101
|
Karg SR, Kallio PT. The production of biopharmaceuticals in plant systems. Biotechnol Adv 2009; 27:879-894. [PMID: 19647060 DOI: 10.1016/j.biotechadv.2009.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 12/20/2022]
Abstract
Biopharmaceuticals present the fastest growing segment in the pharmaceutical industry, with an ever widening scope of applications. Whole plants as well as contained plant cell culture systems are being explored for their potential as cheap, safe, and scalable production hosts. The first plant-derived biopharmaceuticals have now reached the clinic. Many biopharmaceuticals are glycoproteins; as the Golgi N-glycosylation machinery of plants differs from the mammalian machinery, the N-glycoforms introduced on plant-produced proteins need to be taken into consideration. Potent systems have been developed to change the plant N-glycoforms to a desired or even superior form compared to the native mammalian N-glycoforms. This review describes the current status of biopharmaceutical production in plants for industrial applications. The recent advances and tools which have been utilized to generate glycoengineered plants are also summarized and compared with the relevant mammalian systems whenever applicable.
Collapse
Affiliation(s)
- Saskia R Karg
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland.
| | - Pauli T Kallio
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland.
| |
Collapse
|
102
|
Sexton A, Harman S, Shattock RJ, Ma JKC. Design, expression, and characterization of a multivalent, combination HIV microbicide. FASEB J 2009; 23:3590-600. [PMID: 19470798 DOI: 10.1096/fj.09-131995] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many promising microbicide candidates are proteins or peptides, including neutralizing monoclonal antibodies (mAbs). Here, the expression of the HIV-neutralizing mAb b12 in transgenic plants is described. The plant-derived mAb b12 was shown to have gp120 binding activity and HIV-neutralizing activity in vitro. However, it is likely that a protein-based microbicide will need to comprise a combination of two or more products, in order to provide long-lasting and cross-clade protection. Building on the expression of mAb b12 and to address the need for a combinational agent, the expression of a fusion protein of mAb b12 with cyanovirin-N, another protein microbicide, has been explored. This fusion protein molecule is predicted to have four binding sites for HIV gp120 with two different specificities. The fusion protein was assembled and expressed in planta, and functionality was confirmed by gp120 binding and HIV neutralization in vitro. Each moiety of the fusion protein retained its binding ability to gp120. In addition, this fusion protein demonstrated increased anti-HIV potency compared to b12 or CV-N alone. This fusion protein addresses the requirement to combine microbicide products, and the production in plants is a step toward resolving the issues of manufacturing scalability and cost for developing countries.
Collapse
Affiliation(s)
- Amy Sexton
- Department of Cellular and Molecular Medicine, St. George's Hospital Medical School, Cranmer Terr., London SW17 0RE, UK
| | | | | | | |
Collapse
|
103
|
Jamal A, Ahn MH, Song M, Oh EY, Hong J, Choo YK, Ko K, Han YS, Oh SH, Van Der Linden J, Leusen JH, Ko K. Biological Validation of Plant-derived Anti-human Colorectal Cancer Monoclonal Antibody CO17-1A. Hybridoma (Larchmt) 2009; 28:7-12. [DOI: 10.1089/hyb.2008.0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Arshad Jamal
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan, Korea
| | - Mi-Hyun Ahn
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan, Korea
| | - Mira Song
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan, Korea
| | - Eun-Yi Oh
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan, Korea
| | - Juyeon Hong
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan, Korea
- Korean Minjok Leadership Academy, Hwengseong, Korea
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan, Korea
| | - Kinarm Ko
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Muenster, Germany
| | - Yeon Soo Han
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Korea
| | - Seung Han Oh
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, Korea
| | - Joke Van Der Linden
- Immunotherapy Laboratory, Department of Immunology, University Medical Center, Utrecht, The Netherlands
| | - Jeanette H.W. Leusen
- Immunotherapy Laboratory, Department of Immunology, University Medical Center, Utrecht, The Netherlands
| | - Kisung Ko
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan, Korea
| |
Collapse
|
104
|
Marusic C, Vitale A, Pedrazzini E, Donini M, Frigerio L, Bock R, Dix PJ, McCabe MS, Bellucci M, Benvenuto E. Plant-based strategies aimed at expressing HIV antigens and neutralizing antibodies at high levels. Nef as a case study. Transgenic Res 2009; 18:499-512. [PMID: 19169897 PMCID: PMC2758358 DOI: 10.1007/s11248-009-9244-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/06/2009] [Indexed: 12/31/2022]
Abstract
The first evidence that plants represent a valid, safe and cost-effective alternative to traditional expression systems for large-scale production of antigens and antibodies was described more than 10 years ago. Since then, considerable improvements have been made to increase the yield of plant-produced proteins. These include the use of signal sequences to target proteins to different cellular compartments, plastid transformation to achieve high transgene dosage, codon usage optimization to boost gene expression, and protein fusions to improve recombinant protein stability and accumulation. Thus, several HIV/SIV antigens and neutralizing anti-HIV antibodies have recently been successfully expressed in plants by stable nuclear or plastid transformation, and by transient expression systems based on plant virus vectors or Agrobacterium-mediated infection. The current article gives an overview of plant expressed HIV antigens and antibodies and provides an account of the use of different strategies aimed at increasing the expression of the accessory multifunctional HIV-1 Nef protein in transgenic plants.
Collapse
Affiliation(s)
- Carla Marusic
- Dipartimento BAS, Sezione Genetica e Genomica Vegetale, ENEA, C.R. Casaccia, via Anguillarese 301, 00123, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Sourrouille C, Marshall B, Liénard D, Faye L. From Neanderthal to nanobiotech: from plant potions to pharming with plant factories. Methods Mol Biol 2009; 483:1-23. [PMID: 19183890 DOI: 10.1007/978-1-59745-407-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plants were the main source for human drugs until the beginning of the nineteenth century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. During the last decades of the twentieth century, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. After a temporary decrease in interest, plants are rapidly moving back into human pharmacopoeia, with the recent development of plant-based recombinant protein production systems offering a safe and extremely cost-effective alternative to microbial and mammalian cell cultures. In this short review, we will illustrate that current improvements in plant expression systems are making them suitable as alternative factories for the production of either simple or highly complex therapeutic proteins.
Collapse
|
106
|
Villani ME, Morgun B, Brunetti P, Marusic C, Lombardi R, Pisoni I, Bacci C, Desiderio A, Benvenuto E, Donini M. Plant pharming of a full-sized, tumour-targeting antibody using different expression strategies. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:59-72. [PMID: 18793269 DOI: 10.1111/j.1467-7652.2008.00371.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The aims of this work were to obtain a human antibody against the tumour-associated antigen tenascin-C (TNC) and to compare the yield and quality of plant-produced antibody in either stable transgenics or using a transient expression system. To this end, the characterization of a full-sized human immunoglobulin G (IgG) [monoclonal antibody H10 (mAb H10)], derived from a selected single-chain variable fragment (scFv) and produced in plants, is presented. The human mAb gene was engineered for plant expression, and Nicotiana tabacum transgenic lines expressing both heavy (HC) and light (LC) chain were obtained and evaluated for antibody expression levels, in vivo assembly and functionality. Affinity-purified H10 from transgenics (yield, 0.6-1.1 mg/kg fresh weight) revealed that more than 90% of HC was specifically degraded, leading to the formation of functional antigen-binding fragments (Fab). Consequently, H10 was transiently expressed in Nicotiana benthamiana plants through an Agrobacterium-mediated gene-transfer system. Moreover, the use of the p19 silencing suppressor gene from artichoke mottled crinkle virus raised antibody expression levels by an order of magnitude (yields of purified H10, 50-100 mg/kg fresh weight). Approximately 75% of purified protein consisted of full-sized antibody functionally binding to TNC (K(D) = 14 nm), and immunohistochemical analysis on tumour tissues revealed specific accumulation around tumour blood vessels. The data indicate that the purification yields of mAb H10, using a transient expression system boosted by the p19 silencing suppressor, are exceptionally high when compared with the results reported previously, providing a technique for the over-expression of anticancer mAbs by a rapid, cost-effective, molecular farming approach.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neoplasm/biosynthesis
- Antibodies, Neoplasm/genetics
- Antibodies, Neoplasm/immunology
- Gene Expression
- Humans
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Mice
- Molecular Sequence Data
- Neoplasms, Experimental/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Protein Engineering
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Tenascin/antagonists & inhibitors
- Nicotiana/genetics
- Nicotiana/metabolism
- Transformation, Genetic
Collapse
Affiliation(s)
- Maria Elena Villani
- ENEA, Dipartimento BAS, Sezione Genetica e Genomica Vegetale, C.R. Casaccia, Via Anguillarese 301, I-00123, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Vaccines consisting of transgenic plant-derived antigens offer a new strategy for development of safe, inexpensive vaccines. The vaccine antigens can be eaten with the edible part of the plant or purified from plant material. In phase 1 clinical studies of prototype potato- and corn-based vaccines, these vaccines have been safe and immunogenic without the need for a buffer or vehicle other than the plant cell. Transgenic plant technology is attractive for vaccine development because these vaccines are needle-less, stable, and easy to administer. This chapter examines some early human studies of oral transgenic plant-derived vaccines against enterotoxigenic Escherichia coli infection, norovirus, and hepatitis B.
