101
|
Chen Y, Wu Q, Li G, Li H, Li W, Li H, Qin L, Zheng H, Liu C, Hou M, Liu L. Identification and genetic characterization of a minor norovirus genotype, GIX.1[GII.P15], from China. BMC Genom Data 2022; 23:50. [PMID: 35794533 PMCID: PMC9261040 DOI: 10.1186/s12863-022-01066-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background Human noroviruses, single-stranded RNA viruses in the family Caliciviridae, are a leading cause of nonbacterial acute gastroenteritis in people of all ages worldwide. Despite three decades of genomic sequencing and epidemiological norovirus studies, full-length genome analyses of the non-epidemic or minor norovirus genotypes are rare and genomic regions other than ORF2 and 3′-end of ORF1 have been largely understudied, which hampers a better understanding of the evolutionary mechanisms of emergence of new strains. In this study, we detected a rare norovirus genotype, GIX.1[GII.P15], in a vomit sample of a 60 year old woman with acute gastroenteritis using Raji cells and sequenced the complete genome. Results Using electron microscopy, a morphology of spherical and lace-like appearance of norovirus virus particles with a diameter of approximately 30 nm were observed. Phylogenetic analysis of VP1 and the RdRp region indicated that the KMN1 strain could be genotyped as GIX.1[GII.P15]. In addition, the VP1 region of KMN1 strain had 94.15% ± 3.54% percent nucleotide identity (PNI) compared to 26 genomic sequences available in GenBank, indicating a higher degree similarity between KMN1 and other GIX.1[GII.P15] strains. Further analysis of the full genome sequence of KMN1 strain showed that a total of 96 nucleotide substitutions (63 in ORF1, 25 in ORF2, and 8 in ORF3) were found across the genome compared with the consensus sequence of GIX.1[GII.P15] genome, and 6 substitutions caused amino acid changes (4 in ORF1, 1 in ORF2, and 1 in ORF3). However, only one nucleotide substitution results in the amino acid change (P302S) in the VP1 protein and the site was located near one of the predicted conformational B epitopes on the dimer structure. Conclusions The genomic information of the new GIX.1[GII.P15] strain KMN1, which was identified in Kunming, China could provide helpful insights for the study of the genetic evolution of the virus. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01066-6.
Collapse
|
102
|
Chin NA, Salihah NT, Shivanand P, Ahmed MU. Recent trends and developments of PCR-based methods for the detection of food-borne Salmonella bacteria and Norovirus. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4570-4582. [PMID: 36276542 PMCID: PMC9579247 DOI: 10.1007/s13197-021-05280-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
In recent years, rapid detection methods such as polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR) have been continuously developed to improve the detection of food-borne pathogens in food samples. The recent developments of PCR and qPCR in the detection and identification of these food-borne pathogens are described and elaborated throughout this review. Specifically, further developments and improvements of qPCR are discussed in detecting Salmonella and norovirus. Promising advances in these molecular detection methods have been widely used to prevent human food-borne illnesses and death caused by the food-borne pathogens. In addition, this review presents the limitations and challenges of the detection methods which include conventional culture method and conventional PCR method in detecting Salmonella and norovirus. Furthermore, several advances of qPCR such as viability PCR (vPCR) and digital PCR (dPCR) have been discussed in the detection of Salmonella and norovirus. Good practice of analysis of the food-borne pathogens and other contaminants in the food industry as well as the advancement of molecular detection methods will help improve and ensure food safety and food quality.
Collapse
Affiliation(s)
- Nur Areena Chin
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410 Brunei Darussalam
| | - Nur Thaqifah Salihah
- Universiti Islam Sultan Sharif Ali, Jalan Pasar Baharu, Gadong, BE1310 Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410 Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410 Brunei Darussalam
| |
Collapse
|
103
|
Prisco L, Salesi LA, McElheny KD, Weiss D, Diamond L, Brennan T. Primary Care Considerations for the Baseball Athlete. Curr Rev Musculoskelet Med 2022; 15:570-580. [PMID: 36342649 PMCID: PMC9640801 DOI: 10.1007/s12178-022-09798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW To summarize current guidance and best practices surrounding non-orthopedic medical concerns in baseball. RECENT FINDINGS Discussion of COVID19-related practice changes pertaining to the prevention and screening of communicable respiratory illness, concussion protocol updates, the enhanced role of a multi-disciplinary team of mental health professionals. Prevention, appropriate screening, and early identification remain cornerstones of effective primary care both within the general population as well as for the baseball athlete.
Collapse
Affiliation(s)
- Lauren Prisco
- grid.5386.8000000041936877XWeill Cornell Medicine, New York, NY USA
| | - Lauren A. Salesi
- grid.239915.50000 0001 2285 8823Primary Sports Medicine, Hospital for Special Surgery, 535 E 70th. St, New York, NY 10021 USA
| | - Kathryn D. McElheny
- grid.239915.50000 0001 2285 8823Primary Sports Medicine, Hospital for Special Surgery, 535 E 70th. St, New York, NY 10021 USA
| | - Doria Weiss
- grid.260917.b0000 0001 0728 151XNew York Medical College School of Medicine, Valhalla, NY USA
| | - Laura Diamond
- grid.416167.30000 0004 0442 1996The Addiction Institute of Mount Sinai West Hospital, Department of Psychiatry, New York, NY USA
| | - Tim Brennan
- grid.59734.3c0000 0001 0670 2351Addiction Institute of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
104
|
Elbashir I, Aldoos NF, Mathew S, Al Thani AA, Emara MM, Yassine HM. Molecular epidemiology, genetic diversity, and vaccine availability of viral acute gastroenteritis in the middle East and North Africa (MENA) region. J Infect Public Health 2022; 15:1193-1211. [PMID: 36240530 DOI: 10.1016/j.jiph.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
Acute gastroenteritis is the cause of considerable mortality and morbidity worldwide, particularly among children under five years in underdeveloped countries. Most acute gastroenteritis (AGE) cases are attributed to viral etiologies, including rotavirus, norovirus, adenovirus, astrovirus, and sapovirus. This paper aimed to determine the prevalence rate of different viral etiologies of AGE in the Middle East and North Africa (MENA) region. Moreover, this paper explored rotavirus phylogenetic relatedness, compared VP7 and VP4 antigenic regions of rotavirus with vaccine strains, and explored the availability of vaccines in the MENA region. The literature search identified 160 studies from 18 countries from 1980 to 2019. The overall prevalence of rotavirus, norovirus, adenovirus, astrovirus, and sapovirus were 29.8 %, 13.9 %, 6.3 %, 3.5 %, and 3.2 % of tested samples, respectively. The most common rotavirus genotype combinations in the MENA region were G1P[8], G9P[9], and G2P[4], whereas GII.4 was the predominant norovirus genotype all of which were reported in almost all the studies with genotyping data. The comparison of VP7 and VP4 between circulating rotavirus in the MENA region and vaccine strains has revealed discrete divergent regions, including the neutralizing epitopes. Rotavirus vaccine was introduced to most of the countries of the MENA region; however, only a few studies have assessed the effectiveness of vaccine introduction. This paper provides a comprehensive update on the prevalence of the different viral agents of AGE in the MENA region.
Collapse
Affiliation(s)
- Israa Elbashir
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar.
| | - Noor F Aldoos
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar.
| | - Shilu Mathew
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar.
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Doha 2713, Qatar
| | - Mohamed M Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar.
| |
Collapse
|
105
|
Kingsley DH, Chang SK, Annous BA, Pillai SD. Evaluation of Riboflavin as an enhancer for X-ray and EBeam irradiation treatment of Tulane virus. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
106
|
Lima FMS, Toledo-Barros M, Alves VAF, Duarte MIS, Takakura C, Bernardes-Silva CF, Marinho AKBB, Grecco O, Kalil J, Kokron CM. Liver disease accompanied by enteropathy in common variable immunodeficiency: Common pathophysiological mechanisms. Front Immunol 2022; 13:933463. [PMID: 36341360 PMCID: PMC9632424 DOI: 10.3389/fimmu.2022.933463] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Common variable immunodeficiency (CVID) is one of the inborn errors of immunity that have the greatest clinical impact. Rates of morbidity and mortality are higher in patients with CVID who develop liver disease than in those who do not. The main liver disorder in CVID is nodular regenerative hyperplasia (NRH), the cause of which remains unclear and for which there is as yet no treatment. The etiology of liver disease in CVID is determined by analyzing the liver injury and the associated conditions. The objective of this study was to compare CVID patients with and without liver–spleen axis abnormalities in terms of clinical characteristics, as well as to analyze liver and duodenal biopsies from those with portal hypertension (PH), to elucidate the pathophysiology of liver injury. Patients were divided into three groups: Those with liver disease/PH, those with isolated splenomegaly, and those without liver–spleen axis abnormalities. Clinical and biochemical data were collected. Among 141 CVID patients, 46 (32.6%) had liver disease/PH; 27 (19.1%) had isolated splenomegaly; and 68 (48.2%) had no liver–spleen axis abnormalities. Among the liver disease/PH group, patients, even those with mild or no biochemical changes, had clinical manifestations of PH, mainly splenomegaly, thrombocytopenia, and esophageal varices. Duodenal celiac pattern was found to correlate with PH (p < 0.001). We identified NRH in the livers of all patients with PH (n = 11). Lymphocytic infiltration into the duodenal mucosa also correlated with PH. Electron microscopy of liver biopsy specimens showed varying degrees of lymphocytic infiltration and hepatocyte degeneration, which is a probable mechanism of lymphocyte-mediated cytotoxicity against hepatocytes and enterocytes. In comparison with the CVID patients without PH, those with PH were more likely to have lymphadenopathy (p < 0.001), elevated β2-microglobulin (p < 0.001), low B-lymphocyte counts (p < 0.05), and low natural killer-lymphocyte counts (p < 0.05). In CVID patients, liver disease/PH is common and regular imaging follow-up is necessary. These patients have a distinct immunological phenotype that may predispose to liver and duodenal injury from lymphocyte-mediated cytotoxicity. Further studies could elucidate the cause of this immune-mediated mechanism and its treatment options.
