101
|
Floyd KA, Meyer AE, Nelson G, Hadjifrangiskou M. The yin-yang driving urinary tract infection and how proteomics can enhance research, diagnostics, and treatment. Proteomics Clin Appl 2015; 9:990-1002. [PMID: 26255866 DOI: 10.1002/prca.201500018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/27/2015] [Accepted: 07/27/2015] [Indexed: 12/30/2022]
Abstract
Bacterial urinary tract infections (UTIs) afflict millions of people worldwide both in the community and the hospital setting. The onset, duration, and severity of infection depend on the characteristics of the invading pathogen (yin), as well as the immune response elicited by the infected individual (yang). Uropathogenic Escherichia coli (UPEC) account for the majority of UTIs, and extensive investigations by many scientific groups have elucidated an elaborate pathogenic UPEC life cycle, involving the occupation of extracellular and intracellular niches and the expression of an arsenal of virulence factors that facilitate niche occupation. This review will summarize the current knowledge on UPEC pathogenesis; the host immune responses elicited to combat infection; and it will describe proteomics approaches used to understand UPEC pathogenesis, as well as drive diagnostics and treatment options. Finally, new strategies are highlighted that could be applied toward furthering our knowledge regarding host-bacterial interactions during UTI.
Collapse
Affiliation(s)
- Kyle A Floyd
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - George Nelson
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
102
|
Zautner AE, Masanta WO, Weig M, Groß U, Bader O. Mass Spectrometry-based PhyloProteomics (MSPP): A novel microbial typing Method. Sci Rep 2015; 5:13431. [PMID: 26303099 PMCID: PMC4548220 DOI: 10.1038/srep13431] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
MALDI-TOF-MS of microorganisms, which identifies microbes based on masses of high abundant low molecular weight proteins, is rapidly advancing to become another standard method in clinical routine laboratory diagnostics. Allelic isoforms of these proteins result in varying masses of detectable biomarker ions. These variations give rise to a novel typing method for microorganisms named mass spectrometry-based phyloproteomics (MSPP). The base of MSPP is an amino acid sequence list of allelic isoforms caused by non-synonymous mutations in biomarker genes, which were detectable as mass shifts in an overlay of calibrated MALDI-TOF spectra. Thus, for each isolate a combination of amino acid sequences can be deduced from the scheme of recordable biomarker masses. Performing comparably to laborious multilocus and whole genome sequence typing (wgMLST)-approaches it is feasible to build phyloproteomic dendrograms using hierarchical cluster analysis. MSPP bears a high potential especially for identification of chromosomal localised virulence or antimicrobial resistance factors associated with evolutionary relatedness. In this study the principle of MSPP-typing was demonstrated on a Campylobacter jejuni ssp. jejuni isolate collection and MSPP was compared to MLST.
Collapse
Affiliation(s)
- Andreas Erich Zautner
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Wycliffe Omurwa Masanta
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Michael Weig
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Uwe Groß
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Oliver Bader
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| |
Collapse
|
103
|
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6:791. [PMID: 26300860 PMCID: PMC4525378 DOI: 10.3389/fmicb.2015.00791] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/21/2015] [Indexed: 01/13/2023] Open
Abstract
Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Microbiology, University of Delhi New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi New Delhi, India
| | - Pawan K Kanaujia
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
104
|
Miyashita M, Yukphan P, Chaipitakchonlatarn W, Malimas T, Sugimoto M, Yoshino M, Kamakura Y, Potacharoen W, Tanasupawat S, Tanaka N, Nakagawa Y, Suzuki KI. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015; 65:2485-2490. [DOI: 10.1099/ijs.0.000290] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Lactobacillus-like strains, NB53T, NB446T and NB702, were isolated from traditional fermented food in Thailand. Comparative 16S rRNA gene sequence analysis indicated that these strains belong to the Lactobacillus plantarum group. Phylogenetic analysis based on the dnaK, rpoA, pheS and recA gene sequences indicated that these three strains were distantly related to known species present in the L. plantarum group. DNA–DNA hybridization with closely related strains demonstrated that these strains represented two novel species; the novel strains could be differentiated based on chemotaxonomic and phenotypic characteristics. Therefore, two novel species of the genus Lactobacillus, Lactobacillus plajomi sp. nov. (NB53T) and Lactobacillus modestisalitolerans sp. nov. (NB446T and NB702), are proposed with the type strains NB53T ( = NBRC 107333T = BCC 38054T) and NB446T ( = NBRC 107235T = BCC 38191T), respectively.
Collapse
Affiliation(s)
- Mika Miyashita
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Pattaraporn Yukphan
- BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Winai Chaipitakchonlatarn
- BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Taweesak Malimas
- BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Masako Sugimoto
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mayumi Yoshino
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yuki Kamakura
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Wanchern Potacharoen
- BIOTEC Culture Collection (BCC), National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani 12120, Thailand
| | - Somboon Tanasupawat
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Naoto Tanaka
- NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yasuyoshi Nakagawa
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Ken-ichiro Suzuki
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
105
|
Yaakop AS, Chan KG, Ee R, Kahar UM, Kon WC, Goh KM. Isolation of Jeotgalibacillus malaysiensis sp. nov. from a sandy beach, and emended description of the genus Jeotgalibacillus. Int J Syst Evol Microbiol 2015; 65:2215-2221. [DOI: 10.1099/ijs.0.000242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, endospore-forming, rod-shaped bacterial strain, designated D5T, was isolated from seawater collected from a sandy beach in a southern state of Malaysia and subjected to a polyphasic taxonomic study. Sequence analysis of the 16S rRNA gene demonstrated that this isolate belongs to the genus Jeotgalibacillus, with 99.87 % similarity to Jeotgalibacillus alimentarius JCM 10872T. DNA–DNA hybridization of strain D5T with J. alimentarius JCM 10872T demonstrated 26.3 % relatedness. The peptidoglycan type was A1α linked directly to l-lysine as the diamino acid. The predominant quinones identified in strain D5T were menaquinones MK-7 and MK-8.The major fatty acids were iso-C15:0 and anteiso-C15:0. The G+C content of its DNA was 43.0 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and sulfoquinovosyl diacylglycerol, as well as two unknown phospholipids and three unknown lipids. The phenotypic, chemotaxonomic and genotypic data indicated that strain D5T represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus malaysiensis sp. nov. is proposed (type strain D5T = DSM 28777T = KCTC33550T). An emended description of the genus Jeotgalibacillus is also provided.