Collapse
Affiliation(s)
- Alexander V. Karasev
- grid.266456.50000000122849900Department of Plant, Soil & Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 USA
| |
Collapse
|
108
|
Ko K, Brodzik R, Steplewski Z. Production of Antibodies in Plants: Approaches and Perspectives. Curr Top Microbiol Immunol 2009; 332:55-78. [DOI: 10.1007/978-3-540-70868-1_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
109
|
Abstract
Plants have emerged in the past decade as a suitable alternative to the current production systems for recombinant pharmaceutical proteins and, today their potential for low-cost production of high quality, much safer and biologically active mammalian proteins is largely documented. Among various plant expression systems being explored, genetically modified suspension-cultured plant cells offer a promising system for production of biopharmaceuticals. Indeed, when compared to other plant-based production platforms that have been explored, suspension-cultured plant cells have the advantage of being totally devoid of problems associated with the vagaries of weather, pest, soil and gene flow in the environment. Because of short growth cycles, the timescale needed for the production of recombinant proteins in plant cell culture can be counted in days or weeks after transformation compared to months needed for the production in transgenic plants. Moreover, recovery and purification of recombinant proteins from plant biomass is an expensive and technically challenging business that may amount to 80-94% of the final product cost. One additional advantage of plant cell culture is that the recombinant protein fused with a signal sequence can be expressed and secreted into the culture medium, and therefore recovered and purified in the absence of large quantities of contaminating proteins. Consequently, the downstream processing of proteins extracted from plant cell culture medium is less expensive, which may/does balance the higher costs of fermentation. When needed for clinical use, recombinant proteins are easily produced in suspension-cultured plant cells under certified, controllable and sterile conditions that offer improved safety and provide advantages for good manufacturing practices and regulatory compliance. In this chapter, we present basic protocols for rapid generation of transgenic suspension-cultured cells of Nicotiana tabacum, Oriza sativa and Arabidopis thaliana. These systems are powerful tools for plant-made pharmaceuticals production in highly controlled conditions.
Collapse
|
110
|
Basaran P, Rodríguez-Cerezo E. Plant Molecular Farming: Opportunities and Challenges. Crit Rev Biotechnol 2008; 28:153-72. [PMID: 18937106 DOI: 10.1080/07388550802046624] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
111
|
|
112
|
Hong SY, Lee TS, Kim J, Jung JH, Choi CW, Kim TG, Kwon TH, Jang YS, Yang MS. Tumor targeting of humanized fragment antibody secreted from transgenic rice cell suspension culture. PLANT MOLECULAR BIOLOGY 2008; 68:413-422. [PMID: 18670890 DOI: 10.1007/s11103-008-9379-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 07/13/2008] [Indexed: 05/26/2023]
Abstract
The tumor-associated glycoprotein 72 (TAG 72) has been shown to be expressed in the majority of human adenocarcinomas. In an effort to develop a technique for the safe and inexpensive production of large quantities of anti-TAG 72 humanized antibody fragments (hzAb) as a future source of clinical-grade proteins, we developed a transgenic rice cell suspension culture system. The in vivo assembly and secretion of hzAb were achieved in a transgenic rice cell culture under the control of the rice alpha amylase 3D (RAmy 3D) expression system, and the biological activities of plant-derived hzAb were determined to be quite similar to those of animal-derived antibody. Purified hzAb was shown to bind to the recombinant antigen, TAG 72, and to bind specifically to human LS 174T colon adenocarcinoma cells expressing the TAG 72 antigen, and this binding occurred to the same extent as was seen with animal-derived antibody. Plant-derived hzAb proved as effective as animal-derived antibody in targeting tumors of xenotransplanted LS 174T cells in nude mice. The results of this study indicate that the hzAb derived from plant cell suspension cultures may have great potential for pharmaceutical applications in the development of future cancer therapeutic and diagnostic protocols.
Collapse
Affiliation(s)
- Shin-Young Hong
- Division of Biological Sciences, Research Institute for Bioactive Materials, Chonbuk National University, Jeonju 561-756, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
|
114
|
Menkhaus TJ, Glatz CE. Antibody Capture from Corn Endosperm Extracts by Packed Bed and Expanded Bed Adsorption. Biotechnol Prog 2008; 21:473-85. [PMID: 15801788 DOI: 10.1021/bp049689s] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Topical treatments of chronic infections with monoclonal antibodies will require large quantities of antibodies. Because plants have been proven capable of producing multisubunit antibodies and provide for large-scale production, they are likely hosts to enable such applications. Recovery costs must also be low because of the relatively high dosages required. Hence, we have examined the purification of a human secretory antibody from corn endosperm extracts by processing alternatives of packed bed and expanded bed adsorption (EBA). Because of the limited availability of the transgenic corn host, the system was modeled by adding the antibody to extracts of nontransgenic corn endosperm. Complete clarification of a crude extract followed by packed bed adsorption provided antibody product in 75% yield with 2.3-fold purification (with antibody accounting for 24% of total protein). The small size of the packed bed, cation-exchange resin SP-Sepharose FF and the absence of a dense core (present in EBA resins) allowed for more favorable breakthrough performance compared to EBA resins evaluated. Four adsorbents specifically designed for EBA operation, with different physical properties (size and density), chemical properties (ligand), and base matrices were tested: SP-steel core resin (UpFront Chromatography), Streamline SP and Streamline DEAE (Amersham Biosciences), and CM Hyper-Z (BioSepra/Ciphergen Biosystems). Of these, the small hyperdiffuse-style resin from BioSepra had the most favorable adsorption characteristics. However, it could not be utilized with crude feeds due to severe interactions with corn endosperm solids that led to bed collapse. UpFront SP-steel core resin, because of its relatively smaller size and hence lower internal mass transfer resistance, was superior to the Streamline resins and operated successfully with application of a crude corn extract filtered to remove all solids of >44 microm. However, the EBA performance with this adsorbent provided a yield of only 61% and purification factor of 2.1 (with antibody being 22% of total protein). Process simulation showed that capital costs were roughly equal between packed and expanded bed processes, but the EBA design required four times greater operating expenditures. The use of corn endosperm as the starting tissue proved advantageous as the amount of contaminating protein was reduced approximately 80 times compared to corn germ and approximately 600 times compared to canola. Finally, three different inlet designs (mesh, glass beads, and mechanical mixing) were evaluated on the basis of their ability to produce efficient flow distribution as measured by residence time distribution analysis. All three provided adequate distribution (axial mixing was not as limiting as mass transfer to the adsorption process), while resins with different physical properties did not influence flow distribution efficiency values (i.e., Peclet number and HETP) when operated with the same inlet design.