Collapse
Affiliation(s)
- Fabiana Mascarenhas Souza Lima
- Division of Clinical Immunology and Allergy, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Fabiana Mascarenhas Souza Lima,
| | - Myrthes Toledo-Barros
- Division of Clinical Immunology and Allergy, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Maria Irma Seixas Duarte
- Laboratory of the Discipline of Pathology of Transmissible Diseases, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Cleusa Takakura
- Laboratory of the Discipline of Pathology of Transmissible Diseases, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carlos Felipe Bernardes-Silva
- Department of Gastroenterology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Octavio Grecco
- Division of Clinical Immunology and Allergy, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jorge Kalil
- Division of Clinical Immunology and Allergy, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- iii-Institute for Investigation in Immunology, Instituto Nacional de Ciência e Tecnologia (INCT), Sao Paulo, Brazil
| | - Cristina Maria Kokron
- Division of Clinical Immunology and Allergy, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
107
|
González-Morcillo G, Calderón-Hernanz B, Serrano-López de Las Hazas J, de Hita-Santabaya AI, Riera-Oliver J. Ribavirin-resistant chronic norovirus infection-associated enteropathy in common variable immunodeficiency. Case report and review of the literature. Clin Res Hepatol Gastroenterol 2022; 46:101956. [PMID: 35613691 DOI: 10.1016/j.clinre.2022.101956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023]
Abstract
Chronic Norovirus infection is particularly challenging in patients with common variable immunodeficiency (CVID) because of their inability to achieve viral clearance and the risk of developing enteropathy leading to intestinal villous atrophy and malabsorption. To date, therapeutic options to eliminate the virus are limited and only ribavirin has been shown to induce viral clearance in norovirus enteropathy associated with CVID. We report a case of a 48-year-old female patient diagnosed with CVID enteropathy possibly related to norovirus infection who failed a ribavirin-based therapy despite dosage optimization through drug plasma level monitoring.
Collapse
Affiliation(s)
- Gonzalo González-Morcillo
- Department of Pharmacy, Servicio de Farmacia Hospitalaria, Son Llàtzer Hospital, Instituto de Investigación Sanitaria de las Islas Baleares (IdISba), Carretera. Manacor Km 4, Palma de Mallorca 07198, Spain.
| | - Beatriz Calderón-Hernanz
- Department of Pharmacy, Servicio de Farmacia Hospitalaria, Son Llàtzer Hospital, Instituto de Investigación Sanitaria de las Islas Baleares (IdISba), Carretera. Manacor Km 4, Palma de Mallorca 07198, Spain
| | - Joaquín Serrano-López de Las Hazas
- Department of Pharmacy, Servicio de Farmacia Hospitalaria, Son Llàtzer Hospital, Instituto de Investigación Sanitaria de las Islas Baleares (IdISba), Carretera. Manacor Km 4, Palma de Mallorca 07198, Spain
| | - Ana Isabel de Hita-Santabaya
- Department of Pathology, Hospital Universitario Son Llàtzer, Instituto de Investigación Sanitaria de las Islas Baleares (IdISba), Carretera. Manacor Km 4, Palma de Mallorca 07198, Spain
| | - Joan Riera-Oliver
- Gastroenterology Unit, Hospital Universitario Son Llàtzer, Instituto de Investigación Sanitaria de las Islas Baleares (IdISba), Carretera. Manacor Km 4, Palma de Mallorca 07198, Spain
| |
Collapse
|
108
|
Deere D, Ryan U. Current assumptions for quantitative microbial risk assessment (QMRA) of Norovirus contamination of drinking water catchments due to recreational activities: an update. JOURNAL OF WATER AND HEALTH 2022; 20:1543-1557. [PMID: 36308498 DOI: 10.2166/wh.2022.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Contamination of drinking water from Norovirus (NoV) and other waterborne viruses is a major public health concern globally. Increasingly, quantitative microbial risk assessment (QMRA) is being used to assess the various risks from waterborne pathogens and evaluate control strategies. As urban populations grow and expand, there is increasing demand for recreational activities in drinking water catchments. QMRA relies on context-specific data to map out the pathways by which viruses can enter water and be transferred to drinking water consumers and identify risk factors and appropriate controls. This review examines the current evidence base and assumptions for QMRA analysis of NoV and other waterborne viral pathogens and recommends numerical values based on the most recent evidence to better understand the health risks associated with recreators in Australian drinking water sources; these are broadly applicable to all drinking water sources where recreational access is allowed. Key issues include the lack of an agreed upon data and dose-response models for human infectious NoV genotypes, faecal shedding by bathers, the extent of NoV infectivity and aggregation, resistance (secretor status) to NoV and the extent of secondary transmission.
Collapse
Affiliation(s)
- Dan Deere
- Water Futures and Water Research Australia, Sydney, Australia
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth, Australia E-mail:
| |
Collapse
|
109
|
Dale AP, Miko S, Calderwood LE, King RF, Maurer M, Dyer L, Gebhardt M, Maurer W, Crosby S, Wikswo ME, Said MA, Mirza SA. Outbreak of Acute Gastroenteritis Among Rafters and Backpackers in the Backcountry of Grand Canyon National Park, April–June 2022. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2022; 71:1207-1211. [PMID: 36136954 PMCID: PMC9531568 DOI: 10.15585/mmwr.mm7138a2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
110
|
Duan L, Yang X, Zhan W, Tang Y, Wei M, Chen K, Liu P, Xie J, Zhang C, Zhao H, Luo M. Development of a rapid and accurate CRISPR/Cas13-based diagnostic test for GII.4 norovirus infection. Front Microbiol 2022; 13:912315. [PMID: 36090107 PMCID: PMC9449452 DOI: 10.3389/fmicb.2022.912315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Genogroup II genotype 4 (GII.4) norovirus causes acute gastroenteritis in children, and its infection is more severe than that of other genotypes. Early and precise detection and treatment are critical for controlling its spread and reducing the severity of infection. In this study, a rapid and efficient isothermal assay for the GII.4 norovirus detection (GII.4-CRISPR detection) was developed based on the CRISPR/Cas13a system. The assay can be applied without expensive instrumentation, and the results can be read via both fluorescence and lateral flow strip (LFS). The analytical sensitivity of this assay was 5 copies/reaction, and there was no cross-reaction with other genotypes of norovirus or other clinically common pathogens. There was a coincidence rate of 100% between our assay and commercial quantitative polymerase chain reaction. GII.4-CRISPR detection improves upon the shortcomings of some previously established molecular methods of detection, particularly with regard to accessibility. It provides an alternative tool for outbreak control and early diagnosis of GII.4 norovirus infection.
Collapse
|
111
|
Fanaselle W, Pouillot R, Papafragkou E, Liggins G, Williams L, Doren JMVAN. Evaluation of the Impact of Compliance with Mitigation Strategies and Frequency of Restaurant Surface Cleaning and Sanitizing on Control of Norovirus Transmission from Ill Food Employees Using an Existing Quantitative Risk Assessment Model. J Food Prot 2022; 85:1177-1191. [PMID: 35358310 DOI: 10.4315/jfp-21-423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Reduction of foodborne illness caused by norovirus (NoV) continues to be a focus for the food safety community. Using a previously published quantitative risk assessment model, we evaluated more than 60 scenarios examining the impact of implementation of and compliance with risk management strategies identified in the U.S. Food and Drug Administration Food Code for (a) surface cleaning and sanitizing, (b) hand hygiene, (c) exclusion, or (d) restriction of ill employees. Implementation of and compliance with hand hygiene and ill food employee exclusion strategies had the largest impact on the predicted number of highly contaminated food servings and associated consumer illnesses. In scenarios in which gloves were always worn and hand washing compliance was 90%, the model estimated reductions in the number of highly contaminated food servings and ill consumers to 39 and 43% of baseline estimates (i.e., typical practice), respectively. Reductions were smaller when gloves were never worn. Hand washing compliance after using the restroom strongly impacted predicted numbers of highly contaminated servings and consumer illnesses. Ten percent compliance with removing or excluding ill food employees was predicted to increase the number of highly contaminated food servings and ill consumers to 221 and 213% of baseline estimates, respectively. Ninety-four percent compliance with exclusion of ill food employees was predicted to decrease these numbers to 69 and 71% of baseline estimates, respectively. Surface cleaning in food establishments had a relatively small impact on these measures. Restriction of food employees (removed from contact with food and food contact equipment and utensils) was not effective for reducing NoV illness unless this restriction included additional provisions. The results from this study can help risk managers prioritize mitigation strategies and their implementation for controlling the transmission of NoV and subsequent consumer foodborne illness. HIGHLIGHTS
Collapse
Affiliation(s)
- Wendy Fanaselle
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Régis Pouillot
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Efstathia Papafragkou
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Girvin Liggins
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Laurie Williams
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| | - Jane M VAN Doren
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, Maryland 20740, USA
| |
Collapse
|
112
|
Wielick C, Fries A, Dams L, Razafimahefa RM, Heyne B, Harcourt BH, Lendvay TS, Willaert JF, de Jaeger S, Haubruge E, Thiry E, Ludwig-Begall LF. Of masks and methylene blue—The use of methylene blue photochemical treatment to decontaminate surgical masks contaminated with a tenacious small nonenveloped norovirus. Am J Infect Control 2022; 50:871-877. [PMID: 35908825 PMCID: PMC9329083 DOI: 10.1016/j.ajic.2022.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/16/2022]
Abstract
Background In the context of the SARS-CoV-2 pandemic, reuse of personal protective equipment, specifically that of medical face coverings, has been recommended. The reuse of these typically single-use only items necessitates procedures to inactivate contaminating human respiratory and gastrointestinal pathogens. We previously demonstrated decontamination of surgical masks and respirators contaminated with infectious SARS-CoV-2 and various animal coronaviruses via low concentration- and short exposure methylene blue photochemical treatment (10 µM methylene blue, 30 minutes of 12,500-lux red light or 50,000 lux white light exposure). Methods Here, we describe the adaptation of this protocol to the decontamination of a more resistant, non-enveloped gastrointestinal virus and demonstrate efficient photodynamic inactivation of murine norovirus, a human norovirus surrogate. Results Methylene blue photochemical treatment (100 µM methylene blue, 30 minutes of 12,500-lux red light exposure) of murine norovirus-contaminated masks reduced infectious viral titers by over four orders of magnitude on surgical mask surfaces. Discussion and Conclusions Inactivation of a norovirus, the most difficult to inactivate of the respiratory and gastrointestinal human viruses, can predict the inactivation of any less resistant viral mask contaminant. The protocol developed here thus solidifies the position of methylene blue photochemical decontamination as an important tool in the package of practical pandemic preparedness.
