dissemination in real time. Upon infection with Timer-CVB3, HeLa cells, neural progenitor and stem cells (NPSCs), and C2C12 myoblast cells slowly changed fluorescence from green to red over 72 hours as determined by fluorescence microscopy or flow cytometric analysis. The conversion of “fluorescent timer” protein in HeLa cells infected with Timer-CVB3 could be interrupted by fixation, suggesting that the fluorophore was stabilized by formaldehyde cross-linking reactions. Induction of a type I interferon response or ribavirin treatment reduced the progression of cell-to-cell virus spread in HeLa cells or NPSCs infected with Timer-CVB3. Time lapse photography of partially differentiated NPSCs infected with Timer-CVB3 revealed substantial intracellular membrane remodeling and the assembly of discrete virus replication organelles which changed fluorescence color in an asynchronous fashion within the cell. “Fluorescent timer” protein colocalized closely with viral 3A protein within virus replication organelles. Intriguingly, infection of partially differentiated NPSCs or C2C12 myoblast cells induced the release of abundant extracellular microvesicles (EMVs) containing matured “fluorescent timer” protein and infectious virus representing a novel route of virus dissemination. CVB3 virions were readily observed within purified EMVs by transmission electron microscopy, and infectious virus was identified within low-density isopycnic iodixanol gradient fractions consistent with membrane association. The preferential detection of the lipidated form of LC3 protein (LC3 II) in released EMVs harboring infectious virus suggests that the autophagy pathway plays a crucial role in microvesicle shedding and virus release, similar to a process previously described as autophagosome-mediated exit without lysis (AWOL) observed during poliovirus replication. Through the use of this novel recombinant virus which provides more dynamic information from static fluorescent images, we hope to gain a better understanding of CVB3 tropism, intracellular membrane reorganization, and virus-associated microvesicle dissemination within the host. Enteroviruses are significant human pathogens, causing myocarditis, aseptic meningitis and encephalitis. The mechanisms of enterovirus dissemination in the host and cell-to-cell spread may be critical factors influencing viral pathogenesis. Here, we have generated a recombinant coxsackievirus expressing “fluorescence timer” protein (Timer-CVB3) which assists in following the progression of infection within the host. Unexpectedly, we observed the shedding of microvesicles containing virus in partially-differentiated progenitor cells infected with Timer-CVB3. These extracellular microvesicles (EMVs) were released in high levels following cellular differentiation, and may play a role in virus dissemination. Timer-CVB3 will be a valuable tool in monitoring virus spread in the infected host.
Collapse
|
133
|
Laker RC, Xu P, Ryall KA, Sujkowski A, Kenwood BM, Chain KH, Zhang M, Royal MA, Hoehn KL, Driscoll M, Adler PN, Wessells RJ, Saucerman JJ, Yan Z. A novel MitoTimer reporter gene for mitochondrial content, structure, stress, and damage in vivo. J Biol Chem 2014; 289:12005-12015. [PMID: 24644293 DOI: 10.1074/jbc.m113.530527] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial dysfunction plays important roles in many diseases, but there is no satisfactory method to assess mitochondrial health in vivo. Here, we engineered a MitoTimer reporter gene from the existing Timer reporter gene. MitoTimer encodes a mitochondria-targeted green fluorescent protein when newly synthesized, which shifts irreversibly to red fluorescence when oxidized. Confocal microscopy confirmed targeting of the MitoTimer protein to mitochondria in cultured cells, Caenorhabditis elegans touch receptor neurons, Drosophila melanogaster heart and indirect flight muscle, and mouse skeletal muscle. A ratiometric algorithm revealed that conditions that cause mitochondrial stress led to a significant shift toward red fluorescence as well as accumulation of pure red fluorescent puncta of damaged mitochondria targeted for mitophagy. Long term voluntary exercise resulted in a significant fluorescence shift toward green, in mice and D. melanogaster, as well as significantly improved structure and increased content in mouse FDB muscle. In contrast, high-fat feeding in mice resulted in a significant shift toward red fluorescence and accumulation of pure red puncta in skeletal muscle, which were completely ameliorated by voluntary wheel running. Hence, MitoTimer allows for robust analysis of multiple parameters of mitochondrial health under both physiological and pathological conditions and will be highly useful for future research of mitochondrial health in multiple disciplines in vivo.
