101
|
Taylor EJ, Iyer V, Dhami BS, Klein C, Lawrie BJ, Appavoo K. Hyperspectral mapping of nanoscale photophysics and degradation processes in hybrid perovskite at the single grain level. NANOSCALE ADVANCES 2023; 5:4687-4695. [PMID: 37705772 PMCID: PMC10496886 DOI: 10.1039/d3na00529a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
With solar cells reaching 26.1% certified efficiency, hybrid perovskites are now the most efficient thin film photovoltaic material. Though substantial effort has focussed on synthesis approaches and device architectures to further improve perovskite-based solar cells, more work is needed to correlate physical properties of the underlying film structure with device performance. Here, using cathodoluminescence microscopy coupled with unsupervised machine learning, we quantify how nanoscale heterogeneity globally builds up within a large morphological grain of hybrid perovskite when exposed to extrinsic stimuli such as charge accumulation from electron beams or milder environmental factors like humidity. The converged electron-beam excitation allows us to map PbI2 and the emergence of other intermediate phases with high spatial and energy resolution. In contrast with recent reports of hybrid perovskite cathodoluminescence, we observe no significant change in the PbI2 signatures, even after high-energy electron beam excitation. In fact, we can exploit the stable PbI2 signatures to quantitatively map how hybrid perovskites degrade. Moreover, we show how our methodology allows disentangling of the photophysics associated with photon recycling and band-edge emission with sub-micron resolution using a fundamental understanding of electron interactions in hybrid perovskites.
Collapse
Affiliation(s)
- Ethan J Taylor
- Department of Physics, University of Alabama at Birmingham 1300 University Blvd., Birmingham AL 35294 USA
| | - Vasudevan Iyer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Bibek S Dhami
- Department of Physics, University of Alabama at Birmingham 1300 University Blvd., Birmingham AL 35294 USA
| | - Clay Klein
- Clarion University 840 Wood St, Clarion PA 16214 USA
| | - Benjamin J Lawrie
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Materials Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Kannatassen Appavoo
- Department of Physics, University of Alabama at Birmingham 1300 University Blvd., Birmingham AL 35294 USA
| |
Collapse
|
102
|
Zhang H, Pfeifer L, Zakeeruddin SM, Chu J, Grätzel M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat Rev Chem 2023; 7:632-652. [PMID: 37464018 DOI: 10.1038/s41570-023-00510-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
There is an ongoing global effort to advance emerging perovskite solar cells (PSCs), and many of these endeavours are focused on developing new compositions, processing methods and passivation strategies. In particular, the use of passivators to reduce the defects in perovskite materials has been demonstrated to be an effective approach for enhancing the photovoltaic performance and long-term stability of PSCs. Organic passivators have received increasing attention since the late 2010s as their structures and properties can readily be modified. First, this Review discusses the main types of defect in perovskite materials and reviews their properties. We examine the deleterious impact of defects on device efficiency and stability and highlight how defects facilitate extrinsic degradation pathways. Second, the proven use of different passivator designs to mitigate these negative effects is discussed, and possible defect passivation mechanisms are presented. Finally, we propose four specific directions for future research, which, in our opinion, will be crucial for unlocking the full potential of PSCs using the concept of defect passivation.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, P. R. China.
- Department of Materials Science, Fudan University, Shanghai, P. R. China.
| | - Lukas Pfeifer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Junhao Chu
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, P. R. China
- Department of Materials Science, Fudan University, Shanghai, P. R. China
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
103
|
Bala A, Kumar V. Enhanced stability of triple-halide perovskites CsPbI 3-x-yBr xCl y ( x and y = 0-0.024): understanding the role of Cl doping from ab initio calculations. Phys Chem Chem Phys 2023; 25:22989-23000. [PMID: 37594447 DOI: 10.1039/d3cp02476h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Doping of chloride in mixed iodide-bromide perovskites has been shown experimentally to suppress the photo-induced halide-ion segregation and enhance the stability of triple-halide perovskites (THP). However, a fundamental understanding of the effects of Cl doping is yet to be achieved especially when the doping concentration is low. Here we report the results of a state-of-the-art ab initio study of the atomic structure of THP by considering small doping concentrations of Br and Cl in CsPbI3. We find a reduction in the Pb-I bond lengths and tilting of PbI6 octahedra with Cl doping which lead to exothermic heat of mixing and therefore higher stability of THP. Moreover, using quasi-chemical approximation, our results show that there is a very small contribution of configurational entropy to Gibbs free energy at such low doping concentrations and at the operational temperature of 50 °C. This suggests that the favorable heat of mixing value is more important for the stability at low doping concentrations of Cl while a higher concentration of Cl increases the risk of halide segregation. Further calculations on Frenkel defect formation energy of I or Br-interstitial shows that the doping of Cl in I/Br mixed binary-compounds hinders the formation of Frenkel defects. These results support experiments and help to understand the role of chloride in suppressing the halide ion mobility with only a slight increase in the band gap. Accordingly, the THPs manifest a promising pathway for developing single-phase perovskites for solar cells and light-emitting diodes with improved performance and enhanced stability.
Collapse
Affiliation(s)
- Anu Bala
- Center for Informatics, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, 201314, Uttar Pradesh, India.
| | - Vijay Kumar
- Center for Informatics, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH-91, Tehsil Dadri, Gautam Buddha Nagar, 201314, Uttar Pradesh, India.
- Dr. Vijay Kumar Foundation, 1969, Sector 4, Gurgaon 122001, Haryana, India
| |
Collapse
|
104
|
Baronnier J, Mahler B, Dujardin C, Houel J. Low-Temperature Emission Dynamics of Methylammonium Lead Bromide Hybrid Perovskite Thin Films at the Sub-Micrometer Scale. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2376. [PMID: 37630961 PMCID: PMC10458237 DOI: 10.3390/nano13162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
We study the low-temperature (T = 4.7 K) emission dynamics of a thin film of methylammonium lead bromide (MAPbBr3), prepared via the anti-solvent method. Using intensity-dependent (over 5 decades) hyperspectral microscopy under quasi-resonant (532 nm) continuous wave excitation, we revealed spatial inhomogeneities in the thin film emission. This was drastically different at the band-edge (∼550 nm, sharp peaks) than in the emission tail (∼568 nm, continuum of emission). We are able to observe regions of the film at the micrometer scale where emission is dominated by excitons, in between regions of trap emission. Varying the density of absorbed photons by the MAPbBr3 thin films, two-color fluorescence lifetime imaging microscopy unraveled the emission dynamics: a fast, resolution-limited (∼200 ps) monoexponential tangled with a stretched exponential decay. We associate the first to the relaxation of excitons and the latter to trap emission dynamics. The obtained stretching exponents can be interpreted as the result of a two-dimensional electron diffusion process: Förster resonant transfer mechanism. Furthermore, the non-vanishing fast monoexponential component even in the tail of the MAPbBr3 emission indicates the subsistence of localized excitons. Finally, we estimate the density of traps in MAPbBr3 thin films prepared using the anti-solvent method at n∼1017 cm-3.
Collapse
Affiliation(s)
- Justine Baronnier
- Université Claude Bernard Lyon 1, Institut Lumière-Matière UMR5306 CNRS, F-69622 Villeurbanne, France
| | - Benoit Mahler
- Université Claude Bernard Lyon 1, Institut Lumière-Matière UMR5306 CNRS, F-69622 Villeurbanne, France
| | - Christophe Dujardin
- Université Claude Bernard Lyon 1, Institut Lumière-Matière UMR5306 CNRS, F-69622 Villeurbanne, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Julien Houel
- Université Claude Bernard Lyon 1, Institut Lumière-Matière UMR5306 CNRS, F-69622 Villeurbanne, France
| |
Collapse
|
105
|
Naito T, Takagi M, Tachikawa M, Yamashita K, Shimazaki T. Theoretical Study of the Molecular Passivation Effect of Lewis Base/Acid on Lead-Free Tin Perovskite Surface Defects. J Phys Chem Lett 2023:6695-6701. [PMID: 37466615 DOI: 10.1021/acs.jpclett.3c01450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Extensive research has been recently conducted to improve the power conversion efficiency (PCE) of perovskite solar cells. However, the charge carriers are easily trapped by the defect sites located at the interface between the perovskite layer and the electrode, which decreases the PCE. To reduce such defect sites, the passivation technique is frequently employed to coat small molecules on the perovskite surface during the manufacturing process. To clarify the passivation mechanism from a molecular viewpoint, we performed density functional theory calculations to target Pb-free Sn perovskites (CH3NH3SnI3). We investigated the passivation effect of Lewis base/acid molecules, such as ethylene diamine (EDA) and iodopentafluorobenzene (IPFB), and discussed behaviors of the defect levels within the bandgap as they have strong negative impacts on the PCE. The adsorption of EDA/IPFB on the Sn perovskite surface can remove the defect levels from the bandgap. Furthermore, we discuss the importance of interactions with molecular orbitals.
Collapse
Affiliation(s)
- Takumi Naito
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-Ku, Yokohama 236-0027, Kanagawa, Japan
| | - Makito Takagi
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-Ku, Yokohama 236-0027, Kanagawa, Japan
| | - Masanori Tachikawa
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-Ku, Yokohama 236-0027, Kanagawa, Japan
| | - Koichi Yamashita
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-Ku, Yokohama 236-0027, Kanagawa, Japan
| | - Tomomi Shimazaki
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-Ku, Yokohama 236-0027, Kanagawa, Japan
| |
Collapse
|
106
|
Li Y, Lei Y, Wang H, Jin Z. Two-Dimensional Metal Halides for X-Ray Detection Applications. NANO-MICRO LETTERS 2023; 15:128. [PMID: 37209282 PMCID: PMC10199999 DOI: 10.1007/s40820-023-01118-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/24/2023] [Indexed: 05/22/2023]
Abstract
Metal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties. Especially, two-dimensional (2D) perovskites afford many distinct properties, including remarkable structural diversity, high generation energy, and balanced large exciton binding energy. With the advantages of 2D materials and perovskites, it successfully reduces the decomposition and phase transition of perovskite and effectively suppresses ion migration. Meanwhile, the existence of a high hydrophobic spacer can block water molecules, thus making 2D perovskite obtain excellent stability. All of these advantages have attracted much attention in the field of X-ray detection. This review introduces the classification of 2D halide perovskites, summarizes the synthesis technology and performance characteristics of 2D perovskite X-ray direct detector, and briefly discusses the application of 2D perovskite in scintillators. Finally, this review also emphasizes the key challenges faced by 2D perovskite X-ray detectors in practical application and presents our views on its future development.