Collapse
|
113
|
Tan MTH, Eshaghi Gorji M, Toh JYL, Park AY, Li Y, Gong Z, Li D. Fucoidan from Fucus versiculosus can inhibit human norovirus replication by enhancing the host innate immune response. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
114
|
Steele M, Lambert D, Bissonnette R, Yamamoto E, Hardie K, Locas A. Norovirus GI and GII and hepatitis A virus in berries and pomegranate arils in Canada. Int J Food Microbiol 2022; 379:109840. [PMID: 35905649 DOI: 10.1016/j.ijfoodmicro.2022.109840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
Between 2016 and 2021, the Canadian Food Inspection Agency (CFIA) collected 4218 samples of fresh and frozen berries (blackberries, blueberries, raspberries, strawberries and mixed berries) and pomegranate arils at retail across 11 major cities in Canada and tested these samples for the presence of norovirus GI, norovirus GII and hepatitis A virus RNA. The purpose of this testing was to provide information on the prevalence of these viruses in berries and pomegranate arils on the Canadian marketplace. Of the 926 fresh fruit samples tested, norovirus GI RNA was detected in one raspberry sample and norovirus GII RNA was detected in one strawberry sample. Of the 3292 frozen fruit samples tested, norovirus GI RNA was detected in one blackberry sample, one raspberry sample and one strawberry sample, and norovirus GII RNA was detected in one blueberry sample, three raspberry samples, four strawberry samples, one pomegranate arils sample and one mixed berry sample. None of the fresh or frozen fruit samples tested positive for hepatitis A virus RNA. No statistically significant associations were observed between the prevalence of viral RNA in samples of fresh and frozen fruit, between the prevalence of viral RNA in samples of domestic and imported fruit or between the prevalence of viral RNA in samples of specific fruit types. Overall, the prevalence of norovirus GI and GII RNA together in fresh and frozen fruit samples in Canada was 0.36 %. The results of this study may be used to refine surveillance programs for norovirus and hepatitis A virus in fresh and frozen berries and pomegranate arils, e.g. by adapting the commodities tested and/or the numbers of planned samples to better target these hazards. This information may also be used to inform other Government of Canada approaches to better understand the controls associated norovirus and hepatitis A virus in fresh and frozen berries and pomegranate arils.
Collapse
Affiliation(s)
- Marina Steele
- Food Safety Science Directorate, Canadian Food Inspection Agency, 1400 Merivale Rd., Ottawa, ON, Canada K1A 0Y9.
| | - Dominic Lambert
- Food Virology National Reference Centre, Canadian Food Inspection Agency, St-Hyacinthe Laboratory, 3400 Casavant Boulevard West, St-Hyacinthe J2S 8E3, QC, Canada
| | - Rachel Bissonnette
- Food Virology National Reference Centre, Canadian Food Inspection Agency, St-Hyacinthe Laboratory, 3400 Casavant Boulevard West, St-Hyacinthe J2S 8E3, QC, Canada
| | - Etsuko Yamamoto
- Food Safety Science Directorate, Canadian Food Inspection Agency, 1400 Merivale Rd., Ottawa, ON, Canada K1A 0Y9
| | - Kate Hardie
- Food Safety Science Directorate, Canadian Food Inspection Agency, 1400 Merivale Rd., Ottawa, ON, Canada K1A 0Y9
| | - Annie Locas
- Food Safety Science Directorate, Canadian Food Inspection Agency, 1400 Merivale Rd., Ottawa, ON, Canada K1A 0Y9
| |
Collapse
|
115
|
Hu M, Zhang X, Li J, Chen L, He X, Sui T. Fucosyltransferase 2: A Genetic Risk Factor for Intestinal Diseases. Front Microbiol 2022; 13:940196. [PMID: 35923409 PMCID: PMC9339987 DOI: 10.3389/fmicb.2022.940196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022] Open
Abstract
The fucosyltransferase 2 gene (FUT2) mediates the synthesis of histoblood group antigens (HBGA) that occur in vivo from multiple organs, particularly on the surface of intestinal epithelial cells and body fluids. To date, many studies have demonstrated that the interaction of HBGA with the host microbiota is the cause of pathogenesis of intestinal diseases, making FUT2 non-secretor a risk factor for inflammatory bowel disease (IBD) due to the lack of HBGA. As HBGA also acts as an attachment site for norovirus (NoV) and rotavirus (RV), the non-secretor becomes a protective factor for both viral infections. In addition, the interaction of norovirus and rotavirus with symbiotic bacteria has been found to play an important role in regulating enteroviral infection in IBD. Given the current incomplete understanding of the complex phenomenon and the underlying pathogenesis of intestinal diseases such as IBD, it has recently been hypothesized that the FUT2 gene regulates intestinal bacteria through attachment sites, may help to unravel the role of FUT2 and intestinal flora in the mechanism of intestinal diseases in the future, and provide new ideas for the prevention and treatment of intestinal diseases through more in-depth studies.
Collapse
|
116
|
Guo Y, Li J, O'Brien J, Sivakumar M, Jiang G. Back-estimation of norovirus infections through wastewater-based epidemiology: A systematic review and parameter sensitivity. WATER RESEARCH 2022; 219:118610. [PMID: 35598472 DOI: 10.1016/j.watres.2022.118610] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The amount of norovirus RNA (Ribonucleic Acid) in raw wastewater, collected from a wastewater treatment plant (WWTP), can provide an indication of disease prevalence within the sampled catchment. However, an accurate back-estimation might be impeded by the uncertainties from in-sewer/in-sample degradation of viral RNA, variable shedding magnitude, and difficulties in measurement within raw wastewater. The current study reviewed the published literature regarding the factors of norovirus shedding, viral RNA decay in wastewater, and the occurrence of norovirus RNA in raw wastewater based on molecular detection. Sensitivity analysis for WBE back-estimation was conducted using the reported data of the factors mentioned above considering different viral loads in wastewater samples. It was found that the back-estimation is more sensitive to analytical detection uncertainty than shedding variability for norovirus. Although seasonal temperature change can lead to variation of decay rates and may influence the sensitivity of this pathogen-specific parameter, decay rates of norovirus RNA contribute negligibly to the variance in estimating disease prevalence, based on the available data from decay experiments in bulk wastewater under different temperatures. However, the effects of in-sewer transportation on viral RNA decay and retardation by sewer biofilms on pipe surfaces are largely unknown. Given the highest uncertainty from analytical measurement by molecular methods and complexity of in-sewer processes that norovirus experienced during the transportation to WWTP, future investigations are encouraged to improve the accuracy of viral RNA detection in wastewater and delineate viral retardation/interactions with wastewater biofilms in real sewers.
Collapse
Affiliation(s)
- Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
117
|
Impact of the SARS-CoV-2 Pandemic on the Prevalence and Incidence of Gastrointestinal Viruses in Children up to Five Years Old: a Retrospective Cohort Study. Microbiol Spectr 2022; 10:e0266921. [PMID: 35638853 PMCID: PMC9241842 DOI: 10.1128/spectrum.02669-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim is determining the impact of non-pharmaceutical measures (NPIs) against SARS-CoV-2 in the incidence and prevalence of gastrointestinal viruses (GV) in children. Demographic, analytical, and clinical data of children from which samples were received at the Hospital Universitario La Paz (Madrid, Spain) and that had a gastrointestinal infection with a positive sample through multiplex-PCR for GV were collected. The time periods included were prepandemic (P1): March 14, 2019 to March 14, 2020 and pandemic (P2): March 15, 2020 to March 15, 2021. The global prevalence, relative incidence (RI, per 1,000 admissions) and absolute incidence (AI, per 100,000 population) of GV were compared for both time periods. The prevalence of GV versus SARS-CoV-2 was determined for P2. Seven-hundred and 50 out of 2,547 children analyzed in P1 and 106 out of 1,368 in P2 were positive by PCR for GV (46.3% decrease in P2). Prevalence and RI of GV declined in P2, except for the RI of rotavirus. Adenovirus showed the largest decreased of prevalence and RI (100%), followed by sapovirus. Astrovirus reduction was less pronounced (3.1% versus 0.4%). Norovirus was the most frequent virus in both time periods and its prevalence and RI also decreased in P2 (15.2% versus 4.7% and 3.40 versus 1.74, respectively). Rotavirus had the smallest decrease in prevalence (2.6% versus 2.5%), and its RI increased during P2 from 0.7 to 0.93. After removing the rotavirus vaccine strains from the analysis, the prevalence and RI decreased during P2 (2.1% to 0.7% and 0.5 to 0.3, respectively). The AI decreased during P2 in all GV, and the prevalence of SARS-CoV-2 and GV was inversely proportional over time. Prevalence and incidence of GV have decreased during the pandemic, probably due to the implementation of NPIs against this virus and the reduction of health care attention to infections other than COVID-19. The differences in the decrease of prevalence and incidence for each virus may be explained by differences in the transmission and the resistance in the environment. Prevalence and RI of rotavirus might be biased since the PCR used detects both the infecting and the vaccine strains. IMPORTANCE Our original article contains an analysis of the impact of the measures applied against SARS-CoV-2 on the prevalence and incidence of GV in children. The small number of studies published to date that analyze the impact of these measures individually on each of the GV makes our study of great interest at this time.
