101
|
Xu Q, Hu X, Wang Y. Alternatives to Conventional Antibiotic Therapy: Potential Therapeutic Strategies of Combating Antimicrobial-Resistance and Biofilm-Related Infections. Mol Biotechnol 2021; 63:1103-1124. [PMID: 34309796 DOI: 10.1007/s12033-021-00371-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Antibiotics have been denoted as the orthodox therapeutic agents for fighting bacteria-related infections in clinical practices for decades. Nevertheless, overuse of antibiotics has led to the upsurge of species with antimicrobial resistance (AMR) or multi-drug resistance. Bacteria can also grow into the biofilm, which accounts for at least two-thirds of infections. Distinct gene expression and self-produced heterogeneous hydrated extracellular polymeric substance matrix architecture of biofilm contribute to their tolerance and externally manifest as antibiotic resistance. In this review, the difficulties in combating biofilm formation and AMR are introduced, and novel alternatives to antibiotics such as metal nanoparticles and quaternary ammonium compounds, chitosan and its derivatives, antimicrobial peptides, stimuli-responsive materials, phage therapy and other therapeutic strategies, from compounds to hydrogel, from inorganic to biological, are discussed. We expect to provide useful information for the readers who are seeking for solutions to the problem of AMR and biofilm-related infections.
Collapse
Affiliation(s)
- Qian Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
102
|
Cavalheiro M, Pereira D, Formosa-Dague C, Leitão C, Pais P, Ndlovu E, Viana R, Pimenta AI, Santos R, Takahashi-Nakaguchi A, Okamoto M, Ola M, Chibana H, Fialho AM, Butler G, Dague E, Teixeira MC. From the first touch to biofilm establishment by the human pathogen Candida glabrata: a genome-wide to nanoscale view. Commun Biol 2021; 4:886. [PMID: 34285314 PMCID: PMC8292413 DOI: 10.1038/s42003-021-02412-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Candida glabrata is an opportunistic pathogen that adheres to human epithelial mucosa and forms biofilm to cause persistent infections. In this work, Single-cell Force Spectroscopy (SCFS) was used to glimpse at the adhesive properties of C. glabrata as it interacts with clinically relevant surfaces, the first step towards biofilm formation. Following a genetic screening, RNA-sequencing revealed that half of the entire transcriptome of C. glabrata is remodeled upon biofilm formation, around 40% of which under the control of the transcription factors CgEfg1 and CgTec1. Using SCFS, it was possible to observe that CgEfg1, but not CgTec1, is necessary for the initial interaction of C. glabrata cells with both abiotic surfaces and epithelial cells, while both transcription factors orchestrate biofilm maturation. Overall, this study characterizes the network of transcription factors controlling massive transcriptional remodelling occurring from the initial cell-surface interaction to mature biofilm formation.
Collapse
Affiliation(s)
- Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Diana Pereira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Carolina Leitão
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Easter Ndlovu
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Andreia I Pimenta
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Rui Santos
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Michiyo Okamoto
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Mihaela Ola
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Hiroji Chibana
- Medical Mycology Research Center (MMRC), Chiba University, Chiba, Japan
| | - Arsénio M Fialho
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal
| | - Geraldine Butler
- School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, Dublin, Ireland
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Biological Sciences Research Group, iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal.
| |
Collapse
|
103
|
Eldesouky HE, Lanman NA, Hazbun TR, Seleem MN. Aprepitant, an antiemetic agent, interferes with metal ion homeostasis of Candida auris and displays potent synergistic interactions with azole drugs. Virulence 2021; 11:1466-1481. [PMID: 33100149 PMCID: PMC7588212 DOI: 10.1080/21505594.2020.1838741] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With the rapid increase in the frequency of azole-resistant species, combination therapy appears to be a promising tool to augment the antifungal activity of azole drugs against resistant Candida species. Here, we report the effect of aprepitant, an antiemetic agent, on the antifungal activities of azole drugs against the multidrug-resistant Candida auris. Aprepitant reduced the minimum inhibitory concentration (MIC) of itraconazole in vitro, by up to eight-folds. Additionally, the aprepitant/itraconazole combination interfered significantly with the biofilm-forming ability of C. auris by 95 ± 0.13%, and significantly disrupted mature biofilms by 52 ± 0.83%, relative to the untreated control. In a Caenorhabditis elegans infection model, the aprepitant/itraconazole combination significantly prolonged the survival of infected nematodes by ~90% (five days post-infection) and reduced the fungal burden by ~92% relative to the untreated control. Further, this novel drug combination displayed broad-spectrum synergistic interactions against other medically important Candida species such as C. albicans, C. krusei, C. tropicalis, and C. parapsilosis (ƩFICI ranged from 0.08 to 0.31). Comparative transcriptomic profiling and mechanistic studies indicated aprepitant/itraconazole interferes significantly with metal ion homeostasis and compromises the ROS detoxification ability of C. auris. This study presents aprepitant as a novel, potent, and broad-spectrum azole chemosensitizing agent that warrants further investigation.
Collapse
Affiliation(s)
- Hassan E Eldesouky
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, VA, USA
| | - Nadia A Lanman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University , West Lafayette, IN, USA
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University , West Lafayette, IN, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University , West Lafayette, IN, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University , Blacksburg, VA, USA
| |
Collapse
|
104
|
Phytomedicine from Middle Eastern Countries: An Alternative Remedy to Modern Medicine against Candida spp Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6694876. [PMID: 34335836 PMCID: PMC8298167 DOI: 10.1155/2021/6694876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
Candida spp are capable of infecting both normal and immunocompromised individuals. More recently, Candida infections have spread considerably in healthcare settings, especially in intensive care units, where it is the most frequently encountered pathogen. Candida albicans is the commonest species encountered, although infections by non-albicans species have also risen in the past few years. The pathogenicity of Candida is credited to its aptitude to change between yeast and hyphal modes of growth. Candida spp produce biofilms on synthetic materials that protect them and facilitate drug resistance and act as a source for chronic and recurrent infections. Primarily, azoles antifungal agents are utilized to treat Candida infection that targets the ergosterol synthesis pathway in the cell wall. The development of antifungal resistance in Candida species is a major reason for treatment failure, and hence, there is a need to develop newer antifungal molecules and/or modifications of existing antifungals to make them more effective and less toxic. This has led researchers to oversee the plants to discover newer antimicrobials. Middle Eastern countries are well known for their landscape ranging from dry and sandy deserts to snow-capped mountains. However, they comprise enormous plant diversity with over 20,000 different species showing various types of bioactivities, such as anticancer, antidiabetic, and antimicrobial activities. Especially, the antifungal potential of these phytoproducts could be exploited in the clinical setting for therapy. The present review examines some of the promising alternative natural compounds that have been tested and found effective in treating Candida infections in vitro in some Middle Eastern countries.
Collapse
|
105
|
Salama OE, Gerstein AC. High-Throughput Computational Analysis of Biofilm Formation from Time-Lapse Microscopy. Curr Protoc 2021; 1:e194. [PMID: 34242490 DOI: 10.1002/cpz1.194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Candida albicans biofilm formation in the presence of drugs can be examined through time-lapse microscopy. In many cases, the images are used qualitatively, which limits their utility for hypothesis testing. We employed a machine-learning algorithm implemented in the Orbit Image Analysis program to detect the percent area covered by cells from each image. This is combined with custom R scripts to determine the growth rate, growth asymptote, and time to reach the asymptote as quantitative proxies for biofilm formation. We describe step-by-step protocols that go from sample preparation for time-lapse microscopy through image analysis parameterization and visualization of the model fit. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Sample preparation Basic Protocol 2: Time-lapse microscopy: Evos protocol Basic Protocol 3: Batch file renaming Basic Protocol 4: Machine learning analysis of Evos images with Orbit Basic Protocol 5: Parametrization of Orbit output in R Basic Protocol 6: Visualization of logistic fits in R.
Collapse
Affiliation(s)
- Ola E Salama
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aleeza C Gerstein
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Statistics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
106
|
Tischner Z, Sebők R, Kredics L, Allaga H, Vargha M, Sebestyén Á, Dobolyi C, Kriszt B, Magyar D. Mycological Investigation of Bottled Water Dispensers in Healthcare Facilities. Pathogens 2021; 10:pathogens10070871. [PMID: 34358021 PMCID: PMC8308914 DOI: 10.3390/pathogens10070871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
The usage of bottled water dispensers (BWDs) has spread worldwide. Despite their popularity, few studies have dealt with their microbial contaminants, and little attention is given to their fungal contamination. To our knowledge this is the first mycological study of BWDs in Europe. 36 devices have been examined in Budapest, Hungary. Despite of the strictly regulated water hygiene system in Hungary, molds and yeasts were detected in 86.8% of the samples, 56.76% were highly contaminated. Elevated heterotrophic plate counts were also observed in all samples compared to that of Hungarian drinking water. As all physical and chemical water quality characteristics have met the relevant national and European parametric values and neither totally explained the results of microbial counts, the effect of usage and maintenance habits of the devices were examined. Fungal concentrations were affected by the time elapsed since disinfection, days remaining until expiration of bottles, month of sampling and exposure to sunlight during storage. Microbes are able to proliferate in the bottled water and disperse inside the BWDs. Many of the detected fungal species (Sarocladium kiliense, Acremonium sclerotigenum/egyptiacum, Exophiala jeanselmei var. lecanii-corni, Exophiala equina, Meyerozyma guilliermondii, Cystobasidium slooffiae, Aspergillus jensenii, Bisifusarium biseptatum) are opportunistic pathogens for subpopulations of sensitive age groups and patients with immunodeficient conditions, including cystic fibrosis. Thus BWDs may pose a health risk to visitors of healthcare institutions, especially to patients with oral lesions in dental surgeries. The study draws attention to the need to investigate microbial contamination of these devices in other countries as well.
Collapse
Affiliation(s)
- Zsófia Tischner
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (C.D.); (B.K.)
- National Public Health Center, H-1097 Budapest, Hungary; (M.V.); (Á.S.); (D.M.)