Collapse
Affiliation(s)
- Todd J Menkhaus
- Department of Chemical Engineering, 2114 Sweeney Hall, Iowa State University, Ames, Iowa 50011-2230, USA
| | | |
Collapse
|
115
|
Hassan S, van Dolleweerd CJ, Ioakeimidis F, Keshavarz-Moore E, Ma JKC. Considerations for extraction of monoclonal antibodies targeted to different subcellular compartments in transgenic tobacco plants. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:733-48. [PMID: 18513238 DOI: 10.1111/j.1467-7652.2008.00354.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
SUMMARY Monoclonal antibody production from transgenic tobacco plants offers many advantages over other heterologous production systems, creating the prospect of production at a scale that will allow new prophylactic and therapeutic applications in global human and animal health. However, information on the major processing factors to consider for large-scale purification of antibodies from transgenic plants is currently limited, and is in urgent need of attention. The purpose of this project was to investigate methods for the initial extraction of recombinant immunoglobulin G (IgG) antibodies from transgenic tobacco leaf tissue. Three different transgenic plant lines were studied in order to establish the parameters for optimal extraction of monoclonal antibodies that accumulate in the apoplasm, at the plasma membrane or within the endoplasmic reticulum. For each transgenic line, seven techniques for physical extraction were compared. The factors that determine the optimal extraction of antibodies from plants have a direct influence on the initial choice of expression strategy, and so must be considered at an early stage. The use of small-scale techniques that are applicable to large-scale purification was a particularly important consideration. The optimal extraction technique varied with the target location of IgG in the plant cell, and the dependence of antibody yield on the physical extraction methodology employed, the pH of the extraction buffer and the extraction temperature was demonstrated in each case. The addition of detergent to the extraction buffer may improve the yield, but this was found to be dependent on the site of accumulation of IgG within the plant cell.
Collapse
Affiliation(s)
- Sally Hassan
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | | | | | |
Collapse
|
116
|
Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D. Preventing unintended proteolysis in plant protein biofactories. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:633-48. [PMID: 18452504 PMCID: PMC7159130 DOI: 10.1111/j.1467-7652.2008.00344.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 03/13/2008] [Accepted: 03/21/2008] [Indexed: 05/18/2023]
Abstract
Numerous reports have been published over the last decade assessing the potential of plants as useful hosts for the heterologous expression of clinically useful proteins. Significant progress has been made, in particular, in optimizing transgene transcription and translation in plants, and in elucidating the complex post-translational modifications of proteins typical of the plant cell machinery. In this article, we address the important issue of recombinant protein degradation in plant expression platforms, which directly impacts on the final yield, homogeneity and overall quality of the resulting protein product. Unlike several more stable and structurally less complex pharmaceuticals, recombinant proteins present a natural tendency to structural heterogeneity, resulting in part from the inherent instability of polypeptide chains expressed in heterologous environments. Proteolytic processing, notably, may dramatically alter the structural integrity and overall accumulation of recombinant proteins in plant expression systems, both in planta during expression and ex planta after extraction. In this article, we describe the current strategies proposed to minimize protein hydrolysis in plant protein factories, including organ-specific transgene expression, organelle-specific protein targeting, the grafting of stabilizing protein domains to labile proteins, protein secretion in natural fluids and the co-expression of companion protease inhibitors.
Collapse
|
117
|
Irons SL, Nuttall J, Floss DM, Frigerio L, Kotzer AM, Hawes C. Fluorescent protein fusions to a human immunodeficiency virus monoclonal antibody reveal its intracellular transport through the plant endomembrane system. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:649-62. [PMID: 18489536 DOI: 10.1111/j.1467-7652.2008.00348.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
SUMMARY In order to further understand the production and intracellular trafficking of pharmaceutical proteins in plants, the light and heavy chains (LC and HC) of the human immunodeficiency virus neutralizing monoclonal antibody 2G12 were fused to fluorescent proteins [Venus and monomeric red fluorescent protein (mRFP)] to enable the visualization of their passage through the plant cell. Co-expression of LC and HC with various markers of the endomembrane system demonstrated that LC fusions were found in mobile punctate structures, which are likely to be pre-vacuolar compartments (PVCs) as a proportion of the LC fusions were found to be located in the vacuole. In addition, apoplast labelling was also observed with a 2G12LC-RFP fusion. The HC fusion expressed alone was found only in the endoplasmic reticulum (ER). When the LC and HC fusions were expressed together, they were found to co-locate to larger punctate structures, which were morphologically distinct from any observed on expression of LC or HC alone. These structures appeared to be in close association with the ER and their labelling partially overlapped with PVC marker fluorescence, but no increase in apoplast labelling was observed. Co-immunoprecipitation data demonstrated that the presence of the fluorescent proteins did not affect the assembly of the antibody, and also showed the association of BiP with the antibody chains. The antigen-binding activity of the Venus-fused 2G12 antibody was confirmed by enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Sarah L Irons
- School of Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | | | | | | | | | | |
Collapse
|
118
|
Abstract
Genetically modified (or GM) plants have attracted a large amount of media attention in recent years and continue to do so. Despite this, the general public remains largely unaware of what a GM plant actually is or what advantages and disadvantages the technology has to offer, particularly with regard to the range of applications for which they can be used. From the first generation of GM crops, two main areas of concern have emerged, namely risk to the environment and risk to human health. As GM plants are gradually being introduced into the European Union there is likely to be increasing public concern regarding potential health issues. Although it is now commonplace for the press to adopt 'health campaigns', the information they publish is often unreliable and unrepresentative of the available scientific evidence. We consider it important that the medical profession should be aware of the state of the art, and, as they are often the first port of call for a concerned patient, be in a position to provide an informed opinion. This review will examine how GM plants may impact on human health both directly - through applications targeted at nutrition and enhancement of recombinant medicine production - but also indirectly, through potential effects on the environment. Finally, it will examine the most important opposition currently facing the worldwide adoption of this technology: public opinion.
Collapse
Affiliation(s)
- Suzie Key
- Molecular Immunology Unit, Centre for Infection, Department of Cellular and Molecular Medicine, St George's University of London Cranmer Terrace, London SW17 0RE, UK
| | | | | |
Collapse
|
119
|
Yu D, McLean MD, Hall JC, Ghosh R. Purification of a human immunoglobulin G1 monoclonal antibody from transgenic tobacco using membrane chromatographic processes. J Chromatogr A 2008; 1187:128-37. [PMID: 18313066 DOI: 10.1016/j.chroma.2008.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 02/01/2008] [Accepted: 02/05/2008] [Indexed: 11/29/2022]
Abstract
Efficient purification of protein biopharmaceuticals from transgenic plants is a major challenge, primarily due to low target protein expression levels, and high impurity content in the feed streams. These challenges may be addressed by using membrane chromatography. This paper discusses the use of cation-exchange and Protein A affinity-based membrane chromatographic techniques, singly and in combination for the purification of an anti-Pseudomonas aerugenosa O6ad human IgG1 monoclonal antibody from transgenic tobacco. Protein A membrane chromatography on its own was unable to provide a pure product, mainly due to extensive non-specific binding of impurities. Moreover, the Protein A membrane showed severe fouling tendency and generated high back-pressure. With cation-exchange membrane chromatography, minimal membrane fouling and high permeability were observed but high purity could not be achieved using one-step. Therefore, by using a combination of the cation-exchange and Protein A membrane chromatography, in that order, both high purity and recovery were achieved with high permeability. The antibody purification method was first systematically optimized using a simulated feed solution. Anti-P. aeruginosa human IgG1 type monoclonal antibody was then purified from transgenic tobacco juice using this optimized method.