Collapse
|
118
|
Zhang X, Chen C, Du Y, Yan D, Jiang D, Liu X, Yang M, Ding C, Lan L, Hecht R, Yang S. Global Burden and Trends of Norovirus-Associated Diseases From 1990 to 2019: An Observational Trend Study. Front Public Health 2022; 10:905172. [PMID: 35784210 PMCID: PMC9247406 DOI: 10.3389/fpubh.2022.905172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAs an important pathogen causing diarrheal diseases, the burden and change in the death rate of norovirus-associated diseases (NADs) globally are still unknown.MethodsBased on global disease burden data from 1990 to 2019, we analyzed the age-standardized death rate (ASDR) of NADs by age, region, country, and Socio-Demographic Index (SDI) level. The discrete Poisson model was applied in the analysis of NADs' spatiotemporal aggregation, the Joinpoint regression model to analyze the trend of death burden of NADs over 30 years, and a generalized linear model to identify the risk factors for the death rate from NADs.ResultsThe ASDR of NADs significantly decreased by a factor of approximately 2.7 times, from 5.02 (95% CI: 1.1, 11.34) in 1990 to 1.86 (95% CI: 0.36, 4.16) in 2019 [average annual percent change (AAPC) = −3.43, 95% CI: −3.56, −3.29]. The death burden of NADs in 2019 was still highest in African regions despite a great decline in recent decades. However, the ASDR in high SDI countries presented an uptrend [0.12 (95% CI: 0.03, 0.26) in 1990 and 0.24 (95% CI: 0.03, 0.53) in 2019, AAPC = 2.52, 95% CI: 2.02–3.03], mainly observed in the elderly over 70 years old. Compared to children under 5 years old, the 2019 death rate of elderly individuals over 80 years old was much higher in high SDI countries. The generalized linear model showed that factors of the number of physicians (RR = 0.67), the proportions of children under 14 years old (RR = 1.21), elderly individuals over 65 years old (RR = 1.13), educational level (RR = 1.03) and urbanization proportion (RR = 1.01) influenced the ASDR of NADs.ConclusionsThe death burden of NADs has remained high in developing regions over the last three decades and has increased among the elderly in countries with high SDI levels, even though the global trend in NAD-associated deaths has decreased significantly in the past three decades. More effective public health policies against NADs need to be implemented in high SDI regions and for the elderly.
Collapse
Affiliation(s)
- Xiaobao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Can Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxia Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danying Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengya Yang
- Department of Big Data Health Science, School of Public Health, Zhejiang University, Hangzhou, China
| | - Cheng Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Lan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Robert Hecht
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Big Data Health Science, School of Public Health, Zhejiang University, Hangzhou, China
- *Correspondence: Shigui Yang
| |
Collapse
|
119
|
Hirano J, Murakami K, Hayashi T. CRISPR-Cas9-Based Technology for Studying Enteric Virus Infection. Front Genome Ed 2022; 4:888878. [PMID: 35755450 PMCID: PMC9213734 DOI: 10.3389/fgeed.2022.888878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric viruses, including numerous viruses that initiate infection in enteric canal, are recognized as important agents that cause wide spectrum of illnesses in humans, depending on the virus type. They are mainly transmitted by fecal-oral route with several vector such as contaminated water or food. Infections by enteric viruses, such as noroviruses and rotaviruses, frequently cause widespread acute gastroenteritis, leading to significant health and economic burdens and therefore remain a public health concern. Like other viruses, enteric viruses ''hijack'' certain host factors (so called pro-viral factors) for replication in infected cells, while escaping the host defense system by antagonizing host anti-viral factors. Identification(s) of these factors is needed to better understand the molecular mechanisms underlying viral replication and pathogenicity, which will aid the development of efficient antiviral strategies. Recently, the advancement of genome-editing technology, especially the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system, has precipitated numerous breakthroughs across the field of virology, including enteric virus research. For instance, unbiased genome-wide screening employing the CRISPR-Cas9 system has successfully identified a number of previously unrecognized host factors associated with infection by clinically relevant enteric viruses. In this review, we briefly introduce the common techniques of the CRISPR-Cas9 system applied to virological studies and discuss the major findings using this system for studying enteric virus infection.
Collapse
Affiliation(s)
- Junki Hirano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
120
|
Dong L, Jia T, Yu Y, Wang Y. Updating a New Semi-nested PCR Primer Pair for the Specific Detection of GII Norovirus in Oysters. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:149-156. [PMID: 35099705 PMCID: PMC8802746 DOI: 10.1007/s12560-022-09511-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Oysters are major transmission vectors of noroviruses (NoVs) in the environment. Outbreaks of NoVs are often associated with the consumption of NoV-contaminated oysters. Laboratory confirmation of suspected oyster samples is a critical step in the surveillance and control of NoVs. Because of non-specific amplification, false-positive results are frequently obtained by semi-nested RT-PCR with the presently widely used primer set (G2SKF/G2SKR). Here, a novel universal PCR primer set N (NG2OF/NG2OR) specific for genogroup II (GII) NoVs was designed based on all GII NoV sequences available in public databases. Specific products were obtained with the primer set N when the NoV-positive oysters, spiked with each of five representative genotypes of GII NoVs (GII.17, GII.13, GII.4, GII.3, and GII.12), were subjected to analyzing. No products were detected with the primer set N for the NoV-negative oysters, while the primer set C gave various non-specific bands. Twenty-three out of 156 fresh oyster samples were NoV-positive with both the primer set N and the classic primer set, while eight were NoV-positive solely with the primer set N. Compared with the classic primer set, the newly designed primer set N had a higher detection rate and improved specificity for GII NoVs in oyster samples. These results show that the novel PCR primer pair is specific and applicable for the detection of GII NoVs in oysters.
Collapse
Affiliation(s)
- Lei Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Tianhui Jia
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
121
|
Improper handling of vomitus as a risk factor in the human norovirus outbreak in a kindergarten in Wuyi County, Zhejiang Province, China. Epidemiol Infect 2022; 150:e111. [PMID: 35578778 PMCID: PMC9214846 DOI: 10.1017/s0950268822000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
122
|
Outbreaks of Gastroenteritis Due to Norovirus in Schools and Summer Camps in Catalonia, 2017-2019. Microbiol Spectr 2022; 10:e0011922. [PMID: 35543555 PMCID: PMC9241749 DOI: 10.1128/spectrum.00119-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We studied outbreaks of acute gastroenteritis due to norovirus in schools and summer camps during 2017–2019 in Catalonia (Spain). The overall attack rate was 21.27% in schools and 33.42% in summer camps (RR 0.64 [95% CI 0.58–0.70]) and 52.63% of outbreaks occurred in cold months and 47.37% in warm months. The mean delay in reporting was 5.61 days (SD 5.58 days) and the mean duration was 6.11 days (SD 6.08 days), with a Pearson correlation coefficient of 0.84 (P < 0.001) between these variables. In outbreaks with person-to-person transmission, the aOR was higher the longer the delay in reporting: 3.07 (95% CI 1.21–7.81) when the delay was 5–8 days and 3.81 when it was >9 days (95% CI 1.42–10.23). The cold months posed a higher risk than the warm months. In common source outbreaks the risk was higher in children in secondary-higher education and in summer camps. IMPORTANCE Norovirus is the main cause of viral acute gastroenteritis outbreaks worldwide. The low infectious dose and the lack of long-term immunity in infected persons means that norovirus often causes outbreaks in institutions and closed and semiclosed centers. Norovirus gastroenteritis are usually mild, with no complications, but occasionally can result in hospital admission. Understanding the risk factors involved in a norovirus outbreak can reduce the spread, severity, and duration of the outbreak and, when a vaccine becomes available, this understanding would help us identify the population groups need to get vaccinated. Here, we show the outbreaks due to norovirus in schools and summer camps, the correlation between the delay in reporting and duration of outbreaks and the relationship of the attack rate and the size of the groups.
Collapse
|
123
|
Gelaw A, Liebert UG. Molecular Detection of Enteric Viruses in Under-Five Children with Diarrhea in Debre Tabor, Northwest Ethiopia. Infect Drug Resist 2022; 15:1981-1994. [PMID: 35480057 PMCID: PMC9035461 DOI: 10.2147/idr.s364142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Viral gastroenteritis belongs to the major public health problems of infant and children worldwide. The largest proportion of morbidity and mortality occurs in Sub-Saharan Africa. Purpose Aimed to assess the burden and genetic diversity of enteric viruses among children with diarrhea. Patients and Methods A cross-sectional study was undertaken from December 2015 to April 2016 in Debre Tabor. A total of thirty-eight children, who presented with diarrhea at Debre Tabor health centers, were included. Fecal samples were collected and screened for enteric viruses by RT-PCR. Data were analyzed using SPSS software. Descriptive summary techniques were used to display the findings. Results Out of thirty-eight children screened, 52.6% were positive for at least one enteric virus. Six (30.0%) of the children had mixed enteric virus infections. Human adenovirus (HAdV) 7 (18.4%) was predominant followed by noroviruses (NoVs) 5 (13.2%), enterovirus (EV) 5 (13.2%), rotavirus A (RVA) 4 (10.5%), human astrovirus (HAstV) 2 (5.3%), and human parechovirus (HPeV) 1 (2.6%). Overall, nineteen different types of enteric virus genotypes were identified. Diverse adenovirus within species A (HAdV-12,-31), B (HAdV-3), C (HAdV-2), and F (HAdV-4) were detected. Norovirus II (GII.4 and GII.6) and norovirus I (GI.2, GI.3, and GI.5) genotypes were found. Sapovirus genotypes within genogroup II (GII.1, GII.5, and GII.6) were identified. Wild-type rotavirus G9 and P[8] genotypes were detected in one of the rotavirus positive samples. Non-polio enteroviruses within species A (coxsackie A virus (CAV) 5, CAV6, and CAV14) and C (enterovirus (EV-C) 99) were also identified. In two of the fecal samples classic HAstV-2 was detected. Conclusion Diverse enteric viruses were detected in fecal samples from under-five children with diarrhea. The detection of heterogeneous enteric viruses in this small data set highlights the need for extended multicenter studies to describe the burden and genetic diversity of enteric virus.
Collapse
Affiliation(s)
- Aschalew Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences University of Gondar, Gondar, Ethiopia
- Institute of Virology, Leipzig University, Leipzig, Germany
| | - Uwe G Liebert
- Institute of Virology, Leipzig University, Leipzig, Germany
| |
Collapse
|
124
|
Chiu SC, Hu SC, Liao LM, Chen YH, Liao HW, Cheng JC, Lin JH. Evaluation of a New Norovirus Genogroups GI and GII In Vitro Molecular Diagnostic Assay Using Clinical Specimens Collected from Acute Diarrheal Outbreaks. Foodborne Pathog Dis 2022; 19:311-315. [PMID: 35404143 DOI: 10.1089/fpd.2021.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Norovirus is a leading cause of acute gastroenteritis (AGE) in Taiwan. To improve diagnosis as part of laboratory surveillance, AGE surveillance was conducted using a new fluorescent probe hydrolysis-based insulated isothermal polymerase chain reaction (PCR) method, the POCKIT system, and the results were compared with those obtained from conventional methods. A total of 119 clinical stool samples from reported AGE outbreaks were collected for this study. From 83 real-time reverse transcription PCR (rRT-PCR) norovirus-positive cases, the POCKIT system identified 78 with a sensitivity of 90.3% in GI genogroup and 96.7% in GII genogroup. The specificity for both GI and GII genogroups was 100%. Overall, the POCKIT system is faster and easier to use than the conventional rRT-PCR method, and because of its high sensitivity and specificity, this system is a promising alternative for the detection of norovirus in patients with AGE, and would benefit public health laboratories for near real-time surveillance of AGE epidemic outbreaks.
