101
|
Antibiofilm Activity of a Broad-Range Recombinant Endolysin LysECD7: In Vitro and In Vivo Study. Viruses 2020; 12:v12050545. [PMID: 32429199 PMCID: PMC7291189 DOI: 10.3390/v12050545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Surfaces of implanted medical devices are highly susceptible to biofilm formation. Bacteria in biofilms are embedded in a self-produced extracellular matrix that inhibits the penetration of antibiotics and significantly contributes to the mechanical stability of the colonizing community which leads to an increase in morbidity and mortality rate in clinical settings. Therefore, new antibiofilm approaches and substances are urgently needed. In this paper, we test the efficacy of a broad-range recombinant endolysin of the coliphage LysECD7 against forming and mature biofilms. We used a strong biofilm producer-Klebsiella pneumoniae Ts 141-14 clinical isolate. In vitro investigation of the antibacterial activity was performed using the standard biofilm assay in microtiter plates. We optimized the implantable diffusion chamber approach in order to reach strong biofilm formation in vivo avoiding severe consequences of the pathogen for the animals and to obtain a well-reproducible model of implant-associated infection. Endolysin LysECD7 significantly reduced the biofilm formation and was capable of degrading the preformed biofilm in vitro. The animal trials on the preformed biofilms confirmed these results. Overall, our results show that LysECD7 is a promising substance against clinically relevant biofilms.
Collapse
|
102
|
Blasco L, Ambroa A, Trastoy R, Bleriot I, Moscoso M, Fernández-Garcia L, Perez-Nadales E, Fernández-Cuenca F, Torre-Cisneros J, Oteo-Iglesias J, Oliver A, Canton R, Kidd T, Navarro F, Miró E, Pascual A, Bou G, Martínez-Martínez L, Tomas M. In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens. Sci Rep 2020; 10:7163. [PMID: 32346029 PMCID: PMC7188820 DOI: 10.1038/s41598-020-64145-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of multidrug resistant (MDR) pathogenic bacteria is jeopardizing the value of antimicrobials, which had previously changed the course of medical science. In this study, we identified endolysins ElyA1 and ElyA2 (GH108-PG3 family), present in the genome of bacteriophages Ab1051Φ and Ab1052Φ, respectively. The muralytic activity of these endolysins against MDR clinical isolates (Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae) was tested using the turbidity reduction assay. Minimal inhibitory concentrations (MICs) of endolysin, colistin and a combination of endolysin and colistin were determined, and the antimicrobial activity of each treatment was confirmed by time kill curves. Endolysin ElyA1 displayed activity against all 25 strains of A. baumannii and P. aeruginosa tested and against 13 out of 17 strains of K. pneumoniae. Endolysin ElyA2 did not display any such activity. The combined antimicrobial activity of colistin and ElyA1 yielded a reduction in the colistin MIC for all strains studied, except K. pneumoniae. These results were confirmed in vivo in G. mellonella survival assays and in murine skin and lung infection models. In conclusion, combining colistin (1/4 MIC) with the new endolysin ElyA1 (350 µg) enhanced the bactericidal activity of colistin in both in vitro and in vivo studies. This will potentially enable reduction of the dose of colistin used in clinical practice.
Collapse
Affiliation(s)
- Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Anton Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Rocio Trastoy
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Ines Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Miriam Moscoso
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Laura Fernández-Garcia
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Elena Perez-Nadales
- Unit of Microbiology, University Hospital Reina Sofía, Department of Microbiology, University of Córdoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Felipe Fernández-Cuenca
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena / Department of Microbiology and Medicine, University of Seville/ Biomedicine Institute of Seville (IBIS), Seville, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Julian Torre-Cisneros
- Unit of Microbiology, University Hospital Reina Sofía, Department of Microbiology, University of Córdoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Jesus Oteo-Iglesias
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Antonio Oliver
- Microbiology Department-Research Institute Biomedical Islas Baleares (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Rafael Canton
- Microbiology Department-Research Institute Biomedical Ramón and Cajal (IRYCIS), Hospital Ramón and Cajal, Madrid, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Tim Kidd
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Ferran Navarro
- Microbiology Department-Sant Pau Hospital, Barcelona, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Elisenda Miró
- Microbiology Department-Sant Pau Hospital, Barcelona, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Alvaro Pascual
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena / Department of Microbiology and Medicine, University of Seville/ Biomedicine Institute of Seville (IBIS), Seville, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - German Bou
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Luis Martínez-Martínez
- Unit of Microbiology, University Hospital Reina Sofía, Department of Microbiology, University of Córdoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Maria Tomas
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain.
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain.
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain.
| |
Collapse
|
103
|
Seleem NM, Abd El Latif HK, Shaldam MA, El-Ganiny A. Drugs with new lease of life as quorum sensing inhibitors: for combating MDR Acinetobacter baumannii infections. Eur J Clin Microbiol Infect Dis 2020; 39:1687-1702. [PMID: 32328851 PMCID: PMC7180647 DOI: 10.1007/s10096-020-03882-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
The emergence of multidrug-resistant (MDR) strains is a major health problem worldwide. There is an urgent need for novel strategies to combat bacterial infections caused by MDR strains like Pseudomonas aeruginosa and Acinetobacter baumannii. Quorum sensing (QS) is a critical communication system in bacterial community controlling survival and virulence. The awareness of the importance of QS in bacterial infections has stimulated research to identify QS inhibitors (QSIs) to defeat microbes. In this study, four FDA-approved drugs (besides azithromycin as positive QSI) were tested for potential QS inhibition against clinical A. baumannii isolates and P. aeruginosa (PAO1) standard strain. The inhibitory effect of these drugs on virulence factors of both microbes has been investigated. The studied virulence factors include biofilm formation, twitching and swarming motilities, proteolytic enzyme production, and resistance to oxidative stress. The four tested drugs (erythromycin, levamisole, chloroquine, and propranolol) inhibited QS in Chromobacterium violaceum by 84, 72, 55.1, and 37.3%, respectively. They also significantly inhibited virulence factors in both PAO1 and A. baumannii at sub-inhibitory concentrations. These findings were confirmed by qRT-PCR and mice mortality test, where tested drugs highly repressed the expression of abaI gene and showed significantly improved mice survival rates. In addition, molecular docking studies against AbaI and AbaR proteins of QS system in A. baumannii revealed the potential inhibition of QS by tested drugs. Beside their known activities, the tested drugs could be given new life as QSIs to combat A. baumannii nosocomial infections (alone or in combination with antimicrobials).
Collapse
Affiliation(s)
- Noura M Seleem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hemat K Abd El Latif
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Moataz A Shaldam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kafr-elsheikh University, Kafr El Sheikh, 33516, Egypt
| | - Amira El-Ganiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
104
|
Bratanis E, Andersson T, Lood R, Bukowska-Faniband E. Biotechnological Potential of Bdellovibrio and Like Organisms and Their Secreted Enzymes. Front Microbiol 2020; 11:662. [PMID: 32351487 PMCID: PMC7174725 DOI: 10.3389/fmicb.2020.00662] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 02/01/2023] Open
Abstract
Bdellovibrio and like organisms (BALOs) are obligate predatory bacteria that selectively prey on a broad range of Gram-negative bacteria, including multidrug-resistant human pathogens. Due to their unique lifestyle, they have been long recognized as a potential therapeutic and biocontrol agent. Research on BALOs has rapidly grown over the recent decade, resulting in many publications concerning molecular details of bacterial predation as well as applications thereof in medicine and biotechnology. This review summarizes the current knowledge on biotechnological potential of obligate predatory bacteria and their secreted enzymes.
Collapse
Affiliation(s)
- Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Tilde Andersson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rolf Lood
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ewa Bukowska-Faniband
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
105
|
Characterization of a novel T7-like Salmonella Typhimurium (ATCC13311) bacteriophage LPST144 and its endolysin. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
106
|
Reuter M, Kruger DH. Approaches to optimize therapeutic bacteriophage and bacteriophage-derived products to combat bacterial infections. Virus Genes 2020; 56:136-149. [PMID: 32036540 PMCID: PMC7223754 DOI: 10.1007/s11262-020-01735-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
The emerging occurrence of antibiotic-resistant bacterial pathogens leads to a recollection of bacteriophage as antimicrobial therapeutics. This article presents a short overview of the clinical phage application including their use in military medicine and discusses the genotypic and phenotypic properties of a potential "ideal" therapeutic phage. We describe current efforts to engineer phage for their improved usability in pathogen treatment. In addition, phage can be applied for pathogen detection, selective drug delivery, vaccine development, or food and surface decontamination. Instead of viable phage, (engineered) phage-derived enzymes, such as polysaccharide depolymerases or peptidoglycan-degrading enzymes, are considered as promising therapeutic candidates. Finally, we briefly summarize the use of phage for the detection and treatment of "Category A priority pathogens".