Collapse
Affiliation(s)
- Rhianna C Laker
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Peng Xu
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Karen A Ryall
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
| | - Alyson Sujkowski
- Department of Geriatric Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brandon M Kenwood
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Kristopher H Chain
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908; Departments of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908
| | - Mei Zhang
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908
| | - Mary A Royal
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Kyle L Hoehn
- Departments of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Paul N Adler
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Robert J Wessells
- Department of Geriatric Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jeffrey J Saucerman
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
| | - Zhen Yan
- Departments of Medicine, University of Virginia, Charlottesville, Virginia 22908; Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908; Departments of Pharmacology, University of Virginia, Charlottesville, Virginia 22908; Departments of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
134
|
Hamers D, van Voorst Vader L, Borst JW, Goedhart J. Development of FRET biosensors for mammalian and plant systems. PROTOPLASMA 2014; 251:333-347. [PMID: 24337770 DOI: 10.1007/s00709-013-0590-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 06/03/2023]
Abstract
Genetically encoded biosensors are increasingly used in visualising signalling processes in different organisms. Sensors based on green fluorescent protein technology are providing a great opportunity for using Förster resonance energy transfer (FRET) as a tool that allows for monitoring dynamic processes in living cells. The development of these FRET biosensors requires careful selection of fluorophores, substrates and recognition domains. In this review, we will discuss recent developments, strategies to create and optimise FRET biosensors and applications of FRET-based biosensors for use in the two major eukaryotic kingdoms and elaborate on different methods for FRET detection.
Collapse
Affiliation(s)
- Danny Hamers
- Laboratory of Biochemistry and Microspectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
135
|
Fluorescent protein-based biosensors and their clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 113:313-48. [PMID: 23244794 DOI: 10.1016/b978-0-12-386932-6.00008-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Green fluorescent protein and its relatives have shed their light on a wide range of biological problems. To date, with a color palette consisting of fluorescent proteins with different spectra, researchers can "paint" living cells as they desire. Moreover, sophisticated biosensors engineered to contain single or multiple fluorescent proteins, including FRET-based biosensors, spatiotemporally unveil molecular mechanisms underlying physiological processes. Although such molecules have contributed considerably to basic research, their abilities to be used in applied life sciences have yet to be fully explored. Here, we review the molecular bases of fluorescent proteins and fluorescent protein-based biosensors and focus on approaches aimed at applying such proteins to the clinic.
Collapse
|
136
|
Trudeau KM, Gottlieb RA, Shirihai OS. Measurement of mitochondrial turnover and life cycle using MitoTimer. Methods Enzymol 2014; 547:21-38. [PMID: 25416350 DOI: 10.1016/b978-0-12-801415-8.00002-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Current methodologies available to quantify changes in mitochondrial turnover are limited to pulse-chase assays or specific assays that quantify mitophagy. Accordingly, new tools that can assess mitochondrial turnover are needed for the study of cellular, subcellular, and spatial parameters of mitochondrial turnover and quality control. Recently, a group of studies described the use of the MitoTimer fluorescent probe to investigate various aspects of mitochondrial turnover, including changes to protein import, interorganelle protein sharing, and autophagy-mediated turnover. MitoTimer provides a fluorescent readout which directly relates to the mitochondrial turnover rate and allows quantification of relative changes to turnover. Importantly, MitoTimer can be used to investigate mitochondrial turnover on the subcellular level. Due to the fact that MitoTimer is a dual-emission probe and a number of factors can affect MitoTimer readout, certain considerations must be taken into account when using this tool both in experimental design and data interpretation. When used and interpreted appropriately, MitoTimer serves as a unique tool to understand pivotal aspects of mitochondrial turnover.
