101
|
Pan D, Morono Y, Inagaki F, Takai K. An Improved Method for Extracting Viruses From Sediment: Detection of Far More Viruses in the Subseafloor Than Previously Reported. Front Microbiol 2019; 10:878. [PMID: 31110497 PMCID: PMC6501758 DOI: 10.3389/fmicb.2019.00878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/05/2019] [Indexed: 01/21/2023] Open
Abstract
Viruses are the most abundant biological entities on Earth and perform essential ecological functions in aquatic environments by mediating biogeochemical cycling and lateral gene transfer. Cellular life as well as viruses have been found in deep subseafloor sediment. However, the study of deep sediment viruses has been hampered by the complexities involved in efficiently extracting viruses from a sediment matrix. Here, we developed a new method for the extraction of viruses from sediment based on density separation using a Nycodenz density step gradient. The density separation method resulted in up to 2 orders of magnitude greater recovery of viruses from diverse subseafloor sediments compared to conventional methods. The density separation method also showed more consistent performance between samples of different sediment lithology, whereas conventional virus extraction methods were highly inconsistent. Using this new method, we show that previously published virus counts have underestimated viral abundances by up to 2 orders of magnitude. These improvements suggest that the carbon contained within viral biomass in the subseafloor environment may potentially be revised upward to 0.8-3.7 Gt from current estimates of 0.2 Gt. The vastly improved recovery of viruses indicate that viruses represent a far larger pool of organic carbon in subseafloor environments than previously estimated.
Collapse
Affiliation(s)
- Donald Pan
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
- Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
102
|
Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat Commun 2019; 10:1816. [PMID: 31000700 PMCID: PMC6472368 DOI: 10.1038/s41467-019-09747-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
The lack of microbial genomes and isolates from the deep seabed means that very little is known about the ecology of this vast habitat. Here, we investigate energy and carbon acquisition strategies of microbial communities from three deep seabed petroleum seeps (3 km water depth) in the Eastern Gulf of Mexico. Shotgun metagenomic analysis reveals that each sediment harbors diverse communities of chemoheterotrophs and chemolithotrophs. We recovered 82 metagenome-assembled genomes affiliated with 21 different archaeal and bacterial phyla. Multiple genomes encode enzymes for anaerobic oxidation of aliphatic and aromatic compounds, including those of candidate phyla Aerophobetes, Aminicenantes, TA06 and Bathyarchaeota. Microbial interactions are predicted to be driven by acetate and molecular hydrogen. These findings are supported by sediment geochemistry, metabolomics, and thermodynamic modelling. Overall, we infer that deep-sea sediments experiencing thermogenic hydrocarbon inputs harbor phylogenetically and functionally diverse communities potentially sustained through anaerobic hydrocarbon, acetate and hydrogen metabolism. Little is known about the microbial ecology of the deep seabed. Here, Dong et al. predict metabolic capabilities and microbial interactions in deep seabed petroleum seeps using shotgun metagenomics, sediment geochemistry, metabolomics, and thermodynamic modelling.
Collapse
|
103
|
Petro C, Zäncker B, Starnawski P, Jochum LM, Ferdelman TG, Jørgensen BB, Røy H, Kjeldsen KU, Schramm A. Marine Deep Biosphere Microbial Communities Assemble in Near-Surface Sediments in Aarhus Bay. Front Microbiol 2019; 10:758. [PMID: 31031732 PMCID: PMC6474314 DOI: 10.3389/fmicb.2019.00758] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/26/2019] [Indexed: 11/30/2022] Open
Abstract
Analyses of microbial diversity in marine sediments have identified a core set of taxa unique to the marine deep biosphere. Previous studies have suggested that these specialized communities are shaped by processes in the surface seabed, in particular that their assembly is associated with the transition from the bioturbated upper zone to the nonbioturbated zone below. To test this hypothesis, we performed a fine-scale analysis of the distribution and activity of microbial populations within the upper 50 cm of sediment from Aarhus Bay (Denmark). Sequencing and qPCR were combined to determine the depth distributions of bacterial and archaeal taxa (16S rRNA genes) and sulfate-reducing microorganisms (SRM) (dsrB gene). Mapping of radionuclides throughout the sediment revealed a region of intense bioturbation at 0-6 cm depth. The transition from bioturbated sediment to the subsurface below (7 cm depth) was marked by a shift from dominant surface populations to common deep biosphere taxa (e.g., Chloroflexi and Atribacteria). Changes in community composition occurred in parallel to drops in microbial activity and abundance caused by reduced energy availability below the mixed sediment surface. These results offer direct evidence for the hypothesis that deep subsurface microbial communities present in Aarhus Bay mainly assemble already centimeters below the sediment surface, below the bioturbation zone.
Collapse
Affiliation(s)
- Caitlin Petro
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Birthe Zäncker
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Piotr Starnawski
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lara M. Jochum
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Timothy G. Ferdelman
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Bo Barker Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Røy
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper U. Kjeldsen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
104
|
Domestication of previously uncultivated Candidatus Desulforudis audaxviator from a deep aquifer in Siberia sheds light on its physiology and evolution. ISME JOURNAL 2019; 13:1947-1959. [PMID: 30899075 DOI: 10.1038/s41396-019-0402-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 11/09/2022]
Abstract
An enigmatic uncultured member of Firmicutes, Candidatus Desulforudis audaxviator (CDA), is known by its genome retrieved from the deep gold mine in South Africa, where it formed a single-species ecosystem fuelled by hydrogen from water radiolysis. It was believed that in situ conditions CDA relied on scarce energy supply and did not divide for hundreds to thousand years. We have isolated CDA strain BYF from a 2-km-deep aquifer in Western Siberia and obtained a laboratory culture growing with a doubling time of 28.5 h. BYF uses not only H2 but also various organic electron donors for sulfate respiration. Growth required elemental iron, and ferrous iron did not substitute for it. A complex intracellular organization included gas vesicles, internal membranes, and electron-dense structures enriched in phosphorus, iron, and calcium. Genome comparison of BYF with the South African CDA revealed minimal differences mostly related to mobile elements and prophage insertions. Two genomes harbored <800 single-nucleotide polymorphisms and had nearly identical CRISPR loci. We suggest that spores with the gas vesicles may facilitate global distribution of CDA followed by colonization of suitable subsurface environments. Alternatively, a slow evolution rate in the deep subsurface could result in high genetic similarity of CDA populations at two sites spatially separated for hundreds of millions of years.
Collapse
|
105
|
Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, Allen EE, Nunnally CC, Drazen JC, Mayor DJ, Bartlett DH. Microbial Community Diversity Within Sediments from Two Geographically Separated Hadal Trenches. Front Microbiol 2019; 10:347. [PMID: 30930856 PMCID: PMC6428765 DOI: 10.3389/fmicb.2019.00347] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Hadal ocean sediments, found at sites deeper than 6,000 m water depth, are thought to contain microbial communities distinct from those at shallower depths due to high hydrostatic pressures and higher abundances of organic matter. These communities may also differ from one other as a result of geographical isolation. Here we compare microbial community composition in surficial sediments of two hadal environments—the Mariana and Kermadec trenches—to evaluate microbial biogeography at hadal depths. Sediment microbial consortia were distinct between trenches, with higher relative sequence abundances of taxa previously correlated with organic matter degradation present in the Kermadec Trench. In contrast, the Mariana Trench, and deeper sediments in both trenches, were enriched in taxa predicted to break down recalcitrant material and contained other uncharacterized lineages. At the 97% similarity level, sequence-abundant taxa were not trench-specific and were related to those found in other hadal and abyssal habitats, indicating potential connectivity between geographically isolated sediments. Despite the diversity of microorganisms identified using culture-independent techniques, most isolates obtained under in situ pressures were related to previously identified piezophiles. Members related to these same taxa also became dominant community members when native sediments were incubated under static, long-term, unamended high-pressure conditions. Our results support the hypothesis that there is connectivity between sediment microbial populations inhabiting the Mariana and Kermadec trenches while showing that both whole communities and specific microbial lineages vary between trench of collection and sediment horizon depth. This in situ biodiversity is largely missed when incubating samples within pressure vessels and highlights the need for revised protocols for high-pressure incubations.
Collapse
Affiliation(s)
- Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Eleanna Grammatopoulou
- Oceanlab, The Institute of Biological and Environmental Sciences, King's College, The University of Aberdeen, Aberdeen, United Kingdom
| | - Michelle Pombrol
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Xiaoxiong Xu
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Oladayo Osuntokun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Jessica Blanton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Clifton C Nunnally
- Louisiana Universities Marine Consortium (LUMCON), Chauvin, LA, United States
| | - Jeffrey C Drazen
- Department of Oceanography, University of Hawai'i at Ma-noa, Honolulu, HI, United States
| | - Daniel J Mayor
- Oceanlab, The Institute of Biological and Environmental Sciences, King's College, The University of Aberdeen, Aberdeen, United Kingdom.,National Oceanography Centre, University of Southampton Waterfront Campus European Way, Southampton, United Kingdom
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
106
|
Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME JOURNAL 2019; 13:1857-1864. [PMID: 30877284 PMCID: PMC6776017 DOI: 10.1038/s41396-019-0397-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 11/25/2022]
Abstract
Viruses are ubiquitous and cause significant mortality in marine bacterial and archaeal communities. Little is known about the role of viruses in the sub-seafloor biosphere, which hosts a large fraction of all microbes on Earth. We quantified and characterized viruses in sediments from the Baltic Sea. The results show that the Baltic Sea sub-seafloor biosphere harbors highly abundant viruses with densities up to 1.8 × 1010 viruses cm−3. High potential viral production down to 37 meters below seafloor in ca. 6000-years-old sediments and infected prokaryotic cells visible by transmission electron microscopy demonstrate active viral infection. Morphological and molecular data indicate that the highly diverse community of viruses includes both allochthonous input from the overlying seawater and autochthonous production. The detection of cyanophage-like sequences showed that viruses of phototrophic hosts may persist in marine sediments for thousands of years. Our results imply that viruses influence sub-seafloor microbial community dynamics and thereby affect biogeochemical processes in the sub-seafloor biosphere.