Collapse
Affiliation(s)
- Yumin Li
- School of Physical Science and Technology and Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yutian Lei
- School of Physical Science and Technology and Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Haoxu Wang
- School of Physical Science and Technology and Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhiwen Jin
- School of Physical Science and Technology and Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
107
|
Wu S, Zhang J, Qin M, Li F, Deng X, Lu X, Li WJ, Jen AKY. Manipulating Crystallographic Orientation via Cross-Linkable Ligand for Efficient and Stable Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207189. [PMID: 36760026 DOI: 10.1002/smll.202207189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/16/2023] [Indexed: 05/11/2023]
Abstract
The crystallographic orientation of polycrystalline perovskites is found to be strongly correlated with their intrinsic properties; therefore, it can be used to effectively enhance the performance of perovskite-based devices. Here, a facile way of manipulating the facet orientation of polycrystalline perovskite films in a controllable manner is reported. By incorporating a cross-linkable organic ligand into the perovskite precursor solution, the crystal orientation disorder can be reduced in the resultant perovskite films to exhibit the prominent (001) orientation with a preferred stacking mode. Moreover, the as-formed low-dimensional perovskites (LDPs) between the organic ligand and the excess lead iodide can passivate the defects around the grain boundaries. Consequently, highly efficient p-i-n structured perovskite solar cells (PSCs) can be made in both rigid and flexible forms from modified perovskites to show high power conversion efficiencies (PCE) of 24.12% and 23.23%, respectively. The devices also exhibit superior long-term stability in a humid environment (with T90 > 1000 h) and under thermal stress (retaining 87% of its initial PCE after 1000 h). More importantly, the ligand enables the derived LDPs to be crosslinked (under 254 nm UV illumination) to demonstrate excellent mechanical bending durability in flexible devices.
Collapse
Affiliation(s)
- Shengfan Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Jie Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Minchao Qin
- Department of Physics, The Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong
| | - Fengzhu Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xiang Deng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong
| | - Wen-Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
108
|
Shin S, Seo S, Jeong S, Sharbirin AS, Kim J, Ahn H, Park NG, Shin H. Kinetic-Controlled Crystallization of α-FAPbI 3 Inducing Preferred Crystallographic Orientation Enhances Photovoltaic Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300798. [PMID: 36994651 DOI: 10.1002/advs.202300798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Crystallization kinetic controls the crystallographic orientation, inducing anisotropic properties of the materials. As a result, preferential orientation with advanced optoelectronic properties can enhance the photovoltaic devices' performance. Although incorporation of additives is one of the most studied methods to stabilize the photoactive α-phase of formamidinium lead tri-iodide (α-FAPbI3 ), no studies focus on how the additives affect the crystallization kinetics. Along with the role of methylammonium chloride (MACl) as a "stabilizer" in the formation of α-FAPbI3 , herein, the additional role as a "controller" in the crystallization kinetics is pointed out. With microscopic observations, for example, electron backscatter diffraction and selected area electron diffraction, it is examined that higher concentration of MACl induces slower crystallization kinetics, resulting in larger grain size and [100] preferred orientation. Optoelectronic properties of [100] preferentially oriented grains with less non-radiative recombination, a longer lifetime of charge carriers, and lower photocurrent deviations in between each grain induce higher short-circuit current density (Jsc ) and fill factor. Resulting MACl40 mol% attains the highest power conversion efficiency (PCE) of 24.1%. The results provide observations of a direct correlation between the crystallographic orientation and device performance as it highlights the importance of crystallization kinetics resulting in desirable microstructures for device engineering.
Collapse
Affiliation(s)
- Sooeun Shin
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Seongrok Seo
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU, UK
| | - Seonghwa Jeong
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Anir S Sharbirin
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jeongyong Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Nam-Gyu Park
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Hyunjung Shin
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| |
Collapse
|
109
|
Telschow O, Scheffczyk N, Hinderhofer A, Merten L, Kneschaurek E, Bertram F, Zhou Q, Löffler M, Schreiber F, Paulus F, Vaynzof Y. Elucidating Structure Formation in Highly Oriented Triple Cation Perovskite Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206325. [PMID: 37078840 DOI: 10.1002/advs.202206325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/06/2023] [Indexed: 05/03/2023]
Abstract
Metal halide perovskites are an emerging class of crystalline semiconductors of great interest for application in optoelectronics. Their properties are dictated not only by their composition, but also by their crystalline structure and microstructure. While significant efforts are dedicated to the development of strategies for microstructural control, significantly less is known about the processes that govern the formation of their crystalline structure in thin films, in particular in the context of crystalline orientation. This work investigates the formation of highly oriented triple cation perovskite films fabricated by utilizing a range of alcohols as an antisolvent. Examining the film formation by in situ grazing-incidence wide-angle X-ray scattering reveals the presence of a short-lived highly oriented crystalline intermediate, which is identified as FAI-PbI2 -xDMSO. The intermediate phase templates the crystallization of the perovskite layer, resulting in highly oriented perovskite layers. The formation of this dimethylsulfoxide (DMSO) containing intermediate is triggered by the selective removal of N,N-dimethylformamide (DMF) when alcohols are used as an antisolvent, consequently leading to differing degrees of orientation depending on the antisolvent properties. Finally, this work demonstrates that photovoltaic devices fabricated from the highly oriented films, are superior to those with a random polycrystalline structure in terms of both performance and stability.
Collapse
Affiliation(s)
- Oscar Telschow
- Integrated Center for Applied Physics and Photonic Materials, Technische Universität Dresden, Nöthnitzer Straße 61, 01187, Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069, Dresden, Germany
| | - Niels Scheffczyk
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Lena Merten
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | | | - Florian Bertram
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Qi Zhou
- Integrated Center for Applied Physics and Photonic Materials, Technische Universität Dresden, Nöthnitzer Straße 61, 01187, Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069, Dresden, Germany
| | - Markus Löffler
- Dresden Center for Nanoanalysis (DCN), Technische Universität Dresden, Helmholtzstraße 18, 01069, Dresden, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076, Tübingen, Germany
| | - Fabian Paulus
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069, Dresden, Germany
| | - Yana Vaynzof
- Integrated Center for Applied Physics and Photonic Materials, Technische Universität Dresden, Nöthnitzer Straße 61, 01187, Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069, Dresden, Germany
| |
Collapse
|
110
|
Caiazzo A, Maufort A, van Gorkom BT, Remmerswaal WHM, Orri JF, Li J, Wang J, van Gompel WTM, Van Hecke K, Kusch G, Oliver RA, Ducati C, Lutsen L, Wienk MM, Stranks SD, Vanderzande D, Janssen RAJ. 3D Perovskite Passivation with a Benzotriazole-Based 2D Interlayer for High-Efficiency Solar Cells. ACS APPLIED ENERGY MATERIALS 2023; 6:3933-3943. [PMID: 37064411 PMCID: PMC10091350 DOI: 10.1021/acsaem.3c00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
2H-Benzotriazol-2-ylethylammonium bromide and iodide and its difluorinated derivatives are synthesized and employed as interlayers for passivation of formamidinium lead triiodide (FAPbI3) solar cells. In combination with PbI2 and PbBr2, these benzotriazole derivatives form two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) as evidenced by their crystal structures and thin film characteristics. When used to passivate n-i-p FAPbI3 solar cells, the power conversion efficiency improves from 20% to close to 22% by enhancing the open-circuit voltage. Quasi-Fermi level splitting experiments and scanning electron microscopy cathodoluminescence hyperspectral imaging reveal that passivation provides a reduced nonradiative recombination at the interface between the perovskite and hole transport layer. Photoluminescence spectroscopy, angle-resolved grazing-incidence wide-angle X-ray scattering, and depth profiling X-ray photoelectron spectroscopy studies of the 2D/three-dimensional (3D) interface between the benzotriazole RPP and FAPbI3 show that a nonuniform layer of 2D perovskites is enough to passivate defects, enhance charge extraction, and decrease nonradiative recombination.
Collapse
Affiliation(s)
- Alessandro Caiazzo
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems
Eindhoven University of Technology, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
| | - Arthur Maufort
- Institute
for Materials Research (IMO-IMOMEC), Hybrid Materials Design, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Bas T. van Gorkom
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems
Eindhoven University of Technology, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
| | - Willemijn H. M. Remmerswaal
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems
Eindhoven University of Technology, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jordi Ferrer Orri
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Junyu Li
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems
Eindhoven University of Technology, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
| | - Junke Wang
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems
Eindhoven University of Technology, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
| | - Wouter T. M. van Gompel
- Institute
for Materials Research (IMO-IMOMEC), Hybrid Materials Design, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Kristof Van Hecke
- XStruct,
Department of Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium
| | - Gunnar Kusch
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - R. A. Oliver
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Caterina Ducati
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - Laurence Lutsen
- Institute
for Materials Research (IMO-IMOMEC), Hybrid Materials Design, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Martijn M. Wienk
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems
Eindhoven University of Technology, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Dirk Vanderzande
- Institute
for Materials Research (IMO-IMOMEC), Hybrid Materials Design, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - René A. J. Janssen
- Molecular
Materials and Nanosystems and Institute of Complex Molecular Systems
Eindhoven University of Technology, P.O.
Box 513, 5600 MB Eindhoven, The Netherlands
- Dutch
Institute for Fundamental Energy Research, De Zaale 20, 5612
AJ Eindhoven, The
Netherlands
| |
Collapse
|
111
|
Song Q, Gong H, Sun F, Li M, Zhu T, Zhang C, You F, He Z, Li D, Liang C. Bridging the Buried Interface with Piperazine Dihydriodide Layer for High Performance Inverted Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208260. [PMID: 37029577 DOI: 10.1002/smll.202208260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Given that it is closely related to perovskite crystallization and interfacial trap densities, buried interfacial engineering is crucial for creating effective and stable perovskite solar cells. Compared with the in-depth studies on the defect at the top perovskite interface, exploring the defect of the buried side of perovskite film is relatively complicated and scanty owing to the non-exposed feature. Herein, the degradation process is probed from the buried side of perovskite films with continuous illumination and its effects on morphology and photoelectronic characteristics with a facile lift-off method. Additionally, a buffer layer of Piperazine Dihydriodide (PDI2 ) is inserted into the imbedded bottom interface. The PDI2 buffer layer is able to lubricate the mismatched thermal expansion between perovskite and substrate, resulting in the release of lattice strain and thus a void-free buried interface. With the PDI2 buffer layer, the degradation originates from the growing voids and increasing non-radiative recombination at the imbedded bottom interfaces are suppressed effectively, leading to prolonged operation lifetime of the perovskite solar cells. As a result, the power conversion efficiency of an optimized p-i-n inverted photovoltaic device reaches 23.47% (with certified 23.42%) and the unencapsulated devices maintain 90.27% of initial efficiency after 800 h continuous light soaking.