- Correspondence: (Z.T.); (R.S.)
| | - Rózsa Sebők
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (C.D.); (B.K.)
- Correspondence: (Z.T.); (R.S.)
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (L.K.); (H.A.)
| | - Henrietta Allaga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (L.K.); (H.A.)
| | - Márta Vargha
- National Public Health Center, H-1097 Budapest, Hungary; (M.V.); (Á.S.); (D.M.)
| | - Ágnes Sebestyén
- National Public Health Center, H-1097 Budapest, Hungary; (M.V.); (Á.S.); (D.M.)
| | - Csaba Dobolyi
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (C.D.); (B.K.)
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (C.D.); (B.K.)
| | - Donát Magyar
- National Public Health Center, H-1097 Budapest, Hungary; (M.V.); (Á.S.); (D.M.)
| |
Collapse
|
107
|
Khan F, Bamunuarachchi NI, Tabassum N, Jo DM, Khan MM, Kim YM. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. BIOFOULING 2021; 37:626-655. [PMID: 34284656 DOI: 10.1080/08927014.2021.1948538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Candida albicans undergoes a morphological yeast-to-hyphal transition during infection, which plays a significant role in its pathogenesis. The filamentous morphology of the hyphal form has been identified as a virulence factor as it facilitates surface adherence, intertwining with biofilm, invasion, and damage to host tissues and organs. Hence, inhibition of filamentation in addition to biofilm formation is considered a viable strategy against C. albicans infections. Furthermore, a good understanding of the signaling pathways involved in response to environmental cues driving hyphal growth is also critical to an understanding of C. albicans pathogenicity and to develop novel therapies. In this review, first the clinical significance and transcriptional control of C. albicans hyphal morphogenesis are addressed. Then, various strategies employed to suppress filamentation, prevent biofilm formation, and reduce virulence are discussed. These strategies include the inhibition of C. albicans filament formation using natural or synthetic compounds, and their combination with other agents or nanoformulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, University Brunei Darussalam, Gadong, Brunei Darussalam
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
108
|
Fathelrahman AI. Medical Device-related Counseling Practice and Barriers among Sudanese Pharmacists: A Questionnaire-Based Study. J Res Pharm Pract 2021; 10:125-132. [PMID: 35198505 PMCID: PMC8809458 DOI: 10.4103/jrpp.jrpp_21_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/19/2021] [Indexed: 11/06/2022] Open
Abstract
Objective: The aim of the present study was to assess medical devices-related counseling practice and barriers among pharmacists. Methods: This was a cross-sectional study conducted using a convenient sample of Sudanese pharmacists. An online-version survey was used to collect data. Findings: One hundred and thirty pharmacists responded to the online survey. Most pharmacists in this sample were master or Ph.D. degree holders (62.3% and 12.3%, respectively), having a clinical training experience (70%) and substantial proportion are board-certified (30%). Medical devices reported to be commonly inquired by patients were blood glucose monitors, nebulizers, blood pressure monitors, dry powder inhalers, and insulin pens. Devices most frequently requiring counselling were blood glucose monitors, blood pressure monitors, syringes, thermometers, nebulizers, dry powder inhalers, insulin, and weighing scales. The most frequently supplied devices reported were syringes, blood glucose monitors, insulin pens, blood pressure monitors, thermometers, nebulizers, and dry powder inhalers. Devices least frequently requiring counselling were implanted devices, respirometers, and stethoscopes. The least frequently supplied devices were respirometers, implanted devices, and heart rate monitors. Conclusion: Medical devices reported to be commonly inquired by patients were most frequently requiring counseling, and most frequently supplied. Findings reflect the availability of devices in the market and pharmacists' response to the needs of their patients. Pharmacists should maintain adequate knowledge about the proper use of medical devices because this is a common patient inquiry.
Collapse
|
109
|
Dias GG, Paz ERS, Nunes MP, Carvalho RL, Rodrigues MO, Rodembusch FS, da Silva Júnior EN. Imidazoles and Oxazoles from Lapachones and Phenanthrene-9,10-dione: A Journey through their Synthesis, Biological Studies, and Optical Applications. CHEM REC 2021; 21:2702-2738. [PMID: 34170622 DOI: 10.1002/tcr.202100138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
Diverse structural frameworks are found in natural compounds and are well known for their chemical and biological properties; such compounds include the imidazoles and oxazoles. Researchers worldwide are continually working on the development of methods for synthesizing new molecules bearing these basic moiety and evaluating their properties and applications. To expand the knowledge related to azoles, this review summarizes important examples of imidazole and oxazole derivatives from 1,2-dicarbonyl compounds, such as lapachones and phenanthrene-9,10-diones, not only regarding their synthesis and biological applications but also their photophysical properties and uses. The data concerning the latter are particularly scarce in the literature, which leads to underestimation of the potential applications that can be envisaged for these compounds.
Collapse
Affiliation(s)
- Gleiston G Dias
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Esther R S Paz
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| | - Marieli O Rodrigues
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, 91501-970, Porto Alegre, RS, Brazil
| | - Fabiano S Rodembusch
- Department of Organic Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, 91501-970, Porto Alegre, RS, Brazil
| | - Eufrânio N da Silva Júnior
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, UFMG, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
110
|
Wang Y, Liu S, Ding K, Zhang Y, Ding X, Mi J. Quaternary tannic acid with improved leachability and biocompatibility for antibacterial medical thermoplastic polyurethane catheters. J Mater Chem B 2021; 9:4746-4762. [PMID: 34095937 DOI: 10.1039/d1tb00227a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The surfaces of indwelling catheters offer sites for the adherence of bacteria to form biofilms, leading to various infections. Therefore, the development of antibacterial materials for catheters is imperative. In this study, combining the strong antibacterial effect of a quaternary ammonium salt (QAS) and the high biocompatibility of tannic acid (TA), we prepared a quaternary tannic acid (QTA) by grafting a synthesized quaternary ammonium salt, dimethyl dodecyl 6-bromohexyl ammonium bromide, onto TA. To prepare antibacterial catheters, QTA was blended with thermoplastic polyurethane (TPU) via melt extrusion, which is a convenient and easy-to-control process. Characterization of the TPU blends showed that compared with those of the QAS, dissolution rate and biocompatibility of QTA were significantly improved. On the premise that the introduction of QTA had only a slight effect on the original mechanical properties of pristine TPU, the prepared TPU/QTA maintained satisfactory antibacterial activities in vitro, under a flow state, as well as in vivo. The results verified that the TPU/QTA blend with a QTA content of 4% is effective, durable, stable, and non-toxic, and exhibits significant potential as a raw material for catheters.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 Beisanhuandong Road, Beijing, 100029, China.
| | - Shuaizhen Liu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 Beisanhuandong Road, Beijing, 100029, China.
| | - Kaidi Ding
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609-2280, USA
| | - Yaocheng Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 Beisanhuandong Road, Beijing, 100029, China.
| | - Xuejia Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 Beisanhuandong Road, Beijing, 100029, China.
| | - Jianguo Mi
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 Beisanhuandong Road, Beijing, 100029, China.
| |
Collapse
|
111
|
Batoni G, Martinez-Pomares L, Esin S. Editorial: Immune Response to Biofilms. Front Immunol 2021; 12:696356. [PMID: 34163492 PMCID: PMC8215378 DOI: 10.3389/fimmu.2021.696356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
112
|
Giacone L, Cordisco E, Garrido MC, Petenatti E, Sortino M. Photodynamic activity of Tagetes minuta extracts against superficial fungal infections. Med Mycol 2021; 58:797-809. [PMID: 31724710 DOI: 10.1093/mmy/myz114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/28/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
Candida and dermatophyte species are the most common causes of superficial mycoses because their treatment can be difficult due to limitations of current antifungal drugs in terms of toxicity, bioavailability, interactions, narrow-spectrum activity, and development of resistance. Photodynamic therapy (PDT) involves the topical administration of a photosensitizer in combination with light of an appropriate wavelength and molecular oxygen that produces reactive oxygen species (ROS), which promote damage to several vital components of the microorganism. Tagetes species are known as a source of thiophenes, biologically active compounds whose antifungal activity is enhanced by irradiation with UVA. The present investigation evaluated Tagetes minuta extracts as a photosensitizer on growth of Candida and dermatophytes and their effect on Candida virulence factors. T. minuta root hexane and dichloromethane extracts demonstrated high photodynamic antifungal activity. Bioautographic assays and chromatographic analysis revealed the presence of five thiophenes with reported photodynamic antifungal activities under UVA. Analysis of ROS production indicated that both type I and II reactions were involved in the activity of the extracts. In addition, the extracts inhibited virulence factors of Candida, such as adherence to epithelial surfaces and germ tube formation and showed efficacy against different Candida morphologies: budding cells, cells with germ tube and biofilms. Results suggested that PDT with T. minuta extracts might become a valuable alternative to the already established antifungal drugs for the treatment of superficial fungal infections.
Collapse
Affiliation(s)
- Lucía Giacone
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Estefanía Cordisco
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - María Clara Garrido
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Elisa Petenatti
- Herbario, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
| | - Maximiliano Sortino
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.,Centro de Referencia de Micología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
113
|
Bhardwaj S, Bhatia S, Singh S, Franco Jr F. Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A critical review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:699-719. [PMID: 34630947 PMCID: PMC8487598 DOI: 10.22038/ijbms.2021.49151.11254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022]
Abstract
A perilous increase in the number of bacterial infections has led to developing throngs of antibiotics for increasing the quality and expectancy of life. Pseudomonas aeruginosa is becoming resistant to all known conventional antimicrobial agents thereby posing a deadly threat to the human population. Nowadays, targeting virulence traits of infectious agents is an alternative approach to antimicrobials that is gaining much popularity to fight antimicrobial resistance. Quorum sensing (QS) involves interspecies communication via a chemical signaling pathway. Under this mechanism, cells work in a concerted manner, communicate with each other with the help of signaling molecules called auto-inducers (AI). The virulence of these strains is driven by genes, whose expression is regulated by AI, which in turn acts as transcriptional activators. Moreover, the problem of antibiotic-resistance in case of infections caused by P. aeruginosa becomes more alarming among immune-compromised patients, where the infectious agents easily take over the cellular machinery of the host while hidden in the QS mediated biofilms. Inhibition of the QS circuit of P. aeruginosa by targeting various signaling pathways such as LasR, RhlR, Pqs, and QScR transcriptional proteins will help in blocking downstream signal transducers which could result in reducing the bacterial virulence. The anti-virulence agent does not pose an immediate selective pressure on growing bacterium and thus reduces the pathogenicity without harming the target species. Here, we review exclusively, the growing emergence of multi-drug resistant (MDR) P. aeruginosa and the critical literature survey of QS inhibitors with their potential application of blocking P. aeruginosa infections.