Collapse
|
107
|
Vuillemin A, Ariztegui D, Horn F, Kallmeyer J, Orsi WD. Microbial community composition along a 50 000-year lacustrine sediment sequence. FEMS Microbiol Ecol 2019; 94:4880442. [PMID: 29471361 PMCID: PMC5905624 DOI: 10.1093/femsec/fiy029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/19/2018] [Indexed: 02/01/2023] Open
Abstract
For decades, microbial community composition in subseafloor sediments has been the focus of extensive studies. In deep lacustrine sediments, however, the taxonomic composition of microbial communities remains undercharacterized. Greater knowledge on microbial diversity in lacustrine sediments would improve our understanding of how environmental factors, and resulting selective pressures, shape subsurface biospheres in marine and freshwater sediments. Using high-throughput sequencing of 16S rRNA genes across high-resolution climate intervals covering the last 50 000 years in Laguna Potrok Aike, Argentina, we identified changes in microbial populations in response to both past environmental conditions and geochemical changes of the sediment during burial. Microbial communities in Holocene sediments were most diverse, reflecting a layering of taxa linked to electron acceptors availability. In deeper intervals, the data show that salinity, organic matter and the depositional conditions over the Last Glacial-interglacial cycle were all selective pressures in the deep lacustrine assemblage resulting in a genetically distinct biosphere from the surface dominated primarily by Bathyarchaeota and Atribacteria groups. However, similar to marine sediments, some dominant taxa in the shallow subsurface persisted into the subsurface as minor fraction of the community. The subsequent establishment of a deep subsurface community likely results from a combination of paleoenvironmental factors that have shaped the pool of available substrates, together with substrate depletion and/or reworking of organic matter with depth.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- Department of Earth & Environmental Science, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany.,Section of Earth & Environmental Sciences, University of Geneva, rue des Maraichers 13, 1205 Geneva, Switzerland.,GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Daniel Ariztegui
- Section of Earth & Environmental Sciences, University of Geneva, rue des Maraichers 13, 1205 Geneva, Switzerland
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - William D Orsi
- Department of Earth & Environmental Science, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany.,Geobio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
| | | |
Collapse
|
108
|
Abstract
The Methanosarcinales, a lineage of cytochrome-containing methanogens, have recently been proposed to participate in direct extracellular electron transfer interactions within syntrophic communities. To shed light on this phenomenon, we applied electrochemical techniques to measure electron uptake from cathodes by Methanosarcina barkeri, which is an important model organism that is genetically tractable and utilizes a wide range of substrates for methanogenesis. Here, we confirm the ability of M. barkeri to perform electron uptake from cathodes and show that this cathodic current is linked to quantitative increases in methane production. The underlying mechanisms we identified include, but are not limited to, a recently proposed association between cathodes and methanogen-derived extracellular enzymes (e.g., hydrogenases) that can facilitate current generation through the formation of reduced and diffusible methanogenic substrates (e.g., hydrogen). However, after minimizing the contributions of such extracellular enzymes and using a mutant lacking hydrogenases, we observe a lower-potential hydrogen-independent pathway that facilitates cathodic activity coupled to methane production in M. barkeri Our electrochemical measurements of wild-type and mutant strains point to a novel and hydrogenase-free mode of electron uptake with a potential near -484 mV versus standard hydrogen electrode (SHE) (over 100 mV more reduced than the observed hydrogenase midpoint potential under these conditions). These results suggest that M. barkeri can perform multiple modes (hydrogenase-mediated and free extracellular enzyme-independent modes) of electrode interactions on cathodes, including a mechanism pointing to a direct interaction, which has significant applied and ecological implications.IMPORTANCE Methanogenic archaea are of fundamental applied and environmental relevance. This is largely due to their activities in a wide range of anaerobic environments, generating gaseous reduced carbon that can be utilized as a fuel source. While the bioenergetics of a wide variety of methanogens have been well studied with respect to soluble substrates, a mechanistic understanding of their interaction with solid-phase redox-active compounds is limited. This work provides insight into solid-phase redox interactions in Methanosarcina spp. using electrochemical methods. We highlight a previously undescribed mode of electron uptake from cathodes that is potentially informative of direct interspecies electron transfer interactions in the Methanosarcinales.
Collapse
|
109
|
Imachi H, Tasumi E, Takaki Y, Hoshino T, Schubotz F, Gan S, Tu TH, Saito Y, Yamanaka Y, Ijiri A, Matsui Y, Miyazaki M, Morono Y, Takai K, Hinrichs KU, Inagaki F. Cultivable microbial community in 2-km-deep, 20-million-year-old subseafloor coalbeds through ~1000 days anaerobic bioreactor cultivation. Sci Rep 2019; 9:2305. [PMID: 30783143 PMCID: PMC6381156 DOI: 10.1038/s41598-019-38754-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/09/2019] [Indexed: 11/08/2022] Open
Abstract
Recent explorations of scientific ocean drilling have revealed the presence of microbial communities persisting in sediments down to ~2.5 km below the ocean floor. However, our knowledge of these microbial populations in the deep subseafloor sedimentary biosphere remains limited. Here, we present a cultivation experiment of 2-km-deep subseafloor microbial communities in 20-million-year-old lignite coalbeds using a continuous-flow bioreactor operating at 40 °C for 1029 days with lignite particles as the major energy source. Chemical monitoring of effluent samples via fluorescence emission-excitation matrices spectroscopy and stable isotope analyses traced the transformation of coalbed-derived organic matter in the dissolved phase. Hereby, the production of acetate and 13C-depleted methane together with the increase and transformation of high molecular weight humics point to an active lignite-degrading methanogenic community present within the bioreactor. Electron microscopy revealed abundant microbial cells growing on the surface of lignite particles. Small subunit rRNA gene sequence analysis revealed that diverse microorganisms grew in the bioreactor (e.g., phyla Proteobacteria, Firmicutes, Chloroflexi, Actinobacteria, Bacteroidetes, Spirochaetes, Tenericutes, Ignavibacteriae, and SBR1093). These results indicate that activation and adaptive growth of 2-km-deep microbes was successfully accomplished using a continuous-flow bioreactor, which lays the groundwork to explore networks of microbial communities of the deep biosphere and their physiologies.
Collapse
Affiliation(s)
- Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Eiji Tasumi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
| | - Tatsuhiko Hoshino
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
- Kochi Institute for Core Sample Research, JAMSTEC, Nankoku, Kochi, 783-8502, Japan
| | - Florence Schubotz
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, D-28359, Bremen, Germany
| | - Shuchai Gan
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, D-28359, Bremen, Germany
| | - Tzu-Hsuan Tu
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Institute of Oceanography, National Taiwan University, Taipei, 106, Taiwan
| | - Yumi Saito
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Yuko Yamanaka
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Akira Ijiri
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
| | - Yohei Matsui
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
- Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
| | - Masayuki Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Yuki Morono
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
- Kochi Institute for Core Sample Research, JAMSTEC, Nankoku, Kochi, 783-8502, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, D-28359, Bremen, Germany
| | - Fumio Inagaki
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka, Kanagawa, 237-0061, Japan
- Kochi Institute for Core Sample Research, JAMSTEC, Nankoku, Kochi, 783-8502, Japan
- Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama, Kanagawa, 236-0001, Japan
| |
Collapse
|
110
|
Microbial Organic Matter Degradation Potential in Baltic Sea Sediments Is Influenced by Depositional Conditions and In Situ Geochemistry. Appl Environ Microbiol 2019; 85:AEM.02164-18. [PMID: 30504213 PMCID: PMC6365825 DOI: 10.1128/aem.02164-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/17/2018] [Indexed: 11/23/2022] Open
Abstract
Sediments sequester organic matter over geologic time scales and impact global climate regulation. Microbial communities in marine sediments drive organic matter degradation, but the factors controlling their assemblages and activities, which in turn impact their role in organic matter degradation, are not well understood. Hence, determining the role of microbial communities in carbon cycling in various sediment types is necessary for predicting future sediment carbon cycling. We examined microbial communities in Baltic Sea sediments, which were deposited across various climatic and geographical regimes to determine the relationship between microbial potential for breakdown of organic matter and abiotic factors, including geochemistry and sediment lithology. The findings from this study will contribute to our understanding of carbon cycling in the deep biosphere and how microbial communities live in deeply buried environments. Globally, marine sediments are a vast repository of organic matter, which is degraded through various microbial pathways, including polymer hydrolysis and monomer fermentation. The sources, abundances, and quality (i.e., labile or recalcitrant) of the organic matter and the composition of the microbial assemblages vary between sediments. Here, we examine new and previously published sediment metagenomes from the Baltic Sea and the nearby Kattegat region to determine connections between geochemistry and the community potential to degrade organic carbon. Diverse organic matter hydrolysis encoding genes were present in sediments between 0.25 and 67 meters below seafloor and were in higher relative abundances in those sediments that contained more organic matter. New analysis of previously published metatranscriptomes demonstrated that many of these genes were transcribed in two organic-rich Holocene sediments. Some of the variation in deduced pathways in the metagenomes correlated with carbon content and depositional conditions. Fermentation-related genes were found in all samples and encoded multiple fermentation pathways. Notably, genes involved in alcohol metabolism were amongst the most abundant of these genes, indicating that this is an important but underappreciated aspect of sediment carbon cycling. This study is a step towards a more complete understanding of microbial food webs and the impacts of depositional facies on present sedimentary microbial communities. IMPORTANCE Sediments sequester organic matter over geologic time scales and impact global climate regulation. Microbial communities in marine sediments drive organic matter degradation, but the factors controlling their assemblages and activities, which in turn impact their role in organic matter degradation, are not well understood. Hence, determining the role of microbial communities in carbon cycling in various sediment types is necessary for predicting future sediment carbon cycling. We examined microbial communities in Baltic Sea sediments, which were deposited across various climatic and geographical regimes to determine the relationship between microbial potential for breakdown of organic matter and abiotic factors, including geochemistry and sediment lithology. The findings from this study will contribute to our understanding of carbon cycling in the deep biosphere and how microbial communities live in deeply buried environments.