Collapse
Affiliation(s)
- Qi Song
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Hongkang Gong
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Fulin Sun
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Mingxing Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Ting Zhu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Chenhui Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Fangtian You
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Zhiqun He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Dan Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Chunjun Liang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| |
Collapse
|
112
|
Yin Y, Zhou Y, Fu S, Zuo X, Lin YC, Wang L, Xue Y, Zhang Y, Tsai EHR, Hwang S, Kissenger K, Li M, Cotlet M, Li TD, Yager KG, Nam CY, Rafailovich MH. Enhancing Crystallization in Hybrid Perovskite Solar Cells Using Thermally Conductive 2D Boron Nitride Nanosheet Additive. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207092. [PMID: 36631283 DOI: 10.1002/smll.202207092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Controlling crystallization and grain growth is crucial for realizing highly efficient hybrid perovskite solar cells (PSCs). In this work, enhanced PSC photovoltaic performance and stability by accelerating perovskite crystallization and grain growth via 2D hexagonal boron nitride (hBN) nanosheet additives incorporated into the active perovskite layer are demonstrated. In situ X-ray scattering and infrared thermal imaging during the perovskite annealing process revealed the highly thermally conductive hBN nanosheets promoted the phase conversion and grain growth in the perovskite layer by facilitating a more rapid and spatially uniform temperature rise within the perovskite film. Complementary structural, physicochemical, and electrical characterizations further showed that the hBN nanosheets formed a physical barrier at the perovskite grain boundaries and the interfaces with charge transport layers, passivating defects, and retarding ion migration. As a result, the power conversion efficiency of the PSC is improved from 17.4% to 19.8%, along with enhanced device stability, retaining ≈90% of the initial efficiency even after 500 h ambient air storage. The results not only highlight 2D hBN as an effective additive for PSCs but also suggest enhanced thermal transport as one of the pathways for improved PSC performance by 2D material additives in general.
Collapse
Affiliation(s)
- Yifan Yin
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yuchen Zhou
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Shi Fu
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xianghao Zuo
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yu-Chung Lin
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Likun Wang
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yuan Xue
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Kim Kissenger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Mingxing Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Mircea Cotlet
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Tai-De Li
- Advanced Science Research Center, Graduate Center of City University of New York, New York, NY, 10031, USA
| | - Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chang-Yong Nam
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Miriam H Rafailovich
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
113
|
Chen YJ, Hou C, Yang Y. Surface energy and surface stability of cesium tin halide perovskites: a theoretical investigation. Phys Chem Chem Phys 2023; 25:10583-10590. [PMID: 36994501 DOI: 10.1039/d2cp04183a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Lead halide perovskites have been widely studied in the fields of photovoltaics and optoelectronics for over a decade. The toxicity of lead poses a big challenge to the potential applications of the materials. In recent years, lead-free halide perovskites have received significant attention due to their excellent optoelectronic properties and environment-friendly character. Tin halide perovskites have emerged as one of the most promising candidates for lead-free optoelectronic materials. It is of fundamental importance to understand the surface properties of tin halide perovskites that remain largely unknown. Using the density functional theory (DFT) method, we explore the surface energy and surface stability of low-index surfaces of cubic CsSnX3 (X = Cl, Br, I), i.e., (100), (110), and (111) surfaces. We calculate the stability phase diagrams of these surfaces and find that the (100) surface is more stable than the (110) and (111) surfaces. Interestingly, Br2-terminated (110) and CsBr3-terminated (111) polar surfaces are relatively more stable in CsSnBr3 than those in CsPbBr3 due to a higher level of valence band maximum and thus lesser energy cost in removing electrons to compensate for the polarity of the former. We calculate the surface energies of CsSnX3 surfaces that are difficult to access from experiments. The surface energies are very low in comparison with that of oxide perovskites. The origin of this lies in the relatively low binding strength of halide perovskites because of the soft nature of their structures. Furthermore, the connection between exfoliation energy and the cleavage energy in CsSnX3 is discussed.
Collapse
Affiliation(s)
- Yan-Jin Chen
- College of Rare Earths and Faculty of Materials, Metallurgy and Chemistry, JiangXi University of Science and Technology, Ganzhou, 341000, China.
| | - Chunju Hou
- School of Science, JiangXi University of Science and Technology, Ganzhou, 341000, China
| | - Yi Yang
- College of Rare Earths and Faculty of Materials, Metallurgy and Chemistry, JiangXi University of Science and Technology, Ganzhou, 341000, China.
| |
Collapse
|
114
|
Zhang H, He X, Wang H, Chen L, Xu G, Zhang N, Qu K, He Q, Peng Y, Pan J. In situgrowth strategy to construct perovskite quantum dot@covalent organic framework composites with enhanced water stability. NANOTECHNOLOGY 2023; 34:245601. [PMID: 36881878 DOI: 10.1088/1361-6528/acc1ec] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Metal halide perovskite quantum dots (QDs) have excellent optoelectronic properties; however, their poor stability under water or thermal conditions remains an obstacle to commercialization. Here, we used a carboxyl functional group (-COOH) to enhance the ability of a covalent organic framework (COF) to adsorb lead ions and grow CH3NH3PbBr3(MAPbBr3) QDsin situinto a mesoporous carboxyl-functionalized COF to construct MAPbBr3QDs@COF core-shell-like composites to improve the stability of perovskites. Owing to the protection of the COF, the as-prepared composites exhibited enhanced water stability, and the characteristic fluorescence was maintained for more than 15 d. These MAPbBr3QDs@COF composites can be used to fabricate white light-emitting diodes with a color comparable to natural white emission. This work demonstrates the importance of functional groups for thein situgrowth of perovskite QDs, and coating with a porous structure is an effective way to improve the stability of metal halide perovskites.
Collapse
Affiliation(s)
- Hongyan Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiaoxiong He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Hao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Liangjun Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Gaopeng Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Nan Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Kang Qu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qingquan He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
115
|
Barua P, In CM, Lee MJ, Hwang I. Microwave-facilitated crystal growth of defect-passivated triple-cation metal halide perovskites toward efficient solar cells. NANOSCALE 2023; 15:5954-5963. [PMID: 36883549 DOI: 10.1039/d2nr07090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Structural defects at the surface and within the bulk of perovskite films hinder efficient energy conversion in solar cells due to the loss of charge carriers through non-radiative recombination. Post-passivation approaches have been proposed in an attempt to eliminate surface defects, with bulk defects being rarely studied. Moreover, it is of interest to investigate the difference in the perovskite crystal growth with and without simultaneous defect passivation. Here, we study a new crystal growth strategy to realize high-quality triple-cation perovskite crystals via utilizing microwave irradiation combined with a continuous supply of defect passivators from a reservoir solution of trioctyl-n-phosphine oxide (TOPO). The proposed method facilitates the growth of perovskite crystals with TOPO ligand coordination in the whole film region. Consequently, the processed perovskite film demonstrates distinctive features of significantly suppressed non-radiative recombination, substantial defect reduction and morphological changes compared to the perovskites processed by conventional thermal annealing. The power conversion efficiency is enhanced owing to the improved open-circuit voltage (Voc) and short-circuit current (Jsc). The results of this study are expected to assist in the development of diverse approaches for the control of perovskite crystal growth with in situ defect passivation toward high efficiency in solar cells.
Collapse
Affiliation(s)
- Pranta Barua
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Chang Min In
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea.
| | - Mi Jung Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea.
| | - Inchan Hwang
- Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
116
|
Hui W, Kang X, Wang B, Li D, Su Z, Bao Y, Gu L, Zhang B, Gao X, Song L, Huang W. Stable Electron-Transport-Layer-Free Perovskite Solar Cells with over 22% Power Conversion Efficiency. NANO LETTERS 2023; 23:2195-2202. [PMID: 36913436 DOI: 10.1021/acs.nanolett.2c04720] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to their low cost and simplified production process, electron-transport-layer-free (ETL-free) perovskite solar cells (PSCs) have attracted great attention recently. However, the performance of ETL-free PSCs is still at a disadvantage compared to cells with a conventional n-i-p structure due to the severe recombination of charge carriers at the perovskite/anode interface. Here, we report a strategy to fabricate stable ETL-free FAPbI3 PSCs by in situ formation of a low dimensional perovskite layer between the FTO and the perovskite. This interlayer gives rise to the energy band bending and reduced defect density in the perovskite film and indirect contact and improved energy level alignment between the anode and perovskite, which facilitates charge carrier transport and collection and suppresses charge carrier recombination. As a result, ETL-free PSCs with a power conversion efficiency (PCE) exceeding 22% are achieved under ambient conditions.
Collapse
Affiliation(s)
- Wei Hui
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Xinxin Kang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Baohua Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Deli Li
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, P. R. China
| | - Zhenhuang Su
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, P. R. China
| | - Yaqi Bao
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Lei Gu
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Biao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
- Research & Development Institute, Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, P. R. China
| | - Lin Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, P. R. China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
117
|
Tui R, Sui H, Mao J, Sun X, Chen H, Duan Y, Yang P, Tang Q, He B. Round-comb Fe 2O 3@SnO 2 heterostructures enable efficient light harvesting and charge extraction for high-performance all-inorganic perovskite solar cells. J Colloid Interface Sci 2023; 640:918-927. [PMID: 36907152 DOI: 10.1016/j.jcis.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/16/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
The precise design of an electron transport layer (ETL) to improve the light-harvesting and quality of perovskite (PVK) film plays a crucial role in the photovoltaic performance of n-i-p perovskite solar cells (PSCs). In this work, a novel three-dimensional (3D) round-comb Fe2O3@SnO2 heterostructure composites with high conductivity and electron mobility induced by its Type-II band alignment and matched lattice spacing is prepared and employed as an efficient mesoporous ETL for all-inorganic CsPbBr3 PSCs. Arising from the multiple light scattering sites provided by the 3D round-comb structure, the diffuse reflectance of Fe2O3@SnO2 composites is increased to improve the light absorption of the deposited PVK film. Besides, the mesoporous Fe2O3@SnO2 ETL affords not only more active surface for sufficient exposure to the CsPbBr3 precursor solution but also a wettable surface to reduce the barrier for heterogeneous nucleation, which realizes the regulated growth of a high-quality PVK film with less undesired defect. Hence, both the light-harvesting capability, the photoelectrons transport and extraction are improved, and the charge recombination is restrained, delivering an optimized power conversion efficiency (PCE) of 10.23 % with a high short-circuit current density of 7.88 mA cm-2 for the c-TiO2/Fe2O3@SnO2 ETL based all-inorganic CsPbBr3 PSCs. Moreover, under lasting erosion at 25 °C and 85 % RH for 30 days and light-soaking (AM 1.5G) for 480 h in air atmosphere, the unencapsulated-device shows superiorly persistent durability.
Collapse
Affiliation(s)
- Rui Tui
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Haojie Sui
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Jingwei Mao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Xuemiao Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Haiyan Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Yanyan Duan
- State Centre for International Cooperation on Designer Low-Carbon and Environmental Material (SCICDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Peizhi Yang
- Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Qunwei Tang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Benlin He
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China.
| |
Collapse
|
118
|
Sun Y, Ge L, Dai L, Cho C, Ferrer Orri J, Ji K, Zelewski SJ, Liu Y, Mirabelli AJ, Zhang Y, Huang JY, Wang Y, Gong K, Lai MC, Zhang L, Yang D, Lin J, Tennyson EM, Ducati C, Stranks SD, Cui LS, Greenham NC. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 2023; 615:830-835. [PMID: 36922588 DOI: 10.1038/s41586-023-05792-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023]
Abstract
Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1-15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm-2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm-2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm-2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm-2, along with a high radiance of more than 3,200 W s-1 m-2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s-1 m-2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.
