101
|
Antisecretory factor peptide AF-16 inhibits the secreted autotransporter toxin-stimulated transcellular and paracellular passages of fluid in cultured human enterocyte-like cells. Infect Immun 2014; 83:907-22. [PMID: 25534938 DOI: 10.1128/iai.02759-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Both the endogenous antisecretory factor (AF) protein and peptide AF-16, which has a sequence that matches that of the active N-terminal region of AF, inhibit the increase in the epithelial transport of fluid and electrolytes induced by bacterial toxins in animal and ex vivo models. We conducted a study to investigate the inhibitory effect of peptide AF-16 against the increase of transcellular passage and paracellular permeability promoted by the secreted autotransporter toxin (Sat) in a cultured cellular model of the human intestinal epithelial barrier. Peptide AF-16 produced a concentration-dependent inhibition of the Sat-induced increase in the formation of fluid domes, in the mucosal-to-serosal passage of D-[1-(14)C]mannitol, and in the rearrangements in the distribution and protein expression of the tight junction (TJ)-associated proteins ZO-1 and occludin in cultured human enterocyte-like Caco-2/TC7 cell monolayers. In addition, we show that peptide AF-16 also inhibits the cholera toxin-induced increase of transcellular passage and the Clostridium difficile toxin-induced effects on paracellular permeability and TJ protein organization in Caco-2/TC7 cell monolayers. Treatment of cell monolayers by the lipid raft disorganizer methyl-β-cyclodextrin abolished the inhibitory activity of peptide AF-16 at the transcellular passage level and did not modify the effect of the peptide at the paracellular level.
Collapse
|
102
|
Nassour H, Dubreuil JD. Escherichia coli STb enterotoxin dislodges claudin-1 from epithelial tight junctions. PLoS One 2014; 9:e113273. [PMID: 25409315 PMCID: PMC4237405 DOI: 10.1371/journal.pone.0113273] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/25/2014] [Indexed: 12/26/2022] Open
Abstract
Enterotoxigenic Escherichia coli produce various heat-labile and heat-stable enterotoxins. STb is a low molecular weight heat-resistant toxin responsible for diarrhea in farm animals, mainly young pigs. A previous study demonstrated that cells having internalized STb toxin induce epithelial barrier dysfunction through changes in tight junction (TJ) proteins. These modifications contribute probably to the diarrhea observed. To gain insight into the mechanism of increased intestinal permeability following STb exposure we treated human colon cells (T84) with purified STb toxin after which cells were harvested and proteins extracted. Using a 1% Nonidet P-40-containing solution we investigated the distribution of claudin-1, a major structural and functional TJ protein responsible for the epithelium impermeability, between membrane (NP40-insoluble) and the cytoplasmic (NP-40 soluble) location. Using immunoblot and confocal microscopy, we observed that treatment of T84 cell monolayers with STb induced redistribution of claudin-1. After 24 h, cells grown in Ca++-free medium treated with STb showed about 40% more claudin-1 in the cytoplasm compare to the control. Switching from Ca++-free to Ca++-enriched medium (1.8 mM) increased the dislodgement rate of claudin-1 as comparable quantitative delocalization was observed after only 6 h. Medium supplemented with the same concentration of Mg++ or Zn++ did not affect the dislodgement rate compared to the Ca++-free medium. Using anti-phosphoserine and anti-phosphothreonine antibodies, we observed that the loss of membrane claudin-1 was accompanied by dephosphorylation of this TJ protein. Overall, our findings showed an important redistribution of claudin-1 in cells treated with STb toxin. The loss of phosphorylated TJ membrane claudin-1 is likely to be involved in the increased permeability observed. The mechanisms by which these changes are brought about remain to be elucidated.
Collapse
Affiliation(s)
- Hassan Nassour
- GREMIP, Faculty of Veterinary Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - J Daniel Dubreuil
- GREMIP, Faculty of Veterinary Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
103
|
Toxin-mediated paracellular transport of antitoxin antibodies facilitates protection against Clostridium difficile infection. Infect Immun 2014; 83:405-16. [PMID: 25385797 DOI: 10.1128/iai.02550-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The exotoxins TcdA and TcdB are the major virulence factors of Clostridium difficile. Circulating neutralizing antitoxin antibodies are protective in C. difficile infection (CDI), as demonstrated, in part, by the protective effects of actoxumab and bezlotoxumab, which bind to and neutralize TcdA and TcdB, respectively. The question of how systemic IgG antibodies neutralize toxins in the gut lumen remains unresolved, although it has been suggested that the Fc receptor FcRn may be involved in active antibody transport across the gut epithelium. In this study, we demonstrated that genetic ablation of FcRn and excess irrelevant human IgG have no impact on actoxumab-bezlotoxumab-mediated protection in murine and hamster models of CDI, suggesting that Fc-dependent transport of antibodies across the gut wall is not required for efficacy. Tissue distribution studies in hamsters suggest, rather, that the transport of antibodies depends on toxin-induced damage to the gut lining. In an in vitro two-dimensional culture system that mimics the architecture of the intestinal mucosal epithelium, toxins on the apical side of epithelial cell monolayers are neutralized by basolateral antibodies, and antibody transport across the cell layer is dramatically increased upon addition of toxin to the apical side. Similar data were obtained with F(ab')2 fragments, which lack an Fc domain, consistent with FcRn-independent paracellular, rather than transcellular, transport of antibodies. Kinetic studies show that initial damage caused by apical toxin is required for efficient neutralization by basolateral antibodies. These data may represent a general mechanism of humoral response-mediated protection against enteric pathogens.
Collapse
|
104
|
Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun 2014; 83:138-45. [PMID: 25312952 DOI: 10.1128/iai.02561-14] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is the leading cause of infectious nosocomial diarrhea. The pathogenesis of C. difficile infection (CDI) results from the interactions between the pathogen, intestinal epithelium, host immune system, and gastrointestinal microbiota. Previous studies of the host-pathogen interaction in CDI have utilized either simple cell monolayers or in vivo models. While much has been learned by utilizing these approaches, little is known about the direct interaction of the bacterium with a complex host epithelium. Here, we asked if human intestinal organoids (HIOs), which are derived from pluripotent stem cells and demonstrate small intestinal morphology and physiology, could be used to study the pathogenesis of the obligate anaerobe C. difficile. Vegetative C. difficile, microinjected into the lumen of HIOs, persisted in a viable state for up to 12 h. Upon colonization with C. difficile VPI 10463, the HIO epithelium is markedly disrupted, resulting in the loss of paracellular barrier function. Since similar effects were not observed when HIOs were colonized with the nontoxigenic C. difficile strain F200, we directly tested the role of toxin using TcdA and TcdB purified from VPI 10463. We show that the injection of TcdA replicates the disruption of the epithelial barrier function and structure observed in HIOs colonized with viable C. difficile.
Collapse
|
105
|
Quiros M, Nusrat A. RhoGTPases, actomyosin signaling and regulation of the epithelial Apical Junctional Complex. Semin Cell Dev Biol 2014; 36:194-203. [PMID: 25223584 DOI: 10.1016/j.semcdb.2014.09.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 12/22/2022]
Abstract
Epithelial cells form regulated and selective barriers between distinct tissue compartments. The Apical Junctional Complex (AJC) consisting of the tight junction (TJ) and adherens junction (AJ) control epithelial homeostasis, paracellular permeability and barrier properties. The AJC is composed of mutliprotein complexes consisting of transmembrane proteins that affiliate with an underlying perijunctional F-actin myosin ring through cytoplasmic scaffold proteins. AJC protein associations with the apical actin-myosin cytoskeleton are tightly controlled by a number of signaling proteins including the Rho family of GTPases that orchestrate junctional biology, epithelial homeostasis and barrier function. This review highlights the vital relationship of Rho GTPases and AJCs in controlling the epithelial barrier. The pathophysiologic relationship of Rho GTPases, AJC, apical actomyosin cytoskeleton and epithelial barrier function is discussed.
Collapse
Affiliation(s)
- Miguel Quiros
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
106
|
Yurist-Doutsch S, Arrieta MC, Vogt SL, Finlay BB. Gastrointestinal microbiota-mediated control of enteric pathogens. Annu Rev Genet 2014; 48:361-82. [PMID: 25251855 DOI: 10.1146/annurev-genet-120213-092421] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gastrointestinal (GI) microbiota is a complex community of microorganisms residing within the mammalian gastrointestinal tract. The GI microbiota is vital to the development of the host immune system and plays a crucial role in human health and disease. The composition of the GI microbiota differs immensely among individuals yet specific shifts in composition and diversity have been linked to inflammatory bowel disease, obesity, atopy, and susceptibility to infection. In this review, we describe the GI microbiota and its role in enteric diseases caused by pathogenic Escherichia coli, Salmonella enterica, and Clostridium difficile. We discuss the central role of the GI microbiota in protective immunity, resistance to enteric pathogens, and resolution of enteric colitis.