Collapse
|
111
|
Wörmer L, Hoshino T, Bowles MW, Viehweger B, Adhikari RR, Xiao N, Uramoto GI, Könneke M, Lazar CS, Morono Y, Inagaki F, Hinrichs KU. Microbial dormancy in the marine subsurface: Global endospore abundance and response to burial. SCIENCE ADVANCES 2019; 5:eaav1024. [PMID: 30801015 PMCID: PMC6382399 DOI: 10.1126/sciadv.aav1024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/11/2019] [Indexed: 05/19/2023]
Abstract
Marine sediments host an unexpectedly large microbial biosphere, suggesting unique microbial mechanisms for surviving burial and slow metabolic turnover. Although dormancy is generally considered an important survival strategy, its specific role in subsurface sediments remains unclear. We quantified dormant bacterial endospores in 331 marine sediment samples from diverse depositional types and geographical origins. The abundance of endospores relative to vegetative cells increased with burial depth and endospores became dominant below 25 m, with an estimated population of 2.5 × 1028 to 1.9 × 1029 endospores in the uppermost kilometer of sediment and a corresponding biomass carbon of 4.6 to 35 Pg surpassing that of vegetative cells. Our data further identify distinct endospore subgroups with divergent resistance to burial and aging. Endospores may shape the deep biosphere by providing a core population for colonization of new habitats and/or through low-frequency germination to sustain slow growth in this environment.
Collapse
Affiliation(s)
- Lars Wörmer
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, 28359 Bremen, Germany
- Corresponding author.
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
| | | | - Bernhard Viehweger
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, 28359 Bremen, Germany
| | - Rishi R. Adhikari
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, 28359 Bremen, Germany
| | - Nan Xiao
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
| | - Go-ichiro Uramoto
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Center for Advanced Marine Core Research, Kochi University, Kochi 783-8502, Japan
| | - Martin Könneke
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, 28359 Bremen, Germany
| | - Cassandre S. Lazar
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, 28359 Bremen, Germany
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montreal, Quebec H3C 3P8, Canada
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
| | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama 236-0001, Japan
| | - Kai-Uwe Hinrichs
- MARUM—Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
112
|
|
113
|
Deng X, Okamoto A. Electrode Potential Dependency of Single-Cell Activity Identifies the Energetics of Slow Microbial Electron Uptake Process. Front Microbiol 2018; 9:2744. [PMID: 30483241 PMCID: PMC6243204 DOI: 10.3389/fmicb.2018.02744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Electrochemical measurements have been widely applied to study microbial extracellular electron transport processes. However, because electrochemistry detects not only microbial electron transport but also other reactions, background signals comparable to or larger than microbial ones hamper the identification of microbial electrochemical properties. This problem is crucial especially for the detection of electron uptake processes by slow-growing microbes in low-energy subsurface sediments, as the environmental samples contain electrochemically active humus and mineral particles. In this study, we report a cell-specific stable isotope analysis to quantify the electrode potential dependency of anabolic activity in individual cells for identifying the electron uptake energetics of slow-growing bacteria. Followed by the incubation of Desulfovibrio ferrophilus IS5 cells with isotopic 15N-ammonium as the sole N source on electrodes poised at potentials of -0.2, -0.3, -0.4, and -0.5 V [vs. standard hydrogen electrode (SHE)], we conducted nanoscale secondary ion mass spectroscopy (NanoSIMS) to quantify 15N assimilation in more than 100 individual cells on the electrodes. We observed significant 15N assimilation at potentials of -0.4 and more 15N assimilation at -0.5 V, which is consistent with the onset potential for electron uptake via outer-membrane cytochromes (OMCs). The activation of cell energy metabolism was further examined by transcriptome analysis. Our results showed a novel methodology to study microbial electron uptake energetics. The results also serve as the first direct evidence that energy acquisition is coupled to the electron uptake process in sulfate-reducing bacteria that are ubiquitous in the subsurface environments, with implications on the electron-fueled subsurface biosphere hypothesis and other microbial processes, such as anaerobic iron corrosion and anaerobic methane oxidation.
Collapse
Affiliation(s)
- Xiao Deng
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.,International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan.,Center for Functional Sensor and Actuator, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
114
|
Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation. ISME JOURNAL 2018; 13:632-650. [PMID: 30323265 PMCID: PMC6461797 DOI: 10.1038/s41396-018-0296-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/24/2022]
Abstract
Despite the significance of biogenic methane generation in coal beds, there has never been a systematic long-term evaluation of the ecological response to biostimulation for enhanced methanogenesis in situ. Biostimulation tests in a gas-free coal seam were analysed over 1.5 years encompassing methane production, cell abundance, planktonic and surface associated community composition and chemical parameters of the coal formation water. Evidence is presented that sulfate reducing bacteria are energy limited whilst methanogenic archaea are nutrient limited. Methane production was highest in a nutrient amended well after an oxic preincubation phase to enhance coal biofragmentation (calcium peroxide amendment). Compound-specific isotope analyses indicated the predominance of acetoclastic methanogenesis. Acetoclastic methanogenic archaea of the Methanosaeta and Methanosarcina genera increased with methane concentration. Acetate was the main precursor for methanogenesis, however more acetate was consumed than methane produced in an acetate amended well. DNA stable isotope probing showed incorporation of 13C-labelled acetate into methanogenic archaea, Geobacter species and sulfate reducing bacteria. Community characterisation of coal surfaces confirmed that methanogenic archaea make up a substantial proportion of coal associated biofilm communities. Ultimately, methane production from a gas-free subbituminous coal seam was stimulated despite high concentrations of sulfate and sulfate-reducing bacteria in the coal formation water. These findings provide a new conceptual framework for understanding the coal reservoir biosphere.
Collapse
|
115
|
Torti A, Jørgensen BB, Lever MA. Preservation of microbial DNA in marine sediments: insights from extracellular DNA pools. Environ Microbiol 2018; 20:4526-4542. [PMID: 30198168 DOI: 10.1111/1462-2920.14401] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/04/2018] [Accepted: 09/05/2018] [Indexed: 01/15/2023]
Abstract
Marine sediments harbour extracellular DNA (exDNA) not associated with currently living organisms. Including this exDNA in genetic surveys may distort abundance and diversity estimates of living prokaryotic communities. We separately extract exDNA and intracellular DNA (inDNA) from 11 horizons in a 10-m deep sediment core from Aarhus Bay (Denmark) that spans > 9000 years of Holocene sedimentation. We compare depth profiles of bacterial and archaeal 16S rRNA gene compositions to those of macrofaunal activity (bioturbation), sulfate and methane concentrations, sediment age and lithology. Among these variables, bioturbation shows the strongest relationship with the two DNA pools. In bioturbated surface sediments, the majority of Operational Taxonomic Units (OTUs) present in exDNA is absent from inDNA, thus belonging to microorganisms that were not alive at the time of sampling. Below the bioturbation zone, the two DNA pools display a much higher phylogenetic similarity. At all depths, the majority of exDNA and inDNA sequences show highest sequence similarities to sediment microorganisms, a finding that is additionally supported by separate analyses on low- and high-molecular weight exDNA. Our results indicate that in Aarhus Bay the vast majority of prokaryotic exDNA is turned over, thus not contributing to a genetic archive of past environmental change.
Collapse
Affiliation(s)
- Andrea Torti
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Mark Alexander Lever
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark.,Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
116
|
Hoshino T, Inagaki F. Abundance and distribution of Archaea in the subseafloor sedimentary biosphere. ISME JOURNAL 2018; 13:227-231. [PMID: 30116037 PMCID: PMC6298964 DOI: 10.1038/s41396-018-0253-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
Subseafloor sedimentary environments harbor a remarkable number of microorganisms that constitute anaerobic and aerobic microbial ecosystems beneath the ocean margins and open-ocean gyres, respectively. Microbial biomass and diversity richness generally decrease with increasing sediment depth and burial time. However, there has been a long-standing debate over the contribution and distribution of Archaea in the subseafloor sedimentary biosphere. Here we show the global quantification of archaeal and bacterial 16S rRNA genes in 221 sediment core samples obtained from diverse oceanographic settings through scientific ocean drilling using microfluidic digital PCR. We estimated that archaeal cells constitute 37.3% of the total microbial cells (40.0% and 12.8% in the ocean margin and open-ocean sites, respectively), corresponding to 1.1 × 1029 cells on Earth. In addition, the relative abundance of archaeal 16S rRNA genes generally decreased with the depth of water in the overlying sedimentary habitat, suggesting that Archaea may be more sensitive to nutrient quality and quantity supplied from the overlying ocean.