Collapse
Affiliation(s)
- Kyle M Trudeau
- Department of Medicine, Obesity and Nutrition Section, The Mitochondria Affinity Research Collaborative, Evans Biomedical Research Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Roberta A Gottlieb
- Department of Molecular Cardiobiology, Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Orian S Shirihai
- Department of Medicine, Obesity and Nutrition Section, The Mitochondria Affinity Research Collaborative, Evans Biomedical Research Center, Boston University School of Medicine, Boston, Massachusetts, USA; Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
137
|
Abstract
Fluorescent timers (FTs) are fluorescent proteins that change color with time. FTs can be used as tags to follow protein dynamics in living cells. Recently we described a novel class of FTs called tandem fluorescent protein timers (tFTs). Each tFT is a tandem fusion of two different conventional fluorescent proteins having distinct kinetics of fluorophore maturation. tFTs suitable for studying protein dynamics on different scales can be generated from a broad range of commonly used fluorescent proteins. Here we describe how to establish new tFTs and consider potential pitfalls. We detail a protocol for quantitative fluorescence microscopy imaging and analysis of intracellular protein dynamics with tFTs in the budding yeast Saccharomyces cerevisiae.
Collapse
|
138
|
Abstract
Nowadays, fluorescent protein (FP) variants have been engineered to fluoresce in all different colors; to display photoswitchable, or photochromic, behavior; or to show yet other beneficial properties that enable or enhance a still growing set of new fluorescence spectroscopy and microcopy techniques. This has allowed the (in situ) study of biomolecules with unprecedented resolution, specificity, sensitivity, and ease of labeling. However, brighter FPs, more photostable FPs, and FPs that display an even better compatibility with biophysical microspectroscopic techniques are still highly desired. The key characteristics of FPs-absorption spectrum, emission spectrum, brightness, fluorescence lifetime, maturation rate, oligomeric state, photostability, pH sensitivity, and functionality in protein fusions-determine their application. This chapter will describe these key features and present several experimental protocols to optimize them.The optimization procedure contains three steps. First the amino acid sequence of a template FP is changed via random or site-directed mutagenesis. A primary screening based on fluorescence intensity, fluorescence lifetime, and emission spectrum is applied on the FP libraries expressed in bacteria. The most promising mutants are isolated, purified, and characterized in vitro. In this step all key characteristics are determined experimentally. Finally the new FPs are evaluated for use in vivo. The protein production and maturation is monitored in bacteria, while transfected mammalian cells report on the photostability, relative brightness, and correct localization to various subcellular compartments.
Collapse
|
139
|
Hernandez G, Thornton C, Stotland A, Lui D, Sin J, Ramil J, Magee N, Andres A, Quarato G, Carreira RS, Sayen MR, Wolkowicz R, Gottlieb RA. MitoTimer: a novel tool for monitoring mitochondrial turnover. Autophagy 2013; 9:1852-61. [PMID: 24128932 PMCID: PMC4028337 DOI: 10.4161/auto.26501] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 11/21/2022] Open
Abstract
Fluorescent Timer, or DsRed1-E5, is a mutant of the red fluorescent protein, dsRed, in which fluorescence shifts over time from green to red as the protein matures. This molecular clock gives temporal and spatial information on protein turnover. To visualize mitochondrial turnover, we targeted Timer to the mitochondrial matrix with a mitochondrial-targeting sequence (coined "MitoTimer") and cloned it into a tetracycline-inducible promoter construct to regulate its expression. Here we report characterization of this novel fluorescent reporter for mitochondrial dynamics. Tet-On HEK 293 cells were transfected with pTRE-tight-MitoTimer and production was induced with doxycycline (Dox). Mitochondrial distribution was demonstrated by fluorescence microscopy and verified by subcellular fractionation and western blot analysis. Dox addition for as little as 1 h was sufficient to induce MitoTimer expression within 4 h, with persistence in the mitochondrial fraction for up to 6 d. The color-specific conformation of MitoTimer was stable after fixation with 4% paraformaldehyde. Ratiometric analysis of MitoTimer revealed a time-dependent transition from green to red over 48 h and was amenable to analysis by fluorescence microscopy and flow cytometry of whole cells or isolated mitochondria. A second Dox administration 48 h after the initial induction resulted in a second round of expression of green MitoTimer. The extent of new protein incorporation during a second pulse was increased by administration of a mitochondrial uncoupler or simvastatin, both of which trigger mitophagy and biogenesis. MitoTimer is a novel fluorescent reporter protein that can reveal new insights into mitochondrial dynamics within cells. Coupled with organelle flow cytometry, it offers new opportunities to investigate mitochondrial subpopulations by biochemical or proteomic methods.