Collapse
Affiliation(s)
- Sophie Yurist-Doutsch
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4; , , ,
| | | | | | | |
Collapse
|
107
|
Boonma P, Spinler JK, Venable SF, Versalovic J, Tumwasorn S. Lactobacillus rhamnosus L34 and Lactobacillus casei L39 suppress Clostridium difficile-induced IL-8 production by colonic epithelial cells. BMC Microbiol 2014; 14:177. [PMID: 24989059 PMCID: PMC4094603 DOI: 10.1186/1471-2180-14-177] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/18/2014] [Indexed: 01/01/2023] Open
Abstract
Background Clostridium difficile is the main cause of hospital-acquired diarrhea and colitis known as C. difficile-associated disease (CDAD).With increased severity and failure of treatment in CDAD, new approaches for prevention and treatment, such as the use of probiotics, are needed. Since the pathogenesis of CDAD involves an inflammatory response with a massive influx of neutrophils recruited by interleukin (IL)-8, this study aimed to investigate the probiotic effects of Lactobacillus spp. on the suppression of IL-8 production in response to C. difficile infection. Results We screened Lactobacillus conditioned media from 34 infant fecal isolates for the ability to suppress C. difficile-induced IL-8 production from HT-29 cells. Factors produced by two vancomycin-resistant lactobacilli, L. rhamnosus L34 (LR-L34) and L.casei L39 (LC-L39), suppressed the secretion and transcription of IL-8 without inhibiting C. difficile viability or toxin production. Conditioned media from LR-L34 suppressed the activation of phospho-NF-κB with no effect on phospho-c-Jun. However, LC-L39 conditioned media suppressed the activation of both phospho-NF-κB and phospho-c-Jun. Conditioned media from LR-L34 and LC-L39 also decreased the production of C. difficile-induced GM-CSF in HT-29 cells. Immunomodulatory factors present in the conditioned media of both LR-L34 and LC-L39 are heat-stable up to 100°C and > 100 kDa in size. Conclusions Our results suggest that L. rhamnosus L34 and L. casei L39 each produce factors capable of modulating inflammation stimulated by C. difficile. These vancomycin-resistant Lactobacillus strains are potential probiotics for treating or preventing CDAD.
Collapse
Affiliation(s)
| | | | | | | | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
108
|
Popoff MR. Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host. Small GTPases 2014; 5:28209. [PMID: 25203748 DOI: 10.4161/sgtp.28209] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin cytoskeleton is a main target of many bacterial pathogens. Among the multiple regulation steps of the actin cytoskeleton, bacterial factors interact preferentially with RhoGTPases. Pathogens secrete either toxins which diffuse in the surrounding environment, or directly inject virulence factors into target cells. Bacterial toxins, which interfere with RhoGTPases, and to some extent with RasGTPases, catalyze a covalent modification (ADPribosylation, glucosylation, deamidation, adenylation, proteolysis) blocking these molecules in their active or inactive state, resulting in alteration of epithelial and/or endothelial barriers, which contributes to dissemination of bacteria in the host. Injected bacterial virulence factors preferentially manipulate the RhoGTPase signaling cascade by mimicry of eukaryotic regulatory proteins leading to local actin cytoskeleton rearrangement, which mediates bacterial entry into host cells or in contrast escape to phagocytosis and immune defense. Invasive bacteria can also manipulate RhoGTPase signaling through recognition and stimulation of cell surface receptor(s). Changes in RhoGTPase activation state is sensed by the innate immunity pathways and allows the host cell to adapt an appropriate defense response.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Bactéries anaérobies et Toxines; Institut Pasteur; Paris, France
| |
Collapse
|
109
|
Clostridium difficile toxin A attenuates Wnt/β-catenin signaling in intestinal epithelial cells. Infect Immun 2014; 82:2680-7. [PMID: 24711571 DOI: 10.1128/iai.00567-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile toxins A and B (TcdA and TcdB) are homologous glycosyltransferases that inhibit a group of small GTPases within host cells, but several mechanisms underlying their pathogenic activity remain unclear. In this study, we evaluated the effects of TcdA on the Wnt/β-catenin pathway, the major driving force behind the proliferation of epithelial cells in colonic crypts. IEC-6 and RKO cells stimulated with Wnt3a-conditioned medium were incubated with 10, 50, and 100 ng/ml of TcdA for 24 h, resulting in a dose-dependent inhibition of the Wnt signaling, as demonstrated by a T-cell factor (TCF) reporter assay. This was further confirmed by immunofluorescence staining for nuclear localization of β-catenin and Western blotting for β-catenin and c-Myc (encoded by a Wnt target gene). Moreover, our Western blot analysis showed a decrease in the β-catenin protein levels, which was reversed by z-VAD-fmk, a pan-caspase inhibitor. Nonetheless, TcdA was still able to inhibit the Wnt/β-catenin pathway even in the presence of z-VAD-fmk, lithium chloride (a GSK3β inhibitor), or constitutively active β-catenin, as determined by a TCF reporter assay. Furthermore, preincubation of RKO cells with TcdA for 12 h also attenuated Wnt3a-mediated activation of Wnt signaling, suggesting that inactivation of Rho GTPases plays a significant role in that inhibition. Taken together, these findings suggest that attenuation of the Wnt signaling by TcdA is important for TcdA antiproliferative effects.
Collapse
|
110
|
Leuzzi R, Adamo R, Scarselli M. Vaccines against Clostridium difficile. Hum Vaccin Immunother 2014; 10:1466-77. [PMID: 24637887 DOI: 10.4161/hv.28428] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile infection (CDI) is recognized as a major cause of nosocomial diseases ranging from antibiotic related diarrhea to fulminant colitis. Emergence during the last 2 decades of C. difficile strains associated with high incidence, severity and lethal outcomes has increased the challenges for CDI treatment. A limited number of drugs have proven to be effective against CDI and concerns about antibiotic resistance as well as recurring disease solicited the search for novel therapeutic strategies. Active vaccination provides the attractive opportunity to prevent CDI, and intense research in recent years led to development of experimental vaccines, 3 of which are currently under clinical evaluation. This review summarizes recent achievements and remaining challenges in the field of C. difficile vaccines, and discusses future perspectives in view of newly-identified candidate antigens.
Collapse
|
111
|
Tria SA, Ramuz M, Jimison LH, Hama A, Owens RM. Sensing of barrier tissue disruption with an organic electrochemical transistor. J Vis Exp 2014:e51102. [PMID: 24561449 DOI: 10.3791/51102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The gastrointestinal tract is an example of barrier tissue that provides a physical barrier against entry of pathogens and toxins, while allowing the passage of necessary ions and molecules. A breach in this barrier can be caused by a reduction in the extracellular calcium concentration. This reduction in calcium concentration causes a conformational change in proteins involved in the sealing of the barrier, leading to an increase of the paracellular flux. To mimic this effect the calcium chelator ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetra acetic acid (EGTA) was used on a monolayer of cells known to be representative of the gastrointestinal tract. Different methods to detect the disruption of the barrier tissue already exist, such as immunofluorescence and permeability assays. However, these methods are time-consuming and costly and not suited to dynamic or high-throughput measurements. Electronic methods for measuring barrier tissue integrity also exist for measurement of the transepithelial resistance (TER), however these are often costly and complex. The development of rapid, cheap, and sensitive methods is urgently needed as the integrity of barrier tissue is a key parameter in drug discovery and pathogen/toxin diagnostics. The organic electrochemical transistor (OECT) integrated with barrier tissue forming cells has been shown as a new device capable of dynamically monitoring barrier tissue integrity. The device is able to measure minute variations in ionic flux with unprecedented temporal resolution and sensitivity, in real time, as an indicator of barrier tissue integrity. This new method is based on a simple device that can be compatible with high throughput screening applications and fabricated at low cost.
Collapse
Affiliation(s)
- Scherrine A Tria
- Department of Bioelectronics, Ecole Nationale Superieure des Mines
| | - Marc Ramuz
- Department of Bioelectronics, Ecole Nationale Superieure des Mines
| | - Leslie H Jimison
- Research and Exploratory Development Division, Applied Physics Laboratory, Johns Hopkins University
| | - Adel Hama
- Department of Bioelectronics, Ecole Nationale Superieure des Mines
| | - Roisin M Owens
- Department of Bioelectronics, Ecole Nationale Superieure des Mines;
| |
Collapse
|
112
|
Tight junction regulation through vesicle trafficking: bringing cells together. Biochem Soc Trans 2014; 42:195-200. [DOI: 10.1042/bst20130162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epithelial layers are integral for many physiological processes and are maintained by intercellular adhesive structures. During disease, these structures can disassemble, leading to breakdown of epithelia. TJs (tight junctions) are one type of intercellular adhesion. Loss of TJs has been linked to the pathogenesis of many diseases. The present review focuses on the role of vesicle trafficking in regulation of TJs, in particular trafficking of the TJ protein occludin. We examine how endocytosis and endosomal recycling modulate occludin localization under steady-state conditions and during stimulated TJ disassembly.
Collapse
|
113
|
The P2Y6 receptor mediates Clostridium difficile toxin-induced CXCL8/IL-8 production and intestinal epithelial barrier dysfunction. PLoS One 2013; 8:e81491. [PMID: 24278446 PMCID: PMC3838400 DOI: 10.1371/journal.pone.0081491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023] Open
Abstract
C. difficile is a Gram-positive spore-forming anaerobic bacterium that is the leading cause of nosocomial diarrhea in the developed world. The pathogenesis of C. difficile infections (CDI) is driven by toxin A (TcdA) and toxin B (TcdB), secreted factors that trigger the release of inflammatory mediators and contribute to disruption of the intestinal epithelial barrier. Neutrophils play a key role in the inflammatory response and the induction of pseudomembranous colitis in CDI. TcdA and TcdB alter cytoskeletal signaling and trigger the release of CXCL8/IL-8, a potent neutrophil chemoattractant, from intestinal epithelial cells; however, little is known about the surface receptor(s) that mediate these events. In the current study, we sought to assess whether toxin-induced CXCL8/IL-8 release and barrier dysfunction are driven by the activation of the P2Y6 receptor following the release of UDP, a danger signal, from intoxicated Caco-2 cells. Caco-2 cells express a functional P2Y6 receptor and release measurable amounts of UDP upon exposure to TcdA/B. Toxin-induced CXCL8/IL-8 production and release were attenuated in the presence of a selective P2Y6 inhibitor (MRS2578). This was associated with inhibition of TcdA/B-induced activation of NFκB. Blockade of the P2Y6 receptor also attenuated toxin-induced barrier dysfunction in polarized Caco-2 cells. Lastly, pretreating mice with the P2Y6 receptor antagonists (MSR2578) attenuated TcdA/B-induced inflammation and intestinal permeability in an intrarectal toxin exposure model. Taken together these data outline a novel role for the P2Y6 receptor in the induction of CXCL8/IL-8 production and barrier dysfunction in response to C. difficile toxin exposure and may provide a new therapeutic target for the treatment of CDI.