Collapse
Affiliation(s)
- Monika Reuter
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Detlev H. Kruger
- Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
107
|
Modulation of Endolysin LysECD7 Bactericidal Activity by Different Peptide Tag Fusion. Biomolecules 2020; 10:biom10030440. [PMID: 32178329 PMCID: PMC7175214 DOI: 10.3390/biom10030440] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
The use of recombinant endolysins is a promising approach for antimicrobial therapy capable of counteracting the spread of antibiotic-resistant strains. To obtain the necessary biotechnological product, diverse peptide tags are often fused to the endolysin sequence to simplify enzyme purification, improve its ability to permeabilize the bacterial outer membrane, etc. We compared the effects of two different types of protein modifications on endolysin LysECD7 bactericidal activity in vitro and demonstrated that it is significantly modulated by specific permeabilizing antimicrobial peptides, as well as by widely used histidine tags. Thus, the tags selected for the study of endolysins and during the development of biotechnological preparations should be used with the appropriate precautions to minimize false conclusions about endolysin properties. Further, modifications of LysECD7 allowed us to obtain a lytic enzyme that was largely devoid of the disadvantages of the native protein and was active over the spectra of conditions, with high in vitro bactericidal activity not only against Gram-negative, but also against Gram-positive, bacteria. This opens up the possibility of developing effective antimicrobials based on N-terminus sheep myeloid peptide of 29 amino acids (SMAP)-modified LysECD7 that can be highly active not only during topical treatment but also for systemic applications in the bloodstream and tissues.
Collapse
|
108
|
Abstract
To formulate the optimal strategy of combatting bacterial biofilms, in this review we update current knowledge on the growing problem of biofilm formation and its resistance to antibiotics which has spurred the search for new strategies to deal with this complication. Based on recent findings, the role of bacteriophages in the prevention and elimination of biofilm-related infections has been emphasized. In vitro, ex vivo and in vivo biofilm treatment models with single bacteriophages or phage cocktails have been compared. A combined use of bacteriophages with antibiotics in vitro or in vivo confirms earlier reports of the synergistic effect of these agents in improving biofilm removal. Furthermore, studies on the application of phage-derived lysins in vitro, ex vivo or in vivo against biofilm-related infections are encouraging. The strategy of combined use of phage and antibiotics seems to be different from using lysins and antibiotics. These findings suggest that phages and lysins alone or in combination with antibiotics may be an efficient weapon against biofilm formation in vivo and ex vivo, which could be useful in formulating novel strategies to combat bacterial infections. Those findings proved to be relevant in the prevention and destruction of biofilms occurring during urinary tract infections, orthopedic implant-related infections, periodontal and peri-implant infections. In conclusion, it appears that most efficient strategy of eliminating biofilms involves phages or lysins in combination with antibiotics, but the optimal scheme of their administration requires further studies.
Collapse
|
109
|
Smulski S, Turlewicz-Podbielska H, Wylandowska A, Włodarek J. Non-antibiotic Possibilities in Prevention and Treatment of Calf Diarrhoea. J Vet Res 2020; 64:119-126. [PMID: 32258808 PMCID: PMC7105995 DOI: 10.2478/jvetres-2020-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/13/2020] [Indexed: 01/21/2023] Open
Abstract
Due to increasing bacterial antibiotic resistance and the consumers' tendency to choose organic products, cattle farmers are interested in alternative methods of calf diarrhoea treatment. This is a major challenge for veterinarians. Few methods of non-antibiotic treatment that bring satisfactory results have been reported in the related literature so far. In this article, the authors compare different non-antibiotic methods of diarrhoea prevention and treatment in calves. Among the alternatives discussed are herbs, probiotics, prebiotics and synbiotics, lactoferrin, and bacteriophages. It was found that the best results could be achieved through the use of pro-, pre- and synbiotics. However, the authors would like to point out that with the expansion of knowledge about the practical use of broad-scale bacteriophages, they could be the best alternative to antibiotics.
Collapse
Affiliation(s)
| | - Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, 60-637Poznań, Poland
| | - Agata Wylandowska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, 60-637Poznań, Poland
| | - Jan Włodarek
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, 60-637Poznań, Poland
| |
Collapse
|
110
|
Gram-Negative Bacterial Lysins. Antibiotics (Basel) 2020; 9:antibiotics9020074. [PMID: 32054067 PMCID: PMC7168136 DOI: 10.3390/antibiotics9020074] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Antibiotics have had a profound impact on human society by enabling the eradication of otherwise deadly infections. Unfortunately, antibiotic use and overuse has led to the rapid spread of acquired antibiotic resistance, creating a major threat to public health. Novel therapeutic agents called bacteriophage endolysins (lysins) provide a solution to the worldwide epidemic of antibiotic resistance. Lysins are a class of enzymes produced by bacteriophages during the lytic cycle, which are capable of cleaving bonds in the bacterial cell wall, resulting in the death of the bacteria within seconds after contact. Through evolutionary selection of the phage progeny to be released and spread, these lysins target different critical components in the cell wall, making resistance to these molecules orders of magnitude less likely than conventional antibiotics. Such properties make lysins uniquely suitable for the treatment of multidrug resistant bacterial pathogens. Lysins, either naturally occurring or engineered, have the potential of being developed into fast-acting, narrow-spectrum, biofilm-disrupting antimicrobials that act synergistically with standard of care antibiotics. This review focuses on newly discovered classes of Gram-negative lysins with emphasis on prototypical enzymes that have been evaluated for efficacy against the major antibiotic resistant organisms causing nosocomial infections.
Collapse
|
111
|
Bio-assay of Acintobacter baumannii using DNA conjugated with gold nano-star: A new platform for microorganism analysis. Enzyme Microb Technol 2020; 133:109466. [PMID: 31874682 DOI: 10.1016/j.enzmictec.2019.109466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/18/2022]
|
112
|
Kim S, Lee DW, Jin JS, Kim J. Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. J Glob Antimicrob Resist 2020; 22:32-39. [PMID: 32006750 DOI: 10.1016/j.jgar.2020.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Multidrug-resistant (MDR) bacteria are a major public-health concern. Bacteriophage endolysins (lysins) can be used as novel antimicrobial agents against bacterial infections. In this study, a novel endolysin (LysSS) containing a lysozyme-like domain was evaluated for its antibacterial activity against various species of bacteria. METHODS The LysSS-encoding gene was analyzed and cloned and the LysSS recombinant protein was expressed and purified. Purified LysSS was used to determine its antimicrobial activity against various bacterial species in vitro and to measure its protection rate against Acinetobacter baumannii systemic infection in an in vivo murine model. RESULTS Recombinant LysSS showed activity against MDR A. baumannii, MDR Escherichia coli, MDR Klebsiella pneumoniae, MDR Pseudomonas aeruginosa and Salmonella sp. without pre-treatment with an outer membrane permeabiliser. Moreover, LysSS inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA). The minimum inhibitory concentration (MIC) of LysSS against 16 MDR A. baumannii strains ranged from 0.063-0.25mg/mL. LysSS had no cytotoxic effect on A549 human lung cells below 250μg/mL. In an animal model, mice infected with A. baumannii were protected (40% survival rate with 125μg LysSS) by intraperitoneal injection of LysSS. CONCLUSION The current results demonstrate that LysSS may be a novel and promising antimicrobial agent against MRSA and MDR Gram-negative bacteria, including A. baumannii and P. aeruginosa.
Collapse
Affiliation(s)
- Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Da-Won Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Jong-Sook Jin
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea.
| |
Collapse
|
113
|
Taati Moghadam M, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A, Masjedian Jazi F. How Phages Overcome the Challenges of Drug Resistant Bacteria in Clinical Infections. Infect Drug Resist 2020; 13:45-61. [PMID: 32021319 PMCID: PMC6954843 DOI: 10.2147/idr.s234353] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022] Open
Abstract
Nowadays the most important problem in the treatment of bacterial infections is the appearance of MDR (multidrug-resistant), XDR (extensively drug-resistant) and PDR (pan drug-resistant) bacteria and the scarce prospects of producing new antibiotics. There is renewed interest in revisiting the use of bacteriophage to treat bacterial infections. The practice of phage therapy, the application of phages to treat bacterial infections, has been around for approximately a century. Phage therapy relies on using lytic bacteriophages and purified phage lytic proteins for treatment and lysis of bacteria at the site of infection. Current research indicates that phage therapy has the potential to be used as an alternative to antibiotic treatments. It is noteworthy that, whether phages are used on their own or combined with antibiotics, phages are still a promising agent to replace antibiotics. So, this review focuses on an understanding of challenges of MDR, XDR, and PDR bacteria and phages mechanism for treating bacterial infections and the most recent studies on potential phages, cocktails of phages, and enzymes of lytic phages in fighting these resistant bacteria.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Hallajzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
114
|
Caflisch KM, Suh GA, Patel R. Biological challenges of phage therapy and proposed solutions: a literature review. Expert Rev Anti Infect Ther 2019; 17:1011-1041. [PMID: 31735090 DOI: 10.1080/14787210.2019.1694905] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: In light of the emergence of antibiotic-resistant bacteria, phage (bacteriophage) therapy has been recognized as a potential alternative or addition to antibiotics in Western medicine for use in humans.Areas covered: This review assessed the scientific literature on phage therapy published between 1 January 2007 and 21 October 2019, with a focus on the successes and challenges of this prospective therapeutic.Expert opinion: Efficacy has been shown in animal models and experimental findings suggest promise for the safety of human phagotherapy. Significant challenges remain to be addressed prior to the standardization of phage therapy in the West, including the development of phage-resistant bacteria; the pharmacokinetic complexities of phage; and any potential human immune response incited by phagotherapy.