Collapse
Affiliation(s)
- Amira Suriaty Yaakop
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ummirul Mukminin Kahar
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Wei Cheun Kon
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
106
|
Rapid identification of pathogens in positive blood culture of patients with sepsis: review and meta-analysis of the performance of the sepsityper kit. Int J Microbiol 2015; 2015:827416. [PMID: 26000017 PMCID: PMC4426779 DOI: 10.1155/2015/827416] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 01/16/2023] Open
Abstract
Sepsis is one of the leading causes of deaths, and rapid identification (ID) of blood stream infection is mandatory to perform adequate antibiotic therapy. The advent of MALDI-TOF Mass Spectrometry for the rapid ID of pathogens was a major breakthrough in microbiology. Recently, this method was combined with extraction methods for pathogens directly from positive blood cultures. This review summarizes the results obtained so far with the commercial Sepsityper sample preparation kit, which is now approved for in vitro diagnostic use. Summarizing data from 21 reports, the Sepsityper kit allowed a reliable ID on the species level of 80% of 3320 positive blood culture bottles. Gram negative bacteria resulted consistently in higher ID rates (90%) compared to Gram positive bacteria (76%) or yeast (66%). No relevant misidentifications on the genus level were reported at a log(score)cut-off of 1.6. The Sepsityper kit is a simple and reproducible method which extends the MALDI-TOF technology to positive blood culture specimens and shortens the time to result by several hours or even days. In combination with antibiotic stewardship programs, this rapid ID allows a much faster optimization of antibiotic therapy in patients with sepsis compared to conventional workflows.
Collapse
|
107
|
Ueda O, Tanaka S, Nagasawa Z, Hanaki H, Shobuike T, Miyamoto H. Development of a novel matrix-assisted laser desorption/ionization time-of-flight mass spectrum (MALDI-TOF-MS)-based typing method to identify meticillin-resistant Staphylococcus aureus clones. J Hosp Infect 2015; 90:147-55. [PMID: 25922338 DOI: 10.1016/j.jhin.2014.11.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/18/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mass spectrum analysis enables species- and subspecies-level identification, and can be used as an epidemiological tool in outbreak management. However, its reliability at clonal level has yet to be established. AIM To establish a matrix-assisted laser desorption/ionization time-of-flight mass-spectrum-based method that enables bacterial clone identification with accuracy equivalent to pulsed-field gel electrophoresis/phage open-reading frame typing (PFGE/POT). METHODS Meticillin-resistant Staphylococcus aureus (MRSA) was used in this study. Mass spectra were obtained from a standard strain of S. aureus (ATCC29213) and 57 clinically isolated strains, categorized according to POT. Peaks associated with MRSA clone identification (N = 67) were extracted. Based on this peak information, the feasibility of MRSA clone identification was examined by cluster analysis. FINDINGS In addition to the 58 strains used for peak extraction, mass spectrum analysis of 24 clinically isolated outbreak strains revealed that peak data could be used for successful identification of clones. These typing results were fully consistent with the PFGE and POT results. CONCLUSION This novel method enables simple and rapid typing with accuracy equivalent to PFGE/POT. This method would be suited to rapid outbreak analysis, offering accurate information to combat infectious diseases.
Collapse
Affiliation(s)
- O Ueda
- Microbiology Group, MM Business Unit, Siemens Healthcare Diagnostics KK, Tokyo, Japan; Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - S Tanaka
- Department of Clinical Laboratory, Saga University Hospital, Saga, Japan
| | - Z Nagasawa
- Department of Medical Technology and Sciences, School of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| | - H Hanaki
- Kitasato University Research Centre for Anti-infectious Drugs, Tokyo, Japan
| | - T Shobuike
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - H Miyamoto
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan.