Collapse
|
114
|
Kasendra M, Barrile R, Leuzzi R, Soriani M. Clostridium difficile toxins facilitate bacterial colonization by modulating the fence and gate function of colonic epithelium. J Infect Dis 2013; 209:1095-104. [PMID: 24273043 DOI: 10.1093/infdis/jit617] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The contribution of Clostridium difficile toxin A and B (TcdA and TcdB) to cellular intoxication has been studied extensively, but their impact on bacterial colonization remains unclear. By setting up 2- and 3-dimensional in vitro models of polarized gut epithelium, we investigated how C. difficile infection is affected by host cell polarity and whether TcdA and TcdB contribute to such events. Indeed, we observed that C. difficile adhesion and penetration of the mucosal barrier are substantially enhanced in poorly polarized or ethylene glycol tetraacetic acid-treated cells, indicating that bacteria bind preferentially to the basolateral (BL) cell surface. In this context, we demonstrated that sub-lethal concentrations of C. difficile TcdA are able to alter cell polarity by causing redistribution of plasma membrane components between distinct surface domains. Taken together, the data suggest that toxin-mediated modulation of host cell organization may account for the capacity of this opportunistic pathogen to gain access to BL receptors, leading to a successful colonization of the colonic mucosa.
Collapse
|
115
|
Cohen-Bucay A, Garimella P, Ezeokonkwo C, Bijol V, Strom JA, Jaber BL. Acute oxalate nephropathy associated with Clostridium difficile colitis. Am J Kidney Dis 2013; 63:113-8. [PMID: 24183111 DOI: 10.1053/j.ajkd.2013.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/06/2013] [Indexed: 01/05/2023]
Abstract
We report the case of a 69-year-old man who presented with acute kidney injury in the setting of community-acquired Clostridium difficile-associated diarrhea and biopsy-proven acute oxalate nephropathy. We discuss potential mechanisms, including increased colonic permeability to oxalate. We conclude that C difficile-associated diarrhea is a potential cause of acute oxalate nephropathy.
Collapse
Affiliation(s)
- Abraham Cohen-Bucay
- Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA.
| | | | - Chukwudi Ezeokonkwo
- Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Vanesa Bijol
- Kidney Pathology Service, Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - James A Strom
- Division of Nephrology, Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| | - Bertrand L Jaber
- Division of Nephrology, Department of Medicine, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
116
|
Citalán-Madrid AF, García-Ponce A, Vargas-Robles H, Betanzos A, Schnoor M. Small GTPases of the Ras superfamily regulate intestinal epithelial homeostasis and barrier function via common and unique mechanisms. Tissue Barriers 2013; 1:e26938. [PMID: 24868497 PMCID: PMC3942330 DOI: 10.4161/tisb.26938] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
The intestinal epithelium forms a stable barrier protecting underlying tissues from pathogens in the gut lumen. This is achieved by specialized integral membrane structures such as tight and adherens junctions that connect neighboring cells and provide stabilizing links to the cytoskeleton. Junctions are constantly remodeled to respond to extracellular stimuli. Assembly and disassembly of junctions is regulated by interplay of actin remodeling, endocytotic recycling of junctional proteins, and various signaling pathways. Accumulating evidence implicate small G proteins of the Ras superfamily as important signaling molecules for the regulation of epithelial junctions. They function as molecular switches circling between an inactive GDP-bound and an active GTP-bound state. Once activated, they bind different effector molecules to control cellular processes required for correct junction assembly, maintenance and remodelling. Here, we review recent advances in understanding how GTPases of the Rho, Ras, Rab and Arf families contribute to intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Alí Francisco Citalán-Madrid
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Alexander García-Ponce
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine; Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav del IPN); Mexico City, Mexico
| |
Collapse
|
117
|
Patrick Schenck L, Hirota SA, Hirota CL, Boasquevisque P, Tulk SE, Li Y, Wadhwani A, Doktorchik CTA, MacNaughton WK, Beck PL, MacDonald JA, MacDonald JA. Attenuation of Clostridium difficile toxin-induced damage to epithelial barrier by ecto-5'-nucleotidase (CD73) and adenosine receptor signaling. Neurogastroenterol Motil 2013; 25:e441-53. [PMID: 23600886 DOI: 10.1111/nmo.12139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 03/25/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clostridium difficile (Cdf) releases toxins (TcdA and TcdB) that damage the intestinal epithelial barrier. Ecto-5'-nucleotidase (CD73) is expressed on intestinal epithelial cells, and it is hypothesized to protect against toxin-induced epithelial damage through the cleavage of 5'-AMP to adenosine (Ado) and subsequent activation of adenosine receptors (AdoRs). Herein, we sought to assess the potential protective effects of CD73 and AdoR signaling on the injurious effects of Cdf toxins. METHODS Barrier function was assessed with T84 colonocytes. Transepithelial electrical resistance (TEER), paracellular fluorescein isothiocyanate (FITC)-dextran flux, and tight junction protein (ZO-1) integrity were monitored. Intrarectal installation of Cdf toxin was used to assess epithelial damage in vivo. KEY RESULTS TcdA/B caused reduced TEER and increased paracellular flux in vitro. Concurrent treatment with 5'-AMP attenuated these responses to Cdf toxin; an effect that was blocked with ZM241385 (AdoRA2 antagonist). APCP, a CD73 inhibitor, also suppressed the protective effects of 5'-AMP on paracellular flux. 5'-AMP reduced toxin-induced disruption of ZO-1, an effect that was abolished by APCP and ZM241385. Inhibition of CD73 with APCP during Cdf toxin exposure led to increased intestinal barrier permeability and epithelial damage in vivo. Intrarectal instillation of 5'-AMP had no effect on toxin-induced intestinal injury. CONCLUSIONS & INFERENCES Our data suggest that CD73 has a protective role against TcdA/B-induced damage. 5'-AMP treatment attenuated the damaging effects of Cdf toxin in vitro, and inhibitors of CD73 (APCP) and AdoRs (ZM241385) revealed that the cleavage of 5'-AMP to Ado was necessary for the protective effects. Inhibition of CD73 in vivo increases colonic tissue damage and epithelial permeability during Cdf toxin exposure.
Collapse
Affiliation(s)
| | | | - C. L. Hirota
- Department of Physiology & Pharmacology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | | | - S. E. Tulk
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - Y. Li
- Department of Medicine; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - A. Wadhwani
- Department of Physiology & Pharmacology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - C. T. A. Doktorchik
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - W. K. MacNaughton
- Department of Physiology & Pharmacology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - P. L. Beck
- Department of Medicine; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | - J. A. MacDonald
- Department of Biochemistry & Molecular Biology; University of Calgary; Calgary; AB; Canada; T2N 4Z6
| | | |
Collapse
|
118
|
Escherichia coli heat-stable toxin b impairs intestinal epithelial barrier function by altering tight junction proteins. Infect Immun 2013; 81:2819-27. [PMID: 23716609 DOI: 10.1128/iai.00455-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli heat-stable toxin b (STb) causes diarrhea in animals. STb binds to sulfatide, its receptor, and is then internalized. In the cytoplasm, through a cascade of events, STb triggers the opening of ion channels, allowing ion secretion and water loss and leading to diarrhea. Tight junctions (TJs) are well known for controlling paracellular traffic of ions and water by forming a physical intercellular barrier in epithelial cells, and some bacterial toxins are known to affect adversely TJs. The present study aimed at determining the effect of STb on TJs. T84 cells were treated for 24 h with purified STb and a nontoxic STb mutant (D30V). Transepithelial resistance (TER), paracellular flux marker, and confocal microscopy were used to analyze the effect of STb on TJs. Purified STb caused a significant reduction of TER parallel to an increase in paracellular permeability compared to the results seen in untreated cells or mutant D30V. The increased paracellular permeability was associated with a marked alteration of F-actin stress fibers. F-actin filament dissolution and condensation were accompanied by redistribution and/or fragmentation of ZO-1, claudin-1, and occludin. These changes were also observed following treatment of T84 cells with an 8-amino-acid peptide found in the STb sequence corresponding to a consensus sequence of Vibrio cholerae Zot toxin. These effects were not observed with a scrambled peptide or mutant D30V. Our findings indicate that STb induces epithelial barrier dysfunction through changes in TJ proteins that could contribute to diarrhea.