Collapse
Affiliation(s)
- Katherine M Caflisch
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Gina A Suh
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
115
|
Leshkasheli L, Kutateladze M, Balarjishvili N, Bolkvadze D, Save J, Oechslin F, Que YA, Resch G. Efficacy of newly isolated and highly potent bacteriophages in a mouse model of extensively drug-resistant Acinetobacter baumannii bacteraemia. J Glob Antimicrob Resist 2019; 19:255-261. [DOI: 10.1016/j.jgar.2019.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 02/02/2023] Open
|
116
|
Gondil VS, Harjai K, Chhibber S. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents 2019; 55:105844. [PMID: 31715257 DOI: 10.1016/j.ijantimicag.2019.11.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/02/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
Endolysins are the lytic products of bacteriophages which play a specific role in the release of phage progeny by degrading the peptidoglycan of the host bacterium. In the light of antibiotic resistance, endolysins are being considered as alternative therapeutic agents because of their exceptional ability to target bacterial cells when applied externally. Endolysins have been studied against a number of drug-resistant pathogens to assess their therapeutic ability. This review focuses on the structure of endolysins in terms of cell binding and catalytic domains, lytic ability, resistance, safety, immunogenicity and future applications. It primarily reviews recent advancements made in evaluation of the therapeutic potential of endolysins, including their origin, host range, applications, and synergy with conventional and non-conventional antimicrobial agents.
Collapse
Affiliation(s)
- Vijay Singh Gondil
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
117
|
Ciepluch K, Maciejewska B, Gałczyńska K, Kuc-Ciepluch D, Bryszewska M, Appelhans D, Drulis-Kawa Z, Arabski M. The influence of cationic dendrimers on antibacterial activity of phage endolysin against P. aeruginosa cells. Bioorg Chem 2019; 91:103121. [DOI: 10.1016/j.bioorg.2019.103121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/28/2019] [Accepted: 07/11/2019] [Indexed: 01/21/2023]
|
118
|
Cao Y, Li S, Wang D, Zhao J, Xu L, Liu H, Lu T, Mou Z. Genomic characterization of a novel virulent phage infecting the Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss). Virus Res 2019; 273:197764. [PMID: 31550486 DOI: 10.1016/j.virusres.2019.197764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022]
Abstract
The virulent bacteriophage MJG that specifically infects Aeromonas hydrophila was isolated from a water sample from a river in Harbin, China. The genome of phage MJG was a double-stranded linear DNA with 45,057 bp, possessing 50.11% GC content. No virulence or resistance genes were found in the phage genome. Morphological observation, genomic characterization, and phylogenetic analysis indicated that MJG was closely related to phages belonging to the genus Sp6virus in the Podoviridae family. This phage is a novel member within Sp6virus that could infect and lyse A. hydrophila. This study could serve as a genomic reference of A. hydrophila phages and provide a potential agent for phage therapy.
Collapse
Affiliation(s)
- Yongsheng Cao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China; Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa, 850002, Tibet, China.
| | - Shaowu Li
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Di Wang
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Jingzhuang Zhao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Liming Xu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Hongbai Liu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Tongyan Lu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Zhenbo Mou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa, 850002, Tibet, China.
| |
Collapse
|
119
|
Alves DR, Nzakizwanayo J, Dedi C, Olympiou C, Hanin A, Kot W, Hansen L, Lametsch R, Gahan CGM, Schellenberger P, Ogilvie LA, Jones BV. Genomic and Ecogenomic Characterization of Proteus mirabilis Bacteriophages. Front Microbiol 2019; 10:1783. [PMID: 31447809 PMCID: PMC6691071 DOI: 10.3389/fmicb.2019.01783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/18/2019] [Indexed: 01/21/2023] Open
Abstract
Proteus mirabilis often complicates the care of catheterized patients through the formation of crystalline biofilms which block urine flow. Bacteriophage therapy has been highlighted as a promising approach to control this problem, but relatively few phages infecting P. mirabilis have been characterized. Here we characterize five phages capable of infecting P. mirabilis, including those shown to reduce biofilm formation, and provide insights regarding the wider ecological and evolutionary relationships of these phages. Transmission electron microscopy (TEM) imaging of phages vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, vB_PmiP_RS3pmA, and vB_PmiP_RS8pmA showed that all share morphologies characteristic of the Podoviridae family. The genome sequences of vB_PmiP_RS1pmA, vB_PmiP_RS1pmB, and vB_PmiP_RS3pmA showed these are species of the same phage differing only by point mutations, and are closely related to vB_PmiP_RS8pmA. Podophages characterized in this study were also found to share similarity in genome architecture and composition to other previously described P. mirabilis podophages (PM16 and PM75). In contrast, vB_PimP_RS51pmB showed morphology characteristic of the Myoviridae family, with no notable similarity to other phage genomes examined. Ecogenomic profiling of all phages revealed no association with human urinary tract viromes, but sequences similar to vB_PimP_RS51pmB were found within human gut, and human oral microbiomes. Investigation of wider host-phage evolutionary relationships through tetranucleotide profiling of phage genomes and bacterial chromosomes, indicated vB_PimP_RS51pmB has a relatively recent association with Morganella morganii and other non-Proteus members of the Morganellaceae family. Subsequent host range assays confirmed vB_PimP_RS51pmB can infect M. morganii.
Collapse
Affiliation(s)
- Diana R. Alves
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, United Kingdom
- Queen Victoria Hospital NHS Foundation Trust, East Grinstead, United Kingdom
| | - Jonathan Nzakizwanayo
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Cinzia Dedi
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Chara Olympiou
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- School of Pharmacy, Queen’s University, Belfast, United Kingdom
| | - Aurélie Hanin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rene Lametsch
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Cormac G. M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Lesley A. Ogilvie
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Brian V. Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Queen Victoria Hospital NHS Foundation Trust, East Grinstead, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
120
|
Abstract
The prevalence of antimicrobial resistance among many common bacterial pathogens is increasing. The emergence and global dissemination of these antibiotic-resistant bacteria (ARB) is fuelled by antibiotic selection pressure, inter-organism transmission of resistance determinants, suboptimal infection prevention practices and increasing ease and frequency of international travel, among other factors. Patients with chronic kidney disease, particularly those with end-stage renal disease who require dialysis and/or kidney transplantation, have some of the highest rates of colonization and infection with ARB worldwide. These ARB include methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp. and several multidrug-resistant Gram-negative organisms. Antimicrobial resistance limits treatment options and increases the risk of infection-related morbidity and mortality. Several new antibiotic agents with activity against some of the most common ARB have been developed, but resistance to these agents is already emerging and highlights the dire need for new treatment options as well as consistent implementation and improvement of basic infection prevention practices. Clinicians involved in the care of patients with renal disease must be familiar with the local epidemiology of ARB, remain vigilant for the emergence of novel resistance patterns and adhere strictly to practices proven to prevent transmission of ARB and other pathogens.
Collapse
Affiliation(s)
- Tina Z Wang
- NewYork Presbyterian-Weill Cornell Medical Center, New York, NY, USA
| | | | - David P Calfee
- NewYork Presbyterian-Weill Cornell Medical Center, New York, NY, USA.
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
121
|
Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front Microbiol 2019; 10:1601. [PMID: 31379771 PMCID: PMC6650576 DOI: 10.3389/fmicb.2019.01601] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
Acinetobacter baumannii is a Gram negative opportunistic pathogen that has demonstrated a significant insurgence in the prevalence of infections over recent decades. With only a limited number of “traditional” virulence factors, the mechanisms underlying the success of this pathogen remain of great interest. Major advances have been made in the tools, reagents, and models to study A. baumannii pathogenesis, and this has resulted in a substantial increase in knowledge. This article provides a comprehensive review of the bacterial virulence factors, the host immune responses, and animal models applicable for the study of this important human pathogen. Collating the most recent evidence characterizing bacterial virulence factors, their cellular targets and genetic regulation, we have encompassed numerous aspects important to the success of this pathogen, including membrane proteins and cell surface adaptations promoting immune evasion, mechanisms for nutrient acquisition and community interactions. The role of innate and adaptive immune responses is reviewed and areas of paucity in our understanding are highlighted. Finally, with the vast expansion of available animal models over recent years, we have evaluated those suitable for use in the study of Acinetobacter disease, discussing their advantages and limitations.
Collapse
Affiliation(s)
- Faye C Morris
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carina Dexter
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xenia Kostoulias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Muhammad Ikhtear Uddin
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
122
|
External lysis of Escherichia coli by a bacteriophage endolysin modified with hydrophobic amino acids. AMB Express 2019; 9:106. [PMID: 31309363 PMCID: PMC6629724 DOI: 10.1186/s13568-019-0838-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Drug-resistant bacteria are a serious threat to global public health. Gram-positive bacterial endolysin preparations have been successfully used to fight Gram-positive bacteria as a novel antimicrobial replacement strategy. However, Gram-negative bacterial phage endolysins cannot be applied directly to destroy Gram-negative strains due to the externally inaccessible peptidoglycan layer of the cell wall; this has seriously hampered the development of endolysin-like antibiotics against Gram-negative bacteria. In this study, 3–12 hydrophobic amino acids were successively added to the C-terminus of Escherichia coli phage endolysin Lysep3 to create five different hydrophobic-modified endolysins. Compared with endogenous Lysep3, endolysins modified with hydrophobic amino acids surprisingly could kill E. coli from outside of the cell at the appropriate pH and endolysin concentration. The lysis ability of modified endolysins were enhanced with increasing numbers of hydrophobic amino acids at the C-terminus of endolysin. Thus, these findings demonstrate that the enhancement of hydrophobicity at the C-terminus enables the endolysin to act upon E. coli from the outside, representing a novel method of lysing Gram-negative antibiotic-resistant bacteria.