| |
Collapse
|
108
|
Petri A, Rabenstein A, Kuever J, König H. Application of MALDI-TOF-MS and nested SAPD-PCR for discrimination ofOenococcus oeniisolates at the strain level. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/09571264.2015.1009015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
109
|
Nguyen NL, Kim YJ, Hoang VA, Min JW, Hwang KH, Yang DC. Microbacterium panaciterrae sp. nov., isolated from the rhizosphere of ginseng. Int J Syst Evol Microbiol 2015; 65:927-933. [DOI: 10.1099/ijs.0.000041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ngoc-Lan Nguyen
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University, 1 Seocheon-dong, Giheung-gu Yongin-si, Gyeonggi-do 449-701, Republic of Korea
| | - Yeon-Ju Kim
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University, 1 Seocheon-dong, Giheung-gu Yongin-si, Gyeonggi-do 449-701, Republic of Korea
| | - Van-An Hoang
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University, 1 Seocheon-dong, Giheung-gu Yongin-si, Gyeonggi-do 449-701, Republic of Korea
| | - Jin-Woo Min
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University, 1 Seocheon-dong, Giheung-gu Yongin-si, Gyeonggi-do 449-701, Republic of Korea
| | - Kyu-Hyon Hwang
- GyeonggiDo Agricultural Research & Extension Services, Yeoncheon-gun, Gyeonggi-do 486-833, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University, 1 Seocheon-dong, Giheung-gu Yongin-si, Gyeonggi-do 449-701, Republic of Korea
| |
Collapse
|
110
|
Shin HB, Yoon J, Lee Y, Kim MS, Lee K. Comparison of MALDI-TOF MS, housekeeping gene sequencing, and 16S rRNA gene sequencing for identification of Aeromonas clinical isolates. Yonsei Med J 2015; 56:550-5. [PMID: 25684008 PMCID: PMC4329371 DOI: 10.3349/ymj.2015.56.2.550] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The genus Aeromonas is a pathogen that is well known to cause severe clinical illnesses, ranging from gastroenteritis to sepsis. Accurate identification of A. hydrophila, A. caviae, and A. veronii is important for the care of patients. However, species identification remains difficult using conventional methods. The aim of this study was to compare the accuracy of different methods of identifying Aeromonas at the species level: a biochemical method, matrix-assisted laser desorption ionization mass spectrometry-time of flight (MALDI-TOF MS), 16S rRNA sequencing, and housekeeping gene sequencing (gyrB, rpoB). MATERIALS AND METHODS We analyzed 65 Aeromonas isolates recovered from patients at a university hospital in Korea between 1996 and 2012. The isolates were recovered from frozen states and tested using the following four methods: a conventional biochemical method, 16S rRNA sequencing, housekeeping gene sequencing with phylogenetic analysis, and MALDI-TOF MS. RESULTS The conventional biochemical method and 16S rRNA sequencing identified Aeromonas at the genus level very accurately, although species level identification was unsatisfactory. MALDI-TOF MS system correctly identified 60 (92.3%) isolates at the species level and an additional four (6.2%) at the genus level. Overall, housekeeping gene sequencing with phylogenetic analysis was found to be the most accurate in identifying Aeromonas at the species level. CONCLUSION The most accurate method of identification of Aeromonas to species level is by housekeeping gene sequencing, although high cost and technical difficulty hinder its usage in clinical settings. An easy-to-use identification method is needed for clinical laboratories, for which MALDI-TOF MS could be a strong candidate.
Collapse
Affiliation(s)
- Hee Bong Shin
- Department of Laboratory Medicine and Genetics, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jihoon Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yangsoon Lee
- Department of Laboratory Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul, Korea
| | - Myung Sook Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
111
|
MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers. J Microbiol Methods 2015; 109:93-105. [DOI: 10.1016/j.mimet.2014.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022]
|
112
|
Hong S, Farrance CE, Russell A, Yi H. Reclassification of Deinococcus xibeiensis Wang et al. 2010 as a heterotypic synonym of Deinococcus wulumuqiensis Wang et al. 2010. Int J Syst Evol Microbiol 2015; 65:1083-1085. [PMID: 25574035 DOI: 10.1099/ijs.0.000058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two species of the genus Deinococcus, namely Deinococcus wulumuqiensis Wang et al. 2010 and Deinococcus xibeiensis Wang et al. 2010, were simultaneously proposed and described in the same publication. However, the identical 16S rRNA gene sequence of the two type strains strongly raised the probability of their relatedness at the species level. Thus, the genomic relatedness of the two species of the genus Deinococcus was investigated here to clarify their taxonomic status. The high (99.9 %) average nucleotide identity (ANI) between the genome sequences of the two type strains suggested that the two species are synonymous. Additional phenotypic data including enzymic activities and substrate-utilization profiles showed no pronounced differences between the type strains of the two species. Data from this study demonstrated that the two taxa constitute a single species. According to Rule 42 of the Bacteriological Code, we propose that D. xibeiensis Wang et al. 2010 should be reclassified as a subjective heterotypic synonym of D. wulumuqiensis Wang et al. 2010.
Collapse
Affiliation(s)
- Sunhee Hong
- Charles River Laboratories, Endotoxin and Microbial Detection, Newark, DE, USA
| | | | - Anne Russell
- Charles River Laboratories, Endotoxin and Microbial Detection, Newark, DE, USA
| | - Hana Yi
- School of Biosystem and Biomedical Science, Korea University, Seoul, Republic of Korea.,Department of Public Health Science, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
113
|
Abstract
Abstract
BACKGROUND
First introduced into clinical microbiology laboratories in Europe, MALDI-TOF MS is being rapidly embraced by laboratories around the globe. Although it has multiple applications, its widespread adoption in clinical microbiology relates to its use as an inexpensive, easy, fast, and accurate method for identification of grown bacteria and fungi based on automated analysis of the mass distribution of bacterial proteins.
CONTENT
This review provides a historical perspective on this new technology. Modern applications in the clinical microbiology laboratory are reviewed with a focus on the most recent publications in the field. Identification of aerobic and anaerobic bacteria, mycobacteria, and fungi are discussed, as are applications for testing urine and positive blood culture bottles. The strengths and limitations of MALDI-TOF MS applications in clinical microbiology are also addressed.
SUMMARY
MALDI-TOF MS is a tool for rapid, accurate, and cost-effective identification of cultured bacteria and fungi in clinical microbiology. The technology is automated, high throughput, and applicable to a broad range of common as well as esoteric bacteria and fungi. MALDI-TOF MS is an incontrovertibly beneficial technology for the clinical microbiology laboratory.