Collapse
Affiliation(s)
- Yuqi Sun
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Lishuang Ge
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China (USTC), Hefei, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, China
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Changsoon Cho
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Jordi Ferrer Orri
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Kangyu Ji
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Szymon J Zelewski
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wrocław, Poland
| | - Yun Liu
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Institute of High Performance Computing, Agency for Science Technology and Research, Singapore, Singapore
| | - Alessandro J Mirabelli
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Youcheng Zhang
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Jun-Yu Huang
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Yusong Wang
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Ke Gong
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - May Ching Lai
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Lu Zhang
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Dan Yang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, China
| | - Jiudong Lin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, China
| | | | - Caterina Ducati
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Lin-Song Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China (USTC), Hefei, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China (USTC), Hefei, China.
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
119
|
Chan WK, Chen J, Zhou D, Ye J, Vázquez RJ, Zhou C, Bazan GC, Rao A, Yu Z, Tan TTY. Hybrid Organic-Inorganic Perovskite Superstructures for Ultrapure Green Emissions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:815. [PMID: 36903695 PMCID: PMC10005548 DOI: 10.3390/nano13050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
All inorganic CsPbBr3 superstructures (SSs) have attracted much research interest due to their unique photophysical properties, such as their large emission red-shifts and super-radiant burst emissions. These properties are of particular interest in displays, lasers and photodetectors. Currently, the best-performing perovskite optoelectronic devices incorporate organic cations (methylammonium (MA), formamidinium (FA)), however, hybrid organic-inorganic perovskite SSs have not yet been investigated. This work is the first to report on the synthesis and photophysical characterization of APbBr3 (A = MA, FA, Cs) perovskite SSs using a facile ligand-assisted reprecipitation method. At higher concentrations, the hybrid organic-inorganic MA/FAPbBr3 nanocrystals self-assemble into SSs and produce red-shifted ultrapure green emissions, meeting the requirement of Rec. 2020 displays. We hope that this work will be seminal in advancing the exploration of perovskite SSs using mixed cation groups to further improve their optoelectronic applications.
Collapse
Affiliation(s)
- Wen Kiat Chan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Jiawei Chen
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Donglei Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Ricardo Javier Vázquez
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Cheng Zhou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Guillermo Carlos Bazan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Zhongzheng Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Timothy Thatt Yang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
120
|
Li C, Wang X, Bi E, Jiang F, Park SM, Li Y, Chen L, Wang Z, Zeng L, Chen H, Liu Y, Grice CR, Abudulimu A, Chung J, Xian Y, Zhu T, Lai H, Chen B, Ellingson RJ, Fu F, Ginger DS, Song Z, Sargent EH, Yan Y. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 2023; 379:690-694. [PMID: 36795809 DOI: 10.1126/science.ade3970] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/13/2023] [Indexed: 02/18/2023]
Abstract
Lewis base molecules that bind undercoordinated lead atoms at interfaces and grain boundaries (GBs) are known to enhance the durability of metal halide perovskite solar cells (PSCs). Using density functional theory calculations, we found that phosphine-containing molecules have the strongest binding energy among members of a library of Lewis base molecules studied herein. Experimentally, we found that the best inverted PSC treated with 1,3-bis(diphenylphosphino)propane (DPPP), a diphosphine Lewis base that passivates, binds, and bridges interfaces and GBs, retained a power conversion efficiency (PCE) slightly higher than its initial PCE of ~23% after continuous operation under simulated AM1.5 illumination at the maximum power point and at ~40°C for >3500 hours. DPPP-treated devices showed a similar increase in PCE after being kept under open-circuit conditions at 85°C for >1500 hours.
Collapse
Affiliation(s)
- Chongwen Li
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Xiaoming Wang
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Enbing Bi
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Fangyuan Jiang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - So Min Park
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - You Li
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Lei Chen
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Zaiwei Wang
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Lewei Zeng
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Hao Chen
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Yanjiang Liu
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Corey R Grice
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
- Center for Materials and Sensors Characterization, The University of Toledo, Toledo, OH 43606, USA
| | - Abasi Abudulimu
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Jaehoon Chung
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Yeming Xian
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Tao Zhu
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Huagui Lai
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Bin Chen
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Randy J Ellingson
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Fan Fu
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Zhaoning Song
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| | - Edward H Sargent
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yanfa Yan
- Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
121
|
Wu TH, Cheng HY, Lai WC, Sankar R, Chang CS, Lin KH. Ultrafast carrier dynamics and layer-dependent carrier recombination rate in InSe. NANOSCALE 2023; 15:3169-3176. [PMID: 36651904 DOI: 10.1039/d2nr05498a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
InSe layered semiconductors with high mobility have advantages over transition-metal dichalcogenides in certain device applications. Understanding the dynamics of carriers, especially around the major bandgaps, is not only of fundamental interest but also important for improving the performance of devices. We investigated ultrafast carrier dynamics in exfoliated InSe near the bandgap and found that the presence of photocarriers led to shrinkage in the optical bandgap. In addition, we observed that the carrier recombination rate increased when the thickness of the InSe nanoflakes was reduced and the process was dominated by surface recombination. For the same flakes, the recombination rate became lower after the freshly exfoliated InSe was exposed to air and oxidized. Using a free carrier diffusion model, layer-dependent surface recombination velocities were obtained. Our investigation reveals that the surface condition and the thickness of few-layer InSe play important roles in carrier lifetimes.
Collapse
Affiliation(s)
- Ting-Hsuan Wu
- Department of Physics, National Taiwan University, Taipei 106319, Taiwan
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
| | - Hao-Yu Cheng
- Department of Physics, National Taiwan University, Taipei 106319, Taiwan
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
- Nano-Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115201, Taiwan
| | - Wei-Chiao Lai
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
| | - Raman Sankar
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
| | - Chia-Seng Chang
- Department of Physics, National Taiwan University, Taipei 106319, Taiwan
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
| | - Kung-Hsuan Lin
- Institute of Physics, Academia Sinica, Taipei 115201, Taiwan.
| |
Collapse
|
122
|
He X, Deng Y, Ouyang D, Zhang N, Wang J, Murthy AA, Spanopoulos I, Islam SM, Tu Q, Xing G, Li Y, Dravid VP, Zhai T. Recent Development of Halide Perovskite Materials and Devices for Ionizing Radiation Detection. Chem Rev 2023; 123:1207-1261. [PMID: 36728153 DOI: 10.1021/acs.chemrev.2c00404] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.
Collapse
Affiliation(s)
- Xiaoyu He
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Yao Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi39217, United States
| | - Qing Tu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas77840, United States
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR999078, People's Republic of China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| |
Collapse
|
123
|
Song H, Yang J, Jeong WH, Lee J, Lee TH, Yoon JW, Lee H, Ramadan AJ, Oliver RDJ, Cho SC, Lim SG, Jang JW, Yu Z, Oh JT, Jung ED, Song MH, Park SH, Durrant JR, Snaith HJ, Lee SU, Lee BR, Choi H. A Universal Perovskite Nanocrystal Ink for High-Performance Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209486. [PMID: 36496257 DOI: 10.1002/adma.202209486] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Semiconducting lead halide perovskite nanocrystals (PNCs) are regarded as promising candidates for next-generation optoelectronic devices due to their solution processability and outstanding optoelectronic properties. While the field of light-emitting diodes (LEDs) and photovoltaics (PVs), two prime examples of optoelectronic devices, has recently seen a multitude of efforts toward high-performance PNC-based devices, realizing both devices with high efficiencies and stabilities through a single PNC processing strategy has remained a challenge. In this work, diphenylpropylammonium (DPAI) surface ligands, found through a judicious ab-initio-based ligand search, are shown to provide a solution to this problem. The universal PNC ink with DPAI ligands presented here, prepared through a solution-phase ligand-exchange process, simultaneously allows single-step processed LED and PV devices with peak electroluminescence external quantum efficiency of 17.00% and power conversion efficiency of 14.92% (stabilized output 14.00%), respectively. It is revealed that a careful design of the aromatic rings such as in DPAI is the decisive factor in bestowing such high performances, ease of solution processing, and improved phase stability up to 120 days. This work illustrates the power of ligand design in producing PNC ink formulations for high-throughput production of optoelectronic devices; it also paves a path for "dual-mode" devices with both PV and LED functionalities.
Collapse
Affiliation(s)
- Hochan Song
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jonghee Yang
- Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| | - Woo Hyeon Jeong
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jeongjae Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Tack Ho Lee
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
| | - Jung Won Yoon
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Hajin Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang Universitry, Ansan, 15588, South Korea
| | - Alexandra J Ramadan
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Robert D J Oliver
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Seong Chan Cho
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang Universitry, Ansan, 15588, South Korea
| | - Seul Gi Lim
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Ji Won Jang
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Zhongkai Yu
- Department of Physics, Pukyong National University, Busan, 48513, South Korea
| | - Jae Taek Oh
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Eui Dae Jung
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Myoung Hoon Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sung Heum Park
- Department of Physics, Pukyong National University, Busan, 48513, South Korea
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, United Kingdom
- SPECIFIC IKE, College of Engineering, Swansea University, Swansea, SA2 7AX, United Kingdom
| | - Henry J Snaith
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Sang Uck Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang Universitry, Ansan, 15588, South Korea
| | - Bo Ram Lee
- Department of Physics, Pukyong National University, Busan, 48513, South Korea
| | - Hyosung Choi
- Department of Chemistry, Research Institute for Convergence of Basic Science, and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
124
|
Liu YY, Cui Y, Cai CY, Deng JP, Li ZQ, Wang ZW. Polaron states of the full-configuration defects in metal halide perovskites. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:125702. [PMID: 36657176 DOI: 10.1088/1361-648x/acb4ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
The systematical analysis for varieties of defects with different depths and lattice relaxation strengths in metal halide perovskites (MHPs) is a challenging task. Here, we study the energy shifts of the full-configuration defects due to the polaron effect based on the all-coupling variational method in MHPs, where these polaron states are formed stemming from different defect species coupling with the longitudinal optical phonon modes via Fro¨hlich mechanism. We find that the polaron effect results in defect levels varying from tens to several hundreds of meV, which are very close to the correction of defect levels due to the defect-polaron effect, especially for these defects migration proved in the recent experiments in MHPs. These results provide the significant enlightenment not only for analyzing the radiation and non-radiation processes of carriers mediated by defects, but also for optimizing defect effect in the photovoltaic and photoelectric devices based on MHPs materials.