Collapse
Affiliation(s)
- Tatsuhiko Hoshino
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, 783-8502, Japan. .,Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama, 236-0001, Japan.
| |
Collapse
|
117
|
Orsi WD. Ecology and evolution of seafloor and subseafloor microbial communities. Nat Rev Microbiol 2018; 16:671-683. [DOI: 10.1038/s41579-018-0046-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
118
|
Ijiri A, Inagaki F, Kubo Y, Adhikari RR, Hattori S, Hoshino T, Imachi H, Kawagucci S, Morono Y, Ohtomo Y, Ono S, Sakai S, Takai K, Toki T, Wang DT, Yoshinaga MY, Arnold GL, Ashi J, Case DH, Feseker T, Hinrichs KU, Ikegawa Y, Ikehara M, Kallmeyer J, Kumagai H, Lever MA, Morita S, Nakamura KI, Nakamura Y, Nishizawa M, Orphan VJ, Røy H, Schmidt F, Tani A, Tanikawa W, Terada T, Tomaru H, Tsuji T, Tsunogai U, Yamaguchi YT, Yoshida N. Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex. SCIENCE ADVANCES 2018; 4:eaao4631. [PMID: 29928689 PMCID: PMC6007163 DOI: 10.1126/sciadv.aao4631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Microbial life inhabiting subseafloor sediments plays an important role in Earth's carbon cycle. However, the impact of geodynamic processes on the distributions and carbon-cycling activities of subseafloor life remains poorly constrained. We explore a submarine mud volcano of the Nankai accretionary complex by drilling down to 200 m below the summit. Stable isotopic compositions of water and carbon compounds, including clumped methane isotopologues, suggest that ~90% of methane is microbially produced at 16° to 30°C and 300 to 900 m below seafloor, corresponding to the basin bottom, where fluids in the accretionary prism are supplied via megasplay faults. Radiotracer experiments showed that relatively small microbial populations in deep mud volcano sediments (102 to 103 cells cm-3) include highly active hydrogenotrophic methanogens and acetogens. Our findings indicate that subduction-associated fluid migration has stimulated microbial activity in the mud reservoir and that mud volcanoes may contribute more substantially to the methane budget than previously estimated.
Collapse
Affiliation(s)
- Akira Ijiri
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
- Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama 236-0001, Japan
| | - Yusuke Kubo
- Center for Deep Earth Exploration, JAMSTEC, Yokohama 236-0001, Japan
| | - Rishi R. Adhikari
- Department of Earth and Environmental Sciences, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Shohei Hattori
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Tatsuhiko Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - Hiroyuki Imachi
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - Shinsuke Kawagucci
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - Yoko Ohtomo
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - Shuhei Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sanae Sakai
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - Ken Takai
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Tomohiro Toki
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - David T. Wang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcos Y. Yoshinaga
- MARUM and Department of Geosciences, University of Bremen, D-28334 Bremen, Germany
| | - Gail L. Arnold
- Center for Geomicrobiology, Department of Biological Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Juichiro Ashi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0885, Japan
| | - David H. Case
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tomas Feseker
- MARUM and Department of Geosciences, University of Bremen, D-28334 Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM and Department of Geosciences, University of Bremen, D-28334 Bremen, Germany
| | - Yojiro Ikegawa
- Civil Engineering Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan
| | - Minoru Ikehara
- Center for Advanced Marine Core Research, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Jens Kallmeyer
- Department of Earth and Environmental Sciences, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Hidenori Kumagai
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - Mark A. Lever
- Center for Geomicrobiology, Department of Biological Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Sumito Morita
- Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | | | - Yuki Nakamura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0885, Japan
| | - Manabu Nishizawa
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hans Røy
- Center for Geomicrobiology, Department of Biological Sciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Frauke Schmidt
- MARUM and Department of Geosciences, University of Bremen, D-28334 Bremen, Germany
| | - Atsushi Tani
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Wataru Tanikawa
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan
- Research and Development Center for Submarine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | | | - Hitoshi Tomaru
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Takeshi Tsuji
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research, Department of Earth Resources Engineering, Kyushu University, 744 Motooka, Fukuoka-shi, Fukuoka 819-0395, Japan
| | - Urumu Tsunogai
- Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
| | - Yasuhiko T. Yamaguchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-0885, Japan
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naohiro Yoshida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| |
Collapse
|
119
|
Møller MH, Glombitza C, Lever MA, Deng L, Morono Y, Inagaki F, Doll M, Su CC, Lomstein BA. D:L-Amino Acid Modeling Reveals Fast Microbial Turnover of Days to Months in the Subsurface Hydrothermal Sediment of Guaymas Basin. Front Microbiol 2018; 9:967. [PMID: 29867871 PMCID: PMC5963217 DOI: 10.3389/fmicb.2018.00967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
We investigated the impact of temperature on the microbial turnover of organic matter (OM) in a hydrothermal vent system in Guaymas Basin, by calculating microbial bio- and necromass turnover times based on the culture-independent D:L-amino acid model. Sediments were recovered from two stations near hydrothermal mounds (<74°C) and from one cold station (<9°C). Cell abundance at the two hydrothermal stations dropped from 108 to 106 cells cm-3 within ∼5 m of sediment depth resulting in a 100-fold lower cell number at this depth than at the cold site where numbers remained constant at 108 cells cm-3 throughout the recovered sediment. There were strong indications that the drop in cell abundance was controlled by decreasing OM quality. The quality of the sedimentary OM was determined by the diagenetic indicators %TAAC (percentage of total organic carbon present as amino acid carbon), %TAAN (percentage of total nitrogen present as amino acid nitrogen), aspartic acid:β-alanine ratios, and glutamic acid:γ-amino butyric acid ratios. All parameters indicated that the OM became progressively degraded with increasing sediment depth, and the OM in the hydrothermal sediment was more degraded than in the uniformly cold sediment. Nonetheless, the small community of microorganisms in the hydrothermal sediment demonstrated short turnover times. The modeled turnover times of microbial bio- and necromass in the hydrothermal sediments were notably faster (biomass: days to months; necromass: up to a few hundred years) than in the cold sediments (biomass: tens of years; necromass: thousands of years), suggesting that temperature has a significant influence on the microbial turnover rates. We suggest that short biomass turnover times are necessary for maintance of essential cell funtions and to overcome potential damage caused by the increased temperature.The reduced OM quality at the hyrothemal sites might thus only allow for a small population size of microorganisms.
Collapse
Affiliation(s)
- Mikkel H Møller
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Clemens Glombitza
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,National Aeronautics and Space Administration-Ames Research Center, Moffett Field, CA, United States
| | - Mark A Lever
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Longhui Deng
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Mechthild Doll
- Faculty of Geosciences (FB 05), University of Bremen, Bremen, Germany
| | - Chin-Chia Su
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Bente A Lomstein
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.,Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
120
|
Isoprenoid Quinones Resolve the Stratification of Redox Processes in a Biogeochemical Continuum from the Photic Zone to Deep Anoxic Sediments of the Black Sea. Appl Environ Microbiol 2018. [PMID: 29523543 DOI: 10.1128/aem.02736-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here, we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate the occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below the sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition.IMPORTANCE Microorganisms play crucial roles in global biogeochemical cycles, yet we have only a fragmentary understanding of the diversity of microorganisms and their metabolisms, as the majority remains uncultured. Thus, culture-independent approaches are critical for determining microbial diversity and active metabolic processes. In order to resolve the stratification of microbial communities in the Black Sea, we comprehensively analyzed redox process-specific isoprenoid quinone biomarkers in a unique continuous record from the photic zone through the chemocline into anoxic subsurface sediments. We describe an unprecedented quinone diversity that allowed us to detect distinct biogeochemical processes, including oxygenic photosynthesis, archaeal ammonia oxidation, aerobic methanotrophy, and anoxygenic photosynthesis in defined geochemical zones.
Collapse
|
121
|
Sheik CS, Reese BK, Twing KI, Sylvan JB, Grim SL, Schrenk MO, Sogin ML, Colwell FS. Identification and Removal of Contaminant Sequences From Ribosomal Gene Databases: Lessons From the Census of Deep Life. Front Microbiol 2018; 9:840. [PMID: 29780369 PMCID: PMC5945997 DOI: 10.3389/fmicb.2018.00840] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/12/2018] [Indexed: 11/15/2022] Open
Abstract
Earth’s subsurface environment is one of the largest, yet least studied, biomes on Earth, and many questions remain regarding what microorganisms are indigenous to the subsurface. Through the activity of the Census of Deep Life (CoDL) and the Deep Carbon Observatory, an open access 16S ribosomal RNA gene sequence database from diverse subsurface environments has been compiled. However, due to low quantities of biomass in the deep subsurface, the potential for incorporation of contaminants from reagents used during sample collection, processing, and/or sequencing is high. Thus, to understand the ecology of subsurface microorganisms (i.e., the distribution, richness, or survival), it is necessary to minimize, identify, and remove contaminant sequences that will skew the relative abundances of all taxa in the sample. In this meta-analysis, we identify putative contaminants associated with the CoDL dataset, recommend best practices for removing contaminants from samples, and propose a series of best practices for subsurface microbiology sampling. The most abundant putative contaminant genera observed, independent of evenness across samples, were Propionibacterium, Aquabacterium, Ralstonia, and Acinetobacter. While the top five most frequently observed genera were Pseudomonas, Propionibacterium, Acinetobacter, Ralstonia, and Sphingomonas. The majority of the most frequently observed genera (high evenness) were associated with reagent or potential human contamination. Additionally, in DNA extraction blanks, we observed potential archaeal contaminants, including methanogens, which have not been discussed in previous contamination studies. Such contaminants would directly affect the interpretation of subsurface molecular studies, as methanogenesis is an important subsurface biogeochemical process. Utilizing previously identified contaminant genera, we found that ∼27% of the total dataset were identified as contaminant sequences that likely originate from DNA extraction and DNA cleanup methods. Thus, controls must be taken at every step of the collection and processing procedure when working with low biomass environments such as, but not limited to, portions of Earth’s deep subsurface. Taken together, we stress that the CoDL dataset is an incredible resource for the broader research community interested in subsurface life, and steps to remove contamination derived sequences must be taken prior to using this dataset.