Collapse
Affiliation(s)
- Deqiang Yu
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | | | | | | |
Collapse
|
120
|
Dafny-Yelin M, Tzfira T. Delivery of multiple transgenes to plant cells. PLANT PHYSIOLOGY 2007; 145:1118-28. [PMID: 18056862 PMCID: PMC2151730 DOI: 10.1104/pp.107.106104] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 08/23/2007] [Indexed: 05/20/2023]
Affiliation(s)
- Mery Dafny-Yelin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
121
|
Schähs M, Strasser R, Stadlmann J, Kunert R, Rademacher T, Steinkellner H. Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:657-63. [PMID: 17678502 DOI: 10.1111/j.1467-7652.2007.00273.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In recent years, plants have become an attractive alternative for the production of recombinant proteins. However, their inability to perform authentic mammalian N-glycosylation may cause limitations for the production of therapeutics. A major concern is the presence of beta1,2-xylose and core alpha1,3-fucose residues on complex N-linked glycans, as these N-glycan epitopes are immunogenic in mammals. In our attempts towards the humanization of plant N-glycans, we have generated an Arabidopsis thaliana knockout line that synthesizes complex N-glycans lacking immunogenic xylose and fucose epitopes. Here, we report the expression of a monoclonal antibody in these glycan-engineered plants that carry a homogeneous mammalian-like complex N-glycan pattern without beta1,2-xylose and core alpha1,3-fucose. Plant and Chinese hamster ovary (CHO)-derived immunoglobulins (IgGs) exhibited no differences in electrophoretic mobility and enzyme-linked immunosorbent specificity assays. Our results demonstrate the feasibility of a knockout strategy for N-glycan engineering of plants towards mammalian-like structures, thus providing a significant improvement in the use of plants as an expression platform.
Collapse
Affiliation(s)
- Matthias Schähs
- Institute of Applied Genetics and Cell Biology, BOKU-Wien, Austria
| | | | | | | | | | | |
Collapse
|
122
|
Sharma DCG, Prasad SBM, Karthikeyan BV. Vaccination against periodontitis: the saga continues. Expert Rev Vaccines 2007; 6:579-90. [PMID: 17669011 DOI: 10.1586/14760584.6.4.579] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Periodontal disease can be considered to be one of the most common chronic inflammatory diseases inflicting humans. With the advent of advanced molecular diagnostic techniques, a better understanding of the role of specific pathogens and the contributory role of the host immune response in the initiation and progression of periodontal disease has been possible - although not completely. However, successful vaccine development that fully utilizes the current level of understanding has not yet occurred for human use. This paper reviews various in vitro, animal studies and human trials undertaken to develop a vaccine against periodontal disease, with emphases on the shortfalls of these efforts and future prospects of developing a successful vaccine against periodontal disease.
Collapse
Affiliation(s)
- Dileep C G Sharma
- Department of Periodontics, KGF College of Dental Sciences, Kolar Gold Fields, Karnataka, India.
| | | | | |
Collapse
|
123
|
Blais DR, Altosaar I. Humanizing infant milk formula to decrease postnatal HIV transmission. Trends Biotechnol 2007; 25:376-84. [PMID: 17659799 DOI: 10.1016/j.tibtech.2007.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/21/2007] [Accepted: 07/18/2007] [Indexed: 01/03/2023]
Abstract
There are currently no safe methods for feeding babies born from the 16 million HIV-infected women living in resource-constrained countries. Breast milk can transmit HIV, and formula feeding can lead to gastrointestinal illnesses owing to unsanitary conditions and the composition of milk formulations. There is therefore a need to ensure that breast milk substitutes provide optimal health outcomes. Given that the immune properties of several breast milk proteins are known, transgenic food crops could facilitate inexpensive and safe reconstitution of the beneficial breast milk proteome in infant formulae, while keeping the HIV virus at bay. At least seven breast milk immune proteins have already been produced in food crops, and dozens more proteins could potentially be produced if fortified formula proves effective in nursing newborns born to HIV-infected mothers.
Collapse
Affiliation(s)
- David R Blais
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
124
|
Hong SY, Kim TG, Kwon TH, Jang YS, Yang MS. Production of an anti-mouse MHC class II monoclonal antibody with biological activity in transgenic tobacco. Protein Expr Purif 2007; 54:134-8. [PMID: 17418590 DOI: 10.1016/j.pep.2007.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
To produce a monoclonal antibody specific to a mouse major histocompatibility complex (MHC) class II protein, we synthesized the complementary DNAs for the heavy and light chains of a monoclonal antibody by PCR amplification. These cDNAs were then introduced separately into tobacco plant cells. After performing Northern blot analysis to confirm the expression of each of the chain genes in the transformed plants, we constructed transgenic plants expressing both the heavy and light chains by sexual crossing. The expression of the heavy and light chain genes in the sexually crossed plant was confirmed by Northern and Western blot analyses, respectively. Fluorocytometric analysis showed that the plant-derived antibodies, which we purified using a protein G affinity column, bound specifically to target cells that expressed the cognate MHC class II molecules on their cell surfaces. The results of this study demonstrate that a monoclonal antibody against mouse MHC class II proteins can be expressed in transgenic plants. They also show the specific binding activity of plant-derived antibodies to cognate antigens.
Collapse
Affiliation(s)
- Shin-Young Hong
- Division of Biological Sciences, Research Center for Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
125
|
Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:402-12. [PMID: 17359495 DOI: 10.1111/j.1467-7652.2007.00249.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We have engineered the chloroplast of eukaryotic algae to produce a number of recombinant proteins, including human monoclonal antibodies, but, to date, have achieved expression to only 0.5% of total protein. Here, we show that, by engineering the mammalian coding region of bovine mammary-associated serum amyloid (M-SAA) as a direct replacement for the chloroplast psbA coding region, we can achieve expression of recombinant protein above 5% of total protein. Chloroplast-expressed M-SAA accumulates predominantly as a soluble protein, contains the correct amino terminal sequence and has little or no post-translational modification. M-SAA is found in mammalian colostrum and stimulates the production of mucin in the gut, acting in the prophylaxis of bacterial and viral infections. Chloroplast-expressed and purified M-SAA is able to stimulate mucin production in human gut epithelial cell lines. As Chlamydomonas reinhardtii is an edible alga, production of therapeutic proteins in this organism offers the potential for oral delivery of gut-active proteins, such as M-SAA.
Collapse
Affiliation(s)
- Andrea L Manuell
- The Department of Cell Biology and The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Walker JM, Vierstra RD. A ubiquitin-based vector for the co-ordinated synthesis of multiple proteins in plants. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:413-21. [PMID: 17362486 DOI: 10.1111/j.1467-7652.2007.00250.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The genetic engineering of complex traits into crop plants will ultimately require strategies to co-express more than one protein at the same time. Here, we report the development of a ubiquitin (Ub)-based expression method that can generate two proteins from a single transcript. It contains coding regions for the proteins of interest, separated in-frame by the coding region for the C-terminal end of Ub followed by a full-length Ub. On expression in tobacco, this polycistronic messenger RNA (mRNA) is translated to produce a chimeric protein that is rapidly processed by endogenous deubiquitinating proteases to release the two proteins plus a Ub moiety in intact forms. The C-terminal protein domain is released without additional amino acids, whereas the N-terminal protein domain retains the short C-terminal end of Ub. The analysis of vectors with progressively shorter C-terminal ends indicates that only the last six C-terminal amino acids of the proximal Ub domain are needed for efficient processing in plants. By comparing the levels of luciferase and beta-glucuronidase simultaneously expressed by this method in multiple independent tobacco transformants, we synthesized consistently similar ratios of the two proteins over a wide range of protein amounts. Ub-based polyprotein vectors should facilitate the genetic engineering of crops by providing a simple method for the co-ordinated and stoichiometric synthesis of two or more proteins.
