101
|
Biofilm plasmids with a rhamnose operon are widely distributed determinants of the 'swim-or-stick' lifestyle in roseobacters. ISME JOURNAL 2016; 10:2498-513. [PMID: 26953602 PMCID: PMC5030684 DOI: 10.1038/ismej.2016.30] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/12/2016] [Accepted: 01/24/2016] [Indexed: 12/17/2022]
Abstract
Alphaproteobacteria of the metabolically versatile Roseobacter group (Rhodobacteraceae) are abundant in marine ecosystems and represent dominant primary colonizers of submerged surfaces. Motility and attachment are the prerequisite for the characteristic 'swim-or-stick' lifestyle of many representatives such as Phaeobacter inhibens DSM 17395. It has recently been shown that plasmid curing of its 65-kb RepA-I-type replicon with >20 genes for exopolysaccharide biosynthesis including a rhamnose operon results in nearly complete loss of motility and biofilm formation. The current study is based on the assumption that homologous biofilm plasmids are widely distributed. We analyzed 33 roseobacters that represent the phylogenetic diversity of this lineage and documented attachment as well as swimming motility for 60% of the strains. All strong biofilm formers were also motile, which is in agreement with the proposed mechanism of surface attachment. We established transposon mutants for the four genes of the rhamnose operon from P. inhibens and proved its crucial role in biofilm formation. In the Roseobacter group, two-thirds of the predicted biofilm plasmids represent the RepA-I type and their physiological role was experimentally validated via plasmid curing for four additional strains. Horizontal transfer of these replicons was documented by a comparison of the RepA-I phylogeny with the species tree. A gene content analysis of 35 RepA-I plasmids revealed a core set of genes, including the rhamnose operon and a specific ABC transporter for polysaccharide export. Taken together, our data show that RepA-I-type biofilm plasmids are essential for the sessile mode of life in the majority of cultivated roseobacters.
Collapse
|
102
|
SOS System Induction Inhibits the Assembly of Chemoreceptor Signaling Clusters in Salmonella enterica. PLoS One 2016; 11:e0146685. [PMID: 26784887 PMCID: PMC4718596 DOI: 10.1371/journal.pone.0146685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/21/2015] [Indexed: 01/08/2023] Open
Abstract
Swarming, a flagellar-driven multicellular form of motility, is associated with bacterial virulence and increased antibiotic resistance. In this work we demonstrate that activation of the SOS response reversibly inhibits swarming motility by preventing the assembly of chemoreceptor-signaling polar arrays. We also show that an increase in the concentration of the RecA protein, generated by SOS system activation, rather than another function of this genetic network impairs chemoreceptor polar cluster formation. Our data provide evidence that the molecular balance between RecA and CheW proteins is crucial to allow polar cluster formation in Salmonella enterica cells. Thus, activation of the SOS response by the presence of a DNA-injuring compound increases the RecA concentration, thereby disturbing the equilibrium between RecA and CheW and resulting in the cessation of swarming. Nevertheless, when the DNA-damage decreases and the SOS response is no longer activated, basal RecA levels and thus polar cluster assembly are reestablished. These results clearly show that bacterial populations moving over surfaces make use of specific mechanisms to avoid contact with DNA-damaging compounds.
Collapse
|
103
|
Lu S, Liu F, Xing B, Yeow EKL. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062706. [PMID: 26764726 DOI: 10.1103/physreve.92.062706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 06/05/2023]
Abstract
A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.
Collapse
Affiliation(s)
- Shengtao Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Fang Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Edwin K L Yeow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
104
|
Butt A, Halliday N, Williams P, Atkins HS, Bancroft GJ, Titball RW. Burkholderia pseudomallei kynB plays a role in AQ production, biofilm formation, bacterial swarming and persistence. Res Microbiol 2015; 167:159-67. [PMID: 26654915 DOI: 10.1016/j.resmic.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
Kynurenine formamidase (KynB) forms part of the kynurenine pathway which metabolises tryptophan to anthranilate. This metabolite can be used for downstream production of 2-alkyl-4-quinolone (AQ) signalling molecules that control virulence in Pseudomonas aeruginosa. Here we investigate the role of kynB in the production of AQs and virulence-associated phenotypes of Burkholderia pseudomallei K96243, the causative agent of melioidosis. Deletion of kynB resulted in reduced AQ production, increased biofilm formation, decreased swarming and increased tolerance to ciprofloxacin. Addition of exogenous anthranilic acid restored the biofilm phenotype, but not the persister phenotype. This study suggests the kynurenine pathway is a critical source of anthranilate and signalling molecules that may regulate B. pseudomallei virulence.