Collapse
Affiliation(s)
- Cody S Sheik
- Department of Biology and Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, United States
| | - Brandi Kiel Reese
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, United States
| | - Katrina I Twing
- Department of Biology, The University of Utah, Salt Lake City, UT, United States
| | - Jason B Sylvan
- Department of Oceanography, Texas A&M University, College Station, TX, United States
| | - Sharon L Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, United States
| | - Mitchell L Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Frederick S Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
122
|
Deng X, Dohmae N, Nealson KH, Hashimoto K, Okamoto A. Multi-heme cytochromes provide a pathway for survival in energy-limited environments. SCIENCE ADVANCES 2018; 4:eaao5682. [PMID: 29464208 PMCID: PMC5815863 DOI: 10.1126/sciadv.aao5682] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/12/2018] [Indexed: 05/22/2023]
Abstract
Bacterial reduction of oxidized sulfur species (OSS) is critical for energy production in anaerobic marine subsurfaces. In organic-poor sediments, H2 has been considered as a major energy source for bacterial respiration. We identified outer-membrane cytochromes (OMCs) that are broadly conserved in sediment OSS-respiring bacteria and enable cells to directly use electrons from insoluble minerals via extracellular electron transport. Biochemical, transcriptomic, and microscopic analyses revealed that the identified OMCs were highly expressed on the surface of cells and nanofilaments in response to electron donor limitation. This electron uptake mechanism provides sufficient but minimum energy to drive the reduction of sulfate and other OSS. These results suggest a widespread mechanism for survival of OSS-respiring bacteria via electron uptake from solid minerals in energy-poor marine sediments.
Collapse
Affiliation(s)
- Xiao Deng
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenneth H. Nealson
- Department of Earth and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kazuhito Hashimoto
- Interfacial Energy Conversion Group, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akihiro Okamoto
- Interfacial Energy Conversion Group, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Corresponding author.
| |
Collapse
|
123
|
Bachmann M, Hepp J, Zech M, Bulang M, Zeyner A. Application of natural wax markers in equine nutrition studies – current state, limitations and perspectives. Livest Sci 2018. [DOI: 10.1016/j.livsci.2017.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
124
|
Vandieken V, Marshall IPG, Niemann H, Engelen B, Cypionka H. Labilibaculum manganireducens gen. nov., sp. nov. and Labilibaculum filiforme sp. nov., Novel Bacteroidetes Isolated from Subsurface Sediments of the Baltic Sea. Front Microbiol 2018; 8:2614. [PMID: 29354105 PMCID: PMC5760507 DOI: 10.3389/fmicb.2017.02614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial communities in deep subsurface sediments are challenged by the decrease in amount and quality of organic substrates with depth. In sediments of the Baltic Sea, they might additionally have to cope with an increase in salinity from ions that have diffused downward from the overlying water during the last 9000 years. Here, we report the isolation and characterization of four novel bacteria of the Bacteroidetes from depths of 14–52 m below seafloor (mbsf) of Baltic Sea sediments sampled during International Ocean Discovery Program (IODP) Expedition 347. Based on physiological, chemotaxonomic and genotypic characterization, we propose that the four strains represent two new species within a new genus in the family Marinifilaceae, with the proposed names Labilibaculum manganireducens gen. nov., sp. nov. (type strain 59.10-2MT) and Labilibaculum filiforme sp. nov. (type strains 59.16BT) with additional strains of this species (59.10-1M and 60.6M). The draft genomes of the two type strains had sizes of 5.2 and 5.3 Mb and reflected the major physiological capabilities. The strains showed gliding motility, were psychrotolerant, neutrophilic and halotolerant. Growth by fermentation of mono- and disaccharides as well as pyruvate, lactate and glycerol was observed. During glucose fermentation, small amounts of electron equivalents were transferred to Fe(III) by all strains, while one of the strains also reduced Mn(IV). Thereby, the four strains broaden the phylogenetic range of prokaryotes known to reduce metals to the group of Bacteroidetes. Halotolerance and metal reduction might both be beneficial for survival in deep subsurface sediments of the Baltic Sea.
Collapse
Affiliation(s)
- Verona Vandieken
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Ian P G Marshall
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Helge Niemann
- Aquatic and Stable Isotope Biogeochemistry, University of Basel, Basel, Switzerland.,CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, University of Tromsø, Tromsø, Norway.,Departments of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, and Utrecht University, Netherlands
| | - Bert Engelen
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heribert Cypionka
- Paleomicrobiology Group, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
125
|
Case DH, Ijiri A, Morono Y, Tavormina P, Orphan VJ, Inagaki F. Aerobic and Anaerobic Methanotrophic Communities Associated with Methane Hydrates Exposed on the Seafloor: A High-Pressure Sampling and Stable Isotope-Incubation Experiment. Front Microbiol 2017; 8:2569. [PMID: 29312247 PMCID: PMC5742206 DOI: 10.3389/fmicb.2017.02569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/11/2017] [Indexed: 01/26/2023] Open
Abstract
High-pressure (HP) environments represent the largest volumetric majority of habitable space for microorganisms on the planet, including the deep-sea and subsurface biosphere. However, the importance of pressure as an environmental variable affecting deep microbial life and their biogeochemical functions in carbon cycling still remains poorly understood. Here, we designed a new high-volume HP-sediment core sampler that is deployable on the payload of a remotely operated vehicle and can maintain in situ HP conditions throughout multi-month enrichment incubations including daily amendments with liquid media and gases and daily effluent sampling for geochemical or microbiological analysis. Using the HP core device, we incubated sediment and overlying water associated with methane hydrate-exposed on the seafloor of the Joetsu Knoll, Japan, at 10 MPa and 4°C for 45 days in the laboratory. Diversity analyses based on 16S rRNA and methane-related functional genes, as well as carbon isotopic analysis of methane and bicarbonate, indicated the stimulation of both aerobic and anaerobic methanotrophy driven by members of the Methylococcales, and ANME, respectively: i.e., aerobic methanotrophy was observed upon addition of oxygen whereas anaerobic processes subsequently occurred after oxygen consumption. These laboratory-measured rates at 10 MPa were generally in agreement with previously reported rates of methane oxidation in other oceanographic locations.
Collapse
Affiliation(s)
- David H Case
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Akira Ijiri
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan.,Geobiotechnology Group, Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan.,Geobiotechnology Group, Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Patricia Tavormina
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Nankoku, Japan.,Geobiotechnology Group, Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan.,Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| |
Collapse
|
126
|
Eiler JM, Clog M, Lawson M, Lloyd M, Piasecki A, Ponton C, Xie H. The isotopic structures of geological organic compounds. ACTA ACUST UNITED AC 2017. [DOI: 10.1144/sp468.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractOrganic compounds are ubiquitous in the Earth's surface, sediments and many rocks, and preserve records of geological, geochemical and biological history; they are also critical natural resources and major environmental pollutants. The naturally occurring stable isotopes of volatile elements (D, 13C, 15N, 17,18O, 33,34,36S) provide one way of studying the origin, evolution and migration of geological organic compounds. The study of bulk stable isotope compositions (i.e. averaged across all possible molecular isotopic forms) is well established and widely practised, but frequently results in non-unique interpretations. Increasingly, researchers are reading the organic isotopic record with greater depth and specificity by characterizing stable isotope ‘structures’ – the proportions of site-specific and multiply substituted isotopologues that contribute to the total rare-isotope inventory of each compound. Most of the technologies for measuring stable isotope structures of organic molecules have been only recently developed and to date have been applied only in an exploratory way. Nevertheless, recent advances have demonstrated that molecular isotopic structures provide distinctive records of biosynthetic origins, conditions and mechanisms of chemical transformation during burial, and forensic fingerprints of exceptional specificity. This paper provides a review of this young field, which is organized to follow the evolution of molecular isotopic structure from biosynthesis, through diagenesis, catagenesis and metamorphism.
Collapse
Affiliation(s)
- John M. Eiler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Matthieu Clog
- University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | - Max Lloyd
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Alison Piasecki
- Department of Earth Science, University of Bergen, 5020 Bergen, Norway
| | - Camilo Ponton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Hao Xie
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
127
|
Heuer V, Inagaki F, Morono Y, Kubo Y, Maeda L, Bowden S, Cramm M, Henkel S, Hirose T, Homola K, Hoshino T, Ijiri A, Imachi H, Kamiya N, Kaneko M, Lagostina L, Manners H, McClelland HL, Metcalfe K, Okutsu N, Pan D, Raudsepp M, Sauvage J, Schubotz F, Spivack A, Tonai S, Treude T, Tsang MY, Viehweger B, Wang D, Whitaker E, Yamamoto Y, Yang K. Expedition 370 summary. PROCEEDINGS OF THE INTERNATIONAL OCEAN DISCOVERY PROGRAM 2017. [DOI: 10.14379/iodp.proc.370.101.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
128
|
Anderson RE, Reveillaud J, Reddington E, Delmont TO, Eren AM, McDermott JM, Seewald JS, Huber JA. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat Commun 2017; 8:1114. [PMID: 29066755 PMCID: PMC5655027 DOI: 10.1038/s41467-017-01228-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/30/2017] [Indexed: 02/01/2023] Open
Abstract
Little is known about evolutionary drivers of microbial populations in the warm subseafloor of deep-sea hydrothermal vents. Here we reconstruct 73 metagenome-assembled genomes (MAGs) from two geochemically distinct vent fields in the Mid-Cayman Rise to investigate patterns of genomic variation within subseafloor populations. Low-abundance populations with high intra-population diversity coexist alongside high-abundance populations with low genomic diversity, with taxonomic differences in patterns of genomic variation between the mafic Piccard and ultramafic Von Damm vent fields. Populations from Piccard are significantly enriched in nonsynonymous mutations, suggesting stronger purifying selection in Von Damm relative to Piccard. Comparison of nine Sulfurovum MAGs reveals two high-coverage, low-diversity MAGs from Piccard enriched in unique genes related to the cellular membrane, suggesting these populations were subject to distinct evolutionary pressures that may correlate with genes related to nutrient uptake, biofilm formation, or viral invasion. These results are consistent with distinct evolutionary histories between geochemically different vent fields, with implications for understanding evolutionary processes in subseafloor microbial populations.