Collapse
Affiliation(s)
- Joseph M Walker
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
127
|
Patel J, Zhu H, Menassa R, Gyenis L, Richman A, Brandle J. Elastin-like polypeptide fusions enhance the accumulation of recombinant proteins in tobacco leaves. Transgenic Res 2007; 16:239-49. [PMID: 17106768 DOI: 10.1007/s11248-006-9026-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/27/2006] [Indexed: 12/15/2022]
Abstract
The production of recombinant proteins in plants is an active area of research and many different high-value proteins have now been produced in plants. Tobacco leaves have many advantages for recombinant protein production particularly since they allow field production without seeds, flowers or pollen and therefore provide for contained production. Despite these biosafety advantages recombinant protein accumulation in leaves still needs to be improved. Elastin-like polypeptides are repeats of the amino acids "VPGXG" that undergo a temperature dependant phase transition and have utility in the purification of recombinant proteins but can also enhance the accumulation of recombinant proteins they are fused to. We have used a 11.3 kDa elastin-like polypeptide as a fusion partner for three different target proteins, human interleukin-10, murine interleukin-4 and the native major ampullate spidroin protein 2 gene from the spider Nephila clavipes. In both transient analyses and stable transformants the concentrations of the fusion proteins were at least an order of magnitude higher for all of the fusion proteins when compared to the target protein alone. Therefore, fusions with a small ELP tag can be used to significantly enhance the accumulation of a range of different recombinant proteins in plant leaves.
Collapse
Affiliation(s)
- Jignasha Patel
- Agriculture and AgriFood Canada, Southern Crop Protection and Food Research Center, 1391 Sandford Street, London, Ontario, Canada, N5V 4T3
| | | | | | | | | | | |
Collapse
|
128
|
Lal P, Ramachandran VG, Goyal R, Sharma R. EDIBLE VACCINES: CURRENT STATUS AND FUTURE. Indian J Med Microbiol 2007. [DOI: 10.1016/s0255-0857(21)02165-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
129
|
Expression, intracellular targeting and purification of HIV Nef variants in tobacco cells. BMC Biotechnol 2007; 7:12. [PMID: 17324250 PMCID: PMC1808453 DOI: 10.1186/1472-6750-7-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 02/26/2007] [Indexed: 11/10/2022] Open
Abstract
Background Plants may represent excellent alternatives to classical heterologous protein expression systems, especially for the production of biopharmaceuticals and vaccine components. Modern vaccines are becoming increasingly complex, with the incorporation of multiple antigens. Approaches towards developing an HIV vaccine appear to confirm this, with a combination of candidate antigens. Among these, HIV-Nef is considered a promising target for vaccine development because immune responses directed against this viral protein could help to control the initial steps of viral infection and to reduce viral loads and spreading. Two isoforms of Nef protein can be found in cells: a full-length N-terminal myristoylated form (p27, 27 kDa) and a truncated form (p25, 25 kDa). Here we report the expression and purification of HIV Nef from transgenic tobacco. Results We designed constructs to direct the expression of p25 and p27 Nef to either the cytosol or the secretory pathway. We tested these constructs by transient expression in tobacco protoplasts. Cytosolic Nef polypeptides are correctly synthesised and are stable. The same is not true for Nef polypeptides targeted to the secretory pathway by virtue of a signal peptide. We therefore generated transgenic plants expressing cytosolic, full length or truncated Nef. Expression levels were variable, but in some lines they averaged 0.7% of total soluble proteins. Hexahistidine-tagged Nef was easily purified from transgenic tissue in a one-step procedure. Conclusion We have shown that transient expression can help to rapidly determine the best cellular compartment for accumulation of a recombinant protein. We have successfully expressed HIV Nef polypeptides in the cytosol of transgenic tobacco plants. The proteins can easily be purified from transgenic tissue.
Collapse
|
130
|
Biologically active human GM-CSF produced in the seeds of transgenic rice plants. Transgenic Res 2007; 16:713-21. [PMID: 17985214 DOI: 10.1007/s11248-006-9062-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Rice flour is a well-known and characterized source of pharmaceutical ingredients, which are gluten-free and incorporated in many drug delivery applications such as excipient starch. To further exploit this uniqueness, the synthetic capacity of rice endosperm tissue, the basis of rice flour, was extended by genetic transformation. Recombinant human GM-CSF, a cytokine used in treating neutropenia and with other potential clinical applications, has been expressed in transgenic rice seeds using a rice glutelin promoter. Rice seeds accumulated human GM-CSF to a level of 1.3% of total soluble protein. The rice seed-produced human GM-CSF was found to be biologically active when tested using a human cell line TF-1. Use of rice as a host plant offers not only attractive features of safe production in seeds but also self-containment of foreign genes, as rice is primarily a self-pollinated crop plant.
Collapse
|
131
|
Liénard D, Sourrouille C, Gomord V, Faye L. Pharming and transgenic plants. BIOTECHNOLOGY ANNUAL REVIEW 2007; 13:115-47. [PMID: 17875476 DOI: 10.1016/s1387-2656(07)13006-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories.
Collapse
Affiliation(s)
- David Liénard
- Université de Rouen, CNRS UMR 6037, IFRMP 23, GDR 2590, Faculté des Sciences, Bât. Ext. Biologie, 76821 Mont-Saint-Aignan cedex, France
| | | | | | | |
Collapse
|
132
|
Semenyuk EG, Stremovskiy OA, Edelweiss EF, Shirshikova OV, Balandin TG, Buryanov YI, Deyev SM. Expression of single-chain antibody-barstar fusion in plants. Biochimie 2007; 89:31-8. [PMID: 16938381 DOI: 10.1016/j.biochi.2006.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/05/2006] [Indexed: 01/21/2023]
Abstract
We successfully cloned and expressed a single-chain antibody (425scFv), that is directed to human epidermal growth factor receptor HER1 (EGFR) in transgenic tobacco plants as a fusion with bacterial barstar gene (425scFv-barstar). Plant-produced recombinant 425scFv-barstar was recovered using barstar-barnase system. Based on barstar-barnase affinity, during purification of the plant-produced 425scFv-barstar, we generated bispecific scFv-antibody heterodimers from individual single-chain fragments initially produced in different host systems with binding activity to both HER1 and HER2/neu tumor antigens. We demonstrated by flow cytometry and indirect immunofluorescent microscopy that both the components of heterodimer retain its specific cell-binding activity.
Collapse
Affiliation(s)
- Ekaterina G Semenyuk
- Branch of Shemiakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino, Moscow region 142290, Russia
| | | | | | | | | | | | | |
Collapse
|
133
|
Kaetzel CS, Chintalacharuvu KR, Morrison SL. Recombinant IgA Antibodies. MUCOSAL IMMUNE DEFENSE: IMMUNOGLOBULIN A 2007. [PMCID: PMC7121033 DOI: 10.1007/978-0-387-72232-0_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The production of monoclonal antibodies and the development of recombinant antibody technology have made antibodies one of the largest classes of drugs in development for prophylactic, therapeutic and diagnostic purposes. Currently, all of the Food and Drug Administration (FDA)- approved antibodies are immunoglobulin Gs (IgGs). However, more than 95%of the infections are initiated at the mucosal surfaces, where IgA is the primary immune effector antibody.
Collapse
|
134
|
Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V, Gleba Y. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci U S A 2006; 103:14701-6. [PMID: 16973752 PMCID: PMC1566189 DOI: 10.1073/pnas.0606631103] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Indexed: 01/15/2023] Open
Abstract
Plant viral vectors allow expression of heterologous proteins at high yields, but so far, they have been unable to express heterooligomeric proteins efficiently. We describe here a rapid and indefinitely scalable process for high-level expression of functional full-size mAbs of the IgG class in plants. The process relies on synchronous coinfection and coreplication of two viral vectors, each expressing a separate antibody chain. The two vectors are derived from two different plant viruses that were found to be noncompeting. Unlike vectors derived from the same virus, noncompeting vectors effectively coexpress the heavy and light chains in the same cell throughout the plant body, resulting in yields of up to 0.5 g of assembled mAbs per kg of fresh-leaf biomass. This technology allows production of gram quantities of mAbs for research purposes in just several days, and the same protocol can be used on an industrial scale in situations requiring rapid response, such as pandemic or terrorism events.