Collapse
Affiliation(s)
- Snigdha Bhardwaj
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj, India
| | - Sonam Bhatia
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj, India
| | - Shaminder Singh
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad - 121 001, Haryana, India
| | - Francisco Franco Jr
- Department of Chemistry, De La Salle University, Manila, Metro Manila, Philippines
| |
Collapse
|
114
|
The Effects of Dehydrozingerone on Growth, Biofilm Formation, and Ergosterol Biosynthesis of Candida albicans. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2021. [DOI: 10.52547/jommid.9.2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
115
|
Pinheiro MJF, Costa JP, Marques F, Mira NP, Carvalho MFNN, Alves MM. Bioactive Coatings with Ag-Camphorimine Complexes to Prevent Surface Colonization by the Pathogenic Yeast Candida albicans. Antibiotics (Basel) 2021; 10:antibiotics10060638. [PMID: 34073375 PMCID: PMC8227220 DOI: 10.3390/antibiotics10060638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Currently there is a gap between the rate of new antifungal development and the emergence of resistance among Candida clinical strains, particularly threatened by the extreme adhesiveness of C. albicans to indwelling medical devices. Two silver camphorimine complexes, [Ag(OH){OC10H14N(C6H4)2NC10H14O}] (compound P) and [{Ag(OC10H14NC6H4CH3-p)}2(μ-O)] (compound Q), are herein demonstrated as having high inhibiting activity towards the growth of Candida albicans and Candida glabrata clinical strains resistant to azoles, the frontline antifungals used in clinical practice. Compounds P and Q were also explored as bioactive coatings to prevent colonization by C. albicans and colonize the surface of indwelling medical devices, resulting in persistent infections. Functionalization of stainless steel with polycaprolactone (PCL) matrix embedded with compounds P or Q was reported for the first time to inhibit the colonization of C. albicans by 82% and 75%, respectively. The coating of PCL loaded with Q or P did not cause cytotoxic effects in mammalian cells, demonstrating the biocompatibility of the explored approach. The identification and further exploration of new approaches for surface engineering based on new molecules that can sensitize resistant strains, as herein demonstrated for complexes P and Q, is a significant step forward to improve the successful treatment of candidiasis.
Collapse
Affiliation(s)
- M. Joana F. Pinheiro
- Department of Bioengineering, Instituto de Bioengenharia e Biociências (iBB), Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Joana P. Costa
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares (CTN), Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal;
| | - Nuno P. Mira
- Department of Bioengineering, Instituto de Bioengenharia e Biociências (iBB), Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
- Correspondence: (N.P.M.); (M.F.N.N.C.); (M.M.A.)
| | - M. Fernanda N. N. Carvalho
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Correspondence: (N.P.M.); (M.F.N.N.C.); (M.M.A.)
| | - Marta M. Alves
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Correspondence: (N.P.M.); (M.F.N.N.C.); (M.M.A.)
| |
Collapse
|
116
|
Gudz KY, Antipina LY, Permyakova ES, Kovalskii AM, Konopatsky AS, Filippovich SY, Dyatlov IA, Slukin PV, Ignatov SG, Shtansky DV. Ag-Doped and Antibiotic-Loaded Hexagonal Boron Nitride Nanoparticles as Promising Carriers to Fight Different Pathogens. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23452-23468. [PMID: 34000197 DOI: 10.1021/acsami.1c03775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Utilization of antibacterial components-conjugated nanoparticles (NPs) is emerging as an attractive strategy for combating various pathogens. Herein, we demonstrate that Ag/BN NPs and antibiotic-loaded BN and Ag/BN nanoconjugates are promising carriers to fight bacterial and fungal infections. Extensive biological tests included two types of Gram-positive methicillin-resistant Staphylococcus aureus strains (B8469 and MW2), two types of Gram-negative Pseudomonas aeruginosa strains (ATCC27853 and B1307/17), and 47 types of Escherichia coli strains (including 41 multidrug-resistant ones), as well as five types of fungal cultures: Candida albicans (candidiasis-thrush) ATCC90028 and ATCC24433, Candida parapsilosis ATCC90018, Candida auris CBS109113, and Neurospora crassa wt. We have demonstrated that, even within a single genus Escherichia, there are many hospital E. coli strains with multi-drug resistance to different antibiotics. Gentamicin-loaded BN NPs have high bactericidal activity against S. aureus, P. aeruginosa, and 38 types of the E. coli strains. For the rest of the tested E. coli strains, the Ag nanoparticle-containing nanohybrids have shown superior bactericidal efficiency. The Ag/BN nanohybrids and amphotericin B-loaded BN and Ag/BN NPs also reveal high fungicidal activity against C. albicans, C. auris, C. parapsilosis, and N. crassa cells. In addition, based on the density functional theory calculations, the nature of antibiotic-nanoparticle interaction, the sorption capacity of the BN and Ag/BN nanohybrids for gentamicin and amphotericin B, and the most energetically favorable positions of the drug molecules relative to the carrier surface, which lead to lowest binding energies, have been determined. The obtained results clearly show high therapeutic potential of the antibiotic-loaded Ag/BN nanocarriers providing a broad bactericidal and fungicidal protection against all of the studied pathogens.
Collapse
Affiliation(s)
- Kristina Y Gudz
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia
| | - Liubov Yu Antipina
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia
| | - Elizaveta S Permyakova
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia
| | - Andrey M Kovalskii
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia
| | - Anton S Konopatsky
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia
| | - Svetlana Yu Filippovich
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Leninsky Prospect 33, Bld. 2, Moscow 119071, Russia
| | - Ivan A Dyatlov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region 142279, Russia
| | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region 142279, Russia
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region 142279, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia
| |
Collapse
|
117
|
Antifungal and anti-biofilm activity of a new Spanish extract of propolis against Candida glabrata. BMC Complement Med Ther 2021; 21:147. [PMID: 34020643 PMCID: PMC8140450 DOI: 10.1186/s12906-021-03323-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/13/2021] [Indexed: 11/11/2022] Open
Abstract
Background Resistance to traditional antifungal agents is a considerable health problem nowadays, aggravated by infectious processes related to biofilm formation, usually on implantable devices. Therefore, it is necessary to identify new antimicrobial molecules, such as natural products, to develop new therapeutic strategies to prevent and eradicate these infections. One promising product is propolis, a natural resin produced by honeybees with substances from various botanical sources, beeswax and salivary enzymes. The aim of this work was to study the effect of a new Spanish ethanolic extract of propolis (SEEP) on growth, cell surface hydrophobicity, adherence and biofilm formation of Candida glabrata, a yeast capable of achieving high levels of resistance to available anti-fungal agents. Methods The antifungal activity of SEEP was evaluated in the planktonic cells of 12 clinical isolates of C. glabrata. The minimum inhibitory concentration (MIC) of propolis was determined by quantifying visible growth inhibition by serial plate dilutions. The minimum fungicide concentration (MFC) was evaluated as the lowest concentration of propolis that produced a 95% decrease in cfu/mL, and is presented as MFC50 and MFC90, which corresponds to the minimum concentrations at which 50 and 90% of the C. glabrata isolates were inhibited, respectively. Influence on cell surface hydrophobicity (CSH) was determined by the method of microbial adhesion to hydrocarbons (MATH). The propolis effect on adhesion and biofilm formation was determined in microtiter plates by measurement of optical density (OD) and metabolic activity (XTT-assay) in the presence of sub-MIC concentrations of SEEP. Results SEEP had antifungal capacity against C. glabrata isolates, with a MIC50 of 0.2% (v/v) and an MFC50 of 0.4%, even in azole-resistant strains. SEEP did not have a clear effect on surface hydrophobicity and adhesion, but an inhibitory effect on biofilm formation was observed at subinhibitory concentrations (0.1 and 0.05%) with a significant decrease in biofilm metabolism. Conclusions The novel Spanish ethanolic extract of propolis shows antifungal activity against C. glabrata, and decreases biofilm formation. These results suggest its possible use in the control of fungal infections associated with biofilms.