Collapse
Affiliation(s)
- Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
114
|
Panda A, Kurapati S, Samantaray JC, Srinivasan A, Khalil S. MALDI-TOF mass spectrometry proteomic based identification of clinical bacterial isolates. Indian J Med Res 2014; 140:770-7. [PMID: 25758576 PMCID: PMC4365351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND & OBJECTIVES Pathogenic bacteria often cause life threatening infections especially in immunocompromised individuals. Therefore, rapid and reliable species identification is essential for a successful treatment and disease management. We evaluated a rapid, proteomic based technique for identification of clinical bacterial isolates by protein profiling using matrix-assisted laser desorption-ionization time - of - flight mass spectrometry (MALDI-TOF MS). METHODS Freshly grown bacterial isolates were selected from culture plates. Ethanol/formic acid extraction procedure was carried out, followed by charging of MALDI target plate with the extract and overlaying with α-cyano-4 hydroxy-cinnamic acid matrix solution. Identification was performed using the MALDI BioTyper 1.1, software for microbial identification (Bruker Daltonik GmbH, Bremen, Germany). RESULTS A comparative analysis of 82 clinical bacterial isolates using MALDI -TOF MS and conventional techniques was carried out. Amongst the clinical isolates, the accuracy at the species level for clinical isolates was 98.78%. One out of 82 isolates was not in accordance with the conventional assays because MALDI-TOF MS established it as Streptococcus pneumoniae and conventional methods as Streptococcus viridans. INTERPRETATION & CONCLUSIONS MALDI - TOF MS was found to be an accurate, rapid, cost-effective and robust system for identification of clinical bacterial isolates. This innovative approach holds promise for earlier therapeutic intervention leading to better patient care.
Collapse
Affiliation(s)
- Ashutosh Panda
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sravya Kurapati
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotish C. Samantaray
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India,Reprint requests: Dr J.C. Samantaray, Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India e-mail:
| | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Shehla Khalil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
115
|
Jamal W, Albert MJ, Rotimi VO. Real-time comparative evaluation of bioMerieux VITEK MS versus Bruker Microflex MS, two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry systems, for identification of clinically significant bacteria. BMC Microbiol 2014; 14:289. [PMID: 25433488 PMCID: PMC4290442 DOI: 10.1186/s12866-014-0289-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/07/2014] [Indexed: 12/02/2022] Open
Abstract
Background Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) recently became available for the identification of bacteria in routine diagnostic laboratories. It is rapid and cost-effective and likely to replace phenotypic identification. This study was undertaken to compare two MALDI-TOF MS-based, Bruker Microflex MS (BMS) and VITEK MS (VMS) systems, for identification (ID) of clinically significant bacterial isolates. Clinically relevant broad diversity of bacterial isolates obtained during a 6-consecutive months of routine laboratory processing of clinical specimens were subjected to ID by the BMS and VMS in parallel with Vitek 2, a conventional phenotypic system (CPS). For the BMS, the isolates were tested in duplicates directly and after pretreatment. Identification was provided with accompanying scores according to manufacturers’ instructions. With VMS, single deposits of the same sets of isolates were tested in duplicates directly on MALDI-plate. Results were interpreted according to the manufacturer’s protocols. Discrepant results were resolved by 16S rRNA gene amplification and sequencing. Results A total of 806 pathogens comprising 507 Gram-negative bacilli (GNB), 16 Gram-negative cocci (GNC), 267 Gram-positive cocci (GPC), and 16 Gram-positive bacilli (GPB) were tested. BMS and VMS correctly identified isolates to genus and species levels (ID 97.3% and 93.2%, and 99.8% and 99.0%, respectively). Both systems as well as the CPS correctly identified the majority of the species in the family Enterobacteriaceae, Pseudomonas spp., and Acinetobacter baumannii. Turnaround time for identification by BMS and VMS was <20 min compared with 24-48 h by the CPS. Conclusions VMS performed slightly better than BMS with GPC ID, especially the Streptococcus spp. Some S. mitis isolates were identified as S. pneumoniae by BMS. BMS and VMS were rapid and proved to be consistently accurate for producing bacterial identification in a fraction of time it takes for identification by CPS.
Collapse
|
116
|
Erler R, Wichels A, Heinemeyer EA, Hauk G, Hippelein M, Reyes NT, Gerdts G. VibrioBase: A MALDI-TOF MS database for fast identification of Vibrio spp. that are potentially pathogenic in humans. Syst Appl Microbiol 2014; 38:16-25. [PMID: 25466918 DOI: 10.1016/j.syapm.2014.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/20/2014] [Accepted: 10/27/2014] [Indexed: 11/17/2022]
Abstract
Mesophilic marine bacteria of the family Vibrionaceae, specifically V. cholerae, V. parahaemolyticus and V. vulnificus, are considered to cause severe illness in humans. Due to climate-change-driven temperature increases, higher Vibrio abundances and infections are predicted for Northern Europe, which in turn necessitates environmental surveillance programs to evaluate this risk. We propose that whole-cell matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling is a promising tool for the fast and reliable species classification of environmental isolates. Because the reference database does not contain sufficient Vibrio spectra we generated the VibrioBase database in this study. Mass spectrometric data were generated from 997 largely environmental strains and filed in this new database. MALDI-TOF MS clusters were assigned based on the species classification obtained by analysis of partial rpoB (RNA polymerase beta-subunit) sequences. The affiliation of strains to species-specific clusters was consistent in 97% of all cases using both approaches, and the extended VibrioBase generated more specific species identifications with higher matching scores compared to the commercially available database. Therefore, we have made the VibrioBase database freely accessible, which paves the way for detailed risk assessment studies of potentially pathogenic Vibrio spp. from marine environments.