Collapse
Affiliation(s)
- Anatoli Giritch
- *Icon Genetics GmbH, Weinbergweg 22, 06120 Halle, Germany; and
| | | | - Carola Engler
- *Icon Genetics GmbH, Weinbergweg 22, 06120 Halle, Germany; and
| | | | - Johan Botterman
- Bayer BioScience N.V., Technologiepark 38, B-9052 Gent, Belgium
| | - Victor Klimyuk
- *Icon Genetics GmbH, Weinbergweg 22, 06120 Halle, Germany; and
| | - Yuri Gleba
- *Icon Genetics GmbH, Weinbergweg 22, 06120 Halle, Germany; and
| |
Collapse
|
135
|
Kohli A, Melendi PG, Abranches R, Capell T, Stoger E, Christou P. The Quest to Understand the Basis and Mechanisms that Control Expression of Introduced Transgenes in Crop Plants. PLANT SIGNALING & BEHAVIOR 2006; 1:185-95. [PMID: 19521484 PMCID: PMC2634025 DOI: 10.4161/psb.1.4.3195] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 07/12/2006] [Indexed: 05/19/2023]
Abstract
We discuss mechanisms and factors that influence levels and stability of expressed heterologous proteins in crop plants. We have seen substantial progress in this field over the past two decades in model experimental organisms such as Arabidopsis and tobacco. There is no question such studies have resulted in furthering our understanding of key processes in the plant cell and the elaboration of sophisticated models to explain underlying mechanisms that might influence the fate, levels and stability of expression of recombinant heterologous proteins in plants. However, very often, such information is not applicable outside these laboratory experimental models. In order to generate a knowledge basis that can be used to achieve high levels and stability of heterologous proteins in relevant crop plants it is imperative to perform such studies on the target crops. With this in mind, we discuss key elements of the process at the DNA, RNA and protein levels. We believe it is essential to discuss recombinant protein production in crops in a holistic manner in order to develop a comprehensive knowledge base that will in turn serve plant biotechnology applications well.
Collapse
Affiliation(s)
- Ajay Kohli
- Institute for Research on Environment & Sustainability (IRES); University of Newcastle upon Tyne; Newcastle, UK
| | | | - Rita Abranches
- Instituto de Tecnologia Quimica e Biologica; Plant Cell Biology Laboratory; Oeiras, Portugal and Universidade Nova de Lisboa
| | | | - Eva Stoger
- Biology VII; RWTH Aachen; Aachen, Germany
| | - Paul Christou
- ICREA; Department de Produccio Vegetal I Ciencia Forestal; Lleida, Spain
| |
Collapse
|
136
|
Nölke G, Fischer R, Schillberg S. Antibody-based metabolic engineering in plants. J Biotechnol 2006; 124:271-83. [PMID: 16698105 DOI: 10.1016/j.jbiotec.2006.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 02/21/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Genetic engineering is a powerful tool for the manipulation of cellular metabolism and the development of plant varieties with enhanced biological and nutrional functions. Several strategies are available for the in vivo modulation of enzymatic activities, allowing metabolic flux to be directed towards desired biochemical products. Such strategies include the simultaneous expression and/or suppression of multiple genes encoding rate-limiting enzymes, ectopic expression of transcription factors, and the RNA-based inhibition of catabolic enzymes. As an alternative approach, recombinant antibodies expressed in plants have been used to inactivate or sequestrate specific host proteins or compounds, resulting in significant changes to metabolic pathways. The impact of this approach depends on prudent selection of the target antigen, careful antibody design, appropriate subcellular targeting and stable accumulation of the recombinant antibodies in planta. Here, we describe the current status of antibody-based metabolic engineering in plants, discuss procedures for the optimisation of this technology and consider the remaining challenges to its widespread use.
Collapse
Affiliation(s)
- Greta Nölke
- Institut für Molekulare Biotechnologie (Biologie VII), RWTH Aachen, Germany
| | | | | |
Collapse
|
137
|
Rivard D, Anguenot R, Brunelle F, Le VQ, Vézina LP, Trépanier S, Michaud D. An in-built proteinase inhibitor system for the protection of recombinant proteins recovered from transgenic plants. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:359-68. [PMID: 17147641 DOI: 10.1111/j.1467-7652.2006.00187.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteolytic degradation represents a significant barrier to the efficient production of several recombinant proteins in plants, both in vivo during their expression and in vitro during their recovery from source tissues. Here, we describe a strategy to protect recombinant proteins during the recovery process, based on the coexpression of a heterologous proteinase inhibitor acting as a 'mouse trap' against the host proteases during extraction. After confirming the importance of trypsin- and chymotrypsin-like activities in crude protein extracts of potato (Solanum tuberosum L.) leaves, transgenic lines of potato expressing either tomato cathepsin D inhibitor (CDI) or bovine aprotinin, both active against trypsin and chymotrypsin, were generated by Agrobacterium tumefaciens-mediated genetic transformation. Leaf crude protein extracts from CDI-expressing lines, showing decreased levels of cathepsin D-like and ribulose 1,5-bisphosphate carboxylase/oxygenase hydrolysing activities in vitro, conducted decreased turnover rates of the selection marker protein neomycin phosphotransferase II (NPTII) relative to the turnover rates measured for transgenic lines expressing only the marker protein. A similar stabilizing effect on NPTII was observed in leaf protein extracts from plant lines coexpressing bovine aprotinin, confirming the ability of ectopically expressed broad-spectrum serine proteinase inhibitors to reproduce the protein-stabilizing effect of low-molecular-weight proteinase inhibitors generally added to protein extraction media.
Collapse
Affiliation(s)
- Daniel Rivard
- CRH/INAF, Département de Phytologie, Pavillon des Services (INAF), Université Laval, Sainte-Foy (Québec), Canada G1K 7P4
| | | | | | | | | | | | | |
Collapse
|
138
|
Twyman RM, Schillberg S, Fischer R. Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 2006; 10:185-218. [PMID: 15757412 DOI: 10.1517/14728214.10.1.185] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many of our 'small-molecule-drugs' are natural products from plants, or are synthetic compounds based on molecules found naturally in plants. However, the vast majority of the protein therapeutics (or biopharmaceuticals) we use are from animal or human sources, and are produced commercially in microbial or mammalian bioreactor systems. Over the last few years, it has become clear that plants have great potential for the production of human proteins and other protein-based therapeutic entities. Plants offer the prospect of inexpensive biopharmaceutical production without sacrificing product quality or safety, and following the success of several plant-derived technical proteins, the first therapeutic products are now approaching the market. In this review, the different plant-based production systems are discussed and the merits of transgenic plants are evaluated compared with other platforms. A detailed discussion is provided of the development issues that remain to be addressed before plants become an acceptable mainstream production technology. The many different proteins that have already been produced using plants are described, and a sketch of the current market and the activities of the key players is provided. Despite the currently unclear regulatory framework and general industry inertia, the benefits of plant-derived pharmaceuticals are now bringing the prospect of inexpensive veterinary and human medicines closer than ever before.