Collapse
Affiliation(s)
| | | | | | - Diana Lui
- San Diego State University; San Diego, CA USA
| | - Jon Sin
- The Cedars-Sinai Heart Institute; Los Angeles, CA USA
| | | | - Najib Magee
- San Diego State University; San Diego, CA USA
| | - Allen Andres
- The Cedars-Sinai Heart Institute; Los Angeles, CA USA
| | | | | | | | | | | |
Collapse
|
140
|
Ferree AW, Trudeau K, Zik E, Benador IY, Twig G, Gottlieb RA, Shirihai OS. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy 2013; 9:1887-96. [PMID: 24149000 PMCID: PMC4028338 DOI: 10.4161/auto.26503] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 12/02/2022] Open
Abstract
To study mitochondrial protein age dynamics, we targeted a time-sensitive fluorescent protein, MitoTimer, to the mitochondrial matrix. Mitochondrial age was revealed by the integrated portions of young (green) and old (red) MitoTimer protein. Mitochondrial protein age was dependent on turnover rates as pulsed synthesis, decreased import, or autophagic inhibition all increased the proportion of aged MitoTimer protein. Mitochondrial fusion promotes the distribution of young mitochondrial protein across the mitochondrial network as cells lacking essential fusion genes Mfn1 and Mfn2 displayed increased heterogeneity in mitochondrial protein age. Experiments in hippocampal neurons illustrate that the distribution of older and younger mitochondrial protein within the cell is determined by subcellular spatial organization and compartmentalization of mitochondria into neurites and soma. This effect was altered by overexpression of mitochondrial transport protein, RHOT1/MIRO1. Collectively our data show that distribution of young and old protein in the mitochondrial network is dependent on turnover, fusion, and transport.
Collapse
Affiliation(s)
- Andrew W Ferree
- Department of Medicine, Obesity and Nutrition Section; The Mitochondria Affinity Research Collaborative; Evans Biomedical Research Center; Boston University School of Medicine; Boston, MA USA
| | - Kyle Trudeau
- Department of Medicine, Obesity and Nutrition Section; The Mitochondria Affinity Research Collaborative; Evans Biomedical Research Center; Boston University School of Medicine; Boston, MA USA
| | - Eden Zik
- Department of Medicine, Obesity and Nutrition Section; The Mitochondria Affinity Research Collaborative; Evans Biomedical Research Center; Boston University School of Medicine; Boston, MA USA
| | - Ilan Y Benador
- Department of Medicine, Obesity and Nutrition Section; The Mitochondria Affinity Research Collaborative; Evans Biomedical Research Center; Boston University School of Medicine; Boston, MA USA
| | - Gilad Twig
- Department of Medicine, Obesity and Nutrition Section; The Mitochondria Affinity Research Collaborative; Evans Biomedical Research Center; Boston University School of Medicine; Boston, MA USA
- Department of Medicine and the Dr. Pinchas Bornstein Talpiot Medical Leadership Program 2012; Sheba Medical Center; Tel-Hashomer, Israel
| | - Roberta A Gottlieb
- Department of Molecular Cardiobiology; Heart Institute; Cedars-Sinai Medical Center; Los Angeles, CA USA
| | - Orian S Shirihai
- Department of Medicine, Obesity and Nutrition Section; The Mitochondria Affinity Research Collaborative; Evans Biomedical Research Center; Boston University School of Medicine; Boston, MA USA
- Department of Clinical Biochemistry and Pharmacology; Faculty of Health Sciences; Ben-Gurion University of the Negev; Negev, Israel
| |
Collapse
|
141
|
The degradation of the inwardly rectifying potassium channel, Kir2.1, depends on the expression level: examination with fluorescent proteins. Brain Res 2013; 1528:8-19. [PMID: 23850646 DOI: 10.1016/j.brainres.2013.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 01/24/2023]
Abstract