Collapse
|
118
|
Khan F, Bamunuarachchi NI, Pham DTN, Tabassum N, Khan MSA, Kim YM. Mixed biofilms of pathogenic Candida-bacteria: regulation mechanisms and treatment strategies. Crit Rev Microbiol 2021; 47:699-727. [PMID: 34003065 DOI: 10.1080/1040841x.2021.1921696] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mixed-species biofilm is one of the most frequently recorded clinical problems. Mixed biofilms develop as a result of interactions between microorganisms of a single or multiple species (e.g. bacteria and fungi). Candida spp., particularly Candida albicans, are known to associate with various bacterial species to form a multi-species biofilm. Mixed biofilms of Candida spp. have been previously detected in vivo and on the surfaces of many biomedical instruments. Treating infectious diseases caused by mixed biofilms of Candida and bacterial species has been challenging due to their increased resistance to antimicrobial drugs. Here, we review and discuss the clinical significance of mixed Candida-bacteria biofilms as well as the signalling mechanisms involved in Candida-bacteria interactions. We also describe possible approaches for combating infections associated with mixed biofilms, such as the use of natural or synthetic drugs and combination therapy. The review presented here is expected to contribute to the advances in the biomedical field on the understanding of underlying interaction mechanisms of pathogens in mixed biofilm, and alternative approaches to treating the related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea.,Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.,NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Mohd Sajjad Ahmad Khan
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
119
|
Devine R, Douglass M, Ashcraft M, Tayag N, Handa H. Development of Novel Amphotericin B-Immobilized Nitric Oxide-Releasing Platform for the Prevention of Broad-Spectrum Infections and Thrombosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19613-19624. [PMID: 33904311 PMCID: PMC9683085 DOI: 10.1021/acsami.1c01330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Indwelling medical devices currently used to diagnose, monitor, and treat patients invariably suffer from two common clinical complications: broad-spectrum infections and device-induced thrombosis. Currently, infections are managed through antibiotic or antifungal treatment, but the emergence of antibiotic resistance, the formation of recalcitrant biofilms, and difficulty identifying culprit pathogens have made treatment increasingly challenging. Additionally, systemic anticoagulation has been used to manage device-induced thrombosis, but subsequent life-threatening bleeding events associated with all available therapies necessitates alternative solutions. In this study, a broad-spectrum antimicrobial, antithrombotic surface combining the incorporation of the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) with the immobilization of the antifungal Amphotericin B (AmB) on polydimethylsiloxane (PDMS) was developed in a two-step process. This novel strategy combines the key advantages of NO, a bactericidal agent and platelet inhibitor, with AmB, a potent antifungal agent. We demonstrated that SNAP-AmB surfaces significantly reduced the viability of adhered Staphylococcus aureus (99.0 ± 0.2%), Escherichia coli (89.7 ± 1.0%), and Candida albicans (93.5 ± 4.2%) compared to controls after 24 h of in vitro exposure. Moreover, SNAP-AmB surfaces reduced the number of platelets adhered by 74.6 ± 3.9% compared to controls after 2 h of in vitro porcine plasma exposure. Finally, a cytotoxicity assay validated that the materials did not present any cytotoxic side effects toward human fibroblast cells. This novel approach is the first to combine antifungal surface functionalization with NO-releasing technology, providing a promising step toward reducing the rate of broad-spectrum infection and thrombosis associated with indwelling medical devices.
Collapse
Affiliation(s)
- Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Morgan Ashcraft
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Nicole Tayag
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
120
|
Ruiz-Sorribas A, Poilvache H, Kamarudin NHN, Braem A, Van Bambeke F. In vitro polymicrobial inter-kingdom three-species biofilm model: influence of hyphae on biofilm formation and bacterial physiology. BIOFOULING 2021; 37:481-493. [PMID: 34225500 DOI: 10.1080/08927014.2021.1919301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Biofilms are an important medical burden, notably for patients with orthopaedic device-related infections. When polymicrobial, these infections are more lethal and recalcitrant. Inter-kingdom biofilm infections are poorly understood and challenging to treat. Here, an in vitro three-species model including Staphylococcus aureus, Escherichia coli and Candida albicans was developed, to represent part of the diversity observed in orthopaedic infections or other clinical contexts. The importance of fungal hyphae for biofilm formation and virulence factor expression was explored. Two protocols were set up, allowing, or not, for hyphal formation. Culturable cells and biomass were characterised in both models, and biofilms were imaged in bright-field, confocal and electron microscopes. The expression of genes related to virulence, adhesion, exopolysaccharide synthesis and stress response was analysed in early-stage and mature biofilms. It was found that biofilms enriched in hyphae had larger biomass and showed higher expression levels of genes related to bacterial virulence or exopolysaccharides synthesis.
Collapse
Affiliation(s)
- Albert Ruiz-Sorribas
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Hervé Poilvache
- Laboratoire de neuro musculo squelettique, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Orthopaedic Surgery Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nur Hidayatul Nazirah Kamarudin
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Annabel Braem
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
121
|
Pezzotti G, Asai T, Adachi T, Ohgitani E, Yamamoto T, Kanamura N, Boschetto F, Zhu W, Zanocco M, Marin E, Bal BS, McEntire BJ, Makimura K, Mazda O, Nishimura I. Antifungal activity of polymethyl methacrylate/Si 3N 4 composites against Candida albicans. Acta Biomater 2021; 126:259-276. [PMID: 33727194 DOI: 10.1016/j.actbio.2021.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Previous studies using gram-positive and -negative bacteria demonstrated that hydrolysis of silicon nitride (Si3N4) in aqueous suspensions elutes nitrogen and produces gaseous ammonia while buffering pH. According to immunochemistry assays, fluorescence imaging, and in situ Raman spectroscopy, we demonstrate here that the antipathogenic surface chemistry of Si3N4 can be extended to polymethylmethacrylate (PMMA) by compounding it with a minor fraction (~8 vol.%) of Si3N4 particles without any tangible loss in bulk properties. The hydrolytic products, which were eluted from partly exposed Si3N4 particles at the composite surface, exhibited fungicidal action against Candida albicans. Using a specific nitrative stress sensing dye and highly resolved fluorescence micrographs, we observed in situ congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while these radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. These in situ observations suggest that the surface chemistry of Si3N4 mimics the antifungal activity of macrophages, which concurrently produce NO radicals and superoxide anions (O2•-) resulting in the formation of candidacidal ONOO-. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit the uncontrolled growth of Candida albicans and ensuing candidiasis while being synergic with chemoprophylaxis. STATEMENT OF SIGNIFICANCE: In a follow-up of previous studies of gram-positive and gram-negative bacteria, we demonstrate here that the antipathogenic surface chemistry of Si3N4 could be extended to polymethylmethacrylate (PMMA) containing a minor fraction (~8 vol.%) of Si3N4 particles without tangible loss in bulk properties. Hydrolytic products eluted from Si3N4 particles at the composite surface exhibited fungicidal action against Candida albicans. Highly resolved fluorescence microscopy revealed congestion of peroxynitrite (ONOO-) radicals in the mitochondria of the Candida cells exposed to the PMMA/Si3N4 composite, while radicals were absent in the mitochondria of identical cells exposed to monolithic PMMA. The fungicidal properties of PMMA/Si3N4 composites could be used in dental appliances to inhibit uncontrolled growth of Candida albicans and ensuing candidiasis in synergy with chemoprophylaxis.
Collapse
|
122
|
Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, Abid M. Mechanistic Understanding of Candida albicans Biofilm Formation and Approaches for Its Inhibition. Front Microbiol 2021; 12:638609. [PMID: 33995297 PMCID: PMC8121174 DOI: 10.3389/fmicb.2021.638609] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the demand for novel antifungal therapies has increased several- folds due to its potential to treat severe biofilm-associated infections. Biofilms are made by the sessile microorganisms attached to the abiotic or biotic surfaces, enclosed in a matrix of exopolymeric substances. This results in new phenotypic characteristics and intrinsic resistance from both host immune response and antimicrobial drugs. Candida albicans biofilm is a complex association of hyphal cells that are associated with both abiotic and animal tissues. It is an invasive fungal infection and acts as an important virulent factor. The challenges linked with biofilm-associated diseases have urged scientists to uncover the factors responsible for the formation and maturation of biofilm. Several strategies have been developed that could be adopted to eradicate biofilm-associated infections. This article presents an overview of the role of C. albicans biofilm in its pathogenicity, challenges it poses and threats associated with its formation. Further, it discusses strategies that are currently available or under development targeting prostaglandins, quorum-sensing, changing surface properties of biomedical devices, natural scaffolds, and small molecule-based chemical approaches to combat the threat of C. albicans biofilm. This review also highlights the recent developments in finding ways to increase the penetration of drugs into the extracellular matrix of biofilm using different nanomaterials against C. albicans.
Collapse
Affiliation(s)
- Tanu Atriwal
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kashish Azeem
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed Nadeem Khan
- Department of Tashreehul Badan, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
123
|
Deng K, Jiang W, Jiang Y, Deng Q, Cao J, Yang W, Zhao X. ALS3 Expression as an Indicator for Candida albicans Biofilm Formation and Drug Resistance. Front Microbiol 2021; 12:655242. [PMID: 33995316 PMCID: PMC8117015 DOI: 10.3389/fmicb.2021.655242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Resistance caused by the formation of the Candida albicans (C. albicans) biofilm is one of the main reasons for antifungal therapy failure. Thus, it is important to find indicators that predict C. albicans biofilm formation to provide evidence for the early prevention and treatment of the C. albicans biofilms. In this study, C. albicans samples were selected from C. albicans septicemia that were sensitive to common antifungal agents. It was found that the agglutinin-like sequence 3 (ALS3) gene was differentially expressed in free, antifungal, drug-sensitive C. albicans. The average ALS3 gene expression was higher in the C. albicans strains with biofilm formation than that in the C. albicans strains without biofilm formation. Then, it was further confirmed that the rate of biofilm formation was higher in the high ALS3 gene expression group than that in the low ALS3 gene expression group. It was found that C. albicans with biofilm formation was more resistant to fluconazole, voriconazole, and itraconazole. However, it maintained its sensitivity to caspofungin and micafungin in vitro and in mice. Further experiments regarding the prevention of C. albicans biofilm formation were performed in mice, in which only caspofungin and micafungin prevented C. albicans biofilm formation. These results suggest that the expression level of ALS3 in C. albicans may be used as an indicator to determine whether C. albicans will form biofilms. The results also show that the biofilm formation of C. albicans remained sensitive to caspofungin and micafungin, which may help to guide the selection of clinical antifungal agents for prevention and therapy.