Collapse
|
119
|
Choi Y, Kim YC, Jo A, Ji S, Koo KT, Ko Y, Choi Y. Porphyromonas Gingivalisand Dextran Sulfate Sodium Induce Periodontitis Through the Disruption of Physical Barriers in Mice. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Y.S. Choi
- Departments of Immunology and Molecular Microbiology, Seoul National University, Seoul, Korea
| | - Y. C. Kim
- Departments of Immunology and Molecular Microbiology, Seoul National University, Seoul, Korea
| | - A.R. Jo
- Departments of Immunology and Molecular Microbiology, Seoul National University, Seoul, Korea
| | - S. Ji
- Department of Periodontology, Anam Hospital, Korea University, Seoul, Korea
| | - K-T. Koo
- Departments of Periodontology, BK21 CLS, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Y. Ko
- Department of Dentistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Y. Choi
- Departments of Immunology and Molecular Microbiology, Seoul National University, Seoul, Korea
| |
Collapse
|
120
|
Tulli L, Marchi S, Petracca R, Shaw HA, Fairweather NF, Scarselli M, Soriani M, Leuzzi R. CbpA: a novel surface exposed adhesin of Clostridium difficile targeting human collagen. Cell Microbiol 2013; 15:1674-87. [PMID: 23517059 DOI: 10.1111/cmi.12139] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/16/2022]
Abstract
Clostridium difficile is the leading cause of antibiotic-associated diarrhoea and pseudomembranous colitis. While the role of toxins in pathogenesis has been extensively described, the contribution of surface determinants to intestinal colonization is still poorly understood. We focused our study on a novel member of the MSCRAMM family, named CbpA (Collagen binding protein A), for its adhesive properties towards collagen. We demonstrate that CbpA, which carries an LPXTG-like cell wall anchoring domain, is expressed on the bacterial surface of C. difficile and that the recombinant protein binds at high affinity to collagens I and V (apparent Kd in the order of 10(-9 ) M). These findings were validated by confocal microscopy studies showing the colocalization of the protein with type I and V collagen fibres produced by human fibroblasts and mouse intestinal tissues. However, the collagen binding activity of the wild-type C. difficile 630 strain was indistinguishable to the cbpA knock-out strain. To overcome this apparent clostridial adherence redundancy, we engineered a Lactococcus lactis strain for the heterologous expression of CbpA. When exposed on the surface of L. lactis, CbpA significantly enhances the ability of the bacterium to interact with collagen and to adhere to ECM-producing cells. The binding activity of L. lactis-CbpA strain was prevented by an antiserum raised against CbpA, demonstrating the specificity of the interaction. These results suggest that CbpA is a newsurface-exposed adhesin contributing to the C. difficile interaction with the host.
Collapse
|
121
|
Wang M, Qiu Y, Wang H, Tan T, Yuan X, Guan W. Changes of intestinal tight junctions in rat ileums after partial hepatectomy. Transplant Proc 2013; 45:649-53. [PMID: 23498804 DOI: 10.1016/j.transproceed.2012.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/14/2012] [Accepted: 02/28/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Increased intestinal permeability and bacterial translocation have been observed after partial hepatectomy (PH). METHODS Rats (n = 40) were randomly divided into four groups: control; PH 1d, PH 3d and PH 5d. PH animals underwent two-thirds partial hepatectomy before sacrifice at 1, 3, or 5 days thereafter. The intestinal tight junction (TJ) morphology was observed by transmission electron microscopy. Distribution of TJ protein occludin in lipid raft microdomains was examined using Western blot analysis. RESULTS Intestinal TJ structures revealed significant changes at 1 day after PH that had partly recovered by 5 days. During this period, occludin protein decreased significantly in lipid raft microdomains, increasing partially by 5 days. CONCLUSION PH induced disruption of TJ structures in rat ilea, which was associated with redistribution of occludin protein in lipid raft microdomains.
Collapse
Affiliation(s)
- M Wang
- Department of General Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical College, Nanjing, China
| | | | | | | | | | | |
Collapse
|
122
|
Fiorentino M, Lammers KM, Levine MM, Sztein MB, Fasano A. In vitro Intestinal Mucosal Epithelial Responses to Wild-Type Salmonella Typhi and Attenuated Typhoid Vaccines. Front Immunol 2013; 4:17. [PMID: 23408152 PMCID: PMC3569575 DOI: 10.3389/fimmu.2013.00017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/09/2013] [Indexed: 01/06/2023] Open
Abstract
Typhoid fever, caused by S. Typhi, is responsible for approximately 200,000 deaths per year worldwide. Little information is available regarding epithelium-bacterial interactions in S. Typhi infection. We have evaluated in vitro the effects of wild-type S. Typhi, the licensed Ty21a typhoid vaccine and the leading strains CVD 908-htrA and CVD 909 vaccine candidates on intestinal barrier function and immune response. Caco2 monolayers infected with wild-type S. Typhi exhibited alterations in the organization of tight junctions, increased paracellular permeability, and a rapid decrease in Trans-Epithelial Electrical Resistance as early as 4 h post-exposure. S. Typhi triggered the secretion of interleukin (IL)-8 and IL-6. Caco2 cells infected with the attenuated strains exhibited a milder pro-inflammatory response with minimal disruption of the barrier integrity. We conclude that wild-type S. Typhi causes marked transient alterations of the intestinal mucosa that are more pronounced than those observed with Ty21a or new generation attenuated typhoid vaccine candidates.
Collapse
Affiliation(s)
- Maria Fiorentino
- Department of Pediatrics, Mucosal Biology Research Center, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
123
|
Rodrigues RS, Oliveira RAC, Li Y, Zaja-Milatovic S, Costa LB, Braga Neto MB, Kolling GL, Lima AA, Guerrant RL, Warren CA. Intestinal epithelial restitution after TcdB challenge and recovery from Clostridium difficile infection in mice with alanyl-glutamine treatment. J Infect Dis 2013; 207:1505-15. [PMID: 23359592 DOI: 10.1093/infdis/jit041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clostridium difficile is an anaerobic bacterium that causes antibiotic-associated diarrhea. It produces toxin A and toxin B (TcdB), which cause injury to the gut epithelium. Glutamine is a fundamental fuel for enterocytes, maintaining intestinal mucosal health. Alanyl-glutamine (AQ) is a highly soluble dipeptide derivative of glutamine. We studied whether administration of AQ ameliorates the effects of TcdB in the intestinal cells and improves the outcome of C. difficile infection in mice. METHODS WST-1 proliferation and cell-wounding-migration assays were assessed in IEC-6 cells exposed to TcdB, with or without AQ. Apoptosis and necrosis were assessed using Annexin V and flow cytometry. C57BL/6 mice were infected with VPI 10463 and treated with either vancomycin, AQ, or vancomycin with AQ. Intestinal tissues were collected for histopathologic analysis, apoptosis staining, and determination of myeloperoxidase activity. RESULTS AQ increased proliferation in intestinal cells exposed to TcdB, improved migration at 24 and 48 hours, and reduced apoptosis in intestinal cells challenged with TcdB. Infected mice treated with vancomycin and AQ had better survival and histopathologic findings than mice treated with vancomycin alone. CONCLUSIONS AQ may reduce intestinal mucosal injury in C. difficile-infected mice by partially reversing the effects of TcdB on enterocyte proliferation, migration, and apoptosis, thereby improving survival from C. difficile infection.
Collapse
|
124
|
A mixture of functionally oligoclonal humanized monoclonal antibodies that neutralize Clostridium difficile TcdA and TcdB with high levels of in vitro potency shows in vivo protection in a hamster infection model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:377-90. [PMID: 23324518 DOI: 10.1128/cvi.00625-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clostridium difficile infections are a major cause of antibiotic-associated diarrhea in hospital and care facility patients. In spite of the availability of effective antibiotic treatments, C. difficile infection (CDI) is still a major cause of patient suffering, death, and substantial health care costs. Clostridium difficile exerts its major pathological effects through the actions of two protein exotoxins, TcdA and TcdB, which bind to and disrupt gut tissue. Antibiotics target the infecting bacteria but not the exotoxins. Administering neutralizing antibodies against TcdA and TcdB to patients receiving antibiotic treatment might modulate the effects of the exotoxins directly. We have developed a mixture of three humanized IgG1 monoclonal antibodies (MAbs) which neutralize TcdA and TcdB to address three clinical needs: reduction of the severity and duration of diarrhea, reduction of death rates, and reduction of the rate of recurrence. The UCB MAb mixture showed higher potency in a variety of in vitro binding and neutralization assays (∼10-fold improvements), higher levels of protection in a hamster model of CDI (82% versus 18% at 28 days), and higher valencies of toxin binding (12 versus 2 for TcdA and 3 versus 2 for TcdB) than other agents in clinical development. Comparisons of the MAb properties also offered some insight into the potential relative importance of TcdA and TcdB in the disease process.
Collapse
|
125
|
Tria SA, Jimison LH, Hama A, Bongo M, Owens RM. Validation of the organic electrochemical transistor for in vitro toxicology. Biochim Biophys Acta Gen Subj 2012; 1830:4381-90. [PMID: 23246813 DOI: 10.1016/j.bbagen.2012.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND The gastrointestinal epithelium provides a physical and biochemical barrier to the passage of ions and small molecules; however this barrier may be breached by pathogens and toxins. The effect of individual pathogens/toxins on the intestinal epithelium has been well characterized: they disrupt barrier tissue in a variety of ways, such as by targeting tight junction proteins, or other elements of the junctions between adjacent cells. A variety of methods have been used to characterize disruption in barrier tissue, such as immunofluorescence, permeability assays and electrical measurements of epithelia resistance, but these methods remain time consuming, costly and ill-suited to diagnostics or high throughput toxicology. METHODS The advent of organic electronics has created a unique opportunity to interface the worlds of electronics and biology, using devices such as the organic electrochemical transistor (OECT), whose low cost materials and potential for easy fabrication in high throughput formats represent a novel solution for assessing epithelial tissue integrity. RESULTS In this study, OECTs were integrated with gastro-intestinal cell monolayers to study the integrity of the gastrointestinal epithelium, providing a very sensitive way to detect minute changes in ion flow across the cell layer due to inherent amplification by the transistor. MAJOR CONCLUSIONS We validate the OECT against traditional methods by monitoring the effect of toxic compounds on epithelial tissue. We show a systematic characterization of this novel method, alongside existing methods used to assess barrier tissue function. GENERAL SIGNIFICANCE The toxic compounds induce a dramatic disruption of barrier tissue, and the OECT measures this disruption with increased temporal resolution and greater or equal sensitivity when compared with existing methods. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.