The expression of ion channels is regulated by their synthesis as well as degradation, and some ion channels are degraded in an expression level-dependent way. Recently, new techniques of fluorescent proteins have been developed and seem to be useful to study protein degradation. To examine the regulation of the degradation of strongly inwardly rectifying potassium channel (Kir2.1) and the usefulness of the fluorescent proteins, we constructed Kir2.1 fusion proteins with SNAP tag and fluorescent timer (FT). The SNAP tag, which covalently binds to a specific membrane-permeable fluorescent dye, enables a pulse-chase experiment with fluorescence. When the SNAP-Kir2.1 proteins were expressed in 293T cells by low and high expression plasmids, the half-life of the fusion protein expressed by a high-expression plasmid was shorter (18.2±1.9 h) than that expressed by a low-expression plasmid (35.1+2.3h). The addition of Ba(2+), a selective blocker of Kir2.1, slowed the degradation, suggesting a current-dependency of degradation. Consistently, patch-clamp recording showed that cultivation in the presence of Ba(2+) increased the whole cell conductance of SNAP-Kir2.1. Since the fluorescence of FT changes gradually changes from green to red, the green/red ratio should allow us to monitor the changes in the degradation rate of FT-Kir2.1. Using this method, we confirmed the slower degradation by Ba(2+). The results suggest a homeostatic regulation of the degradation of Kir2.1 in the 293T cells, and the usefulness of fluorescence-based methods for examining the degradation of ion channels.
Collapse
|
142
|
Chia PZC, Gleeson PA. Imaging and Quantitation Techniques for Tracking Cargo along Endosome-to-Golgi Transport Pathways. Cells 2013; 2:105-23. [PMID: 24709647 PMCID: PMC3972656 DOI: 10.3390/cells2010105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/20/2022] Open
Abstract
Recent improvements in the resolution of light microscopy, coupled with the development of a range of fluorescent-based probes, have provided new approaches to dissecting membrane domains and the regulation of membrane trafficking. Here, we review these advances, as well as highlight developments in quantitative image analysis and novel unbiased analytical approaches to quantitate protein localization. The application of these approaches to endosomal sorting and endosome-to-Golgi transport is discussed.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
143
|
Dedecker P, De Schryver FC, Hofkens J. Fluorescent Proteins: Shine on, You Crazy Diamond. J Am Chem Soc 2013; 135:2387-402. [DOI: 10.1021/ja309768d] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Dedecker
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Frans C. De Schryver
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
144
|
Manina G, McKinney JD. A single-cell perspective on non-growing but metabolically active (NGMA) bacteria. Curr Top Microbiol Immunol 2013; 374:135-61. [PMID: 23793585 DOI: 10.1007/82_2013_333] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A long-standing and fundamental problem in microbiology is the non-trivial discrimination between live and dead cells. The existence of physically intact and possibly viable bacterial cells that fail to replicate during a more or less protracted period of observation, despite environmental conditions that are ostensibly propitious for growth, has been extensively documented in many different organisms. In clinical settings, non-culturable cells may contribute to non-apparent infections capable of reactivating after months or years of clinical latency, a phenomenon that has been well documented in the specific case of Mycobacterium tuberculosis. The prevalence of these silent but potentially problematic bacterial reservoirs has been highlighted by classical approaches such as limiting culture dilution till extinction of growing cells, followed by resuscitation of apparently "viable but non-culturable" (VBNC) subpopulations. Although these assays are useful to demonstrate the presence of VBNC cells in a population, they are effectively retrospective and are not well suited to the analysis of non-replicating cells per se. Here, we argue that research on a closely related problem, which we shall refer to as the "non-growing but metabolically active" state, is poised to advance rapidly thanks to the recent development of novel technologies and methods for real-time single-cell analysis. In particular, the combination of fluorescent reporter dyes and strains, microfluidic and microelectromechanical systems, and time-lapse fluorescence microscopy offers tremendous and largely untapped potential for future exploration of the physiology of non-replicating cells.