Collapse
Affiliation(s)
- Rika E Anderson
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Department of Biology, Carleton College, Northfield, MN, 55057, USA.
| | - Julie Reveillaud
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Cirad UMR 117, Inra UMR 1309 ASTRE, Cirad Campus International de Baillarguet, Montpellier, France
| | - Emily Reddington
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Great Pond Foundation, Edgartown, MA, 02539, USA
| | - Tom O Delmont
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jill M McDermott
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| | - Jeff S Seewald
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Julie A Huber
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| |
Collapse
|
129
|
|
130
|
Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds. Proc Natl Acad Sci U S A 2017; 114:E9206-E9215. [PMID: 29078310 PMCID: PMC5676895 DOI: 10.1073/pnas.1707525114] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be "hot spots" for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13C- or 15N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50-2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell-targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.
Collapse
|
131
|
Abstract
Secondary ion mass spectrometry (SIMS) has become an increasingly utilized tool in biologically relevant studies. Of these, high lateral resolution methodologies using the NanoSIMS 50/50L have been especially powerful within many biological fields over the past decade. Here, the authors provide a review of this technology, sample preparation and analysis considerations, examples of recent biological studies, data analyses, and current outlooks. Specifically, the authors offer an overview of SIMS and development of the NanoSIMS. The authors describe the major experimental factors that should be considered prior to NanoSIMS analysis and then provide information on best practices for data analysis and image generation, which includes an in-depth discussion of appropriate colormaps. Additionally, the authors provide an open-source method for data representation that allows simultaneous visualization of secondary electron and ion information within a single image. Finally, the authors present a perspective on the future of this technology and where they think it will have the greatest impact in near future.
Collapse
|
132
|
Labonté JM, Lever MA, Edwards KJ, Orcutt BN. Influence of Igneous Basement on Deep Sediment Microbial Diversity on the Eastern Juan de Fuca Ridge Flank. Front Microbiol 2017; 8:1434. [PMID: 28824568 PMCID: PMC5539551 DOI: 10.3389/fmicb.2017.01434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022] Open
Abstract
Microbial communities living in deeply buried sediment may be adapted to long-term energy limitation as they are removed from new detrital energy inputs for thousands to millions of years. However, sediment layers near the underlying oceanic crust may receive inputs from below that influence microbial community structure and/or activity. As part of the Census of Deep Life, we used 16S rRNA gene tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement interface samples from the subsurface of the Juan de Fuca Ridge flank (collected on IODP Expedition 327) to examine this possible basement influence on deep sediment communities. This area experiences rapid sedimentation, with an underlying basaltic crust that hosts a dynamic flux of hydrothermal fluids that diffuse into the sediment. Chloroflexi sequences dominated tag libraries in all sediment samples, with variation in the abundance of other bacterial groups (e.g., Actinobacteria, Aerophobetes, Atribacteria, Planctomycetes, and Nitrospirae). These variations occur in relation to the type of sediment (clays versus carbonate-rich) and the depth of sample origin, and show no clear connection to the distance from the discharge outcrop or to basement fluid microbial communities. Actinobacteria-related sequences dominated the basalt libraries, but these should be viewed cautiously due to possibilities for imprinting from contamination. Our results indicate that proximity to basement or areas of seawater recharge is not a primary driver of microbial community composition in basal sediment, even though fluids diffusing from basement into sediment may stimulate microbial activity.
Collapse
Affiliation(s)
- Jessica M Labonté
- Bigelow Laboratory for Ocean Sciences, East BoothbayME, United States.,Department of Marine Biology, Texas A&M University at Galveston, GalvestonTX, United States
| | - Mark A Lever
- Center for Geomicrobiology, Aarhus UniversityAarhus, Denmark.,Environmental Systems Science, ETH ZürichZurich, Switzerland
| | - Katrina J Edwards
- Department of Biological Sciences, University of Southern California, Los AngelesCA, United States
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East BoothbayME, United States.,Center for Geomicrobiology, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
133
|
Azman SK, Anwar MZ, Henschel A. Visibiome: an efficient microbiome search engine based on a scalable, distributed architecture. BMC Bioinformatics 2017; 18:353. [PMID: 28738824 PMCID: PMC5525214 DOI: 10.1186/s12859-017-1763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Given the current influx of 16S rRNA profiles of microbiota samples, it is conceivable that large amounts of them eventually are available for search, comparison and contextualization with respect to novel samples. This process facilitates the identification of similar compositional features in microbiota elsewhere and therefore can help to understand driving factors for microbial community assembly. RESULTS We present Visibiome, a microbiome search engine that can perform exhaustive, phylogeny based similarity search and contextualization of user-provided samples against a comprehensive dataset of 16S rRNA profiles environments, while tackling several computational challenges. In order to scale to high demands, we developed a distributed system that combines web framework technology, task queueing and scheduling, cloud computing and a dedicated database server. To further ensure speed and efficiency, we have deployed Nearest Neighbor search algorithms, capable of sublinear searches in high-dimensional metric spaces in combination with an optimized Earth Mover Distance based implementation of weighted UniFrac. The search also incorporates pairwise (adaptive) rarefaction and optionally, 16S rRNA copy number correction. The result of a query microbiome sample is the contextualization against a comprehensive database of microbiome samples from a diverse range of environments, visualized through a rich set of interactive figures and diagrams, including barchart-based compositional comparisons and ranking of the closest matches in the database. CONCLUSIONS Visibiome is a convenient, scalable and efficient framework to search microbiomes against a comprehensive database of environmental samples. The search engine leverages a popular but computationally expensive, phylogeny based distance metric, while providing numerous advantages over the current state of the art tool.
Collapse
Affiliation(s)
- Syafiq Kamarul Azman
- Department of Electrical Engineering and Computer Science, Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Roskilde, Denmark
| | - Andreas Henschel
- Department of Electrical Engineering and Computer Science, Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
134
|
Climate oscillations reflected within the microbiome of Arabian Sea sediments. Sci Rep 2017; 7:6040. [PMID: 28729646 PMCID: PMC5519670 DOI: 10.1038/s41598-017-05590-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/13/2017] [Indexed: 11/08/2022] Open
Abstract
Selection of microorganisms in marine sediment is shaped by energy-yielding electron acceptors for respiration that are depleted in vertical succession. However, some taxa have been reported to reflect past depositional conditions suggesting they have experienced weak selection after burial. In sediments underlying the Arabian Sea oxygen minimum zone (OMZ), we performed the first metagenomic profiling of sedimentary DNA at centennial-scale resolution in the context of a multi-proxy paleoclimate reconstruction. While vertical distributions of sulfate reducing bacteria and methanogens indicate energy-based selection typical of anoxic marine sediments, 5-15% of taxa per sample exhibit depth-independent stratigraphies indicative of paleoenvironmental selection over relatively short geological timescales. Despite being vertically separated, indicator taxa deposited under OMZ conditions were more similar to one another than those deposited in bioturbated intervals under intervening higher oxygen. The genomic potential for denitrification also correlated with palaeo-OMZ proxies, independent of sediment depth and available nitrate and nitrite. However, metagenomes revealed mixed acid and Entner-Dourdoroff fermentation pathways encoded by many of the same denitrifier groups. Fermentation thus may explain the subsistence of these facultatively anaerobic microbes whose stratigraphy follows changing paleoceanographic conditions. At least for certain taxa, our analysis provides evidence of their paleoenvironmental selection over the last glacial-interglacial cycle.
Collapse
|
135
|
Microbial turnover times in the deep seabed studied by amino acid racemization modelling. Sci Rep 2017; 7:5680. [PMID: 28720809 PMCID: PMC5516024 DOI: 10.1038/s41598-017-05972-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/06/2017] [Indexed: 01/20/2023] Open
Abstract
The study of active microbial populations in deep, energy-limited marine sediments has extended our knowledge of the limits of life on Earth. Typically, microbial activity in the deep biosphere is calculated by transport-reaction modelling of pore water solutes or from experimental measurements involving radiotracers. Here we modelled microbial activity from the degree of D:L-aspartic acid racemization in microbial necromass (remains of dead microbial biomass) in sediments up to ten million years old. This recently developed approach (D:L-amino acid modelling) does not require incubation experiments and is highly sensitive in stable, low-activity environments. We applied for the first time newly established constraints on several important input parameters of the D:L-amino acid model, such as a higher aspartic acid racemization rate constant and a lower cell-specific carbon content of sub-seafloor microorganisms. Our model results show that the pool of necromass amino acids is turned over by microbial activity every few thousand years, while the turnover times of vegetative cells are in the order of years to decades. Notably, microbial turnover times in million-year-old sediment from the Peru Margin are up to 100-fold shorter than previous estimates, highlighting the influence of microbial activities on element cycling over geologic time scales.