Collapse
Affiliation(s)
- Scherrine A Tria
- Department of Bioelectronics, Ecole Nationale Superieure des Mines, CMP-EMSE, MOC, 880 Rue de Mimet, Gardanne 13541, France
| | | | | | | | | |
Collapse
|
126
|
Yu Q, Zhu L, Wang Z, Li P, Yang Q. Lactobacillus delbrueckii ssp. lactis R4 prevents Salmonella typhimurium SL1344-induced damage to tight junctions and adherens junctions. J Microbiol 2012; 50:613-7. [PMID: 22923109 DOI: 10.1007/s12275-012-1596-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/25/2012] [Indexed: 12/14/2022]
Abstract
Cell junctions are the gatekeepers of the paracellular route and defend the mucosal barrier. Several enteropathogenic bacteria can invade intestinal epithelial cells by targeting and damaging cell junctions. It is not well understood how Salmonella typhimurium is able to overcome the intestinal barrier and gain access to the circulation, nor is it understood how Lactobacillus prevents the invasion of S. typhimurium. Therefore, we sought to determine whether infection with S. typhimurium SL1344 could regulate the molecular composition of cell junctions and whether Lactobacillus delbrueckii ssp. lactis R4 could affect this modification. Our data demonstrated that infection of Caco-2 cells with S. typhimurium over 2 h resulted in a redistribution of claudin-1, ZO-1, occluding, and E-cadherin. Western blot analysis of epithelial cell lysates demonstrated that S. typhimurium could decrease the expression of cell junction proteins. However, L. delbrueckii ssp. lactis R4 ameliorated this destruction and induced increased expression of ZO-1, occludin, and E-cadherin relative to the levels in the control group. The results of these experiments implied that S. typhimurium may facilitate its uptake and distribution within the host by regulating the molecular composition of cell junctions. Furthermore, Lactobacillus may prevent the adhesion and invasion of pathogenic bacteria by maintaining cell junctions and the mucosal barrier.
Collapse
Affiliation(s)
- Qinghua Yu
- Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu 210095, P. R. China
| | | | | | | | | |
Collapse
|
127
|
Bowie RV, Donatello S, Lyes C, Owens MB, Babina IS, Hudson L, Walsh SV, O'Donoghue DP, Amu S, Barry SP, Fallon PG, Hopkins AM. Lipid rafts are disrupted in mildly inflamed intestinal microenvironments without overt disruption of the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 2012; 302:G781-93. [PMID: 22241861 DOI: 10.1152/ajpgi.00002.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal epithelial barrier disruption is a feature of inflammatory bowel disease (IBD), but whether barrier disruption precedes or merely accompanies inflammation remains controversial. Tight junction (TJ) adhesion complexes control epithelial barrier integrity. Since some TJ proteins reside in cholesterol-enriched regions of the cell membrane termed lipid rafts, we sought to elucidate the relationship between rafts and intestinal epithelial barrier function. Lipid rafts were isolated from Caco-2 intestinal epithelial cells primed with the proinflammatory cytokine interferon-γ (IFN-γ) or treated with methyl-β-cyclodextrin as a positive control for raft disruption. Rafts were also isolated from the ilea of mice in which colitis had been induced in conjunction with in vivo intestinal permeability measurements, and lastly from intestinal biopsies of ulcerative colitis (UC) patients with predominantly mild or quiescent disease. Raft distribution was analyzed by measuring activity of the raft-associated enzyme alkaline phosphatase and by performing Western blot analysis for flotillin-1. Epithelial barrier integrity was estimated by measuring transepithelial resistance in cytokine-treated cells or in vivo permeability to fluorescent dextran in colitic mice. Raft and nonraft fractions were analyzed by Western blotting for the TJ proteins occludin and zonula occludens-1 (ZO-1). Our results revealed that lipid rafts were disrupted in IFN-γ-treated cells, in the ilea of mice with subclinical colitis, and in UC patients with quiescent inflammation. This was not associated with a clear pattern of occludin or ZO-1 relocalization from raft to nonraft fractions. Significantly, a time-course study in colitic mice revealed that disruption of lipid rafts preceded the onset of increased intestinal permeability. Our data suggest for the first time that lipid raft disruption occurs early in the inflammatory cascade in murine and human colitis and, we speculate, may contribute to subsequent disruption of epithelial barrier function.
Collapse
Affiliation(s)
- Rachel V Bowie
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Bonazzi M, Cossart P. Impenetrable barriers or entry portals? The role of cell-cell adhesion during infection. ACTA ACUST UNITED AC 2012; 195:349-58. [PMID: 22042617 PMCID: PMC3206337 DOI: 10.1083/jcb.201106011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-cell adhesion plays a fundamental role in cell polarity and organogenesis. It also contributes to the formation and establishment of physical barriers against microbial infections. However, a large number of pathogens, from viruses to bacteria and parasites, have developed countless strategies to specifically target cell adhesion molecules in order to adhere to and invade epithelial cells, disrupt epithelial integrity, and access deeper tissues for dissemination. The study of all these processes has contributed to the characterization of molecular machineries at the junctions of eukaryotic cells that have been better understood by using pathogens as probes.
Collapse
Affiliation(s)
- Matteo Bonazzi
- Centre Nationale de la Recherche Scientifique, UMR 5236, CPBS, CNRS, 34293 Montpellier, France.
| | | |
Collapse
|
129
|
D'Auria KM, Donato GM, Gray MC, Kolling GL, Warren CA, Cave LM, Solga MD, Lannigan JA, Papin JA, Hewlett EL. Systems analysis of the transcriptional response of human ileocecal epithelial cells to Clostridium difficile toxins and effects on cell cycle control. BMC SYSTEMS BIOLOGY 2012; 6:2. [PMID: 22225989 PMCID: PMC3266197 DOI: 10.1186/1752-0509-6-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/06/2012] [Indexed: 12/12/2022]
Abstract
Background Toxins A and B (TcdA and TcdB) are Clostridium difficile's principal virulence factors, yet the pathways by which they lead to inflammation and severe diarrhea remain unclear. Also, the relative role of either toxin during infection and the differences in their effects across cell lines is still poorly understood. To better understand their effects in a susceptible cell line, we analyzed the transciptome-wide gene expression response of human ileocecal epithelial cells (HCT-8) after 2, 6, and 24 hr of toxin exposure. Results We show that toxins elicit very similar changes in the gene expression of HCT-8 cells, with the TcdB response occurring sooner. The high similarity suggests differences between toxins are due to events beyond transcription of a single cell-type and that their relative potencies during infection may depend on differential effects across cell types within the intestine. We next performed an enrichment analysis to determine biological functions associated with changes in transcription. Differentially expressed genes were associated with response to external stimuli and apoptotic mechanisms and, at 24 hr, were predominately associated with cell-cycle control and DNA replication. To validate our systems approach, we subsequently verified a novel G1/S and known G2/M cell-cycle block and increased apoptosis as predicted from our enrichment analysis. Conclusions This study shows a successful example of a workflow deriving novel biological insight from transcriptome-wide gene expression. Importantly, we do not find any significant difference between TcdA and TcdB besides potency or kinetics. The role of each toxin in the inhibition of cell growth and proliferation, an important function of cells in the intestinal epithelium, is characterized.
Collapse
Affiliation(s)
- Kevin M D'Auria
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Assimakopoulos SF, Papageorgiou I, Charonis A. Enterocytes’ tight junctions: From molecules to diseases. World J Gastrointest Pathophysiol 2011; 2:123-37. [PMID: 22184542 PMCID: PMC3241743 DOI: 10.4291/wjgp.v2.i6.123] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/26/2011] [Accepted: 10/31/2011] [Indexed: 02/06/2023] Open
Abstract
Tight junctions (TJs) are structures between cells where cells appear in the closest possible contact. They are responsible for sealing compartments when epithelial sheets are generated. They regulate the permeability of ions, (macro) molecules and cells via the paracellular pathway. Their structure at the electron microscopic level has been well known since the 1970s; however, only recently has their macromolecular composition been revealed. This review first examines the major macromolecular components of the TJs (occludin, claudins, junctional adhesion molecule and tricellulin) and then the associated macromolecules at the intracellular plaque [zonula occludens (ZO)-1, ZO-2, ZO-3, AF-6, cingulin, 7H6]. Emphasis is given to their interactions in order to begin to understand the mode of assembly of TJs. The functional significance of TJs is detailed and several mechanisms and factors involved are discussed briefly. Emphasis is given to the role of intestinal TJs and the alterations observed or speculated in diverse disease states. Specifically, intestinal TJs may exert a pathogenetic role in intestinal (inflammatory bowel disease, celiac disease) and extraintestinal diseases (diabetes type 1, food allergies, autoimmune diseases). Additionally, intestinal TJs may be secondarily disrupted during the course of diverse diseases, subsequently allowing the bacterial translocation phenomenon and promoting the systemic inflammatory response, which is often associated with clinical deterioration. The major questions in the field are highlighted.