Collapse
Affiliation(s)
- Shu-Chun Chiu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taiwan, Taipei, Taiwan
| | - Szu-Chieh Hu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taiwan, Taipei, Taiwan
| | - Ling-Min Liao
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taiwan, Taipei, Taiwan
| | - Yu-Hua Chen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taiwan, Taipei, Taiwan
| | - Hui-Wen Liao
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taiwan, Taipei, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jih-Hui Lin
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taiwan, Taipei, Taiwan
| |
Collapse
|
125
|
Maass T, Westermann LT, Creutznacher R, Mallagaray A, Dülfer J, Uetrecht C, Peters T. Assignment of Ala, Ile, Leu proS, Met, and Val proS methyl groups of the protruding domain of murine norovirus capsid protein VP1 using methyl-methyl NOEs, site directed mutagenesis, and pseudocontact shifts. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:97-107. [PMID: 35050443 PMCID: PMC9068638 DOI: 10.1007/s12104-022-10066-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/12/2022] [Indexed: 05/14/2023]
Abstract
The protruding domain (P-domain) of the murine norovirus (MNV) capsid protein VP1 is essential for infection. It mediates receptor binding and attachment of neutralizing antibodies. Protein NMR studies into interactions of the P-domain with ligands will yield insights not easily available from other biophysical techniques and will extend our understanding of MNV attachment to host cells. Such studies require at least partial NMR assignments. Here, we describe the assignment of about 70% of the Ala, Ile, LeuproS, Met, and ValproS methyl groups. An unfavorable distribution of methyl group resonance signals prevents complete assignment based exclusively on 4D HMQC-NOESY-HMQC experiments, yielding assignment of only 55 out of 100 methyl groups. Therefore, we created point mutants and measured pseudo contact shifts, extending and validating assignments based on methyl-methyl NOEs. Of note, the P-domains are present in two different forms caused by an approximate equal distribution of trans- and cis-configured proline residues in position 361.
Collapse
Affiliation(s)
- Thorben Maass
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Leon Torben Westermann
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Robert Creutznacher
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Alvaro Mallagaray
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
| | - Jasmin Dülfer
- Leibniz Institute for Experimental Virology (HPI), 20251, Hamburg, Germany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI), 20251, Hamburg, Germany
- School of Life Sciences, University of Siegen, 57076 Siegen & Centre for Structural Systems Biology (CSSB), & Deutsches Elektronensynchrotron (DESY), 22607 Hamburg & European XFEL GmbH, 22869, Schenefeld, Germany
| | - Thomas Peters
- Center of Structural and Cell Biology in Medicine (CSCM), Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany.
| |
Collapse
|
126
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
127
|
Mosselhy DA, Kareinen L, Kivistö I, Virtanen J, Loikkanen E, Ge Y, Maunula L, Sironen T. Inhibition of SARS-CoV-2 Alpha Variant and Murine Noroviruses on Copper-Silver Nanocomposite Surfaces. NANOMATERIALS 2022; 12:nano12071037. [PMID: 35407155 PMCID: PMC9000483 DOI: 10.3390/nano12071037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/05/2023]
Abstract
With the continued scenario of the COVID-19 pandemic, the world is still seeking out-of-the-box solutions to break its transmission cycle and contain the pandemic. There are different transmission routes for viruses, including indirect transmission via surfaces. To this end, we used two relevant viruses in our study. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the pandemic and human norovirus (HuNV), both known to be transmitted via surfaces. Several nanoformulations have shown attempts to inhibit SARS-CoV-2 and other viruses. However, a rigorous, similar inactivation scheme to inactivate the cords of two tedious viruses (SARS-CoV-2 Alpha variant and HuNV) is lacking. The present study demonstrates the inactivation of the SARS-CoV-2 Alpha variant and the decrease in the murine norovirus (MNV, a surrogate to HuNV) load after only one minute of contact to surfaces including copper-silver (Cu-Ag) nanocomposites. We thoroughly examined the physicochemical characteristics of such plated surfaces using diverse microscopy tools and found that Cu was the dominanting element in the tested three different surfaces (~56, ~59, and ~48 wt%, respectively), hence likely playing the major role of Alpha and MNV inactivation followed by the Ag content (~28, ~13, and ~11 wt%, respectively). These findings suggest that the administration of such surfaces within highly congested places (e.g., schools, public transportations, public toilets, and hospital and live-stock reservoirs) could break the SARS-CoV-2 and HuNV transmission. We suggest such an administration after an in-depth examination of the in vitro (especially on skin cells) and in vivo toxicity of the nanocomposite formulations and surfaces while also standardizing the physicochemical parameters, testing protocols, and animal models.
Collapse
Affiliation(s)
- Dina A. Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (L.K.); (I.K.); (J.V.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (D.A.M.); (T.S.)
| | - Lauri Kareinen
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (L.K.); (I.K.); (J.V.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ilkka Kivistö
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (L.K.); (I.K.); (J.V.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jenni Virtanen
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (L.K.); (I.K.); (J.V.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Emil Loikkanen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; (E.L.); (L.M.)
| | - Yanling Ge
- VTT Technical Research Center of Finland Ltd., 02044 Espoo, Finland;
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; (E.L.); (L.M.)
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (L.K.); (I.K.); (J.V.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (D.A.M.); (T.S.)
| |
Collapse
|
128
|
Song M, Hwang Y, Park J, Cha E, Jeong H, Kim M, Kim J, Baek S, Kwon E, Park S, Oh Y, Shin Y. Quantitative differential analysis of norovirus outbreak samples using RT‐ddPCR. Lett Appl Microbiol 2022; 75:29-35. [DOI: 10.1111/lam.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Miok Song
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| | - Youngok Hwang
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| | - Jungeun Park
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| | - Eukyong Cha
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| | - Hyoeon Jeong
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| | - Minkyeong Kim
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| | - Jinseok Kim
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| | - Soyune Baek
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| | - Eunyoung Kwon
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| | - Sanghun Park
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| | - Younghee Oh
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| | - Yongseoung Shin
- Seoul Metropolitan Government Research Institute of Public Health and Environment Gyeonggi‐do Republic of Korea
| |
Collapse
|
129
|
Kittigul L, Pombubpa K, Rupprom K, Thasiri J. Detection of Norovirus Recombinant GII.2[P16] Strains in Oysters in Thailand. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:59-68. [PMID: 35075605 DOI: 10.1007/s12560-022-09508-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Human norovirus causes sporadic and epidemic acute gastroenteritis worldwide, and the predominant strains are genotype GII.4 variants. Recently, a novel GII.17[P17] and a recombinant GII.2[P16] strain have been reported as the causes of gastroenteritis outbreaks. Outbreaks of norovirus are frequently associated with foodborne illness. In this study, each of 75 oyster samples processed by a proteinase K extraction method and an adsorption-elution method were examined for noroviruses using RT-nested PCR with capsid primers. Thirteen (17.3%) samples processed by either method tested positive for norovirus genogroup II (GII). PCR amplicons were characterized by DNA sequencing and phylogenetic analysis as GII.2 (n = 6), GII.4 (n = 1), GII.17 (n = 3), and GII.unclassified (n = 3). Norovirus-positive samples were further amplified by semi-nested RT-PCR targeting the polymerase-capsid genes. One nucleotide sequence revealed GII.17[P17] Kawasaki strain. Five nucleotide sequences were identified as belonging to the recombinant GII.2[P16] strains by recombination analysis. The collected oyster samples were quantified for norovirus GII genome copy number by RT-quantitative PCR. Using the proteinase K method, GII was found in 13/75 (17.3%) of samples with a range of 8.83-1.85 × 104 genome copies/g of oyster. One sample (1/75, 1.3%) processed by the adsorption-elution method was positive for GII at 5.00 × 101 genome copies/g. These findings indicate the circulation of a new variant GII.17 Kawasaki strain and the recombinant GII.2[P16] in oyster samples corresponding to the circulating strains reported at a global scale during the same period of time. The detection of the recombinant strains in oysters emphasizes the need for continuing systematic surveillance for control and prevention of norovirus gastroenteritis.
Collapse
Affiliation(s)
- Leera Kittigul
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand.
| | - Kannika Pombubpa
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| | - Kitwadee Rupprom
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Jinthapha Thasiri
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Bangkok, 10400, Thailand
| |
Collapse
|
130
|
Epidemiological and Genetic Characterization of Norovirus Outbreaks That Occurred in Catalonia, Spain, 2017–2019. Viruses 2022; 14:v14030488. [PMID: 35336893 PMCID: PMC8955687 DOI: 10.3390/v14030488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Molecular characterization of human norovirus (HuNoV) genotypes enhances the understanding of viral features and illustrates distinctive evolutionary patterns. The aim of our study was to describe the prevalence of the genetic diversity and the epidemiology of the genotypes involved in HuNoV outbreaks in Catalonia (Spain) between 2017 and 2019. A total of 100 HuNoV outbreaks were notified with the predominance of GII (70%), followed by GI (27%) and mixed GI/GII (3%). Seasonality was observed for GII outbreaks only. The most prevalent genotypes identified were GII.4[P31] Sydney 2012, GII.4[P16] Sydney 2012 and GII.2[P16]. As compared to person-to-person (P/P) transmitted outbreaks, foodborne outbreaks showed significantly higher attack rates and lower duration. The average attack rate was higher in youth hostel/campgrounds compared to nursing homes. Only genotypes GI.4[P4], GII.2[P16], GII.4[P16], GII.4[P31] and GII.17[P17] were consistently detected every year, and only abundance of GII.2[P16] showed a negative trend over time. GII.4 Sydney 2012 outbreaks were significantly associated to nursing homes, while GII.2[P16] and GI.3[P3] were most frequently identified in youth hostel/campgrounds. The average attack rate was significantly higher when comparing GII.2[P16] vs. GI.4[P4], GII.2[P16] vs. GII.4[P31] Sydney 2012, and GII.6[P7] vs. GII.4[P31] Sydney 2012. No correlations were found between genotype and outbreak duration or age of affected individuals.