Collapse
Affiliation(s)
- René Erler
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany.
| | - Antje Wichels
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Ernst-August Heinemeyer
- Governmental Institute of Public Health of Lower Saxony, Lüchtenburger Weg 24, 26603 Aurich, Germany
| | - Gerhard Hauk
- Regional Office for Health and Social Affairs of Mecklenburg-Western Pomerania, Gertrudenstraße 11, 18057 Rostock, Germany
| | - Martin Hippelein
- University Medical Center Schleswig-Holstein, Central Facility: Medical Investigation Office and Hygiene, Brunswiker Straße 4, 24105 Kiel, Germany
| | - Nadja Torres Reyes
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Germany
| | - Gunnar Gerdts
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| |
Collapse
|
117
|
Egert M, Späth K, Weik K, Kunzelmann H, Horn C, Kohl M, Blessing F. Bacteria on smartphone touchscreens in a German university setting and evaluation of two popular cleaning methods using commercially available cleaning products. Folia Microbiol (Praha) 2014; 60:159-64. [DOI: 10.1007/s12223-014-0350-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022]
|
118
|
Vidigal PG, Mosel F, Koehling HL, Mueller KD, Buer J, Rath PM, Steinmann J. Delineation of Stenotrophomonas maltophilia isolates from cystic fibrosis patients by fatty acid methyl ester profiles and matrix-assisted laser desorption/ionization time-of-flight mass spectra using hierarchical cluster analysis and principal component analysis. J Med Microbiol 2014; 63:1615-1620. [PMID: 25266870 DOI: 10.1099/jmm.0.076950-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stenotrophomonas maltophilia is an opportunist multidrug-resistant pathogen that causes a wide range of nosocomial infections. Various cystic fibrosis (CF) centres have reported an increasing prevalence of S. maltophilia colonization/infection among patients with this disease. The purpose of this study was to assess specific fingerprints of S. maltophilia isolates from CF patients (n = 71) by investigating fatty acid methyl esters (FAMEs) through gas chromatography (GC) and highly abundant proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to compare them with isolates obtained from intensive care unit (ICU) patients (n = 20) and the environment (n = 11). Principal component analysis (PCA) of GC-FAME patterns did not reveal a clustering corresponding to distinct CF, ICU or environmental types. Based on the peak area index, it was observed that S. maltophilia isolates from CF patients produced significantly higher amounts of fatty acids in comparison with ICU patients and the environmental isolates. Hierarchical cluster analysis (HCA) based on the MALDI-TOF MS peak profiles of S. maltophilia revealed the presence of five large clusters, suggesting a high phenotypic diversity. Although HCA of MALDI-TOF mass spectra did not result in distinct clusters predominantly composed of CF isolates, PCA revealed the presence of a distinct cluster composed of S. maltophilia isolates from CF patients. Our data suggest that S. maltophilia colonizing CF patients tend to modify not only their fatty acid patterns but also their protein patterns as a response to adaptation in the unfavourable environment of the CF lung.
Collapse
Affiliation(s)
| | - Frank Mosel
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Hedda Luise Koehling
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Karl Dieter Mueller
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Peter Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Germany
| |
Collapse
|
119
|
Xiao D, Ye C, Zhang H, Kan B, Lu J, Xu J, Jiang X, Zhao F, You Y, Yan X, Wang D, Hu Y, Zhang M, Zhang J. The construction and evaluation of reference spectra for the identification of human pathogenic microorganisms by MALDI-TOF MS. PLoS One 2014; 9:e106312. [PMID: 25181391 PMCID: PMC4152241 DOI: 10.1371/journal.pone.0106312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an emerging technique for the rapid and high-throughput identification of microorganisms. There remains a dearth of studies in which a large number of pathogenic microorganisms from a particular country or region are utilized for systematic analyses. In this study, peptide mass reference spectra (PMRS) were constructed and evaluated from numerous human pathogens (a total of 1019 strains from 94 species), including enteric (46 species), respiratory (21 species), zoonotic (17 species), and nosocomial pathogens (10 species), using a MALDI-TOF MS Biotyper system (MBS). The PMRS for 380 strains of 52 species were new contributions to the original reference database (ORD). Compared with the ORD, the new reference database (NRD) allowed for 28.2% (from 71.5% to 99.7%) and 42.3% (from 51.3% to 93.6%) improvements in identification at the genus and species levels, respectively. Misidentification rates were 91.7% and 57.1% lower with the NRD than with the ORD for genus and species identification, respectively. Eight genera and 25 species were misidentified. For genera and species that are challenging to accurately identify, identification results must be manually determined and adjusted in accordance with the database parameters. Through augmentation, the MBS demonstrated a high identification accuracy and specificity for human pathogenic microorganisms. This study sought to provide theoretical guidance for using PMRS databases in various fields, such as clinical diagnosis and treatment, disease control, quality assurance, and food safety inspection.
Collapse
Affiliation(s)
- Di Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huifang Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jingxing Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiugao Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Fei Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yuanhai You
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaomei Yan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Duochun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yuan Hu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Maojun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jianzhong Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- * E-mail:
| |
Collapse
|
120
|
Olofsson TC, Alsterfjord M, Nilson B, Butler È, Vásquez A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 2014; 64:3109-3119. [PMID: 24944337 PMCID: PMC4156108 DOI: 10.1099/ijs.0.059600-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously discovered a symbiotic lactic acid bacterial (LAB) microbiota in the honey stomach of the honeybee Apis mellifera. The microbiota was composed of several phylotypes of Bifidobacterium and Lactobacillus. 16S rRNA gene sequence analyses and phenotypic and genetic characteristics revealed that the phylotypes isolated represent seven novel species. One grouped with Lactobacillus kunkeei and the others belong to the Lactobacillus buchneri and Lactobacillus delbrueckii subgroups of Lactobacillus. We propose the names Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov. for these novel species, with the respective type strains being Fhon13N(T) ( = DSM 26257(T) = CCUG 63287(T)), Bin4N(T) ( = DSM 26254(T) = CCUG 63291(T)), Hon2N(T) ( = DSM 26255(T) = CCUG 63289(T)), Hma8N(T) ( = DSM 26256(T) = CCUG 63629(T)), Hma2N(T) ( = DSM 26263(T) = CCUG 63633(T)), Bma5N(T) ( = DSM 26265(T) = CCUG 63301(T)) and Biut2N(T) ( = DSM 26262(T) = CCUG 63631(T)).