Collapse
Affiliation(s)
- Keke Deng
- Department of Respiratory, Tianjin Third Central Hospital Branch, Tianjin, China
| | - Wei Jiang
- Department of Infectious Disease, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yanyu Jiang
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Qi Deng
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jinzhong Cao
- Department of Respiratory, Tianjin Third Central Hospital Branch, Tianjin, China
| | - Wenjie Yang
- Department of Infectious Disease, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Xuequn Zhao
- Department of Infectious Disease, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
124
|
Gallo AJ, Tronnolone H, Green JEF, Binder BJ. Modelling uniaxial non-uniform yeast colony growth: Comparing an agent-based model and continuum approximations. J Theor Biol 2021; 523:110715. [PMID: 33862095 DOI: 10.1016/j.jtbi.2021.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Biological experiments have shown that yeast can be restricted to grow in a uniaxial direction, vertically upwards from an agar plate to form a colony. The growth occurs as a consequence of cell proliferation driven by a nutrient supply at the base of the colony, and the height of the colony has been observed to increase linearly with time. Within the colony the nutrient concentration is non-constant and yeast cells throughout the colony will therefore not have equal access to nutrient, resulting in non-uniform growth. In this work, an agent based model is developed to predict the microscopic spatial distribution of labelled cells within the colony when the probability of cell proliferation can vary in space and time. We also describe a method for determining the average trajectories or pathlines of labelled cells within a colony growing in a uniaxial direction, enabling us to connect the microscopic and macroscopic behaviours of the system. We present results for six cases, which involve different assumptions for the presence or absence of a quiescent region (where no cell proliferation occurs), the size of the proliferative region, and the spatial variation of proliferation rates within the proliferative region. These six cases are designed to provide qualitative insight into likely growth scenarios whilst remaining amenable to analysis. We compare our macroscopic results to experimental observations of uniaxial colony growth for two cases where only a fixed number of cells at the base of the colony can proliferate. The model predicts that the height of the colony will increase linearly with time in both these cases, which is consistent with experimental observations. However, our model shows how different functional forms for the spatial dependence of the proliferation rate can be distinguished by tracking the pathlines of cells at different positions in the colony. More generally, our methodology can be applied to other biological systems exhibiting uniaxial growth, providing a framework for classifying or determining regions of uniform and non-uniform growth.
Collapse
Affiliation(s)
- Anthony J Gallo
- School of Mathematical Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Hayden Tronnolone
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide5001, Australia
| | - J Edward F Green
- School of Mathematical Sciences, The University of Adelaide, Adelaide 5005, Australia.
| | - Benjamin J Binder
- School of Mathematical Sciences, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
125
|
Dentino AR, Lee D, Dentino K, Guentsch A, Tahriri M. Inhibition of Candida albicans and Mixed Salivary Bacterial Biofilms on Antimicrobial Loaded Phosphated Poly(methyl methacrylate). Antibiotics (Basel) 2021; 10:antibiotics10040427. [PMID: 33924304 PMCID: PMC8070037 DOI: 10.3390/antibiotics10040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
Biofilms play a crucial role in the development of Candida-associated denture stomatitis. Inhibition of microbial adhesion to poly(methyl methacrylate) (PMMA) and phosphate containing PMMA has been examined in this work. C. albicans and mixed salivary microbial biofilms were compared on naked and salivary pre-conditioned PMMA surfaces in the presence or absence of antimicrobials (Cetylpyridinium chloride [CPC], KSL-W, Histatin 5 [His 5]). Polymers with varying amounts of phosphate (0–25%) were tested using four C. albicans oral isolates as well as mixed salivary bacteria and 24 h biofilms were assessed for metabolic activity and confirmed using Live/Dead staining and confocal microscopy. Biofilm metabolism was reduced as phosphate density increased (15%: p = 0.004; 25%: p = 0.001). Loading of CPC on 15% phosphated disks showed a substantial decrease (p = 0.001) in biofilm metabolism in the presence or absence of a salivary pellicle. Salivary pellicle on uncharged PMMA enhanced the antimicrobial activity of CPC only. CPC also demonstrated remarkable antimicrobial activity on mixed salivary bacterial biofilms under different conditions displaying the potent efficacy of CPC (350 µg/mL) when combined with an artificial protein pellicle (Biotene half strength).
Collapse
Affiliation(s)
- Andrew R. Dentino
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
- Correspondence:
| | - DongHwa Lee
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
| | - Kelley Dentino
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
| | - Arndt Guentsch
- Department of Surgical Sciences, Marquette University School of Dentistry, Milwaukee, WI 53201-1881, USA; (D.L.); (K.D.); (A.G.)
| | | |
Collapse
|
126
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
127
|
Strickland AB, Shi M. Mechanisms of fungal dissemination. Cell Mol Life Sci 2021; 78:3219-3238. [PMID: 33449153 PMCID: PMC8044058 DOI: 10.1007/s00018-020-03736-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Fungal infections are an increasing threat to global public health. There are more than six million fungal species worldwide, but less than 1% are known to infect humans. Most of these fungal infections are superficial, affecting the hair, skin and nails, but some species are capable of causing life-threatening diseases. The most common of these include Cryptococcus neoformans, Aspergillus fumigatus and Candida albicans. These fungi are typically innocuous and even constitute a part of the human microbiome, but if these pathogens disseminate throughout the body, they can cause fatal infections which account for more than one million deaths worldwide each year. Thus, systemic dissemination of fungi is a critical step in the development of these deadly infections. In this review, we discuss our current understanding of how fungi disseminate from the initial infection sites to the bloodstream, how immune cells eliminate fungi from circulation and how fungi leave the blood and enter distant organs, highlighting some recent advances and offering some perspectives on future directions.
Collapse
Affiliation(s)
- Ashley B Strickland
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
128
|
Wooten DJ, Zañudo JGT, Murrugarra D, Perry AM, Dongari-Bagtzoglou A, Laubenbacher R, Nobile CJ, Albert R. Mathematical modeling of the Candida albicans yeast to hyphal transition reveals novel control strategies. PLoS Comput Biol 2021; 17:e1008690. [PMID: 33780439 PMCID: PMC8031856 DOI: 10.1371/journal.pcbi.1008690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/08/2021] [Accepted: 03/17/2021] [Indexed: 01/14/2023] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, is a significant cause of human infections, particularly in immunocompromised individuals. Phenotypic plasticity between two morphological phenotypes, yeast and hyphae, is a key mechanism by which C. albicans can thrive in many microenvironments and cause disease in the host. Understanding the decision points and key driver genes controlling this important transition and how these genes respond to different environmental signals is critical to understanding how C. albicans causes infections in the host. Here we build and analyze a Boolean dynamical model of the C. albicans yeast to hyphal transition, integrating multiple environmental factors and regulatory mechanisms. We validate the model by a systematic comparison to prior experiments, which led to agreement in 17 out of 22 cases. The discrepancies motivate alternative hypotheses that are testable by follow-up experiments. Analysis of this model revealed two time-constrained windows of opportunity that must be met for the complete transition from the yeast to hyphal phenotype, as well as control strategies that can robustly prevent this transition. We experimentally validate two of these control predictions in C. albicans strains lacking the transcription factor UME6 and the histone deacetylase HDA1, respectively. This model will serve as a strong base from which to develop a systems biology understanding of C. albicans morphogenesis.
Collapse
Affiliation(s)
- David J. Wooten
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jorge Gómez Tejeda Zañudo
- Eli and Edythe L. Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Murrugarra
- Department of Mathematics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Austin M. Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, United States of America
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, California, United States of America
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Reinhard Laubenbacher
- Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, California, United States of America
- Health Sciences Research Institute, University of California Merced, Merced, California, United States of America
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
129
|
Raj S, Vinod V, Jayakumar J, Suresh P, Kumar A, Biswas R. Antifungal activity of Syzygium samarangense leaf extracts against Candida. Lett Appl Microbiol 2021; 73:31-38. [PMID: 33735468 DOI: 10.1111/lam.13471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/26/2022]
Abstract
Candida species are opportunistic human fungal pathogens that cause acute and chronic infections against which only few antifungal agents are available. Here we have elucidated the antifungal effect of Syzygium samarangense leaf extracts (SSLE). Antifungal activity of SSLE was studied against Candida albicans, C. krusei, C. parapsilosis, C. glabrata, C. auris and C. tropicalis. Following experiments were performed: minimum fungicidal concentration (MFC) determination, agar well disc diffusion assays, fungal morphology analysis using scanning electron microscope (SEM), ex vivo fungal survival assays on porcine tongue and skin and in vivo fungal survival assays using Drosophila melanogaster fly model. Results demonstrated MFC of SSLE ranges between 100 and 125 mg ml-1 . SEM images showed cell wall degradation of C. albicans when treated with SSLE. Around 75% decrease in C. albicans viability was observed when infected porcine tongue and skin were treated using SSLE. The C. albicans infected D. melanogaster when fed with SSLE showed significant decrease (around 80%) of fungal count than the infected control. Furthermore, agar plate disc diffusion assays demonstrated that the antifungal activity of SSLE could be due to chalcone, which is one of the active constituents in SSLE. Our study demonstrated that SSLE could be used for the topical treatment of Candida infections.
Collapse
Affiliation(s)
- S Raj
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - V Vinod
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - J Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - P Suresh
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - A Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - R Biswas
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
130
|
Demin KA, Refeld AG, Bogdanova AA, Prazdnova EV, Popov IV, Kutsevalova OY, Ermakov AM, Bren AB, Rudoy DV, Chistyakov VA, Weeks R, Chikindas ML. Mechanisms of Candida Resistance to Antimycotics and Promising Ways to Overcome It: The Role of Probiotics. Probiotics Antimicrob Proteins 2021; 13:926-948. [PMID: 33738706 DOI: 10.1007/s12602-021-09776-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Pathogenic Candida and infections caused by those species are now considered as a serious threat to public health. The treatment of candidiasis is significantly complicated by the increasing resistance of pathogenic strains to current treatments and the stagnant development of new antimycotic drugs. Many species, such as Candida auris, have a wide range of resistance mechanisms. Among the currently used synthetic and semi-synthetic antifungal drugs, the most effective are azoles, echinocandins, polyenes, nucleotide analogs, and their combinations. However, the use of probiotic microorganisms and/or the compounds they produce is quite promising, although underestimated by modern pharmacology, to control the spread of pathogenic Candida species.