Collapse
|
131
|
High Prevalence and Diversity of Caliciviruses in a Community Setting Determined by a Metagenomic Approach. Microbiol Spectr 2022; 10:e0185321. [PMID: 35196791 PMCID: PMC8865552 DOI: 10.1128/spectrum.01853-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently carried out a metagenomic study to determine the fecal virome of infants during their first year of life in a semirural community in Mexico. A total of 97 stool samples from nine children were collected starting 2 weeks after birth and monthly thereafter until 12 months of age. In this work, we describe the prevalence and incidence of caliciviruses in this birth cohort. We found that 54 (56%) and 24 (25%) of the samples were positive for norovirus and sapovirus sequence reads detected by next-generation sequencing, respectively. Potential infections were arbitrarily considered when at least 20% of the complete virus genome was determined. Considering only these samples, there were 3 cases per child/year for norovirus and 0.33 cases per child/year for sapovirus. All nine children had sequence reads related to norovirus in at least 2 and up to 10 samples, and 8 children excreted sapovirus sequence reads in 1 and up to 5 samples during the study. The virus in 35 samples could be genotyped. The results showed a high diversity of both norovirus (GI.3[P13], GI.5, GII.4, GII.4[P16], GII.7[P7], and GII.17[P17]) and sapovirus (GI.1, GI.7, and GII.4) in the community. Of interest, despite the frequent detection of caliciviruses in the stools, all children remained asymptomatic during the study. Our results clearly show that metagenomic studies in stools may reveal a detailed picture of the prevalence and diversity of gastrointestinal viruses in the human gut during the first year of life. IMPORTANCE Human caliciviruses are important etiological agents of acute gastroenteritis in children under 5 years of age. Several studies have characterized their association with childhood diarrhea and their presence in nondiarrheal stool samples. In this work, we used a next-generation sequencing approach to determine, in a longitudinal study, the fecal virome of infants during their first year of life. Using this method, we found that caliciviruses can be detected significantly more frequently than previously reported, providing a more detailed picture of the prevalence and genetic diversity of these viruses in the human gut during early life.
Collapse
|
132
|
Mariita RM, Davis JH, Randive RV. Illuminating Human Norovirus: A Perspective on Disinfection of Water and Surfaces Using UVC, Norovirus Model Organisms, and Radiation Safety Considerations. Pathogens 2022; 11:226. [PMID: 35215169 PMCID: PMC8879714 DOI: 10.3390/pathogens11020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Human noroviruses (HuNoVs) are a major cause of gastroenteritis and are associated with high morbidity because of their ability to survive in the environment and small inoculum size required for infection. Norovirus is transmitted through water, food, high touch-surfaces, and human-to-human contact. Ultraviolet Subtype C (UVC) light-emitting diodes (LEDs) can disrupt the norovirus transmission chain for water, food, and surfaces. Here, we illuminate considerations to be adhered to when picking norovirus surrogates for disinfection studies and shine light on effective use of UVC for norovirus infection control in water and air and validation for such systems and explore the blind spot of radiation safety considerations when using UVC disinfection strategies. This perspective also discusses the promise of UVC for norovirus mitigation to save and ease life.
Collapse
Affiliation(s)
- Richard M. Mariita
- Crystal IS Inc., an Asahi Kasei Company, 70 Cohoes Avenue, Green Island, NY 12183, USA; (J.H.D.); (R.V.R.)
| | | | | |
Collapse
|
133
|
Cui Y, Chen X, Yue H, Tang C. First Detection and Genomic Characterization of Bovine Norovirus from Yak. Pathogens 2022; 11:pathogens11020192. [PMID: 35215135 PMCID: PMC8874446 DOI: 10.3390/pathogens11020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Yak are a unique free-grazing bovine species in high-altitude areas. The objective of this study was to investigate the presence and molecular characteristics of BNoV in yak. A total of 205 diarrheal samples of yak (aged ≤ 3 months) were collected from 10 farms in Sichuan Province, China, from May 2018 to October 2020, and four samples were detected as BNoV-positive with RT-PCR. Moreover, a nearly full-length genome of SMU-YAK-J1 containing three complete ORFs was successfully sequenced. Sequence analysis with only nine genome sequences of the GIII genogroup showed that SMU-YAK-J1 was most closely related with GIII.P2 GIII.4, sharing 90.9% gnomic nucleotide identity, but only shared 71.6–85.9% with other genotypes, which confirmed that SMU-YAK-J1 belongs to genotype GIII.P2 GIII.4. However, compared with the sole genome of GIII.4 in GenBank, the BNoV in this study also exhibited many unique amino acid changes among all the three ORFs, which may represent the unique genetic evolution of BNoV in yak. This study first determined the presence of BNoV in yak, contributing to a better understanding of the prevalence and genetic evolution of BNoV.
Collapse
Affiliation(s)
| | | | - Hua Yue
- Correspondence: (H.Y.); (C.T.)
| | | |
Collapse
|
134
|
Knowledge, Awareness, and Prevention of Norovirus Infection among Kindergarten Parents in Chengdu, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031570. [PMID: 35162592 PMCID: PMC8835510 DOI: 10.3390/ijerph19031570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis among children in China. However, little is known about parents' knowledge of HuNoV infection and their understanding of how to prevent and control the disease. Therefore, we performed an exploratory survey to assess the level of knowledge of HuNoV infection among kindergarten parents. A cross-sectional survey was conducted by investigating kindergarteners' parents through an online self-administered questionnaire between October 2020 and November 2020 in Chengdu, China. A total of 771 questionnaires were received with valid responses, and 81.97% of respondents had heard about NoV before. Among parents who had heard about HuNoV before, they had a poor awareness of incubation period, duration, and high-incidence seasons of HuNoV infection. The respondents also had a low-level awareness of how to clean the places contaminated by vomitus or stool. The multiple-regression analysis confirmed that factors associated with good knowledge regarding HuNoV infection were level of education, occupation, history of infection, and HuNoV learning experience. The most expected approach to learn about HuNoV among parents was the internet, followed by knowledge training in kindergartens, community information, and television. This is the first study to assess kindergarten parents' knowledge and awareness of HuNoV infection. The survey results provide insights that would help in developing effective strategies and educational materials to prevent and control the disease.
Collapse
|
135
|
Kimura-Someya T, Kato-Murayama M, Katsura K, Sakai N, Murayama K, Hanada K, Shirouzu M, Someya Y. Lewis fucose is a key moiety for the recognition of histo-blood group antigens by GI.9 norovirus, as revealed by structural analysis. FEBS Open Bio 2022; 12:560-570. [PMID: 35038379 PMCID: PMC8886331 DOI: 10.1002/2211-5463.13370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
Abstract
Noroviruses have been identified as major causative agents of acute nonbacterial gastroenteritis in humans. Histo‐blood group antigens (HBGAs) are thought to play a major role among the host cellular factors influencing norovirus infection. Genogroup I, genotype 9 (GI.9) is the most recently identified genotype within genogroup I, whose representative strain is the Vancouver 730 norovirus. However, the molecular interactions between host antigens and the GI.9 capsid protein have not been investigated in detail. In this study, we demonstrate that the GI.9 norovirus preferentially binds Lewis antigens over blood group A, B, and H antigens, as revealed by an HBGA binding assay using virus‐like particles. We determined the crystal structures of the protruding domain of the GI.9 capsid protein in the presence or absence of Lewis antigens. Our analysis demonstrated that Lewis fucose (α1–3/4 fucose) represents a key moiety for the GI.9 protein–HBGA interaction, thus suggesting that Lewis antigens might play a critical role during norovirus infection. In addition to previously reported findings, our observations may support the future design of antiviral agents and vaccines against noroviruses.
Collapse
Affiliation(s)
- Tomomi Kimura-Someya
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Miyuki Kato-Murayama
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazushige Katsura
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Naoki Sakai
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazutaka Murayama
- Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuharu Hanada
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuichi Someya
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, 4-7-1 Gakuen, Tokyo, 208-0011, Japan
| |
Collapse
|
136
|
Mariita RM, Wilson Miller AC, Randive RV. Evaluation of the virucidal efficacy of Klaran UVC LEDs against surface-dried norovirus. Access Microbiol 2022; 4:000323. [PMID: 35252757 PMCID: PMC8895607 DOI: 10.1099/acmi.0.000323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/16/2021] [Indexed: 11/21/2022] Open
Abstract
Human norovirus (HuNoV) is a highly contagious pathogenic virus that is transmitted through contaminated food, water, high-touch surfaces and aerosols. Globally, there are an estimated 685 million infections annually due to norovirus, including 200 million affecting children under the age of 5. HuNoV causes approximately 50, 000 child deaths per year and costs an estimated USD $60 billion annually in healthcare. This study sought to determine the inactivation profile of ultraviolet subtype C (UVC) against norovirus using a UVC light-emitting diode (LED) array, KL265-50V-SM-WD. The array emitted radiation at 269 nm peak wavelength and a measured fluence of 1.25 mW cm−2 at a 7 cm source–surface distance. Since the HuNoV is not cultivable, the study utilized feline calicivirus (FCV) ATCC VR-782, a recommended surrogate as challenge organism. The test followed modified ASTM E2197. Assessment of virus inactivation was performed using a plaque assay method. With irradiance at a UVC dose of 22.5 mJ cm−2, the study obtained 99.9 % virus reduction (3 log reduction). The results demonstrate that the UVC LED array can provide effective inactivation of HuNoV.