Collapse
Affiliation(s)
- Aaron Butt
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| | - Nigel Halliday
- Centre for Biomolecular Sciences, School of Biosciences, University of Nottingham, Nottingham, UK.
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Biosciences, University of Nottingham, Nottingham, UK.
| | - Helen S Atkins
- Defence Science and Technology Laboratory, Porton Down, Salisbury, UK.
| | - Gregory J Bancroft
- Department of Immunology and Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Richard W Titball
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
105
|
Ariel G, Rabani A, Benisty S, Partridge JD, Harshey RM, Be'er A. Swarming bacteria migrate by Lévy Walk. Nat Commun 2015; 6:8396. [PMID: 26403719 PMCID: PMC4598630 DOI: 10.1038/ncomms9396] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/19/2015] [Indexed: 12/24/2022] Open
Abstract
Individual swimming bacteria are known to bias their random trajectories in search of food and to optimize survival. The motion of bacteria within a swarm, wherein they migrate as a collective group over a solid surface, is fundamentally different as typical bacterial swarms show large-scale swirling and streaming motions involving millions to billions of cells. Here by tracking trajectories of fluorescently labelled individuals within such dense swarms, we find that the bacteria are performing super-diffusion, consistent with Lévy walks. Lévy walks are characterized by trajectories that have straight stretches for extended lengths whose variance is infinite. The evidence of super-diffusion consistent with Lévy walks in bacteria suggests that this strategy may have evolved considerably earlier than previously thought.
Collapse
Affiliation(s)
- Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat Gan 52000, Israel
| | - Amit Rabani
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Sivan Benisty
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Jonathan D. Partridge
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Rasika M. Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| |
Collapse
|
106
|
Harshey RM, Partridge JD. Shelter in a Swarm. J Mol Biol 2015; 427:3683-94. [PMID: 26277623 DOI: 10.1016/j.jmb.2015.07.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/04/2023]
Abstract
Flagella propel bacteria during both swimming and swarming, dispersing them widely. However, while swimming bacteria use chemotaxis to find nutrients and avoid toxic environments, swarming bacteria appear to suppress chemotaxis and to use the dynamics of their collective motion to continuously expand and acquire new territory, barrel through lethal chemicals in their path, carry along bacterial and fungal cargo that assists in exploration of new niches, and engage in group warfare for niche dominance. Here, we focus on two aspects of swarming, which, if understood, hold the promise of revealing new insights into microbial signaling and behavior, with ramifications beyond bacterial swarming. These are as follows: how bacteria sense they are on a surface and turn on programs that promote movement and how they override scarcity and adversity as dense packs.
Collapse
Affiliation(s)
- Rasika M Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Jonathan D Partridge
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
107
|
Nickzad A, Lépine F, Déziel E. Quorum Sensing Controls Swarming Motility of Burkholderia glumae through Regulation of Rhamnolipids. PLoS One 2015; 10:e0128509. [PMID: 26047513 PMCID: PMC4457897 DOI: 10.1371/journal.pone.0128509] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour.
Collapse
Affiliation(s)
- Arvin Nickzad
- INRS—Institut Armand-Frappier, Laval, Québec, Canada
| | | | - Eric Déziel
- INRS—Institut Armand-Frappier, Laval, Québec, Canada
| |
Collapse
|
108
|
Elgeti J, Winkler RG, Gompper G. Physics of microswimmers--single particle motion and collective behavior: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:056601. [PMID: 25919479 DOI: 10.1088/0034-4885/78/5/056601] [Citation(s) in RCA: 676] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.
Collapse
Affiliation(s)
- J Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | |
Collapse
|
109
|
Ping L, Wu Y, Hosu BG, Tang JX, Berg HC. Osmotic pressure in a bacterial swarm. Biophys J 2015; 107:871-8. [PMID: 25140422 DOI: 10.1016/j.bpj.2014.05.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 10/24/2022] Open
Abstract
Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼ 30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼ 120 μm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (∼ 30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide.