Collapse
Affiliation(s)
- Giulia Manina
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland,
| | | |
Collapse
|
145
|
Chao JA, Yoon YJ, Singer RH. Imaging translation in single cells using fluorescent microscopy. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012310. [PMID: 22960595 DOI: 10.1101/cshperspect.a012310] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The regulation of translation provides a mechanism to control not only the abundance of proteins, but also the precise time and subcellular location that they are synthesized. Much of what is known concerning the molecular basis for translational control has been gleaned from experiments (e.g., luciferase assays and polysome analysis) that measure average changes in the protein synthesis of a population of cells, however, mechanistic insights can be obscured in ensemble measurements. The development of fluorescent microscopy techniques and reagents has allowed translation to be studied within its cellular context. Here we highlight recent methodologies that can be used to study global changes in protein synthesis or regulation of specific mRNAs in single cells. Imaging of translation has provided direct evidence for local translation of mRNAs at synapses in neurons and will become an important tool for studying translational control.
Collapse
Affiliation(s)
- Jeffrey A Chao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
146
|
Preferential release of newly synthesized insulin assessed by a multi-label reporter system using pancreatic β-cell line MIN6. PLoS One 2012; 7:e47921. [PMID: 23133529 PMCID: PMC3485036 DOI: 10.1371/journal.pone.0047921] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/21/2012] [Indexed: 11/19/2022] Open
Abstract
Newly synthesized hormones have been suggested to be preferentially secreted by various neuroendocrine cells. This observation indicates that there is a distinct population of secretory granules containing new and old hormones. Recent development of fluorescent timer proteins used in bovine adrenal chromaffin cells revealed that secretory vesicles segregate into distinct age-dependent populations. Here, we verify the preferential release of newly synthesized insulin in the pancreatic β-cell line, MIN6, using a combination of multi-labeling reporter systems with both fluorescent and biochemical procedures. This system allows hormones or granules of any age to be labeled, in contrast to the timer proteins, which require fluorescence shift time. Pulse-chase labeling with different color probes distinguishes insulin secretory granules by age, with younger granules having a predominantly intracellular localization rather than at the cell periphery.
Collapse
|
147
|
Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nat Biotechnol 2012; 30:708-14. [DOI: 10.1038/nbt.2281] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/19/2012] [Indexed: 01/05/2023]
|
148
|
Khalil HS, Tummala H, Hupp TR, Zhelev N. Pharmacological inhibition of ATM by KU55933 stimulates ATM transcription. Exp Biol Med (Maywood) 2012; 237:622-34. [DOI: 10.1258/ebm.2012.011378] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) kinase is a component of a signalling mechanism that determines the process of decision-making in response to DNA damage and involves the participation of multiple proteins. ATM is activated by DNA double-strand breaks (DSBs) through the Mre11–Rad50–Nbs1 (MRN) DNA repair complex, and orchestrates signalling cascades that initiate the DNA damage response. Cells lacking ATM are hypersensitive to insults, particularly genotoxic stress, induced through radiation or radiomimetic drugs. Here, we investigate the degree of ATM activation during time-dependent treatment with genotoxic agents and the effects of ATM on phospho-induction and localization of its downstream substrates. Additionally, we have demonstrated a new cell-cycle-independent mechanism of ATM gene regulation following ATM kinase inhibition with KU5593. Inhibition of ATM activity causes induction of ATM protein followed by oscillation and this mechanism is governed at the transcriptional level. Furthermore, this autoregulatory induction of ATM is also accompanied by a transient upregulation of p53, pATR and E2F1 levels. Since ATM inhibition is believed to sensitize cancer cells to genotoxic agents, this novel insight into the mechanism of ATM regulation might be useful for designing more precise strategies for modulation of ATM activity in cancer therapy.