Collapse
Affiliation(s)
- Konstantin A Demin
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgenya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | | | - Alexey M Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anzhelica B Bren
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Dmitry V Rudoy
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia. .,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA. .,I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
131
|
Ielapi N, Nicoletti E, Lorè C, Guasticchi G, Avenoso T, Barbetta A, de Franciscis S, Andreucci M, Sapienza P, Serra R. The Role of Biofilm in Central Venous Catheter Related Bloodstream Infections: Evidence-based Nursing and Review of the Literature. Rev Recent Clin Trials 2021; 15:22-27. [PMID: 31656155 DOI: 10.2174/1574887114666191018144739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Biofilm is a fundamental component in the pathogenesis of infections related to the use of the central venous catheter (CVC,) which can represent an important health issue in everyday practice of nursing and medical staff. OBJECTIVE The objective of the following review is to analyze the components of biofilm and their role in catheter-related infection determinism in an evidencebased nursing perspective in such a way as to give health professionals useful suggestions in the prevention and management of these complications. METHODS The following databases were consulted for the bibliographic search: Medline, Scopus, Science Direct. Biofilm can be the cause of CVC extraction and can lead to serious haematogenic infectious complications that can increase the morbidity and mortality of affected patients. RESULTS Updated pathophysiologic knowledge of biofilm formation and appropriate diagnostic methodology are pivotal in understanding and detecting CVC-related infections. Lock therapy appears to be a useful, preventive, and therapeutic aid in the management of CVCrelated infections. New therapies attempting to stop bacterial adhesion on the materials used could represent new frontiers for the prevention of CVC-related infections. CONCLUSION The correct evidence-based nursing methods, based on the use of guidelines, provides the opportunity to minimize the risks of infection through the implementation of a series of preventive measures both during the CVC positioning phase and in the subsequent phase, for example, during device management which is performed by medical and nursing staff.
Collapse
Affiliation(s)
- Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Emergency, Vibo Valentia Hospital, Vibo Valentia (VV), Italy
| | | | | | - Giorgio Guasticchi
- Department of Medicine, Media Valle del Tevere Hospital, Todi (PG), Italy
| | - Tiziana Avenoso
- Department of Ophtalmology. Pugliese - Ciaccio - Hospital, Catanzaro (CZ), Italy
| | - Andrea Barbetta
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Paolo Sapienza
- Department of Surgery "Pietro Valdoni", "Sapienza" University of Rome, Rome, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
132
|
Prusty JS, Kumar A. Innovative screening and drug susceptibility analysis on Candida albicans using Foldscope microscopy. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-00974-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
133
|
Anti-Biofilm Activity of Cannabidiol against Candida albicans. Microorganisms 2021; 9:microorganisms9020441. [PMID: 33672633 PMCID: PMC7924206 DOI: 10.3390/microorganisms9020441] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is a common fungal pathogen in humans. Biofilm formation is an important virulence factor of C. albicans infections. We investigated the ability of the plant-derived cannabidiol (CBD) to inhibit the formation and removal of fungal biofilms. Further, we evaluated its mode of action. Our findings demonstrate that CBD exerts pronounced time-dependent inhibitory effects on biofilm formation as well as disruption of mature biofilm at a concentration range below minimal inhibitory and fungicidal concentrations. CBD acts at several levels. It modifies the architecture of fungal biofilm by reducing its thickness and exopolysaccharide (EPS) production accompanied by downregulation of genes involved in EPS synthesis. It alters the fungal morphology that correlated with upregulation of yeast-associated genes and downregulation of hyphae-specific genes. Importantly, it represses the expression of C. albicans virulence-associated genes. In addition, CBD increases ROS production, reduces the intracellular ATP levels, induces mitochondrial membrane hyperpolarization, modifies the cell wall, and increases the plasma membrane permeability. In conclusion, we propose that CBD exerts its activity towards C. albicans biofilm through a multi-target mode of action, which differs from common antimycotic agents, and thus can be explored for further development as an alternative treatment against fungal infections.
Collapse
|
134
|
Zuo X, Liu Y, Cai X, Zhan L, Hu K. Association of different Candida species with catheter-related candidemia, and the potential antifungal treatments against their adhesion properties and biofilm-forming capabilities. J Clin Lab Anal 2021; 35:e23738. [PMID: 33608902 PMCID: PMC8059721 DOI: 10.1002/jcla.23738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/12/2023] Open
Abstract
Background To compare the adhesion properties and biofilm‐forming capabilities of 27 Candida isolates obtained from catheter‐related candidemia patients and to evaluate the inhibitory effects of antifungal agents on different Candida species. Material and Methods Seven C. albicans, six C. parapsilosis, five C. guilliermondii, five C. tropicalis, and four C. glabrata clinical isolates were investigated. We quantified the adherence of these Candida species by flow cytometric method and evaluated the formation of biofilms by XTT reduction and crystal violet methods. Actions of micafungin (MF), fluconazole (FZ), and N‐acetylcysteine (NAC) on the adhesion and biofilm formation of different Candida species were determined. Results Non‐albicans Candida species were demonstrated to have stronger adhesion abilities compared with C. albicans. The biofilm‐forming capabilities of different Candida species were varied considerably, and the degree of biofilm formation might be affected by different assay approaches. Interestingly, C. parapsilosis displayed the highest biofilm formation abilities, while C. glabrata exhibited the lowest total biomass and metabolic activity. Furthermore, the inhibitory activities of MF, FZ, and NAC on fungal adhesion and biofilm formation were evaluated, and the results indicated that MF could reduce the adhesion ability and biofilm metabolism more significantly (p < 0.05), and its antifungal activity was elevated in a dose‐dependent manner. Conclusion Non‐albicans Candida species, especially C. guilliermondii, C. tropicalis, and C. parapsilosis, exhibited higher adhesion ability in catheter‐related candidemia patients. However, these Candida species had varied biofilm‐forming capabilities. MF tended to have stronger inhibitory effects against both adhesion and biofilm formation of different Candida species.
Collapse
Affiliation(s)
- Xiao‐shu Zuo
- Department of Critical Care MedicineRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yanan Liu
- Department of Critical Care MedicineRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xuan Cai
- Department of Clinical LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Liying Zhan
- Department of Critical Care MedicineRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ke Hu
- Department of Respiratory and Critical Care MedicineRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
135
|
Sánchez MC, Alonso-Español A, Ribeiro-Vidal H, Alonso B, Herrera D, Sanz M. Relevance of Biofilm Models in Periodontal Research: From Static to Dynamic Systems. Microorganisms 2021; 9:428. [PMID: 33669562 PMCID: PMC7922797 DOI: 10.3390/microorganisms9020428] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Microbial biofilm modeling has improved in sophistication and scope, although only a limited number of standardized protocols are available. This review presents an example of a biofilm model, along with its evolution and application in studying periodontal and peri-implant diseases. In 2011, the ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) research group at the University Complutense of Madrid developed an in vitro biofilm static model using representative bacteria from the subgingival microbiota, demonstrating a pattern of bacterial colonization and maturation similar to in vivo subgingival biofilms. When the model and its methodology were standardized, the ETEP research group employed the validated in vitro biofilm model for testing in different applications. The evolution of this model is described in this manuscript, from the mere observation of biofilm growth and maturation on static models on hydroxyapatite or titanium discs, to the evaluation of the impact of dental implant surface composition and micro-structure using the dynamic biofilm model. This evolution was based on reproducing the ideal microenvironmental conditions for bacterial growth within a bioreactor and reaching the target surfaces using the fluid dynamics mimicking the salivary flow. The development of this relevant biofilm model has become a powerful tool to study the essential processes that regulate the formation and maturation of these important microbial communities, as well as their behavior when exposed to different antimicrobial compounds.
Collapse
Affiliation(s)
- María Carmen Sánchez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
| | - Andrea Alonso-Español
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Honorato Ribeiro-Vidal
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Bettina Alonso
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (M.C.S.); (A.A.-E.); (H.R.-V.); (B.A.); (D.H.)
| |
Collapse
|
136
|
Chen X, Iwatani S, Kitamoto T, Chibana H, Kajiwara S. The Lack of SNARE Protein Homolog Syn8 Influences Biofilm Formation of Candida glabrata. Front Cell Dev Biol 2021; 9:607188. [PMID: 33644045 PMCID: PMC7907433 DOI: 10.3389/fcell.2021.607188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Biofilm formation of Candida species is considered to be a pathogenic factor of host infection. Since biofilm formation of Candida glabrata has not been as well studied as that of Candida albicans, we performed genetic screening of C. glabrata, and three candidate genes associated with biofilm formation were identified. Candida glabrata SYN8 (CAGL0H06325g) was selected as the most induced gene in biofilm cells for further research. Our results indicated that the syn8Δ mutant was defective not only in biofilm metabolic activity but also in biofilm morphological structure and biomass. Deletion of SYN8 seemed to have no effect on extracellular matrix production, but it led to a notable decrease in adhesion ability during biofilm formation, which may be linked to the repression of two adhesin genes, EPA10 and EPA22. Furthermore, hypersensitivity to hygromycin B and various ions in addition to the abnormal vacuolar morphology in the syn8Δ mutant suggested that active vacuolar function is required for biofilm formation of C. glabrata. These findings enhance our understanding of biofilm formation in this fungus and provide information for the development of future clinical treatments.