Collapse
Affiliation(s)
- Liyan Ping
- Rowland Institute at Harvard, Cambridge, Massachusetts
| | - Yilin Wu
- Department of Physics, Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Basarab G Hosu
- Rowland Institute at Harvard, Cambridge, Massachusetts; Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | - Jay X Tang
- Rowland Institute at Harvard, Cambridge, Massachusetts; Physics Department, Brown University, Providence, Rhode Island
| | - Howard C Berg
- Rowland Institute at Harvard, Cambridge, Massachusetts; Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
110
|
Morales-Soto N, Anyan ME, Mattingly AE, Madukoma CS, Harvey CW, Alber M, Déziel E, Kearns DB, Shrout JD. Preparation, imaging, and quantification of bacterial surface motility assays. J Vis Exp 2015:52338. [PMID: 25938934 PMCID: PMC4541456 DOI: 10.3791/52338] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bacterial surface motility, such as swarming, is commonly examined in the laboratory using plate assays that necessitate specific concentrations of agar and sometimes inclusion of specific nutrients in the growth medium. The preparation of such explicit media and surface growth conditions serves to provide the favorable conditions that allow not just bacterial growth but coordinated motility of bacteria over these surfaces within thin liquid films. Reproducibility of swarm plate and other surface motility plate assays can be a major challenge. Especially for more "temperate swarmers" that exhibit motility only within agar ranges of 0.4%-0.8% (wt/vol), minor changes in protocol or laboratory environment can greatly influence swarm assay results. "Wettability", or water content at the liquid-solid-air interface of these plate assays, is often a key variable to be controlled. An additional challenge in assessing swarming is how to quantify observed differences between any two (or more) experiments. Here we detail a versatile two-phase protocol to prepare and image swarm assays. We include guidelines to circumvent the challenges commonly associated with swarm assay media preparation and quantification of data from these assays. We specifically demonstrate our method using bacteria that express fluorescent or bioluminescent genetic reporters like green fluorescent protein (GFP), luciferase (lux operon), or cellular stains to enable time-lapse optical imaging. We further demonstrate the ability of our method to track competing swarming species in the same experiment.
Collapse
Affiliation(s)
- Nydia Morales-Soto
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame; Eck Institute for Global Health, University of Notre Dame
| | - Morgen E Anyan
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame
| | - Anne E Mattingly
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame
| | - Chinedu S Madukoma
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame
| | - Cameron W Harvey
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame
| | - Mark Alber
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame
| | | | | | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame; Eck Institute for Global Health, University of Notre Dame; Department of Biological Sciences, University of Notre Dame;
| |
Collapse
|
111
|
O' Donnell MM, Harris HMB, Lynch DB, Ross RP, O'Toole PW. Lactobacillus ruminis strains cluster according to their mammalian gut source. BMC Microbiol 2015; 15:80. [PMID: 25879663 PMCID: PMC4393605 DOI: 10.1186/s12866-015-0403-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/11/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lactobacillus ruminis is a motile Lactobacillus that is autochthonous to the human gut, and which may also be isolated from other mammals. Detailed characterization of L. ruminis has previously been restricted to strains of human and bovine origin. We therefore sought to expand our bio-bank of strains to identify and characterise isolates of porcine and equine origin by comparative genomics. RESULTS We isolated five strains from the faeces of horses and two strains from pigs, and compared their motility, biochemistry and genetic relatedness to six human isolates and three bovine isolates including the type strain 27780(T). Multilocus sequence typing analysis based on concatenated sequence data for six individual loci separated the 16 L. ruminis strains into three clades concordant with human, bovine or porcine, and equine sources. Sequencing the genomes of four additional strains of human, bovine, equine and porcine origin revealed a high level of genome synteny, independent of the source animal. Analysis of carbohydrate utilization, stress survival and technological robustness in a combined panel of sixteen L. ruminis isolates identified strains with optimal survival characteristics suitable for future investigation as candidate probiotics. Under laboratory conditions, six human isolates of L. ruminis tested were aflagellate and non-motile, whereas all 10 strains of bovine, equine and porcine origin were motile. Interestingly the equine and porcine strains were hyper-flagellated compared to bovine isolates, and this hyper-flagellate phenotype correlated with the ability to swarm on solid medium containing up to 1.8% agar. Analysis by RNA sequencing and qRT-PCR identified genes for the biosynthesis of flagella, genes for carbohydrate metabolism and genes of unknown function that were differentially expressed in swarming cells of an equine isolate of L. ruminis. CONCLUSIONS We suggest that Lactobacillus ruminis isolates have potential to be used in the functional food industry. We have also identified a MLST scheme able to distinguish between strains of L. ruminis of different origin. Genes for non-digestible oligosaccharide metabolism were identified with a putative role in swarming behaviour.