Collapse
|
123
|
Isolation of Phage Lysins That Effectively Kill Pseudomonas aeruginosa in Mouse Models of Lung and Skin Infection. Antimicrob Agents Chemother 2019; 63:AAC.00024-19. [PMID: 31010858 DOI: 10.1128/aac.00024-19] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/15/2019] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance (MDR) is rapidly increasing in prevalence among isolates of the opportunistic pathogen Pseudomonas aeruginosa, leaving few treatment options. Phage lysins are cell wall hydrolases that have a demonstrated therapeutic potential against Gram-positive pathogens; however, the outer membrane of Gram-negative bacteria prevents most lysins from reaching the peptidoglycan, making them less effective as therapeutics. Nevertheless, a few lysins from Gram-negative bacterial phage can penetrate the bacterial outer membrane with the aid of an amphipathic tail found in the molecule's termini. In this work, we took a phylogenetic approach to systematically identify those lysins from P. aeruginosa phage that would be most effective therapeutically. We isolated and performed preliminary characterization of 16 lysins and chose 2 lysins, PlyPa03 and PlyPa91, which exhibited >5-log killing activity against P. aeruginosa and other Gram-negative pathogens (particularly Klebsiella and Enterobacter). These lysins showed rapid killing kinetics and were active in the presence of high concentrations of salt and urea and under pH conditions ranging from 5.0 to 10.0. Activity was not inhibited in the presence of the pulmonary surfactant beractant (Survanta). While neither enzyme was active in 100% human serum, PlyPa91 retained activity in low serum concentrations. The lysins were effective in the treatment of a P. aeruginosa skin infection in a mouse model, and PlyPa91 protected mice in a lung infection model, making these lysins potential drug candidates for Gram-negative bacterial infections of the skin or respiratory mucosa.
Collapse
|
124
|
Rehman S, Ali Z, Khan M, Bostan N, Naseem S. The dawn of phage therapy. Rev Med Virol 2019; 29:e2041. [PMID: 31050070 DOI: 10.1002/rmv.2041] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
Bacteriophages or phages, being the most abundant entities on earth, represent a potential solution to a diverse range of problems. Phages are successful antibacterial agents whose use in therapeutics was hindered by the discovery of antibiotics. Eventually, because of the development and spread of antibiotic resistance among most bacterial species, interest in phage as therapeutic entities has returned, because their noninfectious nature to humans should make them safe for human nanomedicine. This review highlights the most recent advances and progress in phage therapy and bacterial hosts against which phage research is currently being conducted with respect to food, human, and marine pathogens. Bacterial immunity against phages and tactics of phage revenge to defeat bacterial defense systems are also summarized. We have also discussed approved phage-based products (whole phage-based products and phage proteins) and shed light on their influence on the eukaryotic host with respect to host safety and induction of immune response against phage preparations. Moreover, creation of phages with desirable qualities and their uses in cancer treatment, vaccine production, and other therapies are also reviewed to bring together evidence from the scientific literature about the potentials and possible utility of phage and phage encoded proteins in the field of therapeutics and industrial biotechnology.
Collapse
Affiliation(s)
- Sana Rehman
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zahid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Momna Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nazish Bostan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saadia Naseem
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
125
|
Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum. Virus Genes 2019; 55:394-405. [PMID: 30937696 DOI: 10.1007/s11262-019-01660-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) infection has imposed a great threat to patients with cystic fibrosis. With the emergence of multidrug-resistant P. aeruginosa, developing an alternative anti-microbial strategy is indispensable and more urgent than ever. In this study, a lytic P. aeruginosa phage was isolated from the sewage of a hospital, and one protein was predicted as the depolymerase-like protein by genomic sequence analysis, it includes two catalytic regions, the Pectate lyase_3 super family and Glycosyl hydrolase_28 super family. Further analysis demonstrated that recombinant depolymerase-like protein degraded P. aeruginosa exopolysaccharide and enhanced bactericidal activity mediated by serum in vitro. Additionally, this protein disrupted host bacterial biofilms. All of these results showed that the phage-derived depolymerase-like protein has the potential to be developed into an anti-microbial agent that targets P. aeruginosa.
Collapse
|
126
|
Antonova NP, Vasina DV, Lendel AM, Usachev EV, Makarov VV, Gintsburg AL, Tkachuk AP, Gushchin VA. Broad Bactericidal Activity of the Myoviridae Bacteriophage Lysins LysAm24, LysECD7, and LysSi3 against Gram-Negative ESKAPE Pathogens. Viruses 2019; 11:v11030284. [PMID: 30901901 PMCID: PMC6466606 DOI: 10.3390/v11030284] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/30/2022] Open
Abstract
The extremely rapid spread of multiple-antibiotic resistance among Gram-negative pathogens threatens to move humankind into the so-called “post-antibiotic era” in which the most efficient and safe antibiotics will not work. Bacteriophage lysins represent promising alternatives to antibiotics, as they are capable of digesting bacterial cell wall peptidoglycans to promote their osmotic lysis. However, relatively little is known regarding the spectrum of lysin bactericidal activity against Gram-negative bacteria. In this study, we present the results of in vitro activity assays of three putative and newly cloned Myoviridae bacteriophage endolysins (LysAm24, LysECD7, and LysSi3). The chosen proteins represent lysins with diverse domain organization (single-domain vs. two-domain) and different predicted mechanisms of action (lysozyme vs. peptidase). The enzymes were purified, and their properties were characterized. The enzymes were tested against a panel of Gram-negative clinical bacterial isolates comprising all Gram-negative representatives of the ESKAPE group. Despite exhibiting different structural organizations, all of the assayed lysins were shown to be capable of lysing Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Salmonella typhi strains. Less than 50 μg/mL was enough to eradicate growing cells over more than five orders of magnitude. Thus, LysAm24, LysECD7, and LysSi3 represent promising therapeutic agents for drug development.
Collapse
Affiliation(s)
- Nataliia P Antonova
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Daria V Vasina
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | | | - Evgeny V Usachev
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Valentine V Makarov
- Center for Strategic Planning of the Ministry of Health of the Russian Federation, 119435 Moscow, Russia.
| | - Alexander L Gintsburg
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Artem P Tkachuk
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Vladimir A Gushchin
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
127
|
Treatment of Infected Wounds in the Age of Antimicrobial Resistance: Contemporary Alternative Therapeutic Options. Plast Reconstr Surg 2019; 142:1082-1092. [PMID: 30252823 DOI: 10.1097/prs.0000000000004799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As antibiotic resistance increases and antimicrobial options diminish, there is a pressing need to identify and develop new and/or alternative (non-antimicrobial-based) wound therapies. The authors describe the implications of antibiotic resistance on their current wound treatment paradigms and review the most promising non-antibiotic-based antimicrobial agents currently in research and development, with a focus on preclinical and human studies of therapeutic bacteriophages, antimicrobial peptides, cold plasma treatment, photodynamic therapy, honey, silver, and bioelectric dressings.
Collapse
|
128
|
Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, Zhang Z, Zhang Y, Chang D, Shi Y. A Novel Phage PD-6A3, and Its Endolysin Ply6A3, With Extended Lytic Activity Against Acinetobacter baumannii. Front Microbiol 2019; 9:3302. [PMID: 30687281 PMCID: PMC6333635 DOI: 10.3389/fmicb.2018.03302] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/18/2018] [Indexed: 01/21/2023] Open
Abstract
With widespread abuse of antibiotics, bacterial resistance has increasingly become a serious threat. Acinetobacter baumannii has emerged as one of the most important hospital-acquired pathogens worldwide. Bacteriophages (also called “phages”) could be used as a potential alternative therapy to meet the challenges posed by such pathogens. Endolysins from phages have also been attracting increasing interest as potential antimicrobial agents. Here, we isolated 14 phages against A. baumannii, determined the lytic spectrum of each phage, and selected one with a relatively broad host range, named vB_AbaP_PD-6A3 (PD-6A3 for short), for its biological characteristics. We over-expressed and purified the endolysin (Ply6A3) from this phage and tested its biological characteristics. The PD-6A3 is a novel phage, which can kill 32.4% (179/552) of clinical multidrug resistant A. baumannii (MDRAB) isolates. Interestingly, in vitro, this endolysin could not only inhibit A. baumannii, but also that of other strains, such as Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). We found that lethal A. baumannii sepsis mice could be effectively rescued in vivo by phage PD-6A3 and endolysin Ply6A3 intraperitoneal injection. These characteristics reveal the promising potential of phage PD-6A3 and endolysin Ply6A3 as attractive candidates for the control of A. baumannii-associated nosocomial infections.