Collapse
|
121
|
Zhang Y, Liu Y, Ma Q, Song Y, Zhang Q, Wang X, Chen F. Identification of Lactobacillus from the saliva of adult patients with caries using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. PLoS One 2014; 9:e106185. [PMID: 25166027 PMCID: PMC4148440 DOI: 10.1371/journal.pone.0106185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been presented as a superior method for the detection of microorganisms in body fluid samples (e.g., blood, saliva, pus, etc.) However, the performance of MALDI-TOF MS in routine identification of caries-related Lactobacillus isolates from saliva of adult patients with caries has not been determined. In the present study, we introduced a new MALDI-TOF MS system for identification of lactobacilli. Saliva samples were collected from 120 subjects with caries. Bacteria were isolated and cultured, and each isolate was identified by both 16S rRNA sequencing and MALDI-TOF MS. The identification results obtained by MALDI-TOF MS were concordant at the genus level with those of conventional 16S rRNA-based sequencing for 88.6% of lactobacilli (62/70) and 95.5% of non-lactobacilli (21/22). Up to 96 results could be obtained in parallel on a single MALDI target, suggesting that this is a reliable high-throughput approach for routine identification of lactobacilli. However, additional reference strains are necessary to increase the sensitivity and specificity of species-level identification.
Collapse
Affiliation(s)
- Yifei Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Yingyi Liu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Qingwei Ma
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yeqing Song
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing, P.R. China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
122
|
Cheng HJ, Ee R, Cheong YM, Tan WS, Yin WF, Chan KG. Detection of quorum sensing activity in the multidrug-resistant clinical isolate Pseudomonas aeruginosa strain GB11. SENSORS 2014; 14:12511-22. [PMID: 25019635 PMCID: PMC4168446 DOI: 10.3390/s140712511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/24/2014] [Accepted: 07/08/2014] [Indexed: 11/26/2022]
Abstract
A multidrug-resistant clinical bacteria strain GB11 was isolated from a wound swab on the leg of a patient. Identity of stain GB11 as Pseudomonas aeruginosa was validated by using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Detection of the production of signaling molecules, N-acylhomoserine lactones (AHLs), was conducted using three different bacterial biosensors. A total of four different AHLs were found to be produced by strain GB11, namely N-butyryl homoserine lactone (C4-HSL), N-hexanoylhomoserine lactone (C6-HSL), N-octanoyl homoserine lactone (C8-HSL) and N-3-oxo-dodecanoylhomoserine lactone (3-oxo-C12-HSL) using high resolution liquid chromatography tandem mass spectrometry (LC-MS/MS). Of these detected AHLs, 3-oxo-C12-HSL was found to be the most abundant AHL produced by P. aeruginosa GB11.
Collapse
Affiliation(s)
- Huey Jia Cheng
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Yuet Meng Cheong
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Wen-Si Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
123
|
Tandem mass spectrometry detection of quorum sensing activity in multidrug resistant clinical isolate Acinetobacter baumannii. ScientificWorldJournal 2014; 2014:891041. [PMID: 25101326 PMCID: PMC4101932 DOI: 10.1155/2014/891041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 01/27/2023] Open
Abstract
Many Proteobacteria communicate via production followed by response of quorum sensing molecules, namely, N-acyl homoserine lactones (AHLs). These molecules consist of a lactone moiety with N-acyl side chain with various chain lengths and degrees of saturation at C-3 position. AHL-dependent QS is often associated with regulation of diverse bacterial phenotypes including the expression of virulence factors. With the use of biosensor and high resolution liquid chromatography tandem mass spectrometry, the AHL production of clinical isolate A. baumannii 4KT was studied. Production of short chain AHL, namely, N-hexanoyl-homoserine lactone (C6-HSL) and N-octanoyl-homoserine lactone (C8-HSL), was detected.
Collapse
|
124
|
Probert WS, McQuaid C, Schrader K. Isolation and identification of an Enterobacter cloacae strain producing a novel subtype of Shiga toxin type 1. J Clin Microbiol 2014; 52:2346-51. [PMID: 24759708 PMCID: PMC4097712 DOI: 10.1128/jcm.00338-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/12/2014] [Indexed: 11/20/2022] Open
Abstract
We describe here the isolation and identification of a Shiga toxin 1 (Stx1)-producing Enterobacter cloacae strain, M12X01451, from a human clinical specimen. The bacterial isolate was identified as E. cloacae using a polyphasic approach that included phenotypic, genetic, and proteomic analyses. The M12X01451 stx1 was sequenced, and the holotoxin was found to share only 87% amino acid sequence identity with the nearest Stx1 subtype reference sequence. Sequence analysis of the regions immediately flanking stx1 displayed similarities with bacteriophage-related sequences, suggesting a prophage origin. The stx1 gene was a stable element within the M12X01451 genome, as demonstrated by real-time PCR detection following successive subculturing of the bacterial isolate. Culture supernatant from M12X01451 was cytotoxic to Vero cells but was not neutralized by an anti-Stx1 monoclonal antibody. In addition, Stx1 from M12X01451 demonstrated limited antigenicity with two commercially available lateral flow immunoassays. The M12X01451 Stx represents a new Stx1 subtype based on the degree of sequence dissimilarity with Stx1 subtype reference sequences and its limited reactivity with anti-Stx1 antibodies.