Collapse
Affiliation(s)
- Michelle M O' Donnell
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland. michelle.o'
- School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. michelle.o'
| | - Hugh Michael B Harris
- School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - Denise B Lynch
- School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - Reynolds Paul Ross
- School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
- College of Science, Engineering and Food Science (SEFS), University College Cork, Cork, Ireland.
| | - Paul W O'Toole
- School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
- School of Microbiology, Food Science Building, University College Cork, Cork, Ireland.
| |
Collapse
|
112
|
Abstract
E. coli's hardiness, versatility, broad palate and ease of handling have made it the most intensively studied and best understood organism on the planet. However, research on E.coli has primarily examined it as a model organism, one that is abstracted from any natural history. But E. coli is far more than just a microbial lab rat. Rather, it is a highly diverse organism with a complex, multi-faceted niche in the wild. Recent studies of 'wild' E. coli have, for example, revealed a great deal about its presence in the environment, its diversity and genomic evolution, as well as its role in the human microbiome and disease. These findings have shed light on aspects of its biology and ecology that pose far-reaching questions and illustrate how an appreciation of E. coli's natural history can expand its value as a model organism.
Collapse
Affiliation(s)
- Zachary D Blount
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States; BEACON Center for the Study of Evolution in Action, East Lansing, United States
| |
Collapse
|
113
|
Abstract
The bacterial flagellum is driven by a bidirectional rotary motor, which propels bacteria to swim through liquids or swarm over surfaces. While the functions of the major structural and regulatory components of the flagellum are known, the function of the well-conserved FliL protein is not. In Salmonella and Escherichia coli, the absence of FliL leads to a small defect in swimming but complete elimination of swarming. Here, we tracked single motors of these bacteria and found that absence of FliL decreases their speed as well as switching frequency. We demonstrate that FliL interacts strongly with itself, with the MS ring protein FliF, and with the stator proteins MotA and MotB and weakly with the rotor switch protein FliG. These and other experiments show that FliL increases motor output either by recruiting or stabilizing the stators or by increasing their efficiency and contributes additionally to torque generation at higher motor loads. The increased torque enabled by FliL explains why this protein is essential for swarming on an agar surface expected to offer increased resistance to bacterial movement. FliL is a well-conserved bacterial flagellar protein whose absence leads to a variety of motility defects, ranging from moderate to complete inhibition of swimming in some bacterial species, inhibition of swarming in others, structural defects that break the flagellar rod during swarming in E. coli and Salmonella, and failure to eject the flagellar filament during the developmental transition of a swimmer to a stalk cell in Caulobacter crescentus. Despite these many phenotypes, a specific function for FliL has remained elusive. Here, we established a central role for FliL at the Salmonella and E. coli motors, where it interacts with both rotor and stator proteins, increases motor output, and contributes to the normal rotational bias of the motor.
Collapse
|
114
|
Benisty S, Ben-Jacob E, Ariel G, Be'er A. Antibiotic-induced anomalous statistics of collective bacterial swarming. PHYSICAL REVIEW LETTERS 2015; 114:018105. [PMID: 25615508 DOI: 10.1103/physrevlett.114.018105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Indexed: 06/04/2023]
Abstract
Under sublethal antibiotics concentrations, the statistics of collectively swarming Bacillus subtilis transitions from normal to anomalous, with a heavy-tailed speed distribution and a two-step temporal correlation of velocities. The transition is due to changes in the properties of the bacterial motion and the formation of a motility-defective subpopulation that self-segregates into regions. As a result, both the colonial expansion and the growth rate are not affected by antibiotics. This phenomenon suggests a new strategy bacteria employ to fight antibiotic stress.