Collapse
Affiliation(s)
- Xinyue Chen
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shun Iwatani
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshitaka Kitamoto
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Susumu Kajiwara
- School of Life Sciences and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
137
|
Josephs-Spaulding J, Singh OV. Medical Device Sterilization and Reprocessing in the Era of Multidrug-Resistant (MDR) Bacteria: Issues and Regulatory Concepts. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 2:587352. [PMID: 35047882 PMCID: PMC8757868 DOI: 10.3389/fmedt.2020.587352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) bacteria threatens humans in various health sectors, including medical devices. Since formal classifications for medical device sterilization and disinfection were established in the 1970's, microbial adaptation under adverse environmental conditions has evolved rapidly. MDR microbial biofilms that adhere to medical devices and recurrently infect patients pose a significant threat in hospitals. Therefore, it is essential to mitigate the risk associated with MDR outbreaks by establishing novel recommendations for medical device sterilization, in a world of MDR. MDR pathogens typically thrive on devices with flexible accessories, which are easily contaminated with biofilms due to previous patient use and faulty sterilization or reprocessing procedures. To prevent danger to immunocompromised individuals, there is a need to regulate the classification of reprocessed medical device sterilization. This article aims to assess the risks of improper sterilization of medical devices in the era of MDR when sterilization procedures for critical medical devices are not followed to standard. Further, we discuss key regulatory recommendations for consistent sterilization of critical medical devices in contrast to the risks of disinfection reusable medical devices.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Om V. Singh
- Advance Academic Program, The Johns Hopkins University, Washington, DC, United States
- Technology Science Group (TSG) Consulting Inc., A Science Group Company, Washington, DC, United States
| |
Collapse
|
138
|
Wang Y, Pei Z, Lou Z, Wang H. Evaluation of Anti-Biofilm Capability of Cordycepin Against Candida albicans. Infect Drug Resist 2021; 14:435-448. [PMID: 33574683 PMCID: PMC7872900 DOI: 10.2147/idr.s285690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The opportunistic pathogen Candida albicans can form biofilms, resulting in drug resistance with great risk to medical treatment. METHODOLOGY We investigated the ability of C. albicans to form biofilms on different materials, as well as the inhibitory and eradicating effects of cordycepin on biofilm. The action mechanism of cordycepin against biofilm was studied by crystal violet staining, XTT [2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction method, phenol-sulfuric acid method, cellular superficial hydrophobicity (CSH) assay, and confocal laser scanning microscope observation. We also evaluated the acute toxicity of cordycepin in vivo. RESULTS The results showed facile formation of biofilms by C. albicans on polypropylene. The 50% minimum inhibitory concentration (MIC50) of cordycepin was 0.062 mg/mL. A concentration of 0.125 mg/mL significantly decreased biofilm formation, metabolic activity, secretion of extracellular polysaccharides, and relative CSH. Cordycepin could inhibit biofilm formation at low concentration without affecting fungal growth. In addition, cordycepin effectively eradicated 59.14% of mature biofilms of C. albicans at a concentration of 0.5 mg/mL. For acute toxicity, the LD50 (50% of lethal dose) of cordycepin was determined as higher than 500 mg/kg for mice. CONCLUSION The results of this study show that cordycepin significantly inhibited and eradicated biofilms by decreasing metabolic activity, the ratio of living cells, the hydrophobicity, and damaging the extracellular polysaccharides of biofilm. These findings should facilitate more effective application of cordycepin and suggest a new direction for the treatment of fungal infections.
Collapse
Affiliation(s)
- Yu Wang
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, 214122, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Zejun Pei
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, 214122, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Zaixiang Lou
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Hongxin Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| |
Collapse
|
139
|
Cross ER, Coulter SM, Fuentes-Caparrós AM, McAulay K, Schweins R, Laverty G, Adams DJ. Tuning the antimicrobial activity of low molecular weight hydrogels using dopamine autoxidation. Chem Commun (Camb) 2021; 56:8135-8138. [PMID: 32691773 DOI: 10.1039/d0cc02569k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We present a method to trigger the formation of dipeptide-based hydrogels by the simple addition of dopamine. Dopamine undergoes oxidation in air, reducing the pH to induce gelation. The production of polydopamine and release of reactive oxygen species such as hydrogen peroxide confers antimicrobial activity. Gel stiffness can be controlled by modulating the initial starting pH of the gelator solution. We can use this method to tune the antimicrobial activity of the gels, with gels that are less stiff demonstrating increased bactericidal efficacy against Gram-positive bacteria.
Collapse
Affiliation(s)
- Emily R Cross
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Sophie M Coulter
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| | | | - Kate McAulay
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Ralf Schweins
- Large Scale Structures Group, Institut Laue - Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Garry Laverty
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
140
|
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol 2021; 47:91-111. [PMID: 33482069 PMCID: PMC7903066 DOI: 10.1080/1040841x.2020.1843400] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a common fungus of the human microbiota. While generally a harmless commensal in healthy individuals, several factors can lead to its overgrowth and cause a range of complications within the host, from localized superficial infections to systemic life-threatening disseminated candidiasis. A major virulence factor of C. albicans is its ability to form biofilms, a closely packed community of cells that can grow on both abiotic and biotic substrates, including implanted medical devices and mucosal surfaces. These biofilms are extremely hard to eradicate, are resistant to conventional antifungal treatment and are associated with high morbidity and mortality rates, making biofilm-associated infections a major clinical challenge. Here, we review the current knowledge of the processes involved in C. albicans biofilm formation and development, including the central processes of adhesion, extracellular matrix production and the transcriptional network that regulates biofilm development. We also consider the advantages of the biofilm lifestyle and explore polymicrobial interactions within multispecies biofilms that are formed by C. albicans and selected microbial species.
Collapse
Affiliation(s)
- Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, G2 3JZ, United Kingdom
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
141
|
Tits J, Berman J, Cammue BPA, Thevissen K. Combining Miconazole and Domiphen Bromide Results in Excess of Reactive Oxygen Species and Killing of Biofilm Cells. Front Cell Dev Biol 2021; 8:617214. [PMID: 33553152 PMCID: PMC7858260 DOI: 10.3389/fcell.2020.617214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/04/2022] Open
Abstract
Fungal biofilm-related infections are increasingly occurring. We previously identified a fungicidal antibiofilm combination, consisting of miconazole (MCZ) and the quaternary ammonium compound domiphen bromide (DB). DB eliminates tolerance rather than altering the susceptibility to MCZ of various Candida spp. Here we studied the mode of action of the MCZ-DB combination in more detail. We found that DB's action increases the permeability of the plasma membrane as well as that of the vacuolar membrane of Candida spp. Furthermore, the addition of DB affects the intracellular azole distribution. MCZ is a fungicidal azole that, apart from its well-known inhibition of ergosterol biosynthesis, also induces accumulation of reactive oxygen species (ROS). Interestingly, the MCZ-DB combination induced significantly more ROS in C. albicans biofilms as compared to single compound treatment. Co-administration of the antioxidant ascorbic acid resulted in abolishment of the ROS generated by MCZ-DB combination as well as its fungicidal action. In conclusion, increased intracellular MCZ availability due to DB's action results in excess of ROS and enhanced fungal cell killing.
Collapse
Affiliation(s)
- Jana Tits
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
142
|
Prasath KG, Alexpandi R, Parasuraman R, Pavithra M, Ravi AV, Pandian SK. Anti-inflammatory potential of myristic acid and palmitic acid synergism against systemic candidiasis in Danio rerio (Zebrafish). Biomed Pharmacother 2021; 133:111043. [PMID: 33378951 DOI: 10.1016/j.biopha.2020.111043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 01/23/2023] Open
Abstract
Nosocomial Candida colonization causes Systemic candidiasis in human with invasive infections in immunocompromised patients. Of all Candida spp., C. albicans is dominant in morbidity of all systemic candidiasis but C. tropicalis is phenomenal in mortality, virulence aspects and resistance development against antifungal drugs. The present study investigated the synergistic anti-virulent activity of myristic acid (MA) and palmitic acid (PA) against insidious dimorphic Candida spp. (C. albicans and C. tropicalis). In vitro and qPCR results revealed the mechanisms of MA-PA combination effectively inhibiting various virulence aspects such as biofilm, hyphal formation, secreted aspartyl proteases, lipases, ergosterol biosynthesis and drug effluxes. Further, in Danio rerio (Zebrafish), the MA-PA treatment increased the survival of animals and also the treated groups showed decreased level of fungal burden compared to the infected controls, after 3rd day of post infection. Histopathology of vital organs and SEM analysis of skin revealed a drastic recovery and reduced the inflammation of both Candida spp. infections in MA-PA treated animals. In addition, MA-PA treatment reduced the haemolysin and increased the susceptibility of Candida spp. in human blood model. Hence, this study suggested the therapeutic utilization of MA-PA as synergistic combination for their anti-inflammatory potency against systemic candidiasis and candidemia.
Collapse
Affiliation(s)
- Krishnan Ganesh Prasath
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - Rajaiah Alexpandi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - Rayar Parasuraman
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - Murugesan Pavithra
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
143
|
Aguilar-Marcelino L, Al-Ani LKT, Freitas Soares FED, Moreira ALE, Téllez-Téllez M, Castañeda-Ramírez GS, Lourdes Acosta-Urdapilleta MD, Díaz-Godínez G, Pineda-Alegría JA. Formation, Resistance, and Pathogenicity of Fungal Biofilms: Current Trends and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
144
|
Valand N, Girija UV. Candida Pathogenicity and Interplay with the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:241-272. [PMID: 34661898 DOI: 10.1007/978-3-030-67452-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida species are opportunistic fungal pathogens that are part of the normal skin and mucosal microflora. Overgrowth of Candida can cause infections such as thrush or life-threatening invasive candidiasis in immunocompromised patients. Though Candida albicans is highly prevalent, several non-albicans species are also isolated from nosocomial infections. Candida sp. are over presented in the gut of people with Crohn's disease and certain types of neurological disorders, with hyphal form and biofilms being the most virulent states. In addition, Candida uses several secreted and cell surface molecules such as pH related antigen 1, High affinity glucose transporter, Phosphoglycerate mutase 1 and lipases to establish pathogenicity. A strong innate immune response is elicited against Candida via dendritic cells, neutrophils and macrophages. All three complement pathways are also activated. Production of proinflammatory cytokines IL-10 and IL-12 signal differentiation of CD4+ cells into Th1 and Th2 cells, whereas IL-6, IL-17 and IL-23 induce Th17 cells. Importance of T-lymphocytes is reflected in depleted T-cell count patients being more prone to Candidiasis. Anti- Candida antibodies also play a role against candidiasis using various mechanisms such as targeting virulent enzymes and exhibiting direct candidacidal activity. However, the significance of antibody response during infection remains controversial. Furthermore, some of the Candida strains have evolved molecular strategies to evade the sophisticated host attack by proteolysis of components of immune system and interfering with immune signalling pathways. Emergence of several non-albicans species that are resistant to current antifungal agents makes treatment more difficult. Therefore, deeper insight into interactions between Candida and the host immune system is required for discovery of novel therapeutic options.