Collapse
Affiliation(s)
- Yi-Yan Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Yu Cui
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Chun-Yu Cai
- Institute of Condensed Matter Physics, Inner Mongolia Minzu University, Tongliao 028043, People's Republic of China
| | - Jia-Pei Deng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Zhi-Qing Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Zi-Wu Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| |
Collapse
|
125
|
Yu W, Li F, Huang T, Li W, Wu T. Go beyond the limit: Rationally designed mixed-dimensional perovskite/semiconductor heterostructures and their applications. Innovation (N Y) 2023; 4:100363. [PMID: 36632191 PMCID: PMC9827388 DOI: 10.1016/j.xinn.2022.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Halide perovskite heterojunctions rationally integrate the chemical and physical properties of multi-dimensional perovskites and judiciously chosen semiconductor materials, offering the promise of going beyond the limit of a single component. This emerging platform of materials innovation offers fresh opportunities to tune material properties, discover interesting phenomena, and enable novel applications. In this review, we first discuss the fundamentals of forming heterojunctions with perovskites and a wide range of semiconductors, and then we give an overview of the research progress of halide perovskite heterojunctions in terms of their optical, electrical, and mechanical properties, focusing on how the heterojunction tunes the energy band structure, electrical transport, and charge recombination behaviors. We further outline the progress of perovskite-based heterojunctions in optoelectronics. Finally, the challenges and future research directions for perovskite/semiconductor heterojunctions are discussed.
Collapse
Affiliation(s)
- Weili Yu
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Feng Li
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tao Huang
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Wei Li
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
126
|
Chen J, Ma G, Gong B, Deng C, Zhang M, Guo K, Cui R, Wu Y, Lv M, Wang X. Bulk Photovoltaic Current Mechanisms in All-Inorganic Perovskite Multiferroic Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:429. [PMID: 36770390 PMCID: PMC9920813 DOI: 10.3390/nano13030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
After the discovery of bulk photovoltaic effect more than half a century ago, ferro-electrical and magneto-optical experiments have provided insights into various related topics, revealing above bandgap open voltages and non-central symmetrical current mechanisms. However, the nature of the photon-generated carriers responses and their microscopic mechanisms remain unclear. Here, all-inorganic perovskite Bi0.85Gd0.15Fe1-xMnxO3 thin films were prepared by a sol-gel process and the effects of Gd and Mn co-doped bismuth ferrites on their microtopography, grain boundries, multiferroic, and optical properties were studied. We discovered a simple "proof of principle" type new method that by one-step measuring the leakage current, one can demonstrate the value of photo generated current being the sum of ballistic current and shift current, which are combined to form the so-called bulk photovoltaic current, and can be related to the prototype intrinsic properties such as magneto-optical coupling and ferroelectric polarization. This result has significant potential influence on design principles for engineering multiferroic optoelectronic devices and future photovoltaic industry development.
Collapse
Affiliation(s)
- Jiazheng Chen
- Key Laboratory of Functional Composite Materials of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guizhou 550025, China
| | - Guobin Ma
- Key Laboratory of Functional Composite Materials of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guizhou 550025, China
- School of Electronics and Information Engineering, Guiyang University, Guiyang 550005, China
| | | | - Chaoyong Deng
- School of Electronics and Information Engineering, Guiyang University, Guiyang 550005, China
| | - Min Zhang
- Key Laboratory of Functional Composite Materials of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guizhou 550025, China
| | - Kaixin Guo
- School of Electronics and Information Engineering, Guiyang University, Guiyang 550005, China
| | - Ruirui Cui
- Key Laboratory of Functional Composite Materials of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guizhou 550025, China
| | - Yunkai Wu
- Key Laboratory of Functional Composite Materials of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guizhou 550025, China
| | - Menglan Lv
- School of Chemistry and Chemical Engineering, Guizhou University, Guizhou 550025, China
| | - Xu Wang
- Key Laboratory of Functional Composite Materials of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guizhou 550025, China
- Guiyang Makers Center, Guizhou 550025, China
| |
Collapse
|
127
|
Ma C, Eickemeyer FT, Lee SH, Kang DH, Kwon SJ, Grätzel M, Park NG. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 2023; 379:173-178. [PMID: 36634188 DOI: 10.1126/science.adf3349] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A myriad of studies and strategies have already been devoted to improving the stability of perovskite films; however, the role of the different perovskite crystal facets in stability is still unknown. Here, we reveal the underlying mechanisms of facet-dependent degradation of formamidinium lead iodide (FAPbI3) films. We show that the (100) facet is substantially more vulnerable to moisture-induced degradation than the (111) facet. With combined experimental and theoretical studies, the degradation mechanisms are revealed; a strong water adhesion following an elongated lead-iodine (Pb-I) bond distance is observed, which leads to a δ-phase transition on the (100) facet. Through engineering, a higher surface fraction of the (111) facet can be achieved, and the (111)-dominated crystalline FAPbI3 films show exceptional stability against moisture. Our findings elucidate unknown facet-dependent degradation mechanisms and kinetics.
Collapse
Affiliation(s)
- Chunqing Ma
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Felix T Eickemeyer
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sun-Ho Lee
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong-Ho Kang
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok Joon Kwon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.,SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.,SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nam-Gyu Park
- School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea.,SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
128
|
Li B, Shen T, Yun S. Recent progress of crystal orientation engineering in halide perovskite photovoltaics. MATERIALS HORIZONS 2023; 10:13-40. [PMID: 36415914 DOI: 10.1039/d2mh00980c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulating the crystallographic orientation of semiconductor crystals plays a vital role in fine-tuning their facet-dependent properties, such as surface properties, charge transfer properties, trap state density, and lattice strain. The success in crystal orientation engineering enables the preferential growth orientation of perovskite thin films with favorable crystal planes by precise nucleation manipulation and growth condition optimization, rendering the films with the unique optoelectronic properties to further improve the efficiency of perovskite solar cells (PSCs). However, the origin and impact of preferential crystallographic orientation of perovskite thin films on the corresponding photovoltaic performance of PSCs are still far from being well understood. Herein, we explore the crystal orientation-dependent optoelectronic properties of halide perovskites and their influence on the photovoltaic performance of PSCs. We summarize the basic strategies for crystal facet engineering in the fabrication of preferentially oriented perovskite thin films, with a focus on the oriented growth mechanism during thin film formation. Based on the above knowledge and the recent research progress in terms of crystal orientation engineering in PSCs, a brief outlook on the remaining challenges and perspectives are provided.
Collapse
Affiliation(s)
- Bo Li
- School of Materials and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China.
| | - Ting Shen
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Sining Yun
- School of Materials and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China.
| |
Collapse
|
129
|
Wu Y, Liu D, Chu W, Wang B, Vasenko AS, Prezhdo OV. Fluctuations at Metal Halide Perovskite Grain Boundaries Create Transient Trap States: Machine Learning Assisted Ab Initio Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55753-55761. [PMID: 36475599 DOI: 10.1021/acsami.2c16203] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
All-inorganic perovskites are promising candidates for solar energy and optoelectronic applications, despite their polycrystalline nature with a large density of grain boundaries (GBs) due to facile solution-processed fabrication. GBs exhibit complex atomistic structures undergoing slow rearrangements. By studying evolution of the Σ5(210) CsPbBr3 GB on a nanosecond time scale, comparable to charge carrier lifetimes, we demonstrate that GB deformations appear every ∼100 ps and increase significantly the probability of deep charge traps. However, the deep traps form only transiently for a few hundred femtoseconds. In contrast, shallow traps appear continuously at the GB. Shallow traps are localized in the GB layer, while deep traps are in a sublayer, which is still distorted from the pristine structure and can be jammed in unfavorable conformations. The GB electronic properties correlate with bond angles, with notable exception of the Br-Br distance, which provides a signature of halide migration along GBs. The transient nature of trap states and localization of electrons and holes at different parts of GBs indicate that charge carrier lifetimes should be long. At the same time, charge mobility can be reduced. The complex, multiscale evolution of geometric and electronic structures of GBs rationalize the contradictory statements made in the literature regarding both benign and detrimental roles of GBs in perovskite performance and provide new atomistic insights into perovskite properties.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | - Weibin Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Bipeng Wang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Andrey S Vasenko
- HSE University, 101000 Moscow, Russia
- I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
130
|
Immanuel PN, Huang SJ, Danchuk V, Sedova A, Prilusky J, Goldreich A, Shalom H, Musin A, Yadgarov L. Improving the Stability of Halide Perovskite Solar Cells Using Nanoparticles of Tungsten Disulfide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4454. [PMID: 36558307 PMCID: PMC9784750 DOI: 10.3390/nano12244454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Halide perovskites-based solar cells are drawing significant attention due to their high efficiency, versatility, and affordable processing. Hence, halide perovskite solar cells have great potential to be commercialized. However, the halide perovskites (HPs) are not stable in an ambient environment. Thus, the instability of the perovskite is an essential issue that needs to be addressed to allow its rapid commercialization. In this work, WS2 nanoparticles (NPs) are successfully implemented on methylammonium lead iodide (MAPbI3) based halide perovskite solar cells. The main role of the WS2 NPs in the halide perovskite solar cells is as stabilizing agent. Here the WS2 NPs act as heat dissipater and charge transfer channels, thus allowing an effective charge separation. The electron extraction by the WS2 NPs from the adjacent MAPbI3 is efficient and results in a higher current density. In addition, the structural analysis of the MAPbI3 films indicates that the WS2 NPs act as nucleation sites, thus promoting the formation of larger grains of MAPbI3. Remarkably, the absorption and shelf life of the MAPbI3 layers have increased by 1.7 and 4.5-fold, respectively. Our results demonstrate a significant improvement in stability and solar cell characteristics. This paves the way for the long-term stabilization of HPs solar cells by the implementation of WS2 NPs.
Collapse
Affiliation(s)
- Philip Nathaniel Immanuel
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Song-Jeng Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Viktor Danchuk
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Anastasiya Sedova
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Johnathan Prilusky
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Achiad Goldreich
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Hila Shalom
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| | - Albina Musin
- Physics Department, Faculty of Natural Sciences, Ariel University, Ariel 4076414, Israel
| | - Lena Yadgarov
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, Ariel 4076414, Israel
| |
Collapse
|
131
|
Zhao X, Vasenko AS, Prezhdo OV, Long R. Anion Doping Delays Nonradiative Electron-Hole Recombination in Cs-Based All-Inorganic Perovskites: Time Domain ab Initio Analysis. J Phys Chem Lett 2022; 13:11375-11382. [PMID: 36454707 DOI: 10.1021/acs.jpclett.2c03072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using time-domain density functional theory combined with nonadiabatic (NA) molecular dynamics, we demonstrate that composition engineering of the X-site anions has a strong influence on the nonradiative electron-hole recombination and thermodynamic stability of cesium-based all-inorganic perovskites. Partial substitution of iodine(I) with bromine (Br) and acetate (Ac) anions reduces the NA electron-vibrational coupling by minimizing the overlap between the electron and hole wave functions and suppressing atomic fluctuations. The doping also widens the energy gap to further reduce the NA coupling and to enhance the open-circuit voltage of perovskite solar cells. These factors increase the charge carrier lifetime by an order of magnitude and improve structural stability in the series CsPbI1.88BrAc0.12 > CsPbI2Br > CsPbI3. The fundamental atomistic insights into the influence of anion doping on the photophysical properties of the all-inorganic lead halide perovskites guide the design of efficient optoelectronic materials.