Collapse
|
131
|
Neisseria gonorrhoeae induced disruption of cell junction complexes in epithelial cells of the human genital tract. Microbes Infect 2011; 14:290-300. [PMID: 22146107 DOI: 10.1016/j.micinf.2011.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 09/01/2011] [Accepted: 11/07/2011] [Indexed: 01/09/2023]
Abstract
Pathogenic microorganisms, such as Neisseria gonorrhoeae, have developed mechanisms to alter epithelial barriers in order to reach subepithelial tissues for host colonization. The aim of this study was to examine the effects of gonococci on cell junction complexes of genital epithelial cells of women. Polarized Ishikawa cells, a cell line derived from endometrial epithelium, were used for experimental infection. Infected cells displayed a spindle-like shape with an irregular distribution, indicating potential alteration of cell-cell contacts. Accordingly, analysis by confocal microscopy and cellular fractionation revealed that gonococci induced redistribution of the adherens junction proteins E-cadherin and its adapter protein β-catenin from the membrane to a cytoplasmic pool, with no significant differences in protein levels. In contrast, gonococcal infection did not induce modification of either expression or distribution of the tight junction proteins Occludin and ZO-1. Similar results were observed for Fallopian tube epithelia. Interestingly, infected Ishikawa cells also showed an altered pattern of actin cytoskeleton, observed in the form of stress fibers across the cytoplasm, which in turn matched a strong alteration on the expression of fibronectin, an adhesive glycoprotein component of extracellular matrix. Interestingly, using western blotting, activation of the ERK pathway was detected after gonococcal infection while p38 pathway was not activated. All effects were pili and Opa independent. Altogether, results indicated that gonococcus, as a mechanism of pathogenesis, induced disruption of junction complexes with early detaching of E-cadherin and β-catenin from the adherens junction complex, followed by a redistribution and reorganization of actin cytoskeleton and fibronectin within the extracellular matrix.
Collapse
|
132
|
Popoff MR. Multifaceted interactions of bacterial toxins with the gastrointestinal mucosa. Future Microbiol 2011; 6:763-97. [PMID: 21797691 DOI: 10.2217/fmb.11.58] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The digestive tract is one of the ecosystems that harbors the largest number and greatest variety of bacteria. Among them, certain bacteria have developed various strategies, including the synthesis of virulence factors such as toxins, to interact with the intestinal mucosa, and are responsible for various pathologies. A large variety of bacterial toxins of different sizes, structures and modes of action are able to interact with the gastrointestinal mucosa. Some toxins, termed enterotoxins, directly stimulate fluid secretion in enterocytes or cause their death, whereas other toxins pass through the intestinal barrier and disseminate by the general circulation to remote organs or tissues, where they are active. After recognition of a membrane receptor on target cells, toxins can act at the cell membrane by transducing a signal across the membrane in a hormone-like manner, by pore formation or by damaging membrane compounds. Other toxins can enter the cells and modify an intracellular target leading to a disregulation of certain physiological processes or disorganization of some structural architectures and cell death. Toxins are fascinating molecules, which mimic or interfere with eukaryotic physiological processes. Thereby, they have permitted the identification and characterization of new natural hormones or regulatory pathways. Besides use as protective antigens in vaccines, toxins offer multiple possibilities in pharmacology, such as immune modulation or specific delivery of a protein of interest into target cells.
Collapse
Affiliation(s)
- M R Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, 25 rue du Dr Roux, 757245 Paris cedex 15, France.
| |
Collapse
|
133
|
Bertolazzi S, Lanzarotto F, Zanini B, Ricci C, Villanacci V, Lanzini A. Bio-physical characteristics of gastrointestinal mucosa of celiac patients: comparison with control subjects and effect of gluten free diet-. BMC Gastroenterol 2011; 11:119. [PMID: 22060617 PMCID: PMC3220639 DOI: 10.1186/1471-230x-11-119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 11/07/2011] [Indexed: 01/13/2023] Open
Abstract
Background Intestinal mucosa is leaky in celiac disease (CD), and this alteration may involve changes in hydrophobicity of the mucus surface barrier in addition to alteration of the epithelial barrier. The aims of our study were i) to compare duodenal hydrophobicity as an index of mucus barrier integrity in CD patients studied before (n = 38) and during gluten- free diet (GFD, n = 68), and in control subjects (n = 90), and ii) to check for regional differences of hydrophobicity in the gastro-intestinal tract. Methods Hydrophobicity was assessed by measurement of contact angle (CA) (Rame Hart 100/10 goniometer) generated by a drop of water placed on intestinal mucosal biopsies. Results CA (mean ± SD) of distal duodenum was significantly lower in CD patients (56° ± 10°)) than in control subjects (69° ± 9°, p < 0.0001), and persisted abnormal in patients studied during gluten free diet (56° ± 9°; p < 0.005). CA was significantly higher (62° ± 9°) in histologically normal duodenal biopsies than in biopsies with Marsh 1-2 (58° ± 10°; p < 0.02) and Marsh 3 lesions (57° ± 10°; p < 0.02) in pooled results of all patients and controls studied. The order of hydrofobicity along the gastrointestinal tract in control subjects follows the pattern: gastric antrum > corpus > rectum > duodenum > oesophagus > ileum. Conclusions We conclude that the hydrophobicity of duodenal mucous layer is reduced in CD patients, and that the resulting decreased capacity to repel luminal contents may contribute to the increased intestinal permeability of CD. This alteration mirrors the severity of the mucosal lesions and is not completely reverted by gluten-free diet. Intestinal hydrophobicity exhibits regional differences in the human intestinal tract.
Collapse
Affiliation(s)
- Stefania Bertolazzi
- Gastroenterology Unit, Spedali Civili and University, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | | | | | | | | | | |
Collapse
|
134
|
Modi N, Gulati N, Solomon K, Monaghan T, Robins A, Sewell HF, Mahida YR. Differential binding and internalization of Clostridium difficile toxin A by human peripheral blood monocytes, neutrophils and lymphocytes. Scand J Immunol 2011; 74:264-271. [PMID: 21595735 DOI: 10.1111/j.1365-3083.2011.02578.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Colitis due to Clostridium difficile infection is mediated by secreted toxins A and B and is characterized by infiltration by cells from the systemic circulation. The aim of our study was to investigate interactions between fluorescently labelled toxin A and peripheral blood monocytes, neutrophils and lymphocytes. Purified toxin A was labelled with Alexa Fluor® 488 (toxin A(488)) and incubated with isolated human peripheral blood mononuclear cells or washed whole blood cells for varying time intervals at either 37 or 4 °C/ice. The ability of trypan blue to quench cell surface-associated (but not cytoplasmic) fluorescence was also investigated. At 37 °C, toxin A(488) -associated fluorescence in monocytes peaked at 1 h (majority internalized), with subsequent loss associated with cell death. In contrast to monocytes, binding of toxin A(488) in neutrophils was greater on ice than at 37 °C. Studies using trypan blue suggested that over 3 h at 37 °C, most of the toxin A(488)-associated fluorescence in neutrophils remained at the cell surface. Over 48 h (37 °C and ice/4 °C), there was minimal toxin A(488)-associated fluorescence in lymphocytes. These studies suggest major differences in interactions between toxin A and circulating cells that infiltrate the mucosa during colonic inflammation in C. difficile infection.
Collapse
Affiliation(s)
- N Modi
- Institute of Infection, Immunity and Inflammation, University of Nottingham, Nottingham, UK
| | - N Gulati
- Institute of Infection, Immunity and Inflammation, University of Nottingham, Nottingham, UK
| | - K Solomon
- Institute of Infection, Immunity and Inflammation, University of Nottingham, Nottingham, UK
| | - T Monaghan
- Institute of Infection, Immunity and Inflammation, University of Nottingham, Nottingham, UK
| | - A Robins
- Institute of Infection, Immunity and Inflammation, University of Nottingham, Nottingham, UK
| | - H F Sewell
- Institute of Infection, Immunity and Inflammation, University of Nottingham, Nottingham, UK
| | - Y R Mahida
- Institute of Infection, Immunity and Inflammation, University of Nottingham, Nottingham, UK
| |
Collapse
|
135
|
Blasig IE, Bellmann C, Cording J, Del Vecchio G, Zwanziger D, Huber O, Haseloff RF. Occludin protein family: oxidative stress and reducing conditions. Antioxid Redox Signal 2011; 15:1195-219. [PMID: 21235353 DOI: 10.1089/ars.2010.3542] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The occludin-like proteins belong to a family of tetraspan transmembrane proteins carrying a marvel domain. The intrinsic function of the occludin family is not yet clear. Occludin is a unique marker of any tight junction and is found in polarized endothelial and epithelial tissue barriers, at least in the adult vertebrate organism. Occludin is able to oligomerize and to form tight junction strands by homologous and heterologous interactions, but has no direct tightening function. Its oligomerization is affected by pro- and antioxidative agents or processes. Phosphorylation of occludin has been described at multiple sites and is proposed to play a regulatory role in tight junction assembly and maintenance and, hence, to influence tissue barrier characteristics. Redox-dependent signal transduction mechanisms are among the pathways modulating occludin phosphorylation and function. This review discusses the novel concept that occludin plays a key role in the redox regulation of tight junctions, which has a major impact in pathologies related to oxidative stress and corresponding pharmacologic interventions.