Collapse
Affiliation(s)
- William S Probert
- Microbial Diseases Laboratory Branch, California Department of Public Health, Richmond, California, USA
| | - Cassandra McQuaid
- Microbial Diseases Laboratory Branch, California Department of Public Health, Richmond, California, USA
| | - Kimmi Schrader
- Microbial Diseases Laboratory Branch, California Department of Public Health, Richmond, California, USA
| |
Collapse
|
125
|
Wenning M, Breitenwieser F, Konrad R, Huber I, Busch U, Scherer S. Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. J Microbiol Methods 2014; 103:44-52. [PMID: 24878140 DOI: 10.1016/j.mimet.2014.05.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 11/17/2022]
Abstract
The food industry requires easy, accurate, and cost-effective techniques for microbial identification to ensure safe products and identify microbial contaminations. In this work, FTIR spectroscopy and MALDI-TOF mass spectrometry were assessed for their suitability and applicability for routine microbial diagnostics of food-related microorganisms by analyzing their robustness according to changes in incubation time and medium, identification accuracy and their ability to differentiate isolates down to the strain level. Changes in the protocol lead to a significantly impaired performance of FTIR spectroscopy, whereas they had only little effects on MALDI-TOF MS. Identification accuracy was tested using 174 food-related bacteria (93 species) from an in-house strain collection and 40 fresh isolates from routine food analyses. For MALDI-TOF MS, weaknesses in the identification of bacilli and pseudomonads were observed; FTIR spectroscopy had most difficulties in identifying pseudomonads and enterobacteria. In general, MALDI-TOF MS obtained better results (52-85% correct at species level), since the analysis of mainly ribosomal proteins is more robust and seems to be more reliable. FTIR spectroscopy suffers from the fact that it generates a whole-cell fingerprint and intraspecies diversity may lead to overlapping species borders which complicates identification. In the present study values between 56% and 67% correct species identification were obtained. On the opposite, this high sensitivity offers the opportunity of typing below the species level which was not possible using MALDI-TOF MS. Using fresh isolates from routine diagnostics, both techniques performed well with 88% (MALDI-TOF) and 75% (FTIR) correct identifications at species level, respectively.
Collapse
Affiliation(s)
- Mareike Wenning
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs-und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany.
| | - Franziska Breitenwieser
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs-und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany; Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Veterinärstraße 2, 85764 Oberschleißheim, Germany
| | - Regina Konrad
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Veterinärstraße 2, 85764 Oberschleißheim, Germany
| | - Ingrid Huber
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Veterinärstraße 2, 85764 Oberschleißheim, Germany
| | - Ulrich Busch
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Veterinärstraße 2, 85764 Oberschleißheim, Germany
| | - Siegfried Scherer
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs-und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany; Lehrstuhl für Mikrobielle Ökologie, Department of Biosciences, Technische Universität München, D-85350 Freising, Germany
| |
Collapse
|
126
|
Goh SY, Tan WS, Khan SA, Chew HP, Abu Kasim NH, Yin WF, Chan KG. Unusual multiple production of N-acylhomoserine lactones a by Burkholderia sp. strain C10B isolated from dentine caries. SENSORS 2014; 14:8940-9. [PMID: 24854358 PMCID: PMC4063041 DOI: 10.3390/s140508940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/04/2014] [Accepted: 05/13/2014] [Indexed: 01/12/2023]
Abstract
Bacteria realize the ability to communicate by production of quorum sensing (QS) molecules called autoinducers, which regulate the physiological activities in their ecological niches. The oral cavity could be a potential area for the presence of QS bacteria. In this study, we report the isolation of a QS bacterial isolate C10B from dentine caries. Preliminary screening using Chromobacterium violaceum CV026 biosensor showed that isolate C10B was able to produce N-acylhomoserine lactones (AHLs). This bacterium was further identified as a member of Burkholderia, an opportunistic pathogen. The isolated Burkholderia sp. was confirmed to produce N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL), N-decanoyl-L-homoserine lactone (C10-HSL) and N-dodecanoyl-L-homoserine lactone (C12-HSL).
Collapse
Affiliation(s)
- Share Yuan Goh
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Wen-Si Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Saad Ahmed Khan
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Hooi Pin Chew
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
127
|
Beyond the matrix-assisted laser desorption ionization (MALDI) biotyping workflow: in search of microorganism-specific tryptic peptides enabling discrimination of subspecies. Appl Environ Microbiol 2014; 80:4234-41. [PMID: 24795381 DOI: 10.1128/aem.00740-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A well-accepted method for identification of microorganisms uses matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) coupled to analysis software which identifies and classifies the organism according to its ribosomal protein spectral profile. The method, called MALDI biotyping, is widely used in clinical diagnostics and has partly replaced conventional microbiological techniques such as biochemical identification due to its shorter time to result (minutes for MALDI biotyping versus hours or days for classical phenotypic or genotypic identification). Besides its utility for identifying bacteria, MS-based identification has been shown to be applicable also to yeasts and molds. A limitation to this method, however, is that accurate identification is most reliably achieved on the species level on the basis of reference mass spectra, making further phylogenetic classification unreliable. Here, it is shown that combining tryptic digestion of the acid/organic solvent extracted (classical biotyping preparation) and resolubilized proteins, nano-liquid chromatography (nano-LC), and subsequent identification of the peptides by MALDI-tandem TOF (MALDI-TOF/TOF) mass spectrometry increases the discrimination power to the level of subspecies. As a proof of concept, using this targeted proteomics workflow, we have identified subspecies-specific biomarker peptides for three Salmonella subspecies, resulting in an extension of the mass range and type of proteins investigated compared to classical MALDI biotyping. This method therefore offers rapid and cost-effective identification and classification of microorganisms at a deeper taxonomic level.