Collapse
Affiliation(s)
- Hilal S Khalil
- School of Contemporary Sciences, University of Abertay, Kydd Building, 40 Bell street, Dundee DD1 1HG
| | - Hemanth Tummala
- School of Contemporary Sciences, University of Abertay, Kydd Building, 40 Bell street, Dundee DD1 1HG
| | - Tedd R Hupp
- Edinburgh Cancer Research Centre, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Nikolai Zhelev
- School of Contemporary Sciences, University of Abertay, Kydd Building, 40 Bell street, Dundee DD1 1HG
| |
Collapse
|
149
|
Yang HJ, Hsu CL, Yang JY, Yang WY. Monodansylpentane as a blue-fluorescent lipid-droplet marker for multi-color live-cell imaging. PLoS One 2012; 7:e32693. [PMID: 22396789 PMCID: PMC3291611 DOI: 10.1371/journal.pone.0032693] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/29/2012] [Indexed: 01/28/2023] Open
Abstract
Lipid droplets (LDs) are dynamic cellular organelles responsible for the storage of neutral lipids, and are associated with a multitude of metabolic syndromes. Here we report monodansylpentane (MDH) as a high contrast blue-fluorescent marker for LDs. The unique spectral properties make MDH easily combinable with other green and red fluorescent reporters for multicolor fluorescence imaging. MDH staining does not apparently affect LD trafficking, and the dye is extraordinarily photo-stable. Taken together MDH represents a reliable tool to use for the investigation of dynamic LD regulation within living cells using fluorescence microscopy.
Collapse
Affiliation(s)
- Huei-Jiun Yang
- Institute of Biological Chemistry, Academia Sinica, National Taiwan University, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Chia-Ling Hsu
- Institute of Biological Chemistry, Academia Sinica, National Taiwan University, Taipei, Taiwan
| | - Jin-Yi Yang
- Institute of Biological Chemistry, Academia Sinica, National Taiwan University, Taipei, Taiwan
| | - Wei Yuan Yang
- Institute of Biological Chemistry, Academia Sinica, National Taiwan University, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
150
|
Thelen K, Maier B, Faber M, Albrecht C, Fischer P, Pollerberg GE. Translation of the cell adhesion molecule ALCAM in axonal growth cones – regulation and functional importance. J Cell Sci 2012; 125:1003-14. [DOI: 10.1242/jcs.096149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ALCAM is a cell adhesion molecule that is present on extending axons and has been shown to be crucial for elongation and navigation of retinal ganglion cell (RGC) axons. In the present study, we show that ALCAM mRNA is present in axonal growth cones of RGCs in vivo and in vitro, and that translation of ALCAM occurs in RGC growth cones separated from their soma. This growth cone translation is regulated by the 3′-untranslated region (3′-UTR) of ALCAM and depends on the activity of the kinases ERK and TOR (target of rapamycin). We also investigated the impact of the growth cone translation of ALCAM on axonal functions. Growth cone translation of ALCAM is crucial for the enhanced elongation of axons extending in contact with ALCAM protein. The local translation of ALCAM in the growth cone is able to rapidly counterbalance experimentally induced ALCAM internalization, thereby contributing to the maintenance of constant ALCAM levels in the plasma membrane. Assays where RGC axons have the choice to grow on laminin or both ALCAM and laminin – as is the case in the developing retina – reveal that the axonal preference for ALCAM-containing lanes depends on translation of ALCAM in growth cones. Taken together, these results show for the first time that translation of a cell adhesion molecule in growth cones, as well as the impact of this local translation on the behavior of axon and growth cone.
Collapse
Affiliation(s)
- Karsten Thelen
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Bettina Maier
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Marc Faber
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Christian Albrecht
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - Paulina Fischer
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | - G. Elisabeth Pollerberg
- Department of Developmental Neurobiology, Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| |
Collapse
|