Collapse
Affiliation(s)
- Xi Zhao
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing100875, People's Republic of China
| | - Andrey S Vasenko
- HSE University, 101000Moscow, Russia
- I. E. Tamm Department of Theoretical Physics, P. N. Lebedev Physical Institute, Russian Academy of Sciences, 119991Moscow, Russia
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California90089, United States
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing100875, People's Republic of China
| |
Collapse
|
132
|
Dhami BS, Iyer V, Pant A, Tripathi RPN, Taylor EJ, Lawrie BJ, Appavoo K. Angle-resolved polarimetry of hybrid perovskite emission for photonic technologies. NANOSCALE 2022; 14:17519-17527. [PMID: 36409224 DOI: 10.1039/d2nr03261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Coupling between light and matter strongly depends on the polarization of the electromagnetic field and the nature of excitations in a material. As hybrid perovskites emerge as a promising class of materials for light-based technologies such as LEDs, LASERs, and photodetectors, it is critical to understand how their microstructure changes the intrinsic properties of the photon emission process. While the majority of optical studies have focused on the spectral content, quantum efficiency and lifetimes of emission in various hybrid perovskite thin films and nanostructures, few studies have investigated other properties of the emitted photons such as polarization and emission angle. Here, we use angle-resolved cathodoluminescence microscopy to access the full polarization state of photons emitted from large-grain hybrid perovskite films with spatial resolution well below the optical diffraction limit. Mapping these Stokes parameters as a function of the angle at which the photons are emitted from the thin film surface, we reveal the effect of a grain boundary on the degree of polarization and angle at which the photons are emitted. Such studies of angle- and polarization-resolved emission at the single grain level are necessary for future development of perovskite-based flat optics, where effects of grain boundaries and interfaces need to be mitigated.
Collapse
Affiliation(s)
- Bibek S Dhami
- Department of Physics, University of Alabama at Birmingham, AL 35294, USA.
| | - Vasudevan Iyer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge TN, 37831, USA
| | - Aniket Pant
- Department of Physics, University of Alabama at Birmingham, AL 35294, USA.
| | - Ravi P N Tripathi
- Department of Physics, University of Alabama at Birmingham, AL 35294, USA.
| | - Ethan J Taylor
- Department of Physics, University of Alabama at Birmingham, AL 35294, USA.
| | - Benjamin J Lawrie
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge TN, 37831, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge TN, 37831, USA
| | | |
Collapse
|
133
|
Sun R, Zhou D, Ding Y, Wang Y, Wang Y, Zhuang X, Liu S, Ding N, Wang T, Xu W, Song H. Efficient single-component white light emitting diodes enabled by lanthanide ions doped lead halide perovskites via controlling Förster energy transfer and specific defect clearance. LIGHT, SCIENCE & APPLICATIONS 2022; 11:340. [PMID: 36470864 PMCID: PMC9722690 DOI: 10.1038/s41377-022-01027-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 05/25/2023]
Abstract
Currently, a major challenge for metal-halide perovskite light emitting diodes (LEDs) is to achieve stable and efficient white light emission due to halide ion segregation. Herein, we report a promising method to fabricate white perovskite LEDs using lanthanide (Ln3+) ions doped CsPbCl3 perovskite nanocrystals (PeNCs). First, K+ ions are doped into the lattice to tune the perovskite bandgap by partially substituting Cs+ ions, which are well matched to the transition energy of some Ln3+ ions from the ground state to the excited state, thereby greatly improving the Förster energy transfer efficiency from excitons to Ln3+ ions. Then, creatine phosphate (CP), a phospholipid widely found in organisms, serves as a tightly binding surface-capping multi-functional ligand which regulates the film formation and enhances the optical and electrical properties of PeNC film. Consequently, the Eu3+ doped PeNCs based-white LEDs show a peak luminance of 1678 cd m-2 and a maximum external quantum efficiency (EQE) of 5.4%, demonstrating excellent performance among existing white PeNC LEDs from a single chip. Furthermore, the method of bandgap modulation and the defect passivation were generalized to other Ln3+ ions doped perovskite LEDs and successfully obtained improved electroluminescence (EL). This work demonstrates the comprehensive and universal strategies in the realization of highly efficient and stable white LEDs via single-component Ln3+ ions doped PeNCs, which provides an optimal solution for the development of low-cost and simple white perovskite LEDs.
Collapse
Affiliation(s)
- Rui Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Donglei Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Yujiao Ding
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuqi Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xinmeng Zhuang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Shuainan Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Nan Ding
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Tianyuan Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wen Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hongwei Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| |
Collapse
|
134
|
Cho C, Feldmann S, Yeom KM, Jang YW, Kahmann S, Huang JY, Yang TCJ, Khayyat MNT, Wu YR, Choi M, Noh JH, Stranks SD, Greenham NC. Efficient vertical charge transport in polycrystalline halide perovskites revealed by four-dimensional tracking of charge carriers. NATURE MATERIALS 2022; 21:1388-1395. [PMID: 36396960 DOI: 10.1038/s41563-022-01395-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Fast diffusion of charge carriers is crucial for efficient charge collection in perovskite solar cells. While lateral transient photoluminescence microscopies have been popularly used to characterize charge diffusion in perovskites, there exists a discrepancy between low diffusion coefficients measured and near-unity charge collection efficiencies achieved in practical solar cells. Here, we reveal hidden microscopic dynamics in halide perovskites through four-dimensional (directions x, y and z and time t) tracking of charge carriers by characterizing out-of-plane diffusion of charge carriers. By combining this approach with confocal microscopy, we discover a strong local heterogeneity of vertical charge diffusivities in a three-dimensional perovskite film, arising from the difference between intragrain and intergrain diffusion. We visualize that most charge carriers are efficiently transported through the direct intragrain pathways or via indirect detours through nearby areas with fast diffusion. The observed anisotropy and heterogeneity of charge carrier diffusion in perovskites rationalize their high performance as shown in real devices. Our work also foresees that further control of polycrystal growth will enable solar cells with micrometres-thick perovskites to achieve both long optical path length and efficient charge collection simultaneously.
Collapse
Affiliation(s)
- Changsoon Cho
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Sascha Feldmann
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Rowland Institute, Harvard University, Cambridge, MA, USA
| | - Kyung Mun Yeom
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
| | - Yeoun-Woo Jang
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Simon Kahmann
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jun-Yu Huang
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Terry Chien-Jen Yang
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Yuh-Renn Wu
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jun Hong Noh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, Republic of Korea
- Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, Republic of Korea
| | - Samuel D Stranks
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Neil C Greenham
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
135
|
Liu X, Li J, Cui X, Wang X, Yang D. Strategies for the preparation of high-performance inorganic mixed-halide perovskite solar cells. RSC Adv 2022; 12:32925-32948. [PMID: 36425177 PMCID: PMC9667475 DOI: 10.1039/d2ra05535j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Inorganic halide perovskites have attracted significant attention in the field of photovoltaics (PV) in recent years due to their superior intrinsic thermal stability and excellent theoretical power conversion efficiency (PCE). CsPbI3 with a bandgap of ∼1.7 eV is considered to be the most potential candidate for PV application. However, bulk CsPbI3 films exhibit poor phase stability. The substitution of some iodide ions with bromide/chloride in CsPbI3 results in the formation of mixed-halide CsPbX3 perovskites, which exhibit a good balance between phase stability and efficiency. The halogen-tunable mixed-halide inorganic perovskites have a bandgap matching the sunlight region and show great potential for application in multi-junction tandem and semitransparent solar cells. Herein, the progress of mixed-halide CsPbX3 PSCs is systematically reviewed, including CsPbI x Br y Cl3-x-y - and CsPbIBr2-based IPSCs. In the case of CsPbIBr2 IPSCs, we introduce the low-temperature deposition of CsPbIBr2 films, doping methods for the preparation of high-quality CsPbIBr2 films and strategies for improving the performance of solar cells. Furthermore, the mechanism of crystallization/interface engineering for the preparation of high-quality CsPbIBr2 films and efficient solar cells devices is emphasized. Finally, the development direction of further improving the PV performance and commercialization of mixed-halide IPSCs are summarized and prospected.
Collapse
Affiliation(s)
- Xin Liu
- a, College of Optoelectronic Engineering, Chengdu University of Information Technology Chengdu 610225 China
| | - Jie Li
- a, College of Optoelectronic Engineering, Chengdu University of Information Technology Chengdu 610225 China
| | - Xumei Cui
- a, College of Optoelectronic Engineering, Chengdu University of Information Technology Chengdu 610225 China
| | - Xiao Wang
- a, College of Optoelectronic Engineering, Chengdu University of Information Technology Chengdu 610225 China
| | - Dingyu Yang
- a, College of Optoelectronic Engineering, Chengdu University of Information Technology Chengdu 610225 China
| |
Collapse
|
136
|
Nanoscale heterogeneity of ultrafast many-body carrier dynamics in triple cation perovskites. Nat Commun 2022; 13:6582. [PMID: 36323659 PMCID: PMC9630529 DOI: 10.1038/s41467-022-33935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
In high fluence applications of lead halide perovskites for light-emitting diodes and lasers, multi-polaron interactions and associated Auger recombination limit the device performance. However, the relationship of the ultrafast and strongly lattice coupled carrier dynamics to nanoscale heterogeneities has remained elusive. Here, in ultrafast visible-pump infrared-probe nano-imaging of the photoinduced carrier dynamics in triple cation perovskite films, a ~20 % variation in sub-ns relaxation dynamics with spatial disorder on tens to hundreds of nanometer is resolved. We attribute the non-uniform relaxation dynamics to the heterogeneous evolution of polaron delocalization and increasing scattering time. The initial high-density excitation results in faster relaxation due to strong many-body interactions, followed by extended carrier lifetimes at lower densities. These results point towards the missing link between the optoelectronic heterogeneity and associated carrier dynamics to guide synthesis and device engineering for improved perovskites device performance. The optoelectronic performance of lead halide perovskite in highfluence applications are hindered by heterogeneous multi-polaron interactions in the nanoscale. Here, Nishda et al. spatially resolve sub-ns relaxation dynamics on the nanometer scale by ultrafast infrared pumpprobe nanoimaging.
Collapse
|
137
|
Zhao H, Ma K, Li J, Fu Y, Qin Y, Zhao D, Dai H, Hu Z, Sun Z, Gao HY. Surface Characterization of the Solution-Processed Organic-Inorganic Hybrid Perovskite Thin Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204271. [PMID: 36228104 DOI: 10.1002/smll.202204271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The surface properties of organic-inorganic hybrid perovskites can strongly affect the efficiency and stability of corresponding devices. Even though different surface passivation methods are developed, the microscopic structures of solution-processed perovskite film surfaces are not systematically studied. This study uses low-temperature scanning tunneling microscopy to study the organic-inorganic hybrid perovskite thin films, MA0.4 FA0.6 PbI3 and MAPbI3 , synthesized by the spin-coating method. Flat surface structures, atomic steps, and crystal grain boundaries are resolved at an atomic resolution. The surface imperfections are also characterized, as well as the dominant defects. Simulations on different types of iodine vacancy configurations are performed by density functional theory calculations. In addition, it is observed that the surface iodine lattice structure is unstable during scanning. Tip scanning can also cause the vertical migration of surface iodine ions. The measurements provide the direct visualizations of the surface imperfections of the solution-processed perovskite films. They are essential for understanding the surface-related optoelectronic effects and rationally designing more efficient surface passivation methods.