Collapse
|
128
|
Isolation and differentiation of methanogenic Archaea from mesophilic corn-fed on-farm biogas plants with special emphasis on the genus Methanobacterium. Appl Microbiol Biotechnol 2014; 98:5719-35. [DOI: 10.1007/s00253-014-5652-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/14/2014] [Accepted: 02/27/2014] [Indexed: 01/02/2023]
|
129
|
Schieffer K, Tan K, Stamper P, Somogyi A, Andrea S, Wakefield T, Romagnoli M, Chapin K, Wolk D, Carroll K. Multicenter evaluation of the Sepsityper™ extraction kit and MALDI-TOF MS for direct identification of positive blood culture isolates using the BD BACTEC™ FX and VersaTREK®
diagnostic blood culture systems. J Appl Microbiol 2014; 116:934-41. [DOI: 10.1111/jam.12434] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - K.E. Tan
- Johns Hopkins University; Baltimore MD USA
| | | | | | | | | | | | - K.C. Chapin
- Rhode Island Hospital; Providence RI USA
- Brown University; Providence RI USA
| | - D.M. Wolk
- University of Arizona; Tucson AZ USA
- Geisinger Health System; Danville PA USA
| | - K.C. Carroll
- The Johns Hopkins Hospital; Baltimore MD USA
- Johns Hopkins University; Baltimore MD USA
| |
Collapse
|
130
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 2014; 26:547-603. [PMID: 23824373 DOI: 10.1128/cmr.00072-12] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Within the past decade, clinical microbiology laboratories experienced revolutionary changes in the way in which microorganisms are identified, moving away from slow, traditional microbial identification algorithms toward rapid molecular methods and mass spectrometry (MS). Historically, MS was clinically utilized as a high-complexity method adapted for protein-centered analysis of samples in chemistry and hematology laboratories. Today, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS is adapted for use in microbiology laboratories, where it serves as a paradigm-shifting, rapid, and robust method for accurate microbial identification. Multiple instrument platforms, marketed by well-established manufacturers, are beginning to displace automated phenotypic identification instruments and in some cases genetic sequence-based identification practices. This review summarizes the current position of MALDI-TOF MS in clinical research and in diagnostic clinical microbiology laboratories and serves as a primer to examine the "nuts and bolts" of MALDI-TOF MS, highlighting research associated with sample preparation, spectral analysis, and accuracy. Currently available MALDI-TOF MS hardware and software platforms that support the use of MALDI-TOF with direct and precultured specimens and integration of the technology into the laboratory workflow are also discussed. Finally, this review closes with a prospective view of the future of MALDI-TOF MS in the clinical microbiology laboratory to accelerate diagnosis and microbial identification to improve patient care.
Collapse
|
131
|
La Scola B. Intact cell MALDI-TOF mass spectrometry-based approaches for the diagnosis of bloodstream infections. Expert Rev Mol Diagn 2014; 11:287-98. [DOI: 10.1586/erm.11.12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bernard La Scola
- URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| |
Collapse
|
132
|
Yamamoto M, Umeda Y, Yo A, Yamaura M, Makimura K. Utilization of matrix-assisted laser desorption and ionization time-of-flight mass spectrometry for identification of infantile seborrheic dermatitis-causingMalasseziaand incidence of culture-based cutaneousMalasseziamicrobiota of 1-month-old infants. J Dermatol 2014; 41:117-23. [DOI: 10.1111/1346-8138.12364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/28/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Mikachi Yamamoto
- Laboratory of Space and Environmental Medicine; Graduate School of Medicine; Teikyo University; Tokyo Japan
| | - Yoshiko Umeda
- Teikyo University Institute of Medical Mycology; Teikyo University; Tokyo Japan
- General Medical Education Center; Teikyo University; Tokyo Japan
| | - Ayaka Yo
- Laboratory of Space and Environmental Medicine; Graduate School of Medicine; Teikyo University; Tokyo Japan
| | - Mariko Yamaura
- Laboratory of Space and Environmental Medicine; Graduate School of Medicine; Teikyo University; Tokyo Japan
| | - Koichi Makimura
- Laboratory of Space and Environmental Medicine; Graduate School of Medicine; Teikyo University; Tokyo Japan
- Teikyo University Institute of Medical Mycology; Teikyo University; Tokyo Japan
- General Medical Education Center; Teikyo University; Tokyo Japan
| |
Collapse
|
133
|
Performance of two MALDI-TOF MS systems for the identification of yeasts isolated from bloodstream infections and cerebrospinal fluids using a time-saving direct transfer protocol. Med Microbiol Immunol 2013; 203:93-9. [DOI: 10.1007/s00430-013-0319-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
|
134
|
Kostrzewa M, Sparbier K, Maier T, Schubert S. MALDI‐TOF MS: an upcoming tool for rapid detection of antibiotic resistance in microorganisms. Proteomics Clin Appl 2013; 7:767-78. [DOI: 10.1002/prca.201300042] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/01/2013] [Accepted: 08/08/2013] [Indexed: 12/13/2022]
|
135
|
Rapid identification and subtyping of Helicobacter cinaedi strains by intact-cell mass spectrometry profiling with the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2013; 52:95-102. [PMID: 24153128 DOI: 10.1128/jcm.01798-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Helicobacter cinaedi infection is recognized as an increasingly important emerging disease in humans. Although H. cinaedi-like strains have been isolated from a variety of animals, it is difficult to identify particular isolates due to their unusual phenotypic profiles and the limited number of biochemical tests for detecting helicobacters. Moreover, analyses of the 16S rRNA gene sequences are also limited due to the high levels of similarity among closely related helicobacters. This study was conducted to evaluate intact-cell mass spectrometry (ICMS) profiling using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as a tool for the identification of H. cinaedi. A total of 68 