Collapse
Affiliation(s)
- Sivan Benisty
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Eshel Ben-Jacob
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77025, USA
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat Gan 52000, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| |
Collapse
|
115
|
Truong VK, Mainwaring DE, Murugaraj P, Nguyen DHK, Ivanova EP. Impact of confining 3-D polymer networks on dynamics of bacterial ingress and self-organisation. J Mater Chem B 2015; 3:8704-8710. [DOI: 10.1039/c5tb01880c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alignment of microbial colonies along with polymeric cell wall.
Collapse
Affiliation(s)
- Vi Khanh Truong
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122
| | - David E. Mainwaring
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122
| | - Pandiyan Murugaraj
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122
| | - Duy H. K. Nguyen
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122
| | - Elena P. Ivanova
- School of Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn 3122
| |
Collapse
|
116
|
Adaptor-mediated Lon proteolysis restricts Bacillus subtilis hyperflagellation. Proc Natl Acad Sci U S A 2014; 112:250-5. [PMID: 25538299 DOI: 10.1073/pnas.1417419112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Lon AAA+ protease is a highly conserved intracellular protease that is considered an anticancer target in eukaryotic cells and a crucial virulence regulator in bacteria. Lon degrades both damaged, misfolded proteins and specific native regulators, but how Lon discriminates among a large pool of candidate targets remains unclear. Here we report that Bacillus subtilis LonA specifically degrades the master regulator of flagellar biosynthesis SwrA governed by the adaptor protein swarming motility inhibitor A (SmiA). SmiA-dependent LonA proteolysis is abrogated upon microbe-substrate contact causing SwrA protein levels to increase and elevate flagellar density above a critical threshold for swarming motility atop solid surfaces. Surface contact-dependent cellular differentiation in bacteria is rapid, and regulated proteolysis may be a general mechanism of transducing surface stimuli.
Collapse
|
117
|
Anyan ME, Amiri A, Harvey CW, Tierra G, Morales-Soto N, Driscoll CM, Alber MS, Shrout JD. Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2014; 111:18013-8. [PMID: 25468980 PMCID: PMC4273417 DOI: 10.1073/pnas.1414661111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP-TFP interactions between cells should be a dominant mechanism that promotes cell-cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell-cell association and directional collective motion within motile groups to aid their survival.
Collapse
Affiliation(s)
- Morgen E Anyan
- Departments of Civil and Environmental Engineering and Earth Sciences
| | | | | | - Giordano Tierra
- Applied and Computational Mathematics and Statistics, and Mathematical Institute, Charles University, 18675 Prague, Czech Republic; and
| | - Nydia Morales-Soto
- Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Callan M Driscoll
- Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Mark S Alber
- Physics, Applied and Computational Mathematics and Statistics, and Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Joshua D Shrout
- Departments of Civil and Environmental Engineering and Earth Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; Biological Sciences, and
| |
Collapse
|
118
|
Abstract
Pseudomonas aeruginosa infects every type of host that has been examined by deploying multiple virulence factors. Previous studies of virulence regulation have largely focused on chemical cues, but P. aeruginosa may also respond to mechanical cues. Using a rapid imaging-based virulence assay, we demonstrate that P. aeruginosa activates virulence in response to attachment to a range of chemically distinct surfaces, suggesting that this bacterial species responds to mechanical properties of its substrates. Surface-activated virulence requires quorum sensing, but activating quorum sensing does not induce virulence without surface attachment. The activation of virulence by surfaces also requires the surface-exposed protein PilY1, which has a domain homologous to a eukaryotic mechanosensor. Specific mutation of the putative PilY1 mechanosensory domain is sufficient to induce virulence in non-surface-attached cells, suggesting that PilY1 mediates surface mechanotransduction. Triggering virulence only when cells are both at high density and attached to a surface—two host-nonspecific cues—explains how P. aeruginosa precisely regulates virulence while maintaining broad host specificity.