Collapse
Affiliation(s)
- Minle Wu
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yili Liu
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Shanghai, China
| | - Di Mu
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| | - Huimin Guo
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhifan Zhang
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| | - Yingcong Zhang
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Dong Chang
- Department of Clinical Laboratory, Pudong Hosipital Affiliated to Fudan University, Shanghai, China
| | - Yi Shi
- Department of Clinical Laboratory, The Fourth People's Hospital of Shanghai, Shanghai, China
| |
Collapse
|
129
|
Dams D, Briers Y. Enzybiotics: Enzyme-Based Antibacterials as Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:233-253. [PMID: 31482502 DOI: 10.1007/978-981-13-7709-9_11] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibiotics have saved millions of lives. However, the overuse and misuse of antibiotics have contributed to a rapid emergence of antibiotic resistance worldwide. In addition, there is an unprecedented void in the development of new antibiotic classes by the pharmaceutical industry since the first introduction of antibiotics. This antibiotic crisis underscores the urgent and increasing necessity of new, innovative antibiotics. Enzybiotics are such a promising class of antibiotics. They are derived from endolysins, bacteriophage-encoded enzymes that degrade the bacterial cell wall of the infected cell at the end of the lytic replication cycle. Enzybiotics are featured by a rapid and unique mode-of-action, a high specificity to kill pathogens, a low probability for bacterial resistance development and a proteinaceous nature. (Engineered) endolysins have been demonstrated to be effective in a variety of animal models to combat both Gram-positive and Gram-negative bacteria and have entered different phases of preclinical and clinical trials. In addition, mycobacteriophage-encoded endolysins have been successfully used to inhibit mycobacteria in vitro. In this chapter we focus on the (pre)clinical progress of enzybiotics as potent therapeutic agent against human pathogenic bacteria.
Collapse
Affiliation(s)
- Dorien Dams
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
130
|
Isler B, Doi Y, Bonomo RA, Paterson DL. New Treatment Options against Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob Agents Chemother 2019; 63:e01110-18. [PMID: 30323035 PMCID: PMC6325237 DOI: 10.1128/aac.01110-18] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a perilous nosocomial pathogen causing substantial morbidity and mortality. Current treatment options for CRAB are limited and suffer from pharmacokinetic limitations, such as high toxicity and low plasma levels. As a result, CRAB is declared as the top priority pathogen by the World Health Organization for the investment in new drugs. This urgent need for new therapies, in combination with faster FDA approval process, accelerated new drug development and placed several drug candidates in the pipeline. This article reviews available information about the new drugs and other therapeutic options focusing on agents in clinical or late-stage preclinical studies for the treatment of CRAB, and it evaluates their expected benefits and potential shortcomings.
Collapse
Affiliation(s)
- Burcu Isler
- Istanbul Education and Research Hospital, Istanbul, Turkey
| | - Yohei Doi
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Case Western Reserve University Veterans Affairs Center of Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - David L Paterson
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital Campus, Brisbane, Queensland, Australia
| |
Collapse
|
131
|
Lopes A, Pereira C, Almeida A. Sequential Combined Effect of Phages and Antibiotics on the Inactivation of Escherichia coli. Microorganisms 2018; 6:E125. [PMID: 30563133 PMCID: PMC6313441 DOI: 10.3390/microorganisms6040125] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
The emergence of antibiotic resistance in bacteria is a global concern. The use of bacteriophages (or phages) alone or combined with antibiotics is consolidating itself as an alternative approach to inactivate antibiotic-resistant bacteria. However, phage-resistant mutants have been considered as a major threat when phage treatment is employed. Escherichia coli is one of the main responsible pathogens for moderate and serious infections in hospital and community environments, being involved in the rapid evolution of fluoroquinolones and third-generation cephalosporin resistance. The aim of this study was to evaluate the effect of combined treatments of phages and antibiotics in the inactivation of E. coli. For this, ciprofloxacin at lethal and sublethal concentrations was added at different times (0, 6, 12 and 18 h) and was tested in combination with the phage ELY-1 to inactivate E. coli. The efficacy of the combined treatment varied with the antibiotic concentration and with the time of antibiotic addition. The combined treatment prevented bacterial regrowth when the antibiotic was used at minimum inhibitory concentration (MIC) and added after 6 h of phage addition, causing less bacterial resistance than phage and antibiotic applied alone (4.0 × 10-7 for the combined treatment, 3.9 × 10-6 and 3.4 × 10-5 for the antibiotics and the phages alone, respectively). Combined treatment with phage and antibiotic can be effective in reducing the bacterial density and it can also prevent the emergence of resistant variants. However, the antibiotic concentration and the time of antibiotic application are essential factors that need to be considered in the combined treatment.
Collapse
Affiliation(s)
- Ana Lopes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
132
|
Wang JL, Kuo CF, Yeh CM, Chen JR, Cheng MF, Hung CH. Efficacy of φkm18p phage therapy in a murine model of extensively drug-resistant Acinetobacter baumannii infection. Infect Drug Resist 2018; 11:2301-2310. [PMID: 30532563 PMCID: PMC6245353 DOI: 10.2147/idr.s179701] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Few effective antibiotics are available for treating extensively drug-resistant Acinetobacter baumannii (XDRAB) sepsis. Phage therapy may show potential in treating XDRAB infections. Materials and methods We studied φkm18p phage therapy in BALB/c and C57BL/6 mice models of XDRAB bacteremia. Results We observed survival rates of nearly 100% in groups given phage therapy concurrent with XDRAB at different multiplicities of infection. In mice that received phage therapy after a 1-hour delay, the survival rate decreased to about 50%. The bacterial load in the blood decreased from 108 to 102 and 103 colony-forming units (CFU)/mL in the concurrent treatment group. In the phage therapy group, the levels of the cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), were low at 3 hours after infection. Although some phage-resistant mutants were isolated after phage therapy, a cytotoxicity study showed that they had reduced fitness. Conclusion Phage therapy in XDRAB bacteremia increased the animal survival rates, decreased the bacteremia loads, and decreased the levels of inflammatory markers TNF-α and IL-6. However, the reduced therapeutic effect with delayed administrations may be a concern in developing a successful phage therapy for treating acute infections of multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chih-Feng Kuo
- Department of Nursing, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Che-Ming Yeh
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan, ROC,
| | - Jung-Ren Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Ming-Fang Cheng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC.,School of Medicine, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Nursing, Fooyin University, Kaohsiung, Taiwan, ROC
| | - Chih-Hsin Hung
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan, ROC,
| |
Collapse
|
133
|
Furfaro LL, Payne MS, Chang BJ. Bacteriophage Therapy: Clinical Trials and Regulatory Hurdles. Front Cell Infect Microbiol 2018; 8:376. [PMID: 30406049 PMCID: PMC6205996 DOI: 10.3389/fcimb.2018.00376] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
Increasing reports of antimicrobial resistance and limited new antibiotic discoveries and development have fuelled innovation in other research fields and led to a revitalization of bacteriophage (phage) studies in the Western world. Phage therapy mainly utilizes obligately lytic phages to kill their respective bacterial hosts, while leaving human cells intact and reducing the broader impact on commensal bacteria that often results from antibiotic use. Phage therapy is rapidly evolving and has resulted in cases of life-saving therapeutic use and multiple clinical trials. However, one of the biggest challenges this antibiotic alternative faces relates to regulations and policy surrounding clinical use and implementation beyond compassionate cases. This review discusses the multi-drug resistant Gram-negative pathogens of highest critical priority and summarizes the current state-of-the-art in phage therapy targeting these organisms. It also examines phage therapy in humans in general and the approaches different countries have taken to introduce it into clinical practice and policy. We aim to highlight the rapidly advancing field of phage therapy and the challenges that lie ahead as the world shifts away from complete reliance on antibiotics.
Collapse
Affiliation(s)
- Lucy L Furfaro
- Division of Obstetrics and Gynecology, School of Medicine, The University of Western Australia, Crawley, WA, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynecology, School of Medicine, The University of Western Australia, Crawley, WA, Australia
| | - Barbara J Chang
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
134
|
Vázquez R, García E, García P. Phage Lysins for Fighting Bacterial Respiratory Infections: A New Generation of Antimicrobials. Front Immunol 2018; 9:2252. [PMID: 30459750 PMCID: PMC6232686 DOI: 10.3389/fimmu.2018.02252] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023] Open
Abstract
Lower respiratory tract infections and tuberculosis are responsible for the death of about 4.5 million people each year and are the main causes of mortality in children under 5 years of age. Streptococcus pneumoniae is the most common bacterial pathogen associated with severe pneumonia, although other Gram-positive and Gram-negative bacteria are involved in respiratory infections as well. The ability of these pathogens to persist and produce infection under the appropriate conditions is also associated with their capacity to form biofilms in the respiratory mucous membranes. Adding to the difficulty of treating biofilm-forming bacteria with antibiotics, many of these strains are becoming multidrug resistant, and thus the alternative therapeutics available for combating this kind of infections are rapidly depleting. Given these concerns, it is urgent to consider other unconventional strategies and, in this regard, phage lysins represent an attractive resource to circumvent some of the current issues in infection treatment. When added exogenously, lysins break specific bonds of the peptidoglycan and have potent bactericidal effects against susceptible bacteria. These enzymes possess interesting features, including that they do not trigger an adverse immune response and raise of resistance is very unlikely. Although Gram-negative bacteria had been considered refractory to these compounds, strategies to overcome this drawback have been developed recently. In this review we describe the most relevant in vitro and in vivo results obtained to date with lysins against bacterial respiratory pathogens.