Collapse
Affiliation(s)
- Ingolf E Blasig
- Leibniz-Institut für Molekulare Pharmakologie, Berlin-Buch, Germany.
| | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
The gastrointestinal epithelium transports solutes and water between lumen and blood and at the same time forms a barrier between these compartments. This highly selective and regulated barrier permits ions, water, and nutrients to be absorbed, but normally restricts the passage of harmful molecules, bacteria, viruses and other pathogens. During inflammation, the intestinal barrier can be disrupted, indicated by a decrease in transcellular electrical resistance and an increase in paracellular permeability for tracers of different size. Such inflammatory processes are accompanied by increased oxidative stress, which in turn can impair the epithelial barrier. In this review, we discuss the role of inflammatory oxidative stress on barrier function with special attention on the epithelial tight junctions. Diseases discussed causing barrier changes include the inflammatory bowel diseases Crohn's disease, ulcerative colitis, and microscopic colitis, the autoimmune disorder celiac disease, and gastrointestinal infections. In addition, the main cytokines responsible for these effects and their role during oxidative stress and intestinal inflammation will be discussed, as well as therapeutic approaches and their mode of action.
Collapse
Affiliation(s)
- Lena J John
- Department of General Medicine, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | | | |
Collapse
|
137
|
Mori A, Satsu H, Shimizu M. New model for studying the migration of immune cells into intestinal epithelial cell monolayers. Cytotechnology 2011; 43:57-64. [PMID: 19003208 DOI: 10.1023/b:cyto.0000039910.30540.8f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel cell culture system was constructed to analyze the direct interaction between intestinal epithelial cells and immune cells. Human intestinal epithelial Caco-2 cells were monolayer-cultured on the under side of a permeable membrane (12 mum pore size) in a Millicell insert. Integrated monolayers of Caco-2 cells had formed after 12 days of culture. Human monocyte/macrophage-like THP-1 cells were then added to the upper chamber of the insert, and their migration into the Caco-2 cell monolayers was observed by confocal laser scanning microscopy, after staining the cells with specific antibodies. When MCP-1, a beta-chemokine, was added to the apical side of the monolayer, a greater number of THP-1 cells migrated into the Caco-2 cell monolayers. This cell culture system will be useful for studying the behavior of macrophages in the intestinal epithelial cell monolayers at the initial stage of an intestinal immune reaction.
Collapse
Affiliation(s)
- Akira Mori
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan,
| | | | | |
Collapse
|
138
|
Identification of a novel virulence factor in Clostridium difficile that modulates toxin sensitivity of cultured epithelial cells. Infect Immun 2011; 79:3810-20. [PMID: 21746858 DOI: 10.1128/iai.00051-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two glucosylating toxins named toxins A and B play a role in the pathogenesis of Clostridium Difficile infection. The interaction of the toxins with host cell factors proceeds to downstream stages of cytotoxic effects in cells, in which involvement of other C. difficile factors remains unknown. We utilized culture filtrate of C. difficile with a low dilution to characterize the influence of putative minor proteins on the organization of the actin cytoskeleton in cultured epithelial cells and found a previously uncharacterized F-actin aggregated structure, termed "actin aggregate," at the juxtanuclear region. We reasoned that formation of actin aggregate was due to an additional factor(s) in the culture filtrate rather than the glucosylating toxins, because treatment of purified toxins rarely caused actin aggregate in cells. We focused on a previously uncharacterized hypothetical protein harboring a KDEL-like sequence as a candidate. The product of the candidate gene was detected in culture filtrate of C. difficile ATCC 9689 and was renamed Srl. Purified glutathione S-transferase-tagged Srl triggered formation of actin aggregate in the cells in the presence of either toxin A or B and enhanced cytotoxicity of each of the two toxins, including decreases in both cell viability and transepithelial resistance of cultured epithelial monolayer, although the recombinant Srl alone did not show detectable cytotoxicity. Srl-neutralized culture filtrate partially inhibited morphological changes of the cells in parallel with decreased actin aggregate formation in the cells. Thus, Srl might contribute to the modulation of toxin sensitivity of intestinal epithelial cells by enhancing cytotoxicity of C. difficile toxins.
Collapse
|
139
|
Shu XC, Wang SD, Wang FY. Advances in understanding the relationship between irritable bowel syndrome and intestinal bacteria. Shijie Huaren Xiaohua Zazhi 2011; 19:1808-1812. [DOI: 10.11569/wcjd.v19.i17.1808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a multifactorial functional disorder of unknown cause and pathophysiology. Commensal bacteria in the digestive tract and host co-exist in a mutually beneficial relationship. If this relationship is interrupted, various types of diseases will be caused. In recent years, the development of microecology has led to a better understanding of the relationship between intestinal bacterial flora and IBS. Many studies have suggested a close relationship between intestinal bacteria and IBS. In this article, we will review the role of alterations in intestinal bacterial flora in the pathogenesis of IBS.
Collapse
|
140
|
Popoff MR, Geny B. Rho/Ras-GTPase-dependent and -independent activity of clostridial glucosylating toxins. J Med Microbiol 2011; 60:1057-1069. [PMID: 21349986 DOI: 10.1099/jmm.0.029314-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Clostridial glucosylating toxins are the main virulence factors of clostridia responsible for gangrene and/or colitis. These toxins have been well characterized to inactivate Rho/Ras-GTPases through glucosylation. However, the signalling pathways downstream of Rho/Ras-GTPases leading to the intracellular effects of these toxins are only partially known. Rac-dependent modification of focal adhesion complexes and phosphoinositide metabolism seem to be key processes involved in actin filament depolymerization and disorganization of intercellular junctions. In addition, clostridial glucosylating toxins induce Rho/Ras-independent intracellular effects such as activation of mitogen-activated protein kinase pathways, which are used by some of these toxins to trigger an inflammatory response.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Bladine Geny
- Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 rue du Dr Roux, 75724 Paris cedex 15, France
| |
Collapse
|
141
|
Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis. Infect Immun 2011; 79:1498-503. [PMID: 21245274 DOI: 10.1128/iai.01196-10] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is a spore-forming bacterium that infects the lower intestinal tract of humans and is the most common known cause of diarrhea among hospitalized patients. Clostridium difficile colitis is mediated by toxins and develops during or following antibiotic administration. We have used a murine model of C. difficile infection, which reproduces the major features of the human disease, to study the effect of innate immune activation on resistance to C. difficile infection. We found that administration of purified Salmonella-derived flagellin, a Toll-like receptor 5 (TLR5) agonist, protects mice from C. difficile colitis by delaying C. difficile growth and toxin production in the colon and cecum. TLR5 stimulation significantly improves pathological changes in the cecum and colon of C. difficile-infected mice and reduces epithelial cell loss. Flagellin treatment reduces epithelial apoptosis in the large intestine, thereby protecting the integrity of the intestinal epithelial barrier during C. difficile infection. We demonstrate that restoring intestinal innate immune tone by TLR stimulation in antibiotic-treated mice ameliorates intestinal inflammation and prevents death from C. difficile colitis, potentially providing an approach to prevent C. difficile-induced pathology.
Collapse
|
142
|
Iwatsuki S, Kijima Y, Shionoya H. Effect of Natural Milk Antibodies on Intestinal Flora. J JPN SOC FOOD SCI 2011. [DOI: 10.3136/nskkk.58.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
143
|
Vaccine-induced intestinal immunity to ricin toxin in the absence of secretory IgA. Vaccine 2010; 29:681-9. [PMID: 21115050 DOI: 10.1016/j.vaccine.2010.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/29/2010] [Accepted: 11/10/2010] [Indexed: 12/28/2022]
Abstract
The RNA N-glycosidase ribosome inactivating proteins (RIPs) constitute a ubiquitous family of plant- and bacterium-derived toxins that includes the category B select agents ricin, abrin and shiga toxin. While these toxins are potent inducers of intestinal epithelial cell death and inflammation, very little is known about the mechanisms underlying mucosal immunity to these toxins. In the present study, we report that secretory IgA (SIgA) antibodies are not required for intestinal immunity to ricin, as evidenced by the fact that mice devoid of SIgA, due to a mutation in the polymeric immunoglobulin receptor, were impervious to the effects of intragastric toxin challenge following ricin toxoid immunization. Furthermore, parenteral administration of ricin-specific monoclonal IgGs, directed against either ricin's enzymatic subunit (RTA) or ricin's binding subunit (RTB), to wild type mice was as effective as monoclonal IgAs with comparable specificities in imparting intestinal immunity to ricin. These data are consistent with reports from others demonstrating that immunization of mice by routes known not to induce mucosal antibody responses (e.g., intramuscular and intradermal) is sufficient to elicit protection against both systemic and mucosal ricin challenges.
Collapse
|
144
|
Intestinal epithelial cells and their role in innate mucosal immunity. Cell Tissue Res 2010; 343:5-12. [PMID: 21104188 DOI: 10.1007/s00441-010-1082-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 01/15/2023]
Abstract
The mucosal surfaces of the respiratory, gastrointestinal and urogenital tracts are covered by a layer of epithelial cells that are responsible for sensing and promoting a host immune response in order to establish the limits not only for commensal microorganisms but also for foreign organisms or particles. This is a remarkable task as the human body represents a composite of about 10 trillion human-self cells plus non-self cells from autochthonous or indigenous microbes that outnumber human cells 10:1. Hence, the homeostasis of epithelial cells that line mucosal surfaces relies on a fine-tuned immune system that patrols the boundaries between human and microbial cells. In the case of the intestine, the epithelial layer is composed of at least six epithelial cell lineages that act as a physiological barrier in addition to aiding digestion and the absorption of nutrients, water and electrolytes. In this review, we highlight the immense role of the intestinal epithelium in coordinating the mucosal innate immune response.