Collapse
Affiliation(s)
- Han Zhao
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin, 300350, China
| | - Kang Ma
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jianmin Li
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin, 300350, China
| | - Yikai Fu
- Department of Physics, School of Science, Tianjin University, Tianjin, 300350, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haitao Dai
- Department of Physics, School of Science, Tianjin University, Tianjin, 300350, China
| | - Zhixin Hu
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin, 300350, China
| | - Zhixiang Sun
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin, 300350, China
| | - Hong-Ying Gao
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
138
|
Liu L, Miao Y, Zhai M, Wang H, Ding X, Guo L, Chen C, Cheng M. Molecular Engineering of Peripheral Substitutions to Construct Efficient Acridine Core-Based Hole Transport Materials for Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44450-44459. [PMID: 36129488 DOI: 10.1021/acsami.2c13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of highly efficient hole transport materials (HTMs) for perovskite solar cells (PSCs) has been a hot research topic. Acridine and its derivatives are gradually utilized as new blocks for optoelectronic applications, which stems from its rigid conjugated structure, shedding a new light on this old molecule. Meanwhile, its application in PSCs as a HTM has not been well explored, and the efficiency of 9,10-dihydroacridine (ACR)-based HTMs is relatively low. In this work, we conduct a systematic modulation of the peripheral substituents for ACR core building block-based HTMs and investigate the effects of the electron-donating ability and π-conjugation of peripheral groups on the photovoltaic performance of the corresponding HTMs. It is found that the peripheral groups with a weaker electron-donating ability and stronger π-conjugation are more suitable for the acridine core, which itself has a stronger electron-donating ability. Through molecular engineering, the newly developed HTM ACR-PhDM achieves an impressive power conversion efficiency of 23.5%. Our work lays the foundation for the design and development of efficient HTMs in the future.
Collapse
Affiliation(s)
- Licheng Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yawei Miao
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengde Zhai
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Haoxin Wang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Xingdong Ding
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Guo
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cheng Chen
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Ming Cheng
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
139
|
Kong L, Zhang X, Zhang C, Wang L, Wang S, Cao F, Zhao D, Rogach AL, Yang X. Stability of Perovskite Light-Emitting Diodes: Existing Issues and Mitigation Strategies Related to Both Material and Device Aspects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205217. [PMID: 35921550 DOI: 10.1002/adma.202205217] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Metal halide perovskites combine excellent electronic and optical properties, such as defect tolerance and high photoluminescence efficiency, with the benefits of low-cost, large-area, solution-based processing. Composition- and dimension-tunable properties of perovskites have already been utilized in bright and efficient light-emitting diodes (LEDs). At the same time, there are still great challenges ahead to achieving operational and spectral stability of these devices. In this review, the origins of instability of perovskite materials, and reasons for their degradation in LEDs are considered. Then, strategies for improving the stability of perovskite materials are reviewed, such as compositional engineering, dimensionality control, defect passivation, suitable encapsulation matrices, and fabrication of core/shell perovskite nanocrystals. For improvement of the operational stability of perovskite LEDs, the use of inorganic charge-transport layers, optimization of charge balance, and proper thermal management are considered. The review is concluded with a detailed account of the current challenges and a perspective on the key approaches and opportunities on how to reach the goal of stable, bright, and efficient perovskite LEDs.
Collapse
Affiliation(s)
- Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Xiaoyu Zhang
- College of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Chengxi Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Fan Cao
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Dewei Zhao
- College of Materials Science and Engineering, Engineering Research Center of Alternative Energy Materials & Devices (MoE), Sichuan University, Chengdu, 610065, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| |
Collapse
|
140
|
Jin B, Liang F, Zhao D, Lu Y, Liu L, Liu F, Chen Z, Bi G, Wang P, Zhang Q, Qiu M. Suppression of Phase Transitions in Perovskite Thin Films through Cryogenic Electron Beam Irradiation. NANO LETTERS 2022; 22:7449-7456. [PMID: 36098785 DOI: 10.1021/acs.nanolett.2c02368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic-inorganic hybrid perovskites (OIHPs) with superior optoelectronic properties have emerged as revolutionary semiconductor materials for diverse applications. A fundamental understanding of the interplay between the microscopic molecular-level structure and the macroscopic optoelectronic properties is essential to boost device performance toward theoretical limits. Here, we reveal the critical role of CH3NH3+ (MA) in the regulation of the physicochemical and optoelectronic properties of a MAPbI3 film irradiated by an electron beam at 130 K. The order-to-disorder transformation of the MA cation not only leads to a notably enhanced photoluminescence emission but also results in the suppression of the orthorhombic phase down to 85 K. Taking advantage of the regulation of MA cation dynamics, we demonstrate a perovskite photodetector with 100% photocurrent enhancement and long-term stability exceeding one month. Our study provides a powerful tool for regulating the optoelectronic properties and stabilities of perovskites and highlights potential opportunities related to the organic cation in OIHPs.
Collapse
Affiliation(s)
- Binbin Jin
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
- School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Fei Liang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ding Zhao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yihan Lu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Lufang Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Fengjiang Liu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhong Chen
- Instrumentation and Service Center for Molecular Sciences, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Gang Bi
- School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
| | - Pan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qing Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
141
|
Kagdada HL, Materny A, Singh DK. Decreasing toxicity and increasing photoconversion efficiency by Sn-substitution of Pb in 5-ammonium valeric acid-based two-dimensional hybrid perovskite materials. Phys Chem Chem Phys 2022; 24:23226-23235. [PMID: 36129315 DOI: 10.1039/d2cp02997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The toxicity of Pb in halide-based hybrid perovskite materials stands in the way of their more extensive use, despite their excellent optical properties, high stability and very good photoconversion efficiency. The presented work focuses on addressing the toxicity issues in 2D perovskites. We use 5-ammonium valeric acid (AVA) as an organic spacer and partially or completely eliminate Pb by Sn and apply first principles-based density functional theory (DFT) calculations to determine the properties of these systems. Structural insights are gained, which predict the major changes in the inorganic framework including the metal-halide bond length and the bridging angle between two octahedral configurations. The replacement of Pb by Sn leads to a drastic reduction of the electronic band gap from 1.84 to 1.04 eV. Increasing the Sn content results in Sn-I bonds being stronger than the Pb-I bonds, which entails strong s-p coupling. The calculated effective masses of excitons decrease by up to ∼23% in the case of lead-free perovskites, which can be attributed to the more dispersive band edges due to stronger s-p coupling. The reduction of the effective masses of the charge carriers and the electronic band gap results in high electrical conductivity for the AVA2(MA)Sn2I7 2D perovskite structure. The three structures compared, where AVA2(MA)XI7 (X = Pb2, PbSn, Sn2) exhibit excellent thermoelectric power factors, which suggests promising applications for heat energy conversion. Moving toward lead-free 2D perovskites, the real part of the dielectric constants enhances, which may limit the radiative recombination of charge carriers. Furthermore, reducing the bandgap values by the substitution of Sn results in a red-shift in the edge of the absorption coefficients. Using the spectroscopic limited maximum efficiency (SLME) model, the best efficiencies of 32.20 and 30.08% are achieved for the AVA2(MA)PbSnI7 and AVA2(MA)Sn2I7 structures. The comparison of all three structures demonstrates that lead-free 2D perovskites are very good candidates for highly efficient solar energy conversion.
Collapse
Affiliation(s)
- Hardik L Kagdada
- Department of Basic Sciences, Institute of Infrastructure Technology Research And Management (IITRAM), Ahmedabad 380026, India.
| | - Arnulf Materny
- Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Dheeraj K Singh
- Department of Basic Sciences, Institute of Infrastructure Technology Research And Management (IITRAM), Ahmedabad 380026, India.
| |
Collapse
|
142
|
Nagaya Wong N, Ha SK, Williams K, Shcherbakov-Wu W, Swan JW, Tisdale WA. Robust estimation of charge carrier diffusivity using transient photoluminescence microscopy. J Chem Phys 2022; 157:104201. [DOI: 10.1063/5.0100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transient microscopy has emerged as a powerful tool for imaging the diffusion of excitons and free charge carriers in optoelectronic materials. In many excitonic materials, extraction of diffusion coefficients can be simplified because of the linear relationship between signal intensity and local excited state population. However, in materials where transport is dominated by free charge carriers, extracting diffusivities accurately from multidimensional data is complicated by the nonlinear dependence of the measured signal on the local charge carrier density. To obtain accurate estimates of charge carrier diffusivity from transient microscopy data, statistically robust fitting algorithms coupled to efficient 3D numerical solvers that faithfully relate local carrier dynamics to raw experimental measurables are sometimes needed. Here, we provide a detailed numerical framework for modeling the spatiotemporal dynamics of free charge carriers in bulk semiconductors with significant solving speed reduction and for simulating the corresponding transient photoluminescence microscopy data. To demonstrate the utility of this approach, we apply a fitting algorithm using a Markov chain Monte Carlo sampler to experimental data on bulk CdS and methylammonium lead bromide (MAPbBr3) crystals. Parameter analyses reveal that transient photoluminescence microscopy can be used to obtain robust estimates of charge carrier diffusivities in optoelectronic materials of interest, but that other experimental approaches should be used for obtaining carrier recombination constants. Additionally, simplifications can be made to the fitting model depending on the experimental conditions and material systems studied. Our open-source simulation code and fitting algorithm are made freely available to the scientific community.
Collapse
Affiliation(s)
- Narumi Nagaya Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Seung Kyun Ha
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kristopher Williams
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wenbi Shcherbakov-Wu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James W. Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - William A. Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
143
|
Jia D, Xu M, Mu S, Ren W, Liu C. Recent Progress of Perovskite Nanocrystals in Chem/Bio Sensing. BIOSENSORS 2022; 12:754. [PMID: 36140139 PMCID: PMC9496257 DOI: 10.3390/bios12090754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
Perovskite nanocrystals (PNCs) are endowed with extraordinary photophysical properties such as wide absorption spectra, high quantum yield, and narrow emission bands. However, the inherent shortcomings, especially the instability in polar solvents and water incompatibility, have hindered their application as probes in chem/bio sensing. In this review, we give a fundamental understanding of the challenges when using PNCs for chem/bio sensing and summarize recent progress in this area, including the application of PNCs in various sensors and the corresponding strategies to maintain their structural integrity. Finally, we provide perspectives to promote the future development of PNCs for chem/bio sensing applications.