Collapse
Affiliation(s)
- Roberto Vázquez
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pedro García
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
135
|
Kongari R, Rajaure M, Cahill J, Rasche E, Mijalis E, Berry J, Young R. Phage spanins: diversity, topological dynamics and gene convergence. BMC Bioinformatics 2018; 19:326. [PMID: 30219026 PMCID: PMC6139136 DOI: 10.1186/s12859-018-2342-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/28/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Spanins are phage lysis proteins required to disrupt the outer membrane. Phages employ either two-component spanins or unimolecular spanins in this final step of Gram-negative host lysis. Two-component spanins like Rz-Rz1 from phage lambda consist of an integral inner membrane protein: i-spanin, and an outer membrane lipoprotein: o-spanin, that form a complex spanning the periplasm. Two-component spanins exist in three different genetic architectures; embedded, overlapped and separated. In contrast, the unimolecular spanins, like gp11 from phage T1, have an N-terminal lipoylation signal sequence and a C-terminal transmembrane domain to account for the topology requirements. Our proposed model for spanin function, for both spanin types, follows a common theme of the outer membrane getting fused with the inner membrane, effecting the release of progeny virions. RESULTS Here we present a SpaninDataBase which consists of 528 two-component spanins and 58 unimolecular spanins identified in this analysis. Primary analysis revealed significant differences in the secondary structure predictions for the periplasmic domains of the two-component and unimolecular spanin types, as well as within the three different genetic architectures of the two-component spanins. Using a threshold of 40% sequence identity over 40% sequence length, we were able to group the spanins into 143 i-spanin, 125 o-spanin and 13 u-spanin families. More than 40% of these families from each type were singletons, underlining the extreme diversity of this class of lysis proteins. Multiple sequence alignments of periplasmic domains demonstrated conserved secondary structure patterns and domain organization within family members. Furthermore, analysis of families with members from different architecture allowed us to interpret the evolutionary dynamics of spanin gene arrangement. Also, the potential universal role of intermolecular disulfide bonds in two-component spanin function was substantiated through bioinformatic and genetic approaches. Additionally, a novel lipobox motif, AWAC, was identified and experimentally verified. CONCLUSIONS The findings from this bioinformatic approach gave us instructive insights into spanin function, evolution, domain organization and provide a platform for future spanin annotation, as well as biochemical and genetic experiments. They also establish that spanins, like viral membrane fusion proteins, adopt different strategies to achieve fusion of the inner and outer membranes.
Collapse
Affiliation(s)
- Rohit Kongari
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA
| | | | - Jesse Cahill
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA
| | - Eric Rasche
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA
| | - Eleni Mijalis
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA
| | - Joel Berry
- University of California, San Francisco, CA, USA
| | - Ry Young
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843-2128, USA.
| |
Collapse
|
136
|
Yang Y, Le S, Shen W, Chen Q, Huang Y, Lu S, Tan Y, Li M, Hu F, Li Y. Antibacterial Activity of a Lytic Enzyme Encoded by Pseudomonas aeruginosa Double Stranded RNA Bacteriophage phiYY. Front Microbiol 2018; 9:1778. [PMID: 30127777 PMCID: PMC6088179 DOI: 10.3389/fmicb.2018.01778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa is one of the most life-threatening pathogens for global health. In this regard, phage encoded lytic proteins, including endolysins and virion-associated peptidoglycan hydrolases (VAPGH), have been proposed as promising antimicrobial agents to treat P. aeruginosa. Most dsDNA phages use VAPGH to degrade peptidoglycan (PG) during infection, and endolysin to lyse the host cells at the end of lytic cycle. By contrast, dsRNA phage encodes only one lytic protein, which is located in the viral membrane to digest the PG during penetration, and also serves as an endolysin to release the phage. Currently, there are only seven sequenced dsRNA phages, and phiYY is the only one that infects human pathogen P. aeruginosa. In this study, dsRNA phage phiYY encoded lysin, named Ply17, was cloned and purified. Ply17 contains a PG-binding domain and a lysozyme-like-family domain. Ply17 exhibited a broad antibacterial activity against the outer membrane permeabilizer treated Gram-negative bacteria. The best lytic activity was achieved at 37°C, pH 7.5, in the presence of 0.5 mM EDTA. Moreover, it could effectively lyse Gram-positive bacteria directly, including Staphylococcus aureus. Therefore, dsRNA phage encoded Ply17 might be a promising new agent for treating multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Yuhui Yang
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Shuai Le
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Wei Shen
- Department of Medical Laboratory, Chengdu Military General Hospital, Chengdu, China
| | - Qian Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Youying Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Ming Li
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Yang Li
- Trauma Center of PLA, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
137
|
Farrell LJ, Lo R, Wanford JJ, Jenkins A, Maxwell A, Piddock LJV. Revitalizing the drug pipeline: AntibioticDB, an open access database to aid antibacterial research and development. J Antimicrob Chemother 2018; 73:2284-2297. [DOI: 10.1093/jac/dky208] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- L J Farrell
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - R Lo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - J J Wanford
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - A Jenkins
- British Society for Antimicrobial Chemotherapy, Griffin House, 53 Regent Place, Birmingham B1 3NJ, UK
| | - A Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - L J V Piddock
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
138
|
Phage-Derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for In Vivo Therapy. Viruses 2018; 10:v10060292. [PMID: 29844287 PMCID: PMC6024856 DOI: 10.3390/v10060292] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023] Open
Abstract
Peptidoglycan degrading enzymes are of increasing interest as antibacterial agents, especially against multi-drug resistant pathogens. Herein we present a review about the biological features of virion-associated lysins and endolysins, phage-derived enzymes that have naturally evolved to compromise the bacterial peptidoglycan from without and from within, respectively. These natural features may determine the adaptability of the enzymes to kill bacteria in different environments. Endolysins are by far the most studied group of peptidoglycan-degrading enzymes, with several studies showing that they can exhibit potent antibacterial activity under specific conditions. However, the lytic activity of most endolysins seems to be significantly reduced when tested against actively growing bacteria, something that may be related to fact that these enzymes are naturally designed to degrade the peptidoglycan from within dead cells. This may negatively impact the efficacy of the endolysin in treating some infections in vivo. Here, we present a critical view of the methods commonly used to evaluate in vitro and in vivo the antibacterial performance of PG-degrading enzymes, focusing on the major hurdles concerning in vitro-to-in vivo translation.
Collapse
|
139
|
Gerstmans H, Criel B, Briers Y. Synthetic biology of modular endolysins. Biotechnol Adv 2018; 36:624-640. [DOI: 10.1016/j.biotechadv.2017.12.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/15/2023]
|
140
|
Khan A, Miller WR, Arias CA. Mechanisms of antimicrobial resistance among hospital-associated pathogens. Expert Rev Anti Infect Ther 2018; 16:269-287. [PMID: 29617188 DOI: 10.1080/14787210.2018.1456919] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The introduction of antibiotics revolutionized medicine in the 20th-century permitting the treatment of once incurable infections. Widespread use of antibiotics, however, has led to the development of resistant organisms, particularly in the healthcare setting. Today, the clinician is often faced with pathogens carrying a cadre of resistance determinants that severely limit therapeutic options. The genetic plasticity of microbes allows them to adapt to stressors via genetic mutations, acquisition or sharing of genetic material and modulation of genetic expression leading to resistance to virtually any antimicrobial used in clinical practice. Areas covered: This is a comprehensive review that outlines major mechanisms of resistance in the most common hospital-associated pathogens including bacteria and fungi. Expert commentary: Understanding the genetic and biochemical mechanisms of such antimicrobial adaptation is crucial to tackling the rapid spread of resistance, can expose unconventional therapeutic targets to combat multidrug resistant pathogens and lead to more accurate prediction of antimicrobial susceptibility using rapid molecular diagnostics. Clinicians making treatment decisions based on the molecular basis of resistance may design therapeutic strategies that include de-escalation of broad spectrum antimicrobial usage, more focused therapies or combination therapies. These strategies are likely to improve patient outcomes and decrease the risk of resistance in hospital settings.