Collapse
Affiliation(s)
- Richard M Twyman
- University of York, Department of Biology, Heslington, York, YO10 5DD, UK.
| | | | | |
Collapse
|
139
|
Wieland WH, Lammers A, Schots A, Orzáez DV. Plant expression of chicken secretory antibodies derived from combinatorial libraries. J Biotechnol 2006; 122:382-91. [PMID: 16448714 DOI: 10.1016/j.jbiotec.2005.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 12/12/2005] [Accepted: 12/14/2005] [Indexed: 11/28/2022]
Abstract
Delivery of secretory IgA antibodies (sIgA) to mucosal surfaces is a promising strategy to passively prevent infectious diseases. Plants have been proposed as biofactories for such complex immunoglobulin molecules. Recently, the molecular characterization of all four monomers of chicken sIgA (IgA immunoglobulin heavy and light chains, J-chain and secretory component) has been completed, allowing recombinant, up scaled production of chicken sIgA and extension of passive immune strategies to poultry. To test the suitability of the plant cell factory for bulk production of chicken sIgA, we studied the expression of chicken IgA, dIgA and sIgA in planta. To that end, new cassettes were designed that allowed the grafting of immunoglobulin variable regions derived from combinatorial libraries into full-size chicken IgA frames ready for plant expression. Using this system, 10 individual phage display clones, which had previously been selected against Eimeria acervulina antigens, were transferred "from phage to plant". Plant-made chicken antibodies showed strong differences in expression levels, which seemed governed mainly by the stability of their respective light chains. Finally, with the co-expression of chicken IgA heavy and light chains, J-chain and secretory component in N. benthamiana leaves we showed that plant cells are suitable biofactories for the production of assembled chicken sIgA complexes.
Collapse
Affiliation(s)
- Willemien H Wieland
- Laboratory of Molecular Recognition and Antibody Technology, Wageningen University, P.O. Box 8123, 6700 ES Wageningen, The Netherlands
| | | | | | | |
Collapse
|
140
|
Obregon P, Chargelegue D, Drake PMW, Prada A, Nuttall J, Frigerio L, Ma JKC. HIV-1 p24-immunoglobulin fusion molecule: a new strategy for plant-based protein production. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:195-207. [PMID: 17177796 DOI: 10.1111/j.1467-7652.2005.00171.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We describe the engineering of a human immunodeficiency virus-1 (HIV-1) p24-immunoglobulin A (IgA) antigen-antibody fusion molecule for therapeutic purposes and its enhancing effect on fused antigen expression in tobacco plants. Although many recombinant proteins have been expressed in transgenic plants as vaccine candidates, low levels of expression are a recurring problem. In this paper, using the HIV p24 core antigen as a model vaccine target, we describe a strategy for increasing the yield of a recombinant protein in plants. HIV p24 antigen was expressed as a genetic fusion with the alpha2 and alpha3 constant region sequences from human Ig alpha-chain and targeted to the endomembrane system. The expression of this fusion protein was detected at levels approximately 13-fold higher than HIV p24 expressed alone, and a difference in the behaviour of the two recombinant proteins during trafficking in the plant secretory pathway has been identified. Expressing the antigen within the context of alpha-chain Ig sequences resulted in the formation of homodimers and the antigen was correctly recognized by specific antibodies. Furthermore, the HIV p24 elicited T-cell and antibody responses in immunized mice. The use of Ig fusion partners is proposed as a generic platform technology for up-regulating the expression of antigens in plants, and may represent the first step in a strategy to design new vaccines with enhanced immunological properties.
Collapse
Affiliation(s)
- Patricia Obregon
- Department of Cellular and Molecular Medicine, Infectious Diseases, Immunology Unit, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | | | | | | | | | | | |
Collapse
|
141
|
Chargelegue D, Drake PMW, Obregon P, Prada A, Fairweather N, Ma JKC. Highly immunogenic and protective recombinant vaccine candidate expressed in transgenic plants. Infect Immun 2005; 73:5915-22. [PMID: 16113311 PMCID: PMC1231086 DOI: 10.1128/iai.73.9.5915-5922.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccine development has been hampered by difficulties in developing new and safe adjuvants, so alternative technologies that offer new avenues forward are urgently needed. The goal of this study was to express a monoclonal recombinant immune complex in a transgenic plant. A recombinant protein consisting of a tetanus toxin C fragment-specific monoclonal antibody fused with the tetanus toxin C fragment was designed and expressed. Immune complex formation occurred between individual fusion proteins to form immune complex-like aggregates that bound C1q and FcgammaRIIa receptor and could be targeted to antigen-presenting cells. Unlike antigen alone, the recombinant immune fusion complexes were highly immunogenic in mice and did not require coadministration of an adjuvant (when injected subcutaneously). Indeed, these complexes elicited antibody titers that were more than 10,000 times higher than those observed in animals immunized with the antigen alone. Furthermore, animals immunized with only 1 mug of recombinant immune complex without adjuvant were fully protected against lethal challenge. This the first report on the use of a genetic fusion between antigen and antibody to ensure an optimal expression ratio between the two moieties and to obtain fully functional recombinant immune complexes as a new vaccine model.
Collapse
Affiliation(s)
- Daniel Chargelegue
- Department of Cellular and Molecular Medicine, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, United Kingdom.
| | | | | | | | | | | |
Collapse
|
142
|
Su ZL, Qian KX, Tan CP, Meng CX, Qin S. Recombination and heterologous expression of allophycocyanin gene in the chloroplast of Chlamydomonas reinhardtii. Acta Biochim Biophys Sin (Shanghai) 2005; 37:709-12. [PMID: 16215639 DOI: 10.1111/j.1745-7270.2005.00092.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires the introduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins or metabolic pathways. In order to accomplish the expression of multiple genes in a single transformation event, we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonas reinhardtii chloroplast expression vector, resulting in papc-S. The constructed vector was then introduced into the chloroplast of C. reinhardtii by micro-particle bombardment. Polymerase chain reaction and Southern blot analysis revealed that the two genes had integrated into the chloroplast genome. Western blot and enzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria could be correctly expressed in the chloroplasts of C. reinhardtii. The expressed foreign protein in transformants accounted for about 2%-3% of total soluble proteins. These findings pave the way to the reconstitution of multi-subunit proteins or metabolic pathways in transgenic C. reinhardtii chloroplasts in a single transformation event.
Collapse
Affiliation(s)
- Zhong-Liang Su
- Department of Biotechnology, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | |
Collapse
|
143
|
Yoo EM, Morrison SL. IgA: an immune glycoprotein. Clin Immunol 2005; 116:3-10. [PMID: 15925826 DOI: 10.1016/j.clim.2005.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 02/24/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
IgA is a glycoprotein containing multiple N-linked carbohydrates as well as O-linked glycans in the case of IgA1. Because of the critical role it plays in providing protection at mucosal surfaces, IgA is an ideal candidate for use as a therapeutic or prophylactic agent. The presence or absence of carbohydrates, as well as their structure, has been found to influence effector functions and binding to specific IgA receptors. In addition, changes in IgA glycosylation are associated with immune pathology. A thorough understanding of the contributions of the glycans to IgA immune protection will aid in the design of clinically suitable antibodies.
Collapse
Affiliation(s)
- Esther M Yoo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 609 Charles E. Young Drive, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
144
|
Fothergill-Gilmore LA. Protein biotechnology: a BioUpdate Foundation post-experience course. Expert Opin Investig Drugs 2005; 8:1929-33. [PMID: 15992062 DOI: 10.1517/13543784.8.11.1929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
145
|
Abstract
Recent advances in molecular biology and plant biotechnology have shifted the concept of growing crops as a food source to serving as a bioreactor for the production of therapeutic recombinant proteins. Plants are potential biopharming factories because they are capable of producing unlimited numbers and amounts of recombinant proteins safely and inexpensively. In the last two decades, plant production systems have been developed for monoclonal antibody production, which has been useful in passive immunization of viral or bacterial diseases. Recently, a recombinant monoclonal antibody for rabies prophylaxis was produced in transgenic plants. Rabies virus epidemics remain still problematic throughout the world, and adequate treatment has been hampered by the worldwide shortage and high cost of prophylactic antibodies such as HRIG. Successful mass production of this monoclonal antibody in plants might help to overcome these problems. An effective plant production system for recombinant biologicals requires the appropriate heterologous plant expression system, the optimal combination of gene expression regulatory elements, control of post-translational processing of recombinant products, and efficient purification methods for product recovery. This review discusses recent biotechnology developments for plant-derived monoclonal antibodies and discusses these products as a promising approach to rabies prophylaxis and the consequence for global health benefits.