Collapse
|
145
|
Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 2010; 1:a002584. [PMID: 20066090 DOI: 10.1101/cshperspect.a002584] [Citation(s) in RCA: 726] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding of tight junctions has evolved from their historical perception as inert solute barriers to recognition of their physiological and biochemical complexity. Many proteins are specifically localized to tight junctions, including cytoplasmic actin-binding proteins and adhesive transmembrane proteins. Among the latter are claudins, which are critical barrier proteins. Current information suggests that the paracellular barrier is most usefully modeled as having two physiologic components: a system of charge-selective small pores, 4 A in radius, and a second pathway created by larger discontinuities in the barrier, lacking charge or size discrimination. The first pathway is influenced by claudin expression patterns and the second is likely controlled by different proteins and signals. Recent information on claudin function and disease-causing mutations have led to a more complete understanding of their role in barrier formation, but progress is impeded by lack of high resolution structural information.
Collapse
Affiliation(s)
- James M Anderson
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, 6312 MBRB, Chapel Hill, North Carolina 27599-7545, USA.
| | | |
Collapse
|
146
|
Keel MK, Songer JG. The Attachment, Internalization, and Time-Dependent, Intracellular Distribution of Clostridium difficile Toxin A in Porcine Intestinal Explants. Vet Pathol 2010; 48:369-80. [DOI: 10.1177/0300985810380395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toxin A (TcdA), secreted by toxigenic strains of Clostridium difficile, produces lesions typical of C. difficile–associated disease (CDAD) in susceptible mammal species. Porcine colon explants maintained for 2 hours with TcdA developed severe lesions characterized by cell swelling, swelling of mitochondria and other organelles, distension of cytoplasmic vesicles, expansion of paracellular spaces, apoptosis, and necrosis. Severity of lesions was proportional to the dosage of toxin. No lesions were present in uninoculated control tissues after 2 hours. Receptor-mediated endocytosis is the keystone event in the pathogenesis of the toxin, and susceptibility of a given species is thought to depend on the presence of receptors in intestinal epithelial cells. The fate of TcdA applied to viable colon explants was determined by transmission electron microscopy in an anti-toxin-labeled gold assay. At 5 minutes postinoculation, the presence of TcdA was indicated at the membrane of microvilli or in the cytoplasm of epithelial cells. TcdA was also indirectly observed within endosomes or attached at their margin. A 30-minute inoculation period was associated with many more gold particles labeling structures inside the cell, although some were still attached to microvilli. Within the cell, most TcdA was associated with mitochondria of epithelial cells, but some gold particles decorated the nuclei. Endothelial cells of the lamina propria had evidence of TcdA at both their lumenal and basal aspects, as well as in the cytoplasm and, occasionally, nuclei. Gold particles also labeled the lumen of such vessels as well as leucocytes in blood vessels and the lamina propria.
Collapse
Affiliation(s)
- M. K. Keel
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - J. G. Songer
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| |
Collapse
|
147
|
Abstract
Enteroaggregative Escherichia coli (EAEC) is responsible for inflammatory diarrhea in diverse populations, but its mechanisms of pathogenesis have not been fully elucidated. We have used a previously characterized polarized intestinal T84 cell model to investigate the effects of infection with EAEC strain 042 on tight junction integrity. We find that infection with strain 042 induces a decrease in transepithelial electrical resistance (TER) compared to uninfected controls and to cells infected with commensal E. coli strain HS. When the infection was limited after 3 h by washing and application of gentamicin, we observed that the TER of EAEC-infected monolayers continued to decline, and they remained low even as long as 48 h after the infection. Cells infected with the afimbrial mutant strain 042aafA exhibited TER measurements similar to those seen in uninfected monolayers, implicating the aggregative adherence fimbriae II (AAF/II) as necessary for barrier dysfunction. Infection with wild-type strain 042 induced aberrant localization of the tight junction proteins claudin-1 and, to a lesser degree, occludin. EAEC-infected T84 cells exhibited irregular shapes, and some cells became elongated and/or enlarged; these effects were not observed after infection with commensal E. coli strain HS or 042aafA. The effects on tight junctions were also observed with AAF/I-producing strain JM221, and an afimbrial mutant was similarly deficient in inducing barrier dysfunction. Our results show that EAEC induces epithelial barrier dysfunction in vitro and implicates the AAF adhesins in this phenotype.
Collapse
|
148
|
Hirota SA, Fines K, Ng J, Traboulsi D, Lee J, Ihara E, Li Y, Willmore WG, Chung D, Scully MM, Louie T, Medlicott S, Lejeune M, Chadee K, Armstrong G, Colgan SP, Muruve DA, MacDonald JA, Beck PL. Hypoxia-inducible factor signaling provides protection in Clostridium difficile-induced intestinal injury. Gastroenterology 2010; 139:259-69.e3. [PMID: 20347817 PMCID: PMC3063899 DOI: 10.1053/j.gastro.2010.03.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 03/09/2010] [Accepted: 03/17/2010] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Clostridium difficile is the leading cause of nosocomial infectious diarrhea. Antibiotic resistance and increased virulence of strains have increased the number of C difficile-related deaths worldwide. The innate host response mechanisms to C difficile are not resolved; we propose that hypoxia-inducible factor (HIF-1) has an innate, protective role in C difficile colitis. We studied the impact of C difficile toxins on the regulation of HIF-1 and evaluated the role of HIF-1alpha in C difficile-mediated injury/inflammation. METHODS We assessed HIF-1alpha mRNA and protein levels and DNA binding in human mucosal biopsy samples and Caco-2 cells following exposure to C difficile toxins. We used the mouse ileal loop model of C difficile toxin-induced intestinal injury. Mice with targeted deletion of HIF-1alpha in the intestinal epithelium were used to assess the effects of HIF-1alpha signaling in response to C difficile toxin. RESULTS Mucosal biopsy specimens and Caco-2 cells exposed to C difficile toxin had a significant increase in HIF-1alpha transcription and protein levels. Toxin-induced DNA binding was also observed in Caco-2 cells. Toxin-induced HIF-1alpha accumulation was attenuated by nitric oxide synthase inhibitors. In vivo deletion of intestinal epithelial HIF-1alpha resulted in more severe, toxin-induced intestinal injury and inflammation. In contrast, stabilization of HIF-1alpha with dimethyloxallyl glycine attenuated toxin-induced injury and inflammation. This was associated with induction of HIF-1-regulated protective factors (such as vascular endothelial growth factor-alpha, CD73, and intestinal trefoil factor) and down-regulation of proinflammatory molecules such as tumor necrosis factor and Cxcl1. CONCLUSIONS HIF-1alpha protects the intestinal mucosa from C difficile toxins. The innate protective actions of HIF-1alpha in response to C difficile toxins be developed as therapeutics for C difficile-associated disease.
Collapse
Affiliation(s)
- Simon A. Hirota
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada,Department of Medicine, University of Calgary, Calgary, Canada
| | - Kyla Fines
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada,Department of Medicine, University of Calgary, Calgary, Canada
| | - Jeffery Ng
- Department of Medicine, University of Calgary, Calgary, Canada
| | - Danya Traboulsi
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Josh Lee
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Eikichi Ihara
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Yan Li
- Department of Medicine, University of Calgary, Calgary, Canada
| | | | - Daniel Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Melanie M. Scully
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado, Health Sciences Center, Denver, USA
| | - Thomas Louie
- Department of Medicine, University of Calgary, Calgary, Canada
| | - Sean Medlicott
- Department of Pathology, University of Calgary, Calgary, Canada
| | - Manigandan Lejeune
- Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, Canada
| | - Kris Chadee
- Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, Canada
| | - Glen Armstrong
- Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, Canada
| | - Sean P. Colgan
- Mucosal Inflammation Program, Division of Gastroenterology, University of Colorado, Health Sciences Center, Denver, USA
| | | | - Justin A. MacDonald
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Paul L. Beck
- Department of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
149
|
Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 2010; 298:G807-19. [PMID: 20299599 DOI: 10.1152/ajpgi.00243.2009] [Citation(s) in RCA: 468] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal tract is a diverse microenvironment where more than 500 species of bacteria thrive. A single layer of epithelium is all that separates these commensal microorganisms and pathogens from the underlying immune cells, and thus epithelial barrier function is a key component in the arsenal of defense mechanisms required to prevent infection and inflammation. The epithelial barrier consists of a dense mucous layer containing secretory IgA and antimicrobial peptides as well as dynamic junctional complexes that regulate permeability between cells. Probiotics are live microorganisms that confer benefit to the host and that have been suggested to ameliorate or prevent diseases including antibiotic-associated diarrhea, irritable bowel syndrome, and inflammatory bowel disease. Probiotics likely function through enhancement of barrier function, immunomodulation, and competitive adherence to the mucus and epithelium. This review summarizes the evidence about effects of the many available probiotics with an emphasis on intestinal barrier function and the mechanisms affected by probiotics.
Collapse
Affiliation(s)
- Christina L Ohland
- Department of Physiology and Pharmacology, Univ. of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
150
|
Endocytosis and recycling of tight junction proteins in inflammation. J Biomed Biotechnol 2010; 2010:484987. [PMID: 20011071 PMCID: PMC2789582 DOI: 10.1155/2010/484987] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 10/28/2009] [Indexed: 02/06/2023] Open
Abstract
A critical function of the epithelial lining is to form a barrier that separates luminal contents from the underlying interstitium. This barrier function is primarily regulated by the apical junctional complex (AJC) consisting of tight junctions (TJs) and adherens junctions (AJs) and is compromised under inflammatory conditions. In intestinal epithelial cells, proinflammatory cytokines, for example, interferon-gamma (IFN-gamma), induce internalization of TJ proteins by endocytosis. Endocytosed TJ proteins are passed into early and recycling endosomes, suggesting the involvement of recycling of internalized TJ proteins. This review summarizes mechanisms by which TJ proteins under inflammatory conditions are internalized in intestinal epithelial cells and point out comparable mechanism in nonintestinal epithelial cells.
Collapse
|