Collapse
Affiliation(s)
- Ayesha Khan
- a Department of Microbiology and Molecular Genetics , University of Texas McGovern Medical School , Houston , Texas , USA.,b Center for Antimicrobial Resistance and Microbial Genomics , University of Texas Health Science Center , Houston , TX , USA
| | - William R Miller
- b Center for Antimicrobial Resistance and Microbial Genomics , University of Texas Health Science Center , Houston , TX , USA.,c Department of Internal Medicine, Division of Infectious Diseases , McGovern Medical School
| | - Cesar A Arias
- a Department of Microbiology and Molecular Genetics , University of Texas McGovern Medical School , Houston , Texas , USA.,b Center for Antimicrobial Resistance and Microbial Genomics , University of Texas Health Science Center , Houston , TX , USA.,c Department of Internal Medicine, Division of Infectious Diseases , McGovern Medical School.,d Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics , Universidad El Bosque , Bogota , Colombia.,e School of Public Health , UTHealth Center for Infectious Diseases , Houston , TX , USA
| |
Collapse
|
141
|
Hernandez-Morales AC, Lessor LL, Wood TL, Migl D, Mijalis EM, Cahill J, Russell WK, Young RF, Gill JJ. Genomic and Biochemical Characterization of Acinetobacter Podophage Petty Reveals a Novel Lysis Mechanism and Tail-Associated Depolymerase Activity. J Virol 2018; 92:e01064-17. [PMID: 29298884 PMCID: PMC5827379 DOI: 10.1128/jvi.01064-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023] Open
Abstract
The increased prevalence of drug-resistant, nosocomial Acinetobacter infections, particularly from pathogenic members of the Acinetobacter calcoaceticus-baumannii complex, necessitates the exploration of novel treatments such as phage therapy. In the present study, we characterized phage Petty, a novel podophage that infects multidrug-resistant Acinetobacter nosocomialis and Acinetobacter baumannii Genome analysis reveals that phage Petty is a 40,431-bp ϕKMV-like phage, with a coding density of 92.2% and a G+C content of 42.3%. Interestingly, the lysis cassette encodes a class I holin and a single-subunit endolysin, but it lacks canonical spanins to disrupt the outer membrane. Analysis of other ϕKMV-like genomes revealed that spaninless lysis cassettes are a feature of phages infecting Acinetobacter within this subfamily of bacteriophages. The observed halo surrounding Petty's large clear plaques indicated the presence of a phage-encoded depolymerase capable of degrading capsular exopolysaccharides (EPS). The product of gene 39, a putative tail fiber, was hypothesized to possess depolymerase activity based on weak homology to previously reported phage tail fibers. The 101.4-kDa protein gene product 39 (gp39) was cloned and expressed, and its activity against Acinetobacter EPS in solution was determined. The enzyme degraded purified EPS from its host strain A. nosocomialis AU0783, reducing its viscosity, and generated reducing ends in solution, indicative of hydrolase activity. Given that the accessibility to cells within a biofilm is enhanced by degradation of EPS, phages with depolymerases may have enhanced diagnostic and therapeutic potential against drug-resistant Acinetobacter strains.IMPORTANCE Bacteriophage therapy is being revisited as a treatment for difficult-to-treat infections. This is especially true for Acinetobacter infections, which are notorious for being resistant to antimicrobials. Thus, sufficient data need to be generated with regard to phages with therapeutic potential, if they are to be successfully employed clinically. In this report, we describe the isolation and characterization of phage Petty, a novel lytic podophage, and its depolymerase. To our knowledge, it is the first phage reported to be able to infect both A. baumannii and A. nosocomialis The lytic phage has potential as an alternative therapeutic agent, and the depolymerase could be used for modulating EPS both during infections and in biofilms on medical equipment, as well as for capsular typing. We also highlight the lack of predicted canonical spanins in the phage genome and confirm that, unlike the rounding of lambda lysogens lacking functional spanin genes, A. nosocomialis cells infected with phage Petty lyse by bursting. This suggests that phages like Petty employ a different mechanism to disrupt the outer membrane of Acinetobacter hosts during lysis.
Collapse
Affiliation(s)
- A C Hernandez-Morales
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - L L Lessor
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - T L Wood
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - D Migl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - E M Mijalis
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - J Cahill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - W K Russell
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - R F Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - J J Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
142
|
Maciejewska B, Olszak T, Drulis-Kawa Z. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol 2018; 102:2563-2581. [PMID: 29442169 PMCID: PMC5847195 DOI: 10.1007/s00253-018-8811-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/21/2023]
Abstract
Bacteriophages (phages) are viruses that infect bacteria. The "predator-prey" interactions are recognized as a potentially effective way to treat infections. Phages, as well as phage-derived proteins, especially enzymes, are intensively studied to become future alternative or supportive antibacterials used alone or in combination with standard antibiotic regimens treatment. There are many publications presenting phage therapy aspects, and some papers focused separately on the application of phage-derived enzymes. In this review, we discuss advantages and limitations of both agents concerning their specificity, mode of action, structural issues, resistance development, pharmacokinetics, product preparation, and interactions with the immune system. Finally, we describe the current regulations for phage-based product application.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Tomasz Olszak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| |
Collapse
|
143
|
Love MJ, Bhandari D, Dobson RCJ, Billington C. Potential for Bacteriophage Endolysins to Supplement or Replace Antibiotics in Food Production and Clinical Care. Antibiotics (Basel) 2018; 7:E17. [PMID: 29495476 PMCID: PMC5872128 DOI: 10.3390/antibiotics7010017] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/06/2018] [Accepted: 02/23/2018] [Indexed: 01/21/2023] Open
Abstract
There is growing concern about the emergence of bacterial strains showing resistance to all classes of antibiotics commonly used in human medicine. Despite the broad range of available antibiotics, bacterial resistance has been identified for every antimicrobial drug developed to date. Alarmingly, there is also an increasing prevalence of multidrug-resistant bacterial strains, rendering some patients effectively untreatable. Therefore, there is an urgent need to develop alternatives to conventional antibiotics for use in the treatment of both humans and food-producing animals. Bacteriophage-encoded lytic enzymes (endolysins), which degrade the cell wall of the bacterial host to release progeny virions, are potential alternatives to antibiotics. Preliminary studies show that endolysins can disrupt the cell wall when applied exogenously, though this has so far proven more effective in Gram-positive bacteria compared with Gram-negative bacteria. Their potential for development is furthered by the prospect of bioengineering, and aided by the modular domain structure of many endolysins, which separates the binding and catalytic activities into distinct subunits. These subunits can be rearranged to create novel, chimeric enzymes with optimized functionality. Furthermore, there is evidence that the development of resistance to these enzymes may be more difficult compared with conventional antibiotics due to their targeting of highly conserved bonds.
Collapse
Affiliation(s)
- Michael J Love
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Dinesh Bhandari
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3052, Australia.
| | - Craig Billington
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand.
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand.
| |
Collapse
|
144
|
Larpin Y, Oechslin F, Moreillon P, Resch G, Entenza JM, Mancini S. In vitro characterization of PlyE146, a novel phage lysin that targets Gram-negative bacteria. PLoS One 2018; 13:e0192507. [PMID: 29408864 PMCID: PMC5800649 DOI: 10.1371/journal.pone.0192507] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/24/2018] [Indexed: 11/18/2022] Open
Abstract
The recent rise of multidrug-resistant Gram-negative bacteria represents a serious threat to public health and makes the search for novel effective alternatives to antibiotics a compelling need. Bacteriophage (Phage) lysins are enzymes that hydrolyze the cell wall of bacteria and represent a promising alternative to tackle this ever-increasing problem. Despite their use is believed to be restricted to Gram-positive bacteria, recent findings have shown that they can also be used against Gram-negative bacteria. By using a phage genome-based screening approach, we identified and characterized a novel lysin, PlyE146, encoded by an Escherichia coli prophage and with a predicted molecular mass of ca. 17 kDa. PlyE146 is composed of a C-terminal cationic peptide and a N-terminal N-acetylmuramidase domain. Histidine-tagged PlyE146 was overexpressed from a plasmid in Lactococcus lactis NZ9000 and purified by NI-NTA chromatography. PlyE146 exhibited in vitro optimal bactericidal activity against E. coli K12 (3.6 log10 CFU/mL decrease) after 2 h of incubation at 37°C at a concentration of 400 μg/mL in the absence of NaCl and at pH 6.0. Under these conditions, PlyE146 displayed antimicrobial activity towards several other E. coli, Pseudomonas aeruginosa (3 to 3.8-log10 CFU/mL decrease) and Acinetobacter baumannii (4.9 to >5-log10 CFU/mL decrease) strains. Therefore, PlyE146 represents a promising therapeutic agent against E. coli, P. aeruginosa and A. baumannii infections. However, further studies are required to improve the efficacy of PlyE146 under physiological conditions.
Collapse
Affiliation(s)
- Yu Larpin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Frank Oechslin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philippe Moreillon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Grégory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - José Manuel Entenza
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Stefano Mancini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
145
|
An Optimized Synthetic-Bioinformatic Natural Product Antibiotic Sterilizes Multidrug-Resistant Acinetobacter baumannii-Infected Wounds. mSphere 2018; 3:mSphere00528-17. [PMID: 29404414 PMCID: PMC5784245 DOI: 10.1128/msphere.00528-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/19/2017] [Indexed: 01/07/2023] Open
Abstract
The antibiotic paenimucillin A was originally identified using a culture-independent synthetic-bioinformatic natural product (syn-BNP) discovery approach. Here we report on a bioinformatics-guided survey of paenimucillin A analogs that led to the discovery of paenimucillin C. Paenimucillin C inhibits the growth of multidrug-resistant (MDR) Acinetobacter baumannii clinical isolates, as well as other Gram-negative bacterial pathogens. In a rat cutaneous wound model, it completely sterilized MDR A. baumannii wound infections with no sign of rebound. Mechanistic studies point to a membrane-associated mode of action that results in leakage of intracellular contents. IMPORTANCE Natural product-inspired antibiotics have saved millions of lives and played a critical role in modern medicine. However, the emergence of drug-resistant pathogens is outpacing the rate at which new clinically useful antibiotics are being discovered. The lack of a means to combat infections caused by multidrug-resistant (MDR) Acinetobacter baumannii is of particular concern. The sharp increase in cases of MDR A. baumannii infections in recent years prompted the CDC (https://www.cdc.gov/drugresistance/biggest_threats.html) and WHO (http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/) to list this pathogen as a "serious threat" and "critical pathogen," respectively. Here we report a new antibiotic, paenimucillin C, active against Gram-negative bacterial pathogens, including many clinical isolates of MDR A. baumannii strains. Mechanistic studies point to membrane disruption leading to leakage of intracellular contents as its antibacterial mode of action. Paenimucillin C sterilizes MDR A. baumannii infections in a rat cutaneous wound model with no sign of rebound infection, providing a potential new therapeutic regimen.