Collapse
Affiliation(s)
- Dailu Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an 710119, China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an 710119, China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Meng Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an 710119, China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an 710119, China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shuang Mu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an 710119, China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an 710119, China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an 710119, China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an 710119, China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an 710119, China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an 710119, China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
144
|
Zhao L, Tang P, Luo D, Dar MI, Eickemeyer FT, Arora N, Hu Q, Luo J, Liu Y, Zakeeruddin SM, Hagfeldt A, Arbiol J, Huang W, Gong Q, Russell TP, Friend RH, Grätzel M, Zhu R. Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. SCIENCE ADVANCES 2022; 8:eabo3733. [PMID: 36054361 PMCID: PMC10848950 DOI: 10.1126/sciadv.abo3733] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
There exists a considerable density of interaggregate grain boundaries (GBs) and intra-aggregate GBs in polycrystalline perovskites. Mitigation of intra-aggregate GBs is equally notable to that of interaggregate GBs as intra-aggregate GBs can also cause detrimental effects on the photovoltaic performances of perovskite solar cells (PSCs). Here, we demonstrate full-scale GB mitigation ranging from nanoscale intra-aggregate to submicron-scale interaggregate GBs, by modulating the crystallization kinetics using a judiciously designed brominated arylamine trimer. The optimized GB-mitigated perovskite films exhibit reduced nonradiative recombination, and their corresponding mesostructured PSCs show substantially enhanced device efficiency and long-term stability under illumination, humidity, or heat stress. The versatility of our strategy is also verified upon applying it to different categories of PSCs. Our discovery not only specifies a rarely addressed perspective concerning fundamental studies of perovskites at nanoscale but also opens a route to obtain high-quality solution-processed polycrystalline perovskites for high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Lichen Zhao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Pengyi Tang
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
- State Key Laboratory of Information Functional Materials, 2020 X-Lab, ShangHai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Deying Luo
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
| | - M. Ibrahim Dar
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Felix T. Eickemeyer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Neha Arora
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Qin Hu
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- School of Microelectronics, University of Science and Technology of China, Hefei 230026, China
| | - Jingshan Luo
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Nankai University, Tianjin 300350, China
| | - Yuhang Liu
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Shaik Mohammed Zakeeruddin
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Anders Hagfeldt
- Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Catalonia, Spain
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Thomas P. Russell
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard H. Friend
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Station 6, CH-1015 Lausanne, Switzerland
| | - Rui Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
145
|
Guan X, Lei Z, Yu X, Lin CH, Huang JK, Huang CY, Hu L, Li F, Vinu A, Yi J, Wu T. Low-Dimensional Metal-Halide Perovskites as High-Performance Materials for Memory Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203311. [PMID: 35989093 DOI: 10.1002/smll.202203311] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Metal-halide perovskites have drawn profuse attention during the past decade, owing to their excellent electrical and optical properties, facile synthesis, efficient energy conversion, and so on. Meanwhile, the development of information storage technologies and digital communications has fueled the demand for novel semiconductor materials. Low-dimensional perovskites have offered a new force to propel the developments of the memory field due to the excellent physical and electrical properties associated with the reduced dimensionality. In this review, the mechanisms, properties, as well as stability and performance of low-dimensional perovskite memories, involving both molecular-level perovskites and structure-level nanostructures, are comprehensively reviewed. The property-performance correlation is discussed in-depth, aiming to present effective strategies for designing memory devices based on this new class of high-performance materials. Finally, the existing challenges and future opportunities are presented.
Collapse
Affiliation(s)
- Xinwei Guan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Xuechao Yu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Science, 398 Ruoshui Road, Suzhou, 215123, China
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Jing-Kai Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| | - Feng Li
- School of Physics, Nano Institute, ACMM, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
146
|
Visualizing localized, radiative defects in GaAs solar cells. Sci Rep 2022; 12:14838. [PMID: 36050360 PMCID: PMC9436936 DOI: 10.1038/s41598-022-19187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
We have used a calibrated, wide-field hyperspectral imaging instrument to obtain absolute spectrally and spatially resolved photoluminescence images in high growth-rate, rear-junction GaAs solar cells from 300 to 77 K. At the site of some localized defects scattered throughout the active layer, we report a novel, double-peak luminescence emission with maximum peak energies corresponding to both the main band-to-band transition and a band-to-impurity optical transition below the band gap energy. Temperature-dependent imaging reveals that the evolution of the peak intensity and energy agrees well with a model of free-to-bound recombination with a deep impurity center, likely a gallium antisite defect. We also analyzed the temperature dependence of the band-to-band transition within the context of an analytical model of photoluminescence and discuss the agreement between the modeling results and external device parameters such as the open circuit voltage of the solar cells over this broad temperature range.
Collapse
|
147
|
Vedi S, Dheivasigamani T, Selvam GS, Kawakami T, Rajeswaran N, Rajendran S, Muthukaruppan A, AlFaify S, Shkir M. Growth optimization of single-phase novel colloidal perovskite Cs 3Bi 2I 9 nanocrystals and Cs 3Bi 2I 9@SiO 2 core-shell nanocomposites for bio-medical application. Biomater Sci 2022; 10:5956-5967. [PMID: 36043904 DOI: 10.1039/d2bm00773h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead-free halide perovskites have gained attention in recent years as viable materials with more distinctive characteristics than conventional semiconductor materials. Lead-free Cs3Bi2I9 colloidal perovskite nanocrystal is chosen to eliminate its single-phase synthesis difficulty and implement the material in bioimaging applications. Nanostructured Cs3Bi2I9 perovskite composites were coated with a thin coating of SiO2 by an in situ tetraethyl orthosilicate/(3-aminopropyl)trimethoxysilane injection growth method to enhance their stability in aqueous medium and biocompatibility. Single-phase novel Cs3Bi2I9 colloidal perovskite nanocrystal synthesis was successfully developed and optimized by adopting different synthetic conditions with varied experimental parameters. Characterization studies, including X-ray diffractometry and transmission electron microscopy, confirm the hexagonal structure of Cs3Bi2I9 crystals and their cubic morphology. A broad emission peak in the red region was captured for pure and composite perovskite under different excitation wavelengths and was observed using a UV-visible spectrophotometer. Bioimaging of Cs3Bi2I9@SiO2 composites incorporated with L929 cells was conducted using an inverted fluorescence microscope under blue and green excitation. The results obtained from bioimaging studies indicated that the Cs3Bi2I9@SiO2 nanocomposites entered the cell field and exhibited an emission under excitation. The non-toxic behavior of the synthesized Cs3Bi2I9@SiO2 composites was demonstrated using MTT cytotoxicity assay in L929 fibroblast mouse cells, showing better cell compatibility.
Collapse
Affiliation(s)
- Santhana Vedi
- Nano-crystal Design and Application Lab (n-DAL), Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore-641062, Tamil Nadu, India. .,Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Thangaraju Dheivasigamani
- Nano-crystal Design and Application Lab (n-DAL), Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore-641062, Tamil Nadu, India.
| | - Govarthini Seerangan Selvam
- Nano-crystal Design and Application Lab (n-DAL), Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore-641062, Tamil Nadu, India.
| | - Takashi Kawakami
- Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi, 400-8510, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Narmadha Rajeswaran
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Selvakumar Rajendran
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Alagar Muthukaruppan
- Polymer Engineering Lab (PEL), PSG Institute of Technology and Applied Research, Coimbatore-641062, Tamil Nadu, India
| | - S AlFaify
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohd Shkir
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.,Department of Chemistry and University Centre for Research & Development, Chandigarh University, Mohali-140413, Punjab, India
| |
Collapse
|
148
|
Bao C, Gao F. Physics of defects in metal halide perovskites. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:096501. [PMID: 35763940 DOI: 10.1088/1361-6633/ac7c7a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Metal halide perovskites are widely used in optoelectronic devices, including solar cells, photodetectors, and light-emitting diodes. Defects in this class of low-temperature solution-processed semiconductors play significant roles in the optoelectronic properties and performance of devices based on these semiconductors. Investigating the defect properties provides not only insight into the origin of the outstanding performance of perovskite optoelectronic devices but also guidance for further improvement of performance. Defects in perovskites have been intensely studied. Here, we review the progress in defect-related physics and techniques for perovskites. We survey the theoretical and computational results of the origin and properties of defects in perovskites. The underlying mechanisms, functions, advantages, and limitations of trap state characterization techniques are discussed. We introduce the effect of defects on the performance of perovskite optoelectronic devices, followed by a discussion of the mechanism of defect treatment. Finally, we summarize and present key challenges and opportunities of defects and their role in the further development of perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Chunxiong Bao
- Department of Physics, Chemistry, and Biology, Linköping University, Sweden
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Feng Gao
- Department of Physics, Chemistry, and Biology, Linköping University, Sweden
| |
Collapse
|
149
|
Efficient hole transport materials based on naphthyridine core designed for application in perovskite solar photovoltaics. J Mol Graph Model 2022; 117:108292. [PMID: 36001906 DOI: 10.1016/j.jmgm.2022.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022]
Abstract
Naphthyridine-based compounds with a donor-acceptor-donor (D-A-D) skeleton were considered as hole transport materials (HTMs) for perovskite solar cells (PSCs). The optical characteristics, stability, solubility, Hirshfeld surface analysis, crystal structure, and hole transport properties of the HTMs were studied systematically. The HOMO energies of all HTMs were higher than valence band of CH3NH3PbI3 (MAPbI3) perovskite signifying naphthyridine-based HTMs had appropriate energy alignments for usage in PSCs. The LUMO level of designed HTMs were higher than MAPbI3 conduction band ensuring prevention of backward electronic movement from MAPbI3 to the cathode. The λabsmax amounts of all HTMs were close 400 nm, which showed their competition with perovskite was impossible. The 18NP and 26NP HTMs had higher hole mobilities compared to that of the Spiro-OMeTAD. Considering aligned HOMO energies, suitable hole mobilities, satisfactory stability and solubility, 18NP (1,8-Naphthyridine) and 26NP (2,6-Naphthyridine) were introduced as the best HTM materials for PSCs which could replace Spiro-OMeTAD.
Collapse
|
150
|
Song K, Fan Y, Liu J, Qi D, Lu N, Qin W. Carrier Separation Enhanced by High Angle Twist Grain Boundaries in Cesium Lead Bromide Perovskites. J Phys Chem Lett 2022; 13:7206-7212. [PMID: 35912980 DOI: 10.1021/acs.jpclett.2c01832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Grain boundaries (GBs) have a profound impact on mechanical, chemical, and physical properties of polycrystalline materials. Comprehension of atomic and electronic structures of different GBs in materials can help to understand their impact on materials' properties. Here, with aberration-corrected scanning transmission electron microscopy (STEM), the atomic structure of a 90° twist GB s in CsPbBr3 is determined, and its impact on electron-hole pair separation is predicted. The 90° twist GB has a coherent interface and the same chemical composition as the bulk except for the lattice twist. Density functional theory (DFT) calculation results indicate that the twist GB has an electronic structure similar to that of the bulk CsPbBr3. An electronic potential at the GBs enhances the separation of photogenerated carriers and promotes the motion of electrons across the GBs. These results extend the understanding of atomic and electronic structure of GBs in halide perovskites and propose a potential strategy to eliminate the influence of GBs by GB engineering.
Collapse
Affiliation(s)
- Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yingcai Fan
- School of Physics, Shandong University, Jinan 250100, China
| | - Jiakai Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Dongqing Qi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ning Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wei Qin
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|