Collapse
|
136
|
Hoshino T, Toki T, Ijiri A, Morono Y, Machiyama H, Ashi J, Okamura K, Inagaki F. Atribacteria from the Subseafloor Sedimentary Biosphere Disperse to the Hydrosphere through Submarine Mud Volcanoes. Front Microbiol 2017; 8:1135. [PMID: 28676800 PMCID: PMC5476839 DOI: 10.3389/fmicb.2017.01135] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/06/2017] [Indexed: 11/23/2022] Open
Abstract
Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth’s surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria, heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 104 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as “deep-biosphere seeds” into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere.
Collapse
Affiliation(s)
- Tatsuhiko Hoshino
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Tomohiro Toki
- Faculty of Science, University of the RyukyusNishihara, Japan
| | - Akira Ijiri
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Hideaki Machiyama
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan
| | - Juichiro Ashi
- Atmosphere and Ocean Research Institute, The University of TokyoTokyo, Japan
| | - Kei Okamura
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi UniversityNankoku, Japan
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science TechnologyNankoku, Japan.,Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science TechnologyYokohama, Japan
| |
Collapse
|
137
|
Immiscible hydrocarbon fluids in the deep carbon cycle. Nat Commun 2017; 8:15798. [PMID: 28604740 PMCID: PMC5472781 DOI: 10.1038/ncomms15798] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
The cycling of carbon between Earth's surface and interior governs the long-term habitability of the planet. But how carbon migrates in the deep Earth is not well understood. In particular, the potential role of hydrocarbon fluids in the deep carbon cycle has long been controversial. Here we show that immiscible isobutane forms in situ from partial transformation of aqueous sodium acetate at 300 °C and 2.4–3.5 GPa and that over a broader range of pressures and temperatures theoretical predictions indicate that high pressure strongly opposes decomposition of isobutane, which may possibly coexist in equilibrium with silicate mineral assemblages. These results complement recent experimental evidence for immiscible methane-rich fluids at 600–700 °C and 1.5–2.5 GPa and the discovery of methane-rich fluid inclusions in metasomatized ophicarbonates at peak metamorphic conditions. Consequently, a variety of immiscible hydrocarbon fluids might facilitate carbon transfer in the deep carbon cycle. Carbon migration in the deep Earth is still not fully understood. Here, the authors show that immiscible isobutane forms in situ from transformation of aqueous sodium acetate at 300 °C and 2.4–3.5 GPa, indicating that hydrocarbon fluids may play a major role in carbon transfer in the deep carbon cycle.
Collapse
|
138
|
Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, Kamagata Y, Sakata S. Methane production from coal by a single methanogen. Science 2017; 354:222-225. [PMID: 27738170 DOI: 10.1126/science.aaf8821] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/29/2016] [Indexed: 02/05/2023]
Abstract
Coal-bed methane is one of the largest unconventional natural gas resources. Although microbial activity may greatly contribute to coal-bed methane formation, it is unclear whether the complex aromatic organic compounds present in coal can be used for methanogenesis. We show that deep subsurface-derived Methermicoccus methanogens can produce methane from more than 30 types of methoxylated aromatic compounds (MACs) as well as from coals containing MACs. In contrast to known methanogenesis pathways involving one- and two-carbon compounds, this "methoxydotrophic" mode of methanogenesis couples O-demethylation, CO2 reduction, and possibly acetyl-coenzyme A metabolism. Because MACs derived from lignin may occur widely in subsurface sediments, methoxydotrophic methanogenesis would play an important role in the formation of natural gas not limited to coal-bed methane and in the global carbon cycle.
Collapse
Affiliation(s)
- Daisuke Mayumi
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan
| | - Hanako Mochimaru
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Kyosuke Yamamoto
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hideyoshi Yoshioka
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan
| | - Yuichiro Suzuki
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | - Susumu Sakata
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan.
| |
Collapse
|
139
|
Richter KN, Rizzoli SO, Jähne S, Vogts A, Lovric J. Review of combined isotopic and optical nanoscopy. NEUROPHOTONICS 2017; 4:020901. [PMID: 28466025 PMCID: PMC5400889 DOI: 10.1117/1.nph.4.2.020901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/10/2017] [Indexed: 05/31/2023]
Abstract
Investigating the detailed substructure of the cell is beyond the ability of conventional optical microscopy. Electron microscopy, therefore, has been the only option for such studies for several decades. The recent implementation of several super-resolution optical microscopy techniques has rendered the investigation of cellular substructure easier and more efficient. Nevertheless, optical microscopy only provides an image of the present structure of the cell, without any information on its long-temporal changes. These can be investigated by combining super-resolution optics with a nonoptical imaging technique, nanoscale secondary ion mass spectrometry, which investigates the isotopic composition of the samples. The resulting technique, combined isotopic and optical nanoscopy, enables the investigation of both the structure and the "history" of the cellular elements. The age and the turnover of cellular organelles can be read by isotopic imaging, while the structure can be analyzed by optical (fluorescence) approaches. We present these technologies, and we discuss their implementation for the study of biological samples. We conclude that, albeit complex, this type of technology is reliable enough for mass application to cell biology.
Collapse
Affiliation(s)
- Katharina N. Richter
- University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, Department of Neuro- and Sensory Physiology, Göttingen, Germany
| | - Silvio O. Rizzoli
- University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, Department of Neuro- and Sensory Physiology, Göttingen, Germany
| | - Sebastian Jähne
- University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, Department of Neuro- and Sensory Physiology, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
| | - Angela Vogts
- Leibniz-Institute for Baltic Sea Research, Rostock, Germany
| | - Jelena Lovric
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Gothenburg, Sweden
| |
Collapse
|
140
|
Hoshino T, Inagaki F. Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments. Lett Appl Microbiol 2017; 64:355-363. [PMID: 28256106 DOI: 10.1111/lam.12727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/05/2023]
Abstract
Carbon monoxide (CO) is the simplest oxocarbon generated by the decomposition of organic compounds, and it is expected to be in marine sediments in substantial amounts. However, the availability of CO in the deep subseafloor sedimentary biosphere is largely unknown even though anaerobic oxidation of CO is a thermodynamically favourable reaction that possibly occurs with sulphate reduction, methanogenesis, acetogenesis and hydrogenesis. In this study, we surveyed for the first time the distribution of the CO dehydrogenase gene (cooS), which encodes the catalytic beta subunit of anaerobic CO dehydrogenase (CODH), in subseafloor sediment-core samples from the eastern flank of the Juan de Fuca Ridge, Mars-Ursa Basin, Kumano Basin, and off the Shimokita Peninsula, Japan, during Integrated Ocean Drilling Program (IODP) Expeditions 301, 308 and 315 and the D/V Chikyu shakedown cruise CK06-06, respectively. Our results show the occurrence of diverse cooS genes from the seafloor down to about 390 m below the seafloor, suggesting that microbial communities have metabolic functions to utilize CO in anoxic microbial ecosystems beneath the ocean floor, and that the microbial community potentially responsible for anaerobic CO oxidation differs in accordance with possible energy-yielding metabolic reactions in the deep subseafloor sedimentary biosphere. SIGNIFICANCE AND IMPACT OF THE STUDY Little is known about the microbial community associated with carbon monoxide (CO) in the deep subseafloor. This study is the first survey of a functional gene encoding anaerobic carbon monoxide dehydrogenase (CODH). The widespread occurrence of previously undiscovered CO dehydrogenase genes (cooS) suggests that diverse micro-organisms are capable of anaerobic oxidation of CO in the deep subseafloor sedimentary biosphere.
Collapse
Affiliation(s)
- T Hoshino
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan.,Geobiotechnology Group, Research and Development Center for Submarine Resources, JAMSTEC, Nankoku, Kochi, Japan
| | - F Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan.,Geobiotechnology Group, Research and Development Center for Submarine Resources, JAMSTEC, Nankoku, Kochi, Japan.,Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama, Kanagawa, Japan
| |
Collapse
|
141
|
Affiliation(s)
- Cornelia U Welte
- Radboud University, Institute for Water and Wetland Research, Department of Microbiology, Heyendaalseweg 135, 6525AJ Nijmegen, Netherlands. Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, 6525AJ Nijmegen, Netherlands.
| |
Collapse
|
142
|
Complete Genome Sequence of Bacillus subtilis Strain 29R7-12, a Piezophilic Bacterium Isolated from Coal-Bearing Sediment 2.4 Kilometers below the Seafloor. GENOME ANNOUNCEMENTS 2017; 5:5/8/e01621-16. [PMID: 28232436 PMCID: PMC5323615 DOI: 10.1128/genomea.01621-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we report the genome sequence of Bacillus subtilis strain 29R7-12, a piezophilic bacterium isolated from coal-bearing sediment down to ~2.4 km below the ocean floor in the northwestern Pacific. The strain is a Gram-positive spore-forming bacterium, closely related to Bacillus subtilis within the phylum Firmicutes. This is the first complete genome sequence of a Bacillus subtilis strain from the deep biosphere. The genome sequence will provide a valuable resource for comparative studies of microorganisms from the surface and subsurface environments.