Collapse
|
146
|
Furfaro LL, Chang BJ, Payne MS. Applications for Bacteriophage Therapy during Pregnancy and the Perinatal Period. Front Microbiol 2018; 8:2660. [PMID: 29375525 PMCID: PMC5768649 DOI: 10.3389/fmicb.2017.02660] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
Abstract
Pregnant women and their unborn children are a population that is particularly vulnerable to bacterial infection. Physiological changes that occur during pregnancy affect the way women respond to such infections and the options that clinicians have for treatment. Antibiotics are still considered the best option for active infections and a suitable prophylaxis for prevention of potential infections, such as vaginal/rectal Streptococcus agalactiae colonization prior to birth. The effect of such antibiotic use on the developing fetus, however, is still largely unknown. Recent research has suggested that the fetal gut microbiota plays a critical role in fetal immunologic programming. Hence, even minor alterations in this microbiota may have potentially significant downstream effects. An ideal antibacterial therapeutic for administration during pregnancy would be one that is highly specific for its target, leaving the surrounding microbiota intact. This review first provides a basic overview of the challenges a clinician faces when administering therapeutics to a pregnant patient and then goes on to explore common bacterial infections in pregnancy, use of antibiotics for treatment/prevention of such infections and the consequences of such treatment for the mother and infant. With this background established, the review then explores the potential for use of bacteriophage (phage) therapy as an alternative to antibiotics during the antenatal period. Many previous reviews have highlighted the revitalization of and potential for phage therapy for treatment of a range of bacterial infections, particularly in the context of the increasing threat of widespread antibiotic resistance. However, information on the potential for the use of phage therapeutics in pregnancy is lacking. This review aims to provide a thorough overview of studies of this nature and discuss the feasibility of bacteriophage use during pregnancy to treat and/or prevent bacterial infections.
Collapse
Affiliation(s)
- Lucy L. Furfaro
- Division of Obstetrics and Gynecology, School of Medicine, The University of Western Australia, Crawley, WA, Australia
| | - Barbara J. Chang
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Matthew S. Payne
- Division of Obstetrics and Gynecology, School of Medicine, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
147
|
Sharma U, Vipra A, Channabasappa S. Phage-derived lysins as potential agents for eradicating biofilms and persisters. Drug Discov Today 2018; 23:848-856. [PMID: 29326076 DOI: 10.1016/j.drudis.2018.01.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/17/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023]
Abstract
Bacterial biofilms are highly resistant to the action of antibiotics. Presence of persisters, phenotypically resistant populations of bacterial cells, is thought to contribute toward recalcitrance of biofilms. The phage-derived lysins, by virtue of their ability to cleave the peptidoglycan of bacterial cells in an enzymatic manner, have the unique ability to kill dormant cells. Several lysins have shown potent antibiofilm activity in vitro. The fact that lysins have shown better efficacy than conventional drugs in animal models of endocarditis and other infections involving biofilms suggests that the lysins can potentially be developed against difficult-to-treat bacterial infections.
Collapse
Affiliation(s)
- Umender Sharma
- GangaGen Biotechnologies Pvt. Ltd., No 12, 5th cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore, 560022, India.
| | - Aradhana Vipra
- GangaGen Biotechnologies Pvt. Ltd., No 12, 5th cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore, 560022, India
| | - Shankaramurthy Channabasappa
- GangaGen Biotechnologies Pvt. Ltd., No 12, 5th cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore, 560022, India
| |
Collapse
|
148
|
Bustamante N, Iglesias-Bexiga M, Bernardo-García N, Silva-Martín N, García G, Campanero-Rhodes MA, García E, Usón I, Buey RM, García P, Hermoso JA, Bruix M, Menéndez M. Deciphering how Cpl-7 cell wall-binding repeats recognize the bacterial peptidoglycan. Sci Rep 2017; 7:16494. [PMID: 29184076 PMCID: PMC5705596 DOI: 10.1038/s41598-017-16392-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/13/2017] [Indexed: 12/25/2022] Open
Abstract
Endolysins, the cell wall lytic enzymes encoded by bacteriophages to release the phage progeny, are among the top alternatives to fight against multiresistant pathogenic bacteria; one of the current biggest challenges to global health. Their narrow range of susceptible bacteria relies, primarily, on targeting specific cell-wall receptors through specialized modules. The cell wall-binding domain of Cpl-7 endolysin, made of three CW_7 repeats, accounts for its extended-range of substrates. Using as model system the cell wall-binding domain of Cpl-7, here we describe the molecular basis for the bacterial cell wall recognition by the CW_7 motif, which is widely represented in sequences of cell wall hydrolases. We report the crystal and solution structure of the full-length domain, identify N-acetyl-D-glucosaminyl-(β1,4)-N-acetylmuramyl-L-alanyl-D-isoglutamine (GMDP) as the peptidoglycan (PG) target recognized by the CW_7 motifs, and characterize feasible GMDP-CW_7 contacts. Our data suggest that Cpl-7 cell wall-binding domain might simultaneously bind to three PG chains, and also highlight the potential use of CW_7-containing lysins as novel anti-infectives.
Collapse
Affiliation(s)
- Noemí Bustamante
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Manuel Iglesias-Bexiga
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Noelia Bernardo-García
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Noella Silva-Martín
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Guadalupe García
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - María A Campanero-Rhodes
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Esther García
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Isabel Usón
- Instituto de Biología Molecular de Barcelona, CSIC, Baldiri Reixach 13, 08028, Barcelona, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | - Rubén M Buey
- Metabolic Engineering Group. Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Pedro García
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan A Hermoso
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Marta Bruix
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain
| | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006, Madrid, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
149
|
Maciejewska B, Źrubek K, Espaillat A, Wiśniewska M, Rembacz KP, Cava F, Dubin G, Drulis-Kawa Z. Modular endolysin of Burkholderia AP3 phage has the largest lysozyme-like catalytic subunit discovered to date and no catalytic aspartate residue. Sci Rep 2017; 7:14501. [PMID: 29109551 PMCID: PMC5674055 DOI: 10.1038/s41598-017-14797-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023] Open
Abstract
Endolysins are peptidoglycan-degrading enzymes utilized by bacteriophages to release the progeny from bacterial cells. The lytic properties of phage endolysins make them potential antibacterial agents for medical and industrial applications. Here, we present a comprehensive characterization of phage AP3 modular endolysin (AP3gp15) containing cell wall binding domain and an enzymatic domain (DUF3380 by BLASTP), both widespread and conservative. Our structural analysis demonstrates the low similarity of an enzymatic domain to known lysozymes and an unusual catalytic centre characterized by only a single glutamic acid residue and no aspartic acid. Thus, our findings suggest distinguishing a novel class of muralytic enzymes having the activity and catalytic centre organization of DUF3380. The lack of amino acid sequence homology between AP3gp15 and other known muralytic enzymes may reflect the evolutionary convergence of analogous glycosidases. Moreover, the broad antibacterial spectrum, lack of cytotoxic effect on human cells and the stability characteristics of AP3 endolysin advocate for its future application development.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Karol Źrubek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Gronostajowa 7A, 30-387, Krakow, Poland
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden. Molecular Biology Department, Umeå University, SE-901 87, Umeå, Sweden
| | - Magdalena Wiśniewska
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Gronostajowa 7A, 30-387, Krakow, Poland
| | - Krzysztof P Rembacz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Gronostajowa 7A, 30-387, Krakow, Poland
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden. Molecular Biology Department, Umeå University, SE-901 87, Umeå, Sweden
| | - Grzegorz Dubin
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
- Protein Crystallography Research Group, Malopolska Centre of Biotechnology, Gronostajowa 7A, 30-387, Krakow, Poland.
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| |
Collapse
|
150
|
Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev 2017; 30:409-447. [PMID: 27974412 DOI: 10.1128/cmr.00058-16] [Citation(s) in RCA: 659] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acinetobacter is a complex genus, and historically, there has been confusion about the existence of multiple species. The species commonly cause nosocomial infections, predominantly aspiration pneumonia and catheter-associated bacteremia, but can also cause soft tissue and urinary tract infections. Community-acquired infections by Acinetobacter spp. are increasingly reported. Transmission of Acinetobacter and subsequent disease is facilitated by the organism's environmental tenacity, resistance to desiccation, and evasion of host immunity. The virulence properties demonstrated by Acinetobacter spp. primarily stem from evasion of rapid clearance by the innate immune system, effectively enabling high bacterial density that triggers lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4)-mediated sepsis. Capsular polysaccharide is a critical virulence factor that enables immune evasion, while LPS triggers septic shock. However, the primary driver of clinical outcome is antibiotic resistance. Administration of initially effective therapy is key to improving survival, reducing 30-day mortality threefold. Regrettably, due to the high frequency of this organism having an extreme drug resistance (XDR) phenotype, early initiation of effective therapy is a major clinical challenge. Given its high rate of antibiotic resistance and abysmal outcomes (up to 70% mortality rate from infections caused by XDR strains in some case series), new preventative and therapeutic options for Acinetobacter spp. are desperately needed.
Collapse
|