Collapse
Affiliation(s)
- Kisung Ko
- Biotechnology Foundation Laboratories at Thomas Jefferson University, 1020 Locust Street, Room M85 JAH, Philadelphia, PA 19107, USA
| | | |
Collapse
|
146
|
Quesada-Vargas T, Ruiz ON, Daniell H. Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation. PLANT PHYSIOLOGY 2005; 138:1746-62. [PMID: 15980187 PMCID: PMC1176443 DOI: 10.1104/pp.105.063040] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/16/2005] [Accepted: 05/17/2005] [Indexed: 05/03/2023]
Abstract
The first characterization of transcriptional, posttranscriptional, and translational processes of heterologous operons expressed via the tobacco (Nicotiana tabacum) chloroplast genome is reported here. Northern-blot analyses performed on chloroplast transgenic lines harboring seven different heterologous operons revealed that polycistronic mRNA was the predominant transcript produced. Despite the lack of processing of such polycistrons, large amounts of foreign protein accumulation was observed in these transgenic lines, indicating abundant translation of polycistrons. This is supported by polysome fractionation assays, which allowed detection of polycistronic RNA in lower fractions of the sucrose gradients. These results show that the chloroplast posttranscriptional machinery can indeed detect and translate multigenic sequences that are not of chloroplast origin. In contrast to native transcripts, processed and unprocessed heterologous polycistrons were stable, even in the absence of 3' untranslated regions (UTRs). Unlike native 5'UTRs, heterologous secondary structures or 5'UTRs showed efficient translational enhancement independent of cellular control. Abundant read-through transcripts were observed in the presence of chloroplast 3'UTRs but they were efficiently processed at introns present within the native operon. Heterologous genes regulated by the psbA (the photosystem II polypeptide D1) promoter, 5' and 3'UTRs have greater abundance of transcripts than the endogenous psbA gene because transgenes were integrated into the inverted repeat region. Addressing questions about polycistrons, and the sequences required for their processing and transcript stability, are essential in chloroplast metabolic engineering. Knowledge of such factors would enable engineering of foreign pathways independent of the chloroplast complex posttranscriptional regulatory machinery.
Collapse
Affiliation(s)
- Tania Quesada-Vargas
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32816-2364, USA
| | | | | |
Collapse
|
147
|
Weintraub JA, Hilton JF, White JM, Hoover CI, Wycoff KL, Yu L, Larrick JW, Featherstone JDB. Clinical trial of a plant-derived antibody on recolonization of mutans streptococci. Caries Res 2005; 39:241-50. [PMID: 15914988 DOI: 10.1159/000084805] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 10/12/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This double-blinded, placebo-controlled clinical trial tested the safety and efficacy of a topical secretory IgA antibody manufactured in tobacco plants (plantibody) in preventing recolonization of mutans streptococci (MS) in human plaque as measured by whole stimulated saliva samples. METHODS Following a 9-day antimicrobial treatment with chlorhexidine (CHX), 56 eligible adults (enrollment salivary MS > or = 10(4) CFU/ml; no current caries) were randomized equally to a group receiving 0, 2, 4, or 6 topical applications of plantibody followed by 6, 4, 2, or 0 applications of placebo, respectively, over a 3-week period. RESULTS Among the 54 subjects who completed the trial, the CHX regimen eliminated salivary MS in 69%. After 6 months, there were no significant differences in MS levels by number of applications, relative to placebo (p > 0.43). No adverse effects were observed. CONCLUSION Plantibody is safe but not effective at the frequency, concentration, and number of applications used in this study.
Collapse
Affiliation(s)
- J A Weintraub
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California-San Francisco, 3333 California Street, San Francisco, CA 94143-1361, USA.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Franklin SE, Mayfield SP. Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin Biol Ther 2005; 5:225-35. [PMID: 15757384 DOI: 10.1517/14712598.5.2.225] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibody-based therapeutics have had great success over the last few years, and continue to be one of the fastest growing sectors of drug development. The efficacy and specificity of antibody-based drugs makes them ideal candidates for new drug development, but the specificity of these drugs comes from their complexity, and this complexity makes antibodies very expensive to produce. To address this problem, the authors have developed a system for the expression of recombinant proteins using the unicellular eukaryotic green algae, Chlamydomonas reinhardtii. As proof of concept, the authors have engineered microalgae to produce several forms of a human IgA antibody directed against herpes simplex virus. The expression of human monoclonal antibodies in C. reinhardtii offers an attractive alternative to traditional mammalian-based expression systems, as both the plastid and nuclear genomes are easily and quickly transformed, and the production of proteins in algae has an inherently low cost of capitalisation and production.
Collapse
Affiliation(s)
- Scott E Franklin
- The Scripps Research Institute, Department of Cell Biology and The Skaggs Institute for Chemical Biology, 10550 N. Torrey Pines Rd, LaJolla, CA 92037, USA
| | | |
Collapse
|
149
|
Berghman LR, Abi-Ghanem D, Waghela SD, Ricke SC. Antibodies: an alternative for antibiotics? Poult Sci 2005; 84:660-6. [PMID: 15844826 PMCID: PMC7107177 DOI: 10.1093/ps/84.4.660] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 12/30/2004] [Indexed: 01/24/2023] Open
Abstract
In 1967, the success of vaccination programs, combined with the seemingly unstoppable triumph of antibiotics, prompted the US Surgeon General to declare that "it was time to close the books on infectious diseases." We now know that the prediction was overly optimistic and that the fight against infectious diseases is here to stay. During the last 20 yr, infectious diseases have indeed made a staggering comeback for a variety of reasons, including resistance against existing antibiotics. As a consequence, several alternatives to antibiotics are currently being considered or reconsidered. Passive immunization (i.e., the administration of more or less pathogen-specific antibodies to the patient) prior to or after exposure to the disease-causing agent is one of those alternative strategies that was almost entirely abandoned with the introduction of chemical antibiotics but that is now gaining interest again. This review will discuss the early successes and limitations of passive immunization, formerly referred to as "serum therapy," the current use of antibody administration for prophylaxis or treatment of infectious diseases in agriculture, and, finally, recent developments in the field of antibody engineering and "molecular farming" of antibodies in various expression systems. Especially the potential of producing therapeutic antibodies in crops that are routine dietary components of farm animals, such as corn and soy beans, seems to hold promise for future application in the fight against infectious diseases.
Collapse
Affiliation(s)
- L R Berghman
- Department of Poultry Science, Texas A&M University, College Station, Texas 77843-2472, USA.
| | | | | | | |
Collapse
|
150
|
Halpin C. Gene stacking in transgenic plants--the challenge for 21st century plant biotechnology. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:141-55. [PMID: 17173615 DOI: 10.1111/j.1467-7652.2004.00113.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One of the major technical hurdles impeding the advance of plant genetic engineering and biotechnology is the fact that the expression or manipulation of multiple genes in plants is still difficult to achieve. Although a small proportion of commercial genetically modified (GM) crops present 'stacked' or 'pyramided' traits, only a handful of products have been developed by introducing three or more novel genes. On the research front, a variety of conventional and more novel methods have been employed to introduce multiple genes into plants, but all techniques suffer from certain drawbacks. In this review, the potential and problems of these various techniques and strategies are discussed, and the prospects for improving these technologies in the future are presented.
Collapse
Affiliation(s)
- Claire Halpin
- Plant Research Unit, School of Life Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|