Collapse
|
119
|
Mounier J, Camus A, Mitteau I, Vaysse PJ, Goulas P, Grimaud R, Sivadon P. The marine bacteriumMarinobacter hydrocarbonoclasticusSP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles. FEMS Microbiol Ecol 2014; 90:816-31. [DOI: 10.1111/1574-6941.12439] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Julie Mounier
- UMR UPPA-CNRS 5254 IPREM; Université de Pau et des Pays de l'Adour, Equipe Environnement et Microbiologie; Pau Cedex France
| | - Arantxa Camus
- UMR UPPA-CNRS 5254 IPREM; Université de Pau et des Pays de l'Adour, Equipe Environnement et Microbiologie; Pau Cedex France
| | - Isabelle Mitteau
- UMR UPPA-CNRS 5254 IPREM; Université de Pau et des Pays de l'Adour, Equipe Environnement et Microbiologie; Pau Cedex France
| | - Pierre-Joseph Vaysse
- UMR UPPA-CNRS 5254 IPREM; Université de Pau et des Pays de l'Adour, Equipe Environnement et Microbiologie; Pau Cedex France
| | - Philippe Goulas
- UMR UPPA-CNRS 5254 IPREM; Université de Pau et des Pays de l'Adour, Equipe Environnement et Microbiologie; Pau Cedex France
| | - Régis Grimaud
- UMR UPPA-CNRS 5254 IPREM; Université de Pau et des Pays de l'Adour, Equipe Environnement et Microbiologie; Pau Cedex France
| | - Pierre Sivadon
- UMR UPPA-CNRS 5254 IPREM; Université de Pau et des Pays de l'Adour, Equipe Environnement et Microbiologie; Pau Cedex France
| |
Collapse
|
120
|
Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming. J Bacteriol 2014; 197:159-73. [PMID: 25331431 DOI: 10.1128/jb.02235-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proteus mirabilis is a dimorphic motile bacterium well known for its flagellum-dependent swarming motility over surfaces. In liquid, P. mirabilis cells are 1.5- to 2.0-μm swimmer cells with 4 to 6 flagella. When P. mirabilis encounters a solid surface, where flagellar rotation is limited, swimmer cells differentiate into elongated (10- to 80-μm), highly flagellated swarmer cells. In order for P. mirabilis to swarm, it first needs to detect a surface. The ubiquitous but functionally enigmatic flagellar basal body protein FliL is involved in P. mirabilis surface sensing. Previous studies have suggested that FliL is essential for swarming through its involvement in viscosity-dependent monitoring of flagellar rotation. In this study, we constructed and characterized ΔfliL mutants of P. mirabilis and Escherichia coli. Unexpectedly and unlike other fliL mutants, both P. mirabilis and E. coli ΔfliL cells swarm (Swr(+)). Further analysis revealed that P. mirabilis ΔfliL cells also exhibit an alteration in their ability to sense a surface: e.g., ΔfliL P. mirabilis cells swarm precociously over surfaces with low viscosity that normally impede wild-type swarming. Precocious swarming is due to an increase in the number of elongated swarmer cells in the population. Loss of fliL also results in an inhibition of swarming at <30°C. E. coli ΔfliL cells also exhibit temperature-sensitive swarming. These results suggest an involvement of FliL in the energetics and function of the flagellar motor.
Collapse
|
121
|
Lippolis JD, Brunelle BW, Reinhardt TA, Sacco RE, Nonnecke BJ, Dogan B, Simpson K, Schukken YH. Proteomic analysis reveals protein expression differences in Escherichia coli strains associated with persistent versus transient mastitis. J Proteomics 2014; 108:373-81. [DOI: 10.1016/j.jprot.2014.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 01/30/2023]
|
122
|
Nickzad A, Déziel E. The involvement of rhamnolipids in microbial cell adhesion and biofilm development - an approach for control? Lett Appl Microbiol 2014; 58:447-53. [PMID: 24372465 DOI: 10.1111/lam.12211] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022]
Abstract
Biofilms are omnipresent in clinical and industrial settings and most of the times cause detrimental side effects. Finding efficient strategies to control surface-growing communities of micro-organisms remains a significant challenge. Rhamnolipids are extracellular secondary metabolites with surface-active properties mainly produced by Pseudomonas aeruginosa. There is growing evidence for the implication of this biosurfactant in different stages of biofilm development of this bacterium. Furthermore, rhamnolipids display a significant potential as anti-adhesive and disrupting agents against established biofilms formed by several bacterial and fungal species. Their low toxicity, biodegradability, efficiency and specificity, compared to synthetic surfactants typically used in biofilm control, might compensate for the economic hurdle still linked to their superior production costs and make them promising antifouling agents.