Collapse
Affiliation(s)
- Richard M. Mariita
- Crystal IS, Inc., an Asahi Kasei company, 70 Cohoes Avenue, Green Island, New York, 12183, USA
- *Correspondence: Richard M. Mariita,
| | - Amy C. Wilson Miller
- Crystal IS, Inc., an Asahi Kasei company, 70 Cohoes Avenue, Green Island, New York, 12183, USA
| | - Rajul V. Randive
- Crystal IS, Inc., an Asahi Kasei company, 70 Cohoes Avenue, Green Island, New York, 12183, USA
| |
Collapse
|
137
|
Electrochemical sensor for human norovirus based on covalent organic framework/pillararene heterosupramolecular nanocomposites. Talanta 2022; 237:122896. [PMID: 34736712 DOI: 10.1016/j.talanta.2021.122896] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/31/2021] [Accepted: 09/19/2021] [Indexed: 02/07/2023]
Abstract
Noroviruses are the leading cause of acute gastroenteritis and food-borne diseases worldwide. Thus, a rapid, accurate, and easy-to-implement detection method for controlling infection and monitoring progression is urgently needed. In this study, we constructed a novel sandwich-type electrochemical biosensor integrated with two specific recognition elements (aptamer and peptide) for human norovirus (HuNoV). The electrochemical biosensor was fabricated using magnetic covalent organic framework/pillararene heterosupramolecular nanocomposites (MB@Apt@WP5A@Au@COF@Fe3O4) as the signal probes. The sensor showed high accuracy and selectivity. The detection method does not need the extraction and amplification of virus nucleic acid and has a short turn-around time. Intriguingly, the proposed biosensor had a limit of detection of 0.84 copy mL-1 for HuNoV, which was the highest sensitivity among published assays. The proposed biosensor showed higher sensitivity and accuracy compared with immunochromatographic assay in the detection of 98 clinical specimens. The biosensor was capable of determining the predominant infection strain of GII.4 and also GII.3 and achieved 74% selectivity for HuNoV GII group. This study provides a potential method for point-of-care testing and highlights the integrated utilization of Apt and peptide in sensor construction.
Collapse
|
138
|
Thomas S, Abraham A, Callaghan PJ, Rappuoli R. Challenges for Vaccinologists in the First Half of the Twenty-First Century. Methods Mol Biol 2022; 2410:3-25. [PMID: 34914040 DOI: 10.1007/978-1-0716-1884-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The COVID-19 pandemic of 2020-2021 has highlighted the importance of vaccines and vaccination in human health. The pandemic has resulted in social distancing, travel restrictions, decreased trade, high unemployment, commodity price decline, and financial stress that has impacted the global economy. Since December 2020, a massive vaccination campaign is undergoing in every country on the planet to protect against SARS-CoV-2. Vaccination is the cheapest health-care interventions that can save more lives than any other drugs or therapies. Some of the common diseases of the twentieth century including smallpox and polio are seldom reported due to intense vaccination programs that eradicated it. Smallpox is completely eradicated globally; whereas, polio is confined to only a couple of countries. Vaccination has not only improved the health of man but also improved food security by preventing diseases in farm animals and aquacultured fish. Awareness of the principles of immunology and novel vaccines has led to effective vaccination strategies. Climate change could lead to generation of new strains of infectious microorganisms that would require development of novel vaccines. Recent years have seen the increase in incidence of brain-eating amoeba and flesh-eating bacteria (necrotizing fasciitis). There are no vaccines for these diseases. Though vaccination programs have eradicated several diseases and increased the quality of life, there are several diseases that have no effective vaccines. Currently there are no vaccines for cancer, neurodegenerative diseases, autoimmune diseases, as well as infectious diseases like tuberculosis, AIDS, and parasitic diseases including malaria. Spontaneous evolution of pathogenic microorganisms may lead to pandemics that impact the health of not only humanity but also other animals. Hence, the challenge to vaccinologists is the development of novel vaccines and vaccination strategies within limited time period and using minimum resources. In addition, the vaccine developed should be administered globally within a short duration so as to prevent generation of pathogenic variants more lethal than the parent strain.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, USA.
| | - Ann Abraham
- Lankenau Institute for Medical Research, Wynnewood, USA
| | | | | |
Collapse
|
139
|
Tsai H, Yune P, Rao M. Norovirus disease among older adults. Ther Adv Infect Dis 2022; 9:20499361221136760. [DOI: 10.1177/20499361221136760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Norovirus, a leading cause of gastroenteritis outbreaks worldwide, results in substantial direct and indirect healthcare costs. Adults older than 65 years of age bear a significant proportion of the disease burden, and the disease course in this population is often more severe and protracted. In this narrative review, we discuss the epidemiology of norovirus infection, mechanisms of pathogenesis, and transmission pertinent to outbreaks along with infection prevention and control efforts. We also describe the clinical manifestations of norovirus disease with a focus on individuals older than 65 years of age, diagnosis and available treatment options, and the challenges and progress within vaccine development.
Collapse
Affiliation(s)
- Helen Tsai
- Montefiore Medical Center, Bronx, NY, USA
| | | | - Mana Rao
- Essen Medical Associates, Bronx, NY 10461, USA
- ArchCare, New York, NY, USA
| |
Collapse
|
140
|
Delgado Corrales B, Kaiser R, Nerlich P, Agraviador A, Sherry A. BioMateriOME: To understand microbe-material interactions within sustainable, living architectures. ADVANCES IN APPLIED MICROBIOLOGY 2022; 122:77-126. [PMID: 37085194 DOI: 10.1016/bs.aambs.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BioMateriOME evolved from a prototyping process which was informed from discussions between a team of designers, architects and microbiologists, when considering constructing with biomaterials or human cohabitation with novel living materials in the built environment. The prototype has two elements (i) BioMateriOME-Public (BMP), an interactive public materials library, and (ii) BioMateriOME-eXperimental (BMX), a replicated materials library for rigorous microbiome experimentation. The prototype was installed into the OME, a unique experimental living house, in order to (1) gain insights into society's perceptions of living materials, and (2) perform a comparative analysis of indoor surface microbiome development on novel biomaterials in contrast to conventional indoor surfaces, respectively. This review summarizes the BioMateriOME prototype and its use as a tool in combining microbiology, design, architecture and social science. The use of microbiology and biological components in the fabrication of biomaterials is provided, together with an appreciation of the microbial communities common to conventional indoor surfaces, and how these communities may change in response to the implementation of living materials in our homes. Societal perceptions of microbiomes and biomaterials, are considered within the framework of healthy architecture. Finally, features of architectural design with microbes in mind are introduced, with the possibility of codifying microbial surveillance into design and construction benchmarks, standards and regulations toward healthier buildings and their occupants.
Collapse
Affiliation(s)
- Beatriz Delgado Corrales
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Romy Kaiser
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paula Nerlich
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Armand Agraviador
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela Sherry
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
141
|
Esona MD, Gautam R, Chhabra P, Vinjé J, Bowen MD, Burke RM. Gastrointestinal Tract Infections: Viruses. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:82-106. [DOI: 10.1016/b978-0-12-818731-9.00217-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
142
|
Bernier C, Goetz C, Jubinville E, Jean J. The New Face of Berries: A Review of Their Antiviral Proprieties. Foods 2021; 11:102. [PMID: 35010229 PMCID: PMC8750760 DOI: 10.3390/foods11010102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022] Open
Abstract
Due to rising consumer preference for natural remedies, the search for natural antiviral agents has accelerated considerably in recent years. Among the natural sources of compounds with potential antiviral proprieties, berries are interesting candidates, due to their association with health-promoting properties, including antioxidant, antimutagenic, anticancer, antimicrobial, anti-inflammatory, and neuroprotective properties. The past two decades have witnessed a flurry of new findings. Studies suggest promising antiviral proprieties against enveloped and non-enveloped viruses, particularly of cranberries, blueberries, blackcurrants, black raspberries, and pomegranates. The aim of this review is to assemble these findings, to list the implied mechanisms of action, and thereby point out promising subjects for research in this field, in the hope that compounds obtainable from natural sources such as berries may be used someday to treat, or even prevent, viral infections.
Collapse
Affiliation(s)
| | | | | | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada; (C.B.); (C.G.); (E.J.)
| |
Collapse
|
143
|
Cui WY, Yoo HJ, Li YG, Baek C, Min J. Facile and foldable point-of-care biochip for nucleic acid based-colorimetric detection of murine norovirus in fecal samples using G-quadruplex and graphene oxide coated microbeads. Biosens Bioelectron 2021; 199:113878. [PMID: 34915211 DOI: 10.1016/j.bios.2021.113878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/02/2022]
Abstract
Norovirus is one of the most common causes of gastroenteritis, a disease characterized by diarrhea, vomiting, and stomach pain. A rapid on-site identification of the virus from fecal samples of patients is a prerequisite for accurate medical management. Here, we demonstrate a rapid nucleic acid-based detection platform as an on-site biosensing tool that can concentrate viruses from fecal samples. Moreover, it can perform RNA extraction and identification, and signal amplification using G-quadruplex and hemin containing DNA probes (G-DNA probes) and graphene oxide (GO)-coated microbeads. Briefly, murine noroviruses are lysed without chemicals on the surface of the GO microbeads. Subsequently, the target RNA is hybridized with G-DNA probes, and the resultant RNA/G-DNA probe complex is separated from unbound G-DNA probes using GO beads and is mixed with the detection buffer (ABTS/H2O2). Presence of murine noroviruses causes a colorimetric change of the buffer from colorless to green. Thus, we integrated all processes required to detect murine noroviruses in stool samples in a simple foldable microfluidic chip. Moreover, it can detect 101 pfu of the virus in 30 min in a fecal sample.
Collapse
Affiliation(s)
- Wen Ying Cui
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Hyun Jin Yoo
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Yun Guang Li
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea.
| |
Collapse
|
144
|
Noda M, Danshiitsoodol N, Sakaguchi T, Kanno K, Sugiyama M. Exopolysaccharide Produced by Plant-Derived Lactobacillus plantarum SN35N Exhibits Antiviral Activity. Biol Pharm Bull 2021; 44:1886-1890. [PMID: 34853272 DOI: 10.1248/bpb.b21-00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A lactic acid bacterial strain, Lactobacillus plantarum SN35N, which has been isolated from the pear, secretes negatively charged acidic exopolysaccharide (EPS) to outside cells. We have previously found that the SN35N-derived acidic EPS inhibits the catalytic activity of hyaluronidase (EC 3.2.1.35) promoting inflammation. The aim of this study is to find other health benefits of EPS. EPS has been found to exhibit an inhibitory effect against the influenza virus (Alphainfluenzavirus Influenza A virus) and feline calicivirus (Vesivirus Feline calicivirus), which is recognized as a model of norovirus. Although more studies on the structure-function relationship of EPSs are needed, SN35N-derived EPS is a promising lead for developing not only anti-inflammatory agents, but also antiviral substances.