Collapse
Affiliation(s)
- Nisha Valand
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK.
| |
Collapse
|
145
|
Pulmonary Candidiasis Associated with COVID-19: Evaluation of Causative Agents and their Antifungal Susceptibility Patterns. TANAFFOS 2021; 20:29-35. [PMID: 34394367 DOI: pmid/34394367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/26/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND The purpose of the present study was to isolate Candida species from individuals with the COVID-19 disease and evaluate the susceptibility pattern of Candida spp. to routine antifungal drugs. MATERIALS AND METHODS A total of 25 Candida spp. isolated from hospitalized patients with COVID-19, who were suspected to have pulmonary candidiasis, and 26 archived Candida spp. specimens were enrolled in this study. For the identification of Candida spp., PCR was performed to detect and amplify the ITS1 and ITS4 genes. Then the products were subjected to the Msp I restriction enzyme to precisely identify the species. The amplification of the WHP1 gene was conducted to identify Candida albicans species. The antifungal activities of routine drugs and the synthesize AuNPs against Candida spp. were assessed based on the protocols presented by the Clinical and Laboratory Standards Institute M60. RESULTS In the present study, C. albicans (24; 96%) and C. parapsilosis (1; 4%) were identified as the etiologic agents of the pulmonary candidiasis associated with the COVID-19 infection. Voriconazol and amphotericin B had superior activity against all the isolates in this study. Treatment with fluconazole and itraconazole did not significantly change the formation of colony-forming units (CFU). However, treatment with the AuNPs significantly decreased (within the range of 92-99.1%; P<0.05) the number of CFUs. CONCLUSION The azole prophylaxis has likely been associated with the development of resistant isolates; the results of the present study suggested the promising role of novel antifungal agents such as AuNPs in overcoming drug resistant fungi.
Collapse
|
146
|
A Screen for Small Molecules to Target Candida albicans Biofilms. J Fungi (Basel) 2020; 7:jof7010009. [PMID: 33375490 PMCID: PMC7824004 DOI: 10.3390/jof7010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/03/2022] Open
Abstract
The human fungal pathogen Candida albicans can form biofilms on biotic and abiotic surfaces, which are inherently resistant to antifungal drugs. We screened the Chembridge Small Molecule Diversity library containing 30,000 “drug-like” small molecules and identified 45 compounds that inhibited biofilm formation. These 45 compounds were then tested for their abilities to disrupt mature biofilms and for combinatorial interactions with fluconazole, amphotericin B, and caspofungin, the three antifungal drugs most commonly prescribed to treat Candida infections. In the end, we identified one compound that moderately disrupted biofilm formation on its own and four compounds that moderately inhibited biofilm formation and/or moderately disrupted mature biofilms only in combination with either caspofungin or fluconazole. No combinatorial interactions were observed between the compounds and amphotericin B. As members of a diversity library, the identified compounds contain “drug-like” chemical backbones, thus even seemingly “weak hits” could represent promising chemical starting points for the development and the optimization of new classes of therapeutics designed to target Candida biofilms.
Collapse
|
147
|
Kernien JF, Johnson CJ, Bayless ML, Chovanec JF, Nett JE. Neutrophils From Patients With Invasive Candidiasis Are Inhibited by Candida albicans Biofilms. Front Immunol 2020; 11:587956. [PMID: 33343568 PMCID: PMC7747767 DOI: 10.3389/fimmu.2020.587956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/05/2020] [Indexed: 12/23/2022] Open
Abstract
Invasive candidiasis frequently involves medical device placement. On the surfaces of these devices, Candida can form biofilms and proliferate in adherent layers of fungal cells surrounded by a protective extracellular matrix. Due in part to this extracellular matrix, biofilms resist host defenses and antifungal drugs. Previous work (using neutrophils from healthy donors) found that one mechanism employed to resist host defenses involves the inhibition of neutrophil extracellular traps (NET) formation. NETs contain nuclear DNA, as well as antimicrobial proteins that can ensnare pathogens too large or aggregated to be effectively killed by phagocytosis. Given that these neutrophil structures are anticipated to have activity against the large aggregates of C. albicans biofilms, understanding the role of this inhibition in patients could provide insight into new treatment strategies. However, prior work has not included patients. Here, we examine NET formation by neutrophils collected from patients with invasive candidiasis. When compared to neutrophils from healthy participants, we show that patient neutrophils exhibit a heightened background level of NET release and respond to a positive stimulus by producing 100% more NETs. However, despite these physiologic differences, patient neutrophil responses to C. albicans were similar to healthy neutrophils. For both groups, planktonic cells induce strong NET release and biofilms inhibit NET formation. These results show that a mechanism of immune evasion for fungal biofilms translates to the clinical setting.
Collapse
Affiliation(s)
- John F Kernien
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Chad J Johnson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Meg L Bayless
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jack F Chovanec
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
148
|
Le PH, Nguyen DHK, Aburto-Medina A, Linklater DP, Crawford RJ, MacLaughlin S, Ivanova EP. Nanoscale Surface Roughness Influences Candida albicans Biofilm Formation. ACS APPLIED BIO MATERIALS 2020; 3:8581-8591. [PMID: 35019629 DOI: 10.1021/acsabm.0c00985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The microbial contamination of surfaces presents a significant challenge due to the adverse effects associated with biofilm formation, particularly on implantable devices. Here, the attachment and biofilm formation of the opportunistic human pathogen, Candida albicans ATCC 10231, were studied on surfaces with decreasing magnitudes of nanoscale roughness. The nanoscale surface roughness of nonpolished titanium, polished titanium, and glass was characterized according to average surface roughness, skewness, and kurtosis. Nonpolished titanium, polished titanium, and glass possessed average surface roughness (Sa) values of 350, 20, and 2.5 nm; skewness (Sskw) values of 1.0, 4.0, and 1.0; and (Skur) values of 3.5, 16, and 4, respectively. These unique characteristics of the surface nanoarchitecture were found to play a key role in limiting C. albicans attachment and modulating the functional phenotypic changes associated with biofilm formation. Our results suggest that surfaces with a specific combination of surface topographical parameters could prevent the attachment and biofilm formation of C. albicans. After 7 days, the density of attached C. albicans cells was recorded to be 230, 70, and 220 cells mm-2 on nonpolished titanium, polished titanium, and glass surfaces, respectively. Despite achieving a very low attachment density, C. albicanscells were only observed to produce hyphae associated with biofilm formation on nonpolished titanium surfaces, possessing the highest degree of surface roughness (Sa = 350 nm). This study provides a more comprehensive picture of the impact of surface architectures on C. albicans attachment, which is beneficial for the design of antifungal surfaces.
Collapse
Affiliation(s)
- Phuc H Le
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia.,Australian Research Council Research Hub for Australian Steel Manufacturing, Wollongong, New South Wales 2500, Australia
| | - Duy H K Nguyen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Arturo Aburto-Medina
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia.,Australian Research Council Research Hub for Australian Steel Manufacturing, Wollongong, New South Wales 2500, Australia
| | - Denver P Linklater
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | | | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
149
|
Bernard C, Juin C, Vitry M, Le VTD, Verdon J, Toullec AS, Imbert C, Girardot M. Can Leaves and Stems of Rubus idaeus L. Handle Candida albicans Biofilms? Pharmaceuticals (Basel) 2020; 13:E477. [PMID: 33353173 PMCID: PMC7766086 DOI: 10.3390/ph13120477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is an opportunistic pathogen involved in many infections, especially linked to implanted medical devices. Its ability to form biofilms complicates the treatment of these infections as few molecules are active against sessile C. albicans. The aim of this study was to evaluate the potential of leaves, three-month-old and one-year-old stems of Rubus idaeus L. against C. albicans biofilm growth. Extractions with a polarity gradient were carried out on hydroacetonic extracts and followed by fractionation steps. The obtained extracts and fractions were tested for their anti-biofilm growth activity against C. albicans using XTT method. Compounds of active subfractions were identified by LC-MS. The hexane extracts from leaves and stems were the most active against the fungus with IC50 at 500 and 250 µg/mL. Their bioguided fractionation led to 4 subfractions with IC50 between 62.5 and 125 µg/mL. Most of the components identified in active subfractions were fatty acids and terpenoïds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marion Girardot
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers, France; (C.B.); (C.J.); (M.V.); (V.T.D.L.); (J.V.); (A.-S.T.); (C.I.)
| |
Collapse
|
150
|
Combatting fungal biofilm formation by diffusive release of fluconazole from heptylamine plasma polymer coating. Biointerphases 2020; 15:061012. [PMID: 33339460 DOI: 10.1116/6.0000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A drug-eluting coating applied onto biomedical devices and implants is an appropriate way to ensure that an inhibitory concentration of antimicrobial drugs is present at the device surface, thus preventing surface colonization and subsequent biofilm formation. In this study, a thin polymer coating was applied to materials, and it acted as a drug-delivery reservoir capable of surface delivery of the antifungal drug fluconazole to amounts up to 21 μg/cm2. The release kinetics into aqueous solution were quantified by UV spectroscopy and conformed to the Ritger-Peppas and Korsmeyer-Peppas model. Complementary microbiological assays were used to determine effectiveness against Candida albicans attachment and biofilm formation, and against the control heptylamine plasma polymer coating without drug loading, on which substantial fungal growth occurred. Fluconazole release led to marked antifungal activity in all assays, with log 1.6 reduction in CFUs/cm2. Cell viability assays and microscopy revealed that fungal cells attached to the fluconazole-loaded coating remained rounded and did not form hyphae and biofilm. Thus, in vitro screening results for fluconazole-releasing surface coatings showed efficacy in the prevention of the formation of Candida albicans biofilm.
Collapse
|