Collapse
Affiliation(s)
- A Nickzad
- INRS - Institut Armand-Frappier, Laval, QC, Canada
| | | |
Collapse
|
123
|
Abstract
A large variety of motile bacterial species exhibit collective motions while inhabiting liquids or colonizing surfaces. These collective motions are often characterized by coherent dynamic clusters, where hundreds of cells move in correlated whirls and jets. Previously, all species that were known to form such motion had a rod-shaped structure, which enhances the order through steric and hydrodynamic interactions. Here we show that the spherical motile bacteria Serratia marcescens exhibit robust collective dynamics and correlated coherent motion while grown in suspensions. As cells migrate to the upper surface of a drop, they form a monolayer, and move collectively in whirls and jets. At all concentrations, the distribution of the bacterial speed was approximately Rayleigh with an average that depends on concentration in a non-monotonic way. Other dynamical parameters such as vorticity and correlation functions are also analyzed and compared to rod-shaped bacteria from the same strain. Our results demonstrate that self-propelled spherical objects do form complex ordered collective motion. This opens a door for a new perspective on the role of cell aspect ratio and alignment of cells with regards to collective motion in nature.
Collapse
Affiliation(s)
- Amit Rabani
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- * E-mail:
| |
Collapse
|
124
|
Bowden SD, Hale N, Chung JCS, Hodgkinson JT, Spring DR, Welch M. Surface swarming motility by Pectobacterium atrosepticum is a latent phenotype that requires O antigen and is regulated by quorum sensing. Microbiology (Reading) 2013; 159:2375-2385. [DOI: 10.1099/mic.0.070748-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Steven D. Bowden
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicola Hale
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Jade C. S. Chung
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | - David R. Spring
- Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
125
|
Josenhans C, Jung K, Rao CV, Wolfe AJ. A tale of two machines: a review of the BLAST meeting, Tucson, AZ, 20-24 January 2013. Mol Microbiol 2013; 91:6-25. [PMID: 24125587 DOI: 10.1111/mmi.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 01/06/2023]
Abstract
Since its inception, Bacterial Locomotion and Signal Transduction (BLAST) meetings have been the place to exchange and share the latest developments in the field of bacterial signal transduction and motility. At the 12th BLAST meeting, held last January in Tucson, AZ, researchers from all over the world met to report and discuss progress in diverse aspects of the field. The majority of these advances, however, came at the level of atomic level structures and their associated mechanisms. This was especially true of the biological machines that sense and respond to environmental changes.
Collapse
Affiliation(s)
- Christine Josenhans
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany
| | | | | | | |
Collapse
|
126
|
Pseudomonas aeruginosa AlgR phosphorylation modulates rhamnolipid production and motility. J Bacteriol 2013; 195:5499-515. [PMID: 24097945 DOI: 10.1128/jb.00726-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AlgR is a key Pseudomonas aeruginosa transcriptional response regulator required for virulence. AlgR activates alginate production and twitching motility but represses the Rhl quorum-sensing (QS) system, including rhamnolipid production. The role of AlgR phosphorylation is enigmatic, since phosphorylated AlgR (AlgR-P) is required for twitching motility through the fimU promoter but is not required for the activation of alginate production. In order to examine the role of AlgR phosphorylation in vivo, a PAO1 algRD54E strain (with algR encoding a D-to-E change at position 54), which constitutively activates fimU transcription and exhibits twitching motility, was created. A corresponding PAO1 algRD54N strain (with algR encoding a D-to-N change at position 54) that does not activate fimU or twitching motility was compared to PAO1, PAO1 algRD54E, PAO1 ΔalgZ (deletion of the algZ [fimS] gene, encoding a putative histidine kinase), and PAO1 ΔalgR for swarming motility, rhamnolipid production, and rhlA transcription. PAO1 and PAO1 algRD54E produced approximately 2-fold-higher levels of rhamnolipids than PAO1 algRD54N and PAO1 ΔalgZ, thereby indicating that phosphorylated AlgR is required for normal rhamnolipid production. Examination of purified AlgR, AlgR-P, AlgR D54N, and AlgR D54E showed that AlgR-P and AlgR D54E bound preferentially to the fimU and rhlA promoters. Additionally, AlgR-P bound specifically to two sites within the rhlA promoter that were not bound by unphosphorylated AlgR. Taken together, these results indicate that phosphorylated AlgR-P has increased affinity for the rhlA promoter and is required for the coordinate activation of twitching motility, rhamnolipid production, and swarming motility in P. aeruginosa.