Collapse
Affiliation(s)
- Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Keishi Kanno
- Department of Gastroenterology, Hiroshima University Hospital
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
145
|
Kõivumägi K, Geller J, Toompere K, Soeorg H, Kallas E, Jõgeda EL, Huik K, Lutsar I. Norovirus strains among children aged 0-18 years hospitalized with acute gastroenteritis in Estonia 2015-2016. J Med Virol 2021; 94:2632-2639. [PMID: 34854093 DOI: 10.1002/jmv.27495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022]
Abstract
Norovirus (NoV) is the leading cause of acute gastroenteritis (AGE) in many countries that have introduced universal rotavirus mass vaccination. This is the first study to report data on NoV strains in Estonia. We recruited 2249 children aged 0-18 years hospitalized for AGE in Estonian hospitals from February 1, 2015 to August 31, 2016. Norovirus gastroenteritis (NoVGE) was diagnosed in 14.5% (n = 325) cases. Stool sample for RNA extraction and genotyping was available in 86% (n = 280) of NoVGE cases (2015, n = 91; 2016, n = 189). Dominant capsid types detected in 75% (n = 210) samples were, GII.4 (63.8%, n = 134), GII.3 (15.2%, n = 32), GII.17 (6.7%, n = 14), and GII.6 (5.2%, n = 11). Prevailing RNA polymerase types found in 77% (n = 215) samples were GII.P31 (51.1%, n = 110), GII.P21 (17.7%, n = 38), GII.P4 (11.2%, n = 24), and GII.P7 (6.5%, n = 14). Both regions were typeable for 67% (n = 189) of samples. Most prevalent strains were GII.4Sydney_2012[P31] (48.7%, n = 92), GII.3[P21] (15.3%, n = 29), GII.4Sydney_2012[P4] (5.8%, n = 11) and GII.17[P17] (5.8%, n = 11). Simpson's diversity index showed a significant difference between the age groups 1-4 and 5-9 years: D 0.64 (95% confidence interval [CI]: 0.55-0.73) versus 0.83 (95% CI: 0.81-0.86), respectively (p = 0.03). An accurate understanding of NoV strain diversity is important for control and preventive measures, especially in the postrotavirus vaccine era.
Collapse
Affiliation(s)
- Kadri Kõivumägi
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Julia Geller
- The National Institute for Health Development, Tallinn, Estonia
| | - Karolin Toompere
- Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Hiie Soeorg
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eveli Kallas
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ene-Ly Jõgeda
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kristi Huik
- US National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Irja Lutsar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
146
|
Lateral flow assays (LFA) as an alternative medical diagnosis method for detection of virus species: The intertwine of nanotechnology with sensing strategies. Trends Analyt Chem 2021; 145:116460. [PMID: 34697511 PMCID: PMC8529554 DOI: 10.1016/j.trac.2021.116460] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are responsible for multiple infections in humans that impose huge health burdens on individuals and populations worldwide. Therefore, numerous diagnostic methods and strategies have been developed for prevention, management, and decreasing the burden of viral diseases, each having its advantages and limitations. Viral infections are commonly detected using serological and nucleic acid-based methods. However, these conventional and clinical approaches have some limitations that can be resolved by implementing other detector devices. Therefore, the search for sensitive, selective, portable, and costless approaches as efficient alternative clinical methods for point of care testing (POCT) analysis has gained much attention in recent years. POCT is one of the ultimate goals in virus detection, and thus, the tests need to be rapid, specific, sensitive, accessible, and user-friendly. In this review, after a brief overview of viruses and their characteristics, the conventional viral detection methods, the clinical approaches, and their advantages and shortcomings are firstly explained. Then, LFA systems working principles, benefits, classification are discussed. Furthermore, the studies regarding designing and employing LFAs in diagnosing different types of viruses, especially SARS-CoV-2 as a main concern worldwide and innovations in the LFAs' approaches and designs, are comprehensively discussed here. Furthermore, several strategies addressed in some studies for overcoming LFA limitations like low sensitivity are reviewed. Numerous techniques are adopted to increase sensitivity and perform quantitative detection. Employing several visualization methods, using different labeling reporters, integrating LFAs with other detection methods to benefit from both LFA and the integrated detection device advantages, and designing unique membranes to increase reagent reactivity, are some of the approaches that are highlighted.
Collapse
|
147
|
Xu Y, Zhu Y, Lei Z, Rui J, Zhao Z, Lin S, Wang Y, Xu J, Liu X, Yang M, Chen H, Pan X, Lu W, Du Y, Li H, Fang L, Zhang M, Zhou L, Yang F, Chen T. Investigation and analysis on an outbreak of norovirus infection in a health school in Guangdong Province, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105135. [PMID: 34781036 DOI: 10.1016/j.meegid.2021.105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Our objective was to describe the epidemiological features of an outbreak of norovirus infection in a health school in Guangdong province, China, to identify the cause of such a large scale outbreak of norovirus among older students, to simulate the transmission dynamics, and to evaluate the effect of intervention measures of GII.17 [P17] genotype norovirus infection. We identified all cases during the outbreak. Descriptive epidemiological, analytical epidemiological and hygiene survey methods were used to described the outbreak epidemic course and identify the cause of the outbreak of norovirus infection. We also used dynamical model to simulate the transmission dynamics of norovirus infection and evaluate the effect of intervention measures. Norovirus genotyping was assigned to the newly obtained strains, with a maximum likelihood phylogenetic analysis conducted. There were 360 cases of 42 classes in five grades with a 12.99% attack rate. Proportionally, more students were in contact with sick students and vomit in the suspected case group than the control group (χ2 = 5.535, P = 0.019 and χ2 = 5.549, P = 0.019, respectively). The basic reproduction number was 8.32 before and 0.49 after the intervention. Dynamical modeling showed that if the isolation rate was higher or case isolation began earlier, the total attack rate would decrease. Molecular characterization identified the GII.17 [P17] genotype in all stains obtained from the health school, which were clustered with high support in the phylogenetic tree. This was an outbreak of norovirus infection caused by contact transmission. The main reasons for the spread of the epidemic were the later control time, irregular treatment of vomit and no case isolation. The transmission dynamics of contact transmission was high, more efficient control measures should be employed.
Collapse
Affiliation(s)
- Yucheng Xu
- Futian District Center for Disease Control and Prevention, Shenzhen, People's Republic of China; Guangdong Field Epidemiology Training Program, Guangzhou, People's Republic of China
| | - Yuanzhao Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Jia Rui
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Zeyu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Shengnan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Yao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Jingwen Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Xingchun Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Meng Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China
| | - Hongsheng Chen
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Xuemei Pan
- Lianzhou District Center for Disease Control and Prevention, Qingyuan, People's Republic of China
| | - Wentao Lu
- Qingyuan City Center for Disease Control and Prevention, Qingyuan, People's Republic of China
| | - Yuzhong Du
- Qingyuan City Center for Disease Control and Prevention, Qingyuan, People's Republic of China
| | - Hui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Ling Fang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Meng Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Lina Zhou
- Department of Nephrology, The second Hospital of Xiamen Medical college, Xiamen 361021, China
| | - Fen Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People's Republic of China.
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, People's Republic of China.
| |
Collapse
|
148
|
Abstract
Viral infections represent a major health problem worldwide. Due to the wide variety of etiological agents and their increasing resistance to anti-virals and antibiotics treatments, new strategies for effective therapies need to be developed. Scientific evidence suggests that probiotics may have prophylactic and therapeutic effects in viral diseases. Indeed, these microorganisms interact harmoniously with the intestinal microbiota and protect the integrity of the intestinal barrier as well as modulate the host immune system. Currently, clinical trials with probiotics have been documented in respiratory tract infections, infections caused by human immunodeficiency viruses, herpes, human papillomavirus and hepatic encephalopathy. However, the benefits documented so far are difficult to extrapolate, due to the strain-dependent effect. In addition, the dose of the microorganism used as well as host characteristics are other parameters that should be consider when advocating the use of probiotics to treat viral infections. This review addresses the scientific evidence of the efficacy of probiotics in clinical strains perspective in viral infectious diseases in the last 10 years.
Collapse
|
149
|
Nwokolo NL, Enebe MC. Shotgun metagenomics evaluation of soil fertilization effect on the rhizosphere viral community of maize plants. Antonie van Leeuwenhoek 2021; 115:69-78. [PMID: 34762236 DOI: 10.1007/s10482-021-01679-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
The need for sustainability in food supply has led to progressive increase in soil nutrient enrichment. Fertilizer application effects both biological and abiotic processes in the soil, of which the bacterial community that support viral multiplication are equally influenced. Nevertheless, little is known on the effect of soil fertilization on the Soil viral community composition and dynamics. In this study, we evaluated the influence of soil fertilization on the maize rhizosphere viral community growing in Luvisolic soil. The highest abundance of bacteriophages were detected in soil treated with 8 tons/ha compost manure (Cp8), 60 kg/ha inorganic fertilizer (N1), 4 tons/ha compost manure (Cp4) and the unfertilized control (Cn0). Our result showed higher relative abundance of Myoviridae, Podoviridae and Siphoviridae in 8 tons/ha organic manure (Cp8) fertilized compared to others. While Inoviridae and Microviridae were the most relative abundant phage families in 4 tons/ha organic manure (Cp4) fertilized soil. This demonstrate that soil fertilization with organic manure increases the abundance and diversity of viruses in the soil due to its soil conditioning effects.
Collapse
Affiliation(s)
| | - Matthew Chekwube Enebe
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
150
|
Yasmin F, Ali SH, Ullah I. Norovirus outbreak amid COVID-19 in the United Kingdom; priorities for achieving control. J Med Virol 2021; 94:1232-1235. [PMID: 34713915 PMCID: PMC8662166 DOI: 10.1002/jmv.27426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022]
Abstract
Norovirus, an enteric virus primarily responsible for gastroenteritis outbreaks worldwide, is currently causing outbreaks around the United Kingdom during the COVID-19 pandemic. With an already exhausted health care system, the significant burden norovirus can have on the National Health Service, including economic and social burdens, is immense and cannot be tolerated. Primary challenges and priorities to be focused on due to the increase in norovirus outbreaks include a further depletion of health care services, increase cases in schools, nurseries, and care facilities, underreporting of the cases, and no effective vaccine being available. Therefore, it is essential to increase awareness about norovirus and its transmission in public, take necessary precautions, and increase reporting of cases. This article discusses the impact norovirus has during the COVID-19 pandemic, and the challenges, and recommendations to achieve control before it reaches epidemic levels.
Collapse
Affiliation(s)
- Farah Yasmin
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Hasan Ali
- Department of Internal Medicine, Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Irfan Ullah
- Department of Community Medicine, Kabir Medical College, Gandhara University, Peshawar, Pakistan
| |
Collapse
|