Collapse
|
143
|
Fang J, Kato C, Runko GM, Nogi Y, Hori T, Li J, Morono Y, Inagaki F. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor. Front Microbiol 2017; 8:137. [PMID: 28220112 PMCID: PMC5292414 DOI: 10.3389/fmicb.2017.00137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/19/2017] [Indexed: 11/13/2022] Open
Abstract
Phylogenetically diverse microorganisms have been observed in marine subsurface sediments down to ~2.5 km below the seafloor (kmbsf). However, very little is known about the pressure-adapted and/or pressure-loving microorganisms, the so called piezophiles, in the deep subseafloor biosphere, despite that pressure directly affects microbial physiology, metabolism, and biogeochemical processes of carbon and other elements in situ. In this study, we studied taxonomic compositions of microbial communities in high-pressure incubated sediment, obtained during the Integrated Ocean Drilling Program (IODP) Expedition 337 off the Shimokita Peninsula, Japan. Analysis of 16S rRNA gene-tagged sequences showed that members of spore-forming bacteria within Firmicutes and Actinobacteria were predominantly detected in all enrichment cultures from ~1.5 to 2.4 km-deep sediment samples, followed by members of Proteobacteria, Acidobacteria, and Bacteroidetes according to the sequence frequency. To further study the physiology of the deep subseafloor sedimentary piezophilic bacteria, we isolated and characterized two bacterial strains, 19R1-5 and 29R7-12, from 1.9 and 2.4 km-deep sediment samples, respectively. The isolates were both low G+C content, gram-positive, endospore-forming and facultative anaerobic piezophilic bacteria, closely related to Virgibacillus pantothenticus and Bacillus subtilis within the phylum Firmicutes, respectively. The optimal pressure and temperature conditions for growth were 20 MPa and 42°C for strain 19R1-5, and 10 MPa and 43°C for strain 29R7-12. Bacterial (endo)spores were observed in both the enrichment and pure cultures examined, suggesting that these piezophilic members were derived from microbial communities buried in the ~20 million-year-old coal-bearing sediments after the long-term survival as spores and that the deep biosphere may host more abundant gram-positive spore-forming bacteria and their spores than hitherto recognized.
Collapse
Affiliation(s)
- Jiasong Fang
- Hadal Science and Technology Research Center, Shanghai Ocean UniversityShanghai, China; Department of Natural Sciences, Hawaii Pacific University, HonoluluHI, USA
| | - Chiaki Kato
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Gabriella M Runko
- Department of Natural Sciences, Hawaii Pacific University, Honolulu HI, USA
| | - Yuichi Nogi
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology Ibaraki, Japan
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University Shanghai, China
| | - Yuki Morono
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology Kochi, Japan
| | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and TechnologyKochi, Japan; Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science and TechnologyYokohama, Japan; Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and TechnologyYokosuka, Japan
| |
Collapse
|
144
|
Früh-Green G, Orcutt B, Green S, Cotterill C, Morgan S, Akizawa N, Bayrakci G, Behrmann JH, Boschi C, Brazleton W, Cannat M, Dunkel K, Escartin J, Harris M, Herrero-Bervera E, Hesse K, John B, Lang S, Lilley M, Liu HQ, Mayhew L, McCaig A, Menez B, Morono Y, Quéméneur M, Rouméjon S, Sandaruwan Ratnayake A, Schrenk M, Schwarzenbach E, Twing K, Weis D, Whattham S, Williams M, Zhao R. Expedition 357 methods. PROCEEDINGS OF THE INTERNATIONAL OCEAN DISCOVERY PROGRAM 2017. [DOI: 10.14379/iodp.proc.357.102.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
145
|
Yanagawa K, Ijiri A, Breuker A, Sakai S, Miyoshi Y, Kawagucci S, Noguchi T, Hirai M, Schippers A, Ishibashi JI, Takaki Y, Sunamura M, Urabe T, Nunoura T, Takai K. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor. THE ISME JOURNAL 2017; 11:529-542. [PMID: 27754478 PMCID: PMC5270560 DOI: 10.1038/ismej.2016.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.
Collapse
Affiliation(s)
- Katsunori Yanagawa
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Akira Ijiri
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kochi, Japan
| | - Anja Breuker
- Geomicrobiology, Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Sanae Sakai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Youko Miyoshi
- Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shinsuke Kawagucci
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuroh Noguchi
- Interdisciplinary Science Unit, Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Kochi, Japan
| | - Miho Hirai
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Axel Schippers
- Geomicrobiology, Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Jun-ichiro Ishibashi
- Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Michinari Sunamura
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
| | - Tetsuro Urabe
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
| | - Takuro Nunoura
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
146
|
Liu CH, Huang X, Xie TN, Duan N, Xue YR, Zhao TX, Lever MA, Hinrichs KU, Inagaki F. Exploration of cultivable fungal communities in deep coal-bearing sediments from ∼1.3 to 2.5 km below the ocean floor. Environ Microbiol 2017; 19:803-818. [DOI: 10.1111/1462-2920.13653] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Chang-Hong Liu
- State Key of Pharmaceutical Biotechnology, School of Life Science; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Xin Huang
- State Key of Pharmaceutical Biotechnology, School of Life Science; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Tian-Ning Xie
- State Key of Pharmaceutical Biotechnology, School of Life Science; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Ning Duan
- State Key of Pharmaceutical Biotechnology, School of Life Science; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Ya-Rong Xue
- State Key of Pharmaceutical Biotechnology, School of Life Science; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Tan-Xi Zhao
- State Key of Pharmaceutical Biotechnology, School of Life Science; Nanjing University; 163 Xianlin Avenue Nanjing 210023 China
| | - Mark A. Lever
- Department of Environmental Systems Science, ETH Zürich; Institute of Biogeochemistry and Pollutant Dynamics; Zürich CH-8092 Switzerland
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences; University of Bremen; Bremen D-28359 Germany
| | - Fumio Inagaki
- Kochi Institute for Core Sample Research; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Nankoku Kochi 783-8502 Japan
- Research and Development Center for Ocean Drilling Science, JAMSTEC; Yokohama 236-0061 Japan
| |
Collapse
|
147
|
Hoshino T, Inagaki F. Application of Stochastic Labeling with Random-Sequence Barcodes for Simultaneous Quantification and Sequencing of Environmental 16S rRNA Genes. PLoS One 2017; 12:e0169431. [PMID: 28052139 PMCID: PMC5215600 DOI: 10.1371/journal.pone.0169431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 12/16/2016] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing (NGS) is a powerful tool for analyzing environmental DNA and provides the comprehensive molecular view of microbial communities. For obtaining the copy number of particular sequences in the NGS library, however, additional quantitative analysis as quantitative PCR (qPCR) or digital PCR (dPCR) is required. Furthermore, number of sequences in a sequence library does not always reflect the original copy number of a target gene because of biases caused by PCR amplification, making it difficult to convert the proportion of particular sequences in the NGS library to the copy number using the mass of input DNA. To address this issue, we applied stochastic labeling approach with random-tag sequences and developed a NGS-based quantification protocol, which enables simultaneous sequencing and quantification of the targeted DNA. This quantitative sequencing (qSeq) is initiated from single-primer extension (SPE) using a primer with random tag adjacent to the 5’ end of target-specific sequence. During SPE, each DNA molecule is stochastically labeled with the random tag. Subsequently, first-round PCR is conducted, specifically targeting the SPE product, followed by second-round PCR to index for NGS. The number of random tags is only determined during the SPE step and is therefore not affected by the two rounds of PCR that may introduce amplification biases. In the case of 16S rRNA genes, after NGS sequencing and taxonomic classification, the absolute number of target phylotypes 16S rRNA gene can be estimated by Poisson statistics by counting random tags incorporated at the end of sequence. To test the feasibility of this approach, the 16S rRNA gene of Sulfolobus tokodaii was subjected to qSeq, which resulted in accurate quantification of 5.0 × 103 to 5.0 × 104 copies of the 16S rRNA gene. Furthermore, qSeq was applied to mock microbial communities and environmental samples, and the results were comparable to those obtained using digital PCR and relative abundance based on a standard sequence library. We demonstrated that the qSeq protocol proposed here is advantageous for providing less-biased absolute copy numbers of each target DNA with NGS sequencing at one time. By this new experiment scheme in microbial ecology, microbial community compositions can be explored in more quantitative manner, thus expanding our knowledge of microbial ecosystems in natural environments.
Collapse
Affiliation(s)
- Tatsuhiko Hoshino
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
- Geobiotechnology Group, Research and Development Center for Submarine Resources, JAMSTEC, Nankoku, Kochi, Japan
- * E-mail:
| | - Fumio Inagaki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi, Japan
- Geobiotechnology Group, Research and Development Center for Submarine Resources, JAMSTEC, Nankoku, Kochi, Japan
- Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama, Kanagawa, Japan
| |
Collapse
|
148
|
Abstract
Drilling is an integral part of subsurface exploration. Because almost all drilling operations require the use of a drill fluid, contamination by infiltration of drill fluid into the recovered core material cannot be avoided. Because it is impossible to maintain sterile conditions during drilling the drill fluid will contain surface microbes and other contaminants. As contamination cannot be avoided, it has to be tracked to identify those parts of the drill core that were not infiltrated by the drill fluid. This is done by the addition of tracer compounds. A great variety of tracers is available, and the choice depends on many factors. This review will first explain the basic principles of drilling before presenting the most common tracers and discussing their strengths and weaknesses. The final part of this review presents a number of key questions that have to be addressed in order to find the right tracer for a particular drilling operation.
Collapse
Affiliation(s)
- J Kallmeyer
- GFZ German Research Centre for Geosciences, Potsdam, Germany.
| |
Collapse
|
149
|
Stolz JF. Gaia and her microbiome. FEMS Microbiol Ecol 2016; 93:fiw247. [DOI: 10.1093/femsec/fiw247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 01/09/2023] Open
|
150
|
Inagaki F. PL-03Exploration of Deep Subseafloor Life and the Biosphere: The State-of-the-Art Analytical Technique. Microscopy (Oxf) 2016. [DOI: 10.1093/jmicro/dfw096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|