Collapse
|
127
|
Press MO, Li H, Creanza N, Kramer G, Queitsch C, Sourjik V, Borenstein E. Genome-scale co-evolutionary inference identifies functions and clients of bacterial Hsp90. PLoS Genet 2013; 9:e1003631. [PMID: 23874229 PMCID: PMC3708813 DOI: 10.1371/journal.pgen.1003631] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/28/2013] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperone Hsp90 is essential in eukaryotes, in which it facilitates the folding of developmental regulators and signal transduction proteins known as Hsp90 clients. In contrast, Hsp90 is not essential in bacteria, and a broad characterization of its molecular and organismal function is lacking. To enable such characterization, we used a genome-scale phylogenetic analysis to identify genes that co-evolve with bacterial Hsp90. We find that genes whose gain and loss were coordinated with Hsp90 throughout bacterial evolution tended to function in flagellar assembly, chemotaxis, and bacterial secretion, suggesting that Hsp90 may aid assembly of protein complexes. To add to the limited set of known bacterial Hsp90 clients, we further developed a statistical method to predict putative clients. We validated our predictions by demonstrating that the flagellar protein FliN and the chemotaxis kinase CheA behaved as Hsp90 clients in Escherichia coli, confirming the predicted role of Hsp90 in chemotaxis and flagellar assembly. Furthermore, normal Hsp90 function is important for wild-type motility and/or chemotaxis in E. coli. This novel function of bacterial Hsp90 agreed with our subsequent finding that Hsp90 is associated with a preference for multiple habitats and may therefore face a complex selection regime. Taken together, our results reveal previously unknown functions of bacterial Hsp90 and open avenues for future experimental exploration by implicating Hsp90 in the assembly of membrane protein complexes and adaptation to novel environments.
Collapse
Affiliation(s)
- Maximilian O. Press
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Hui Li
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Nicole Creanza
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Günter Kramer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail: (CQ); (VS); (EB)
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
- * E-mail: (CQ); (VS); (EB)
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail: (CQ); (VS); (EB)
| |
Collapse
|
128
|
More than motility: Salmonella flagella contribute to overriding friction and facilitating colony hydration during swarming. J Bacteriol 2012; 195:919-29. [PMID: 23264575 DOI: 10.1128/jb.02064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show in this study that Salmonella cells, which do not upregulate flagellar gene expression during swarming, also do not increase flagellar numbers per μm of cell length as determined by systematic counting of both flagellar filaments and hooks. Instead, doubling of the average length of a swarmer cell by suppression of cell division effectively doubles the number of flagella per cell. The highest agar concentration at which Salmonella cells swarmed increased from the normal 0.5% to 1%, either when flagella were overproduced or when expression of the FliL protein was enhanced in conjunction with stator proteins MotAB. We surmise that bacteria use the resulting increase in motor power to overcome the higher friction associated with harder agar. Higher flagellar numbers also suppress the swarming defect of mutants with changes in the chemotaxis pathway that were previously shown to be defective in hydrating their colonies. Here we show that the swarming defect of these mutants can also be suppressed by application of osmolytes to the surface of swarm agar. The "dry" colony morphology displayed by che mutants was also observed with other mutants that do not actively rotate their flagella. The flagellum/motor thus participates in two functions critical for swarming, enabling hydration and overriding surface friction. We consider some ideas for how the flagellum might help attract water to the agar surface, where there is no free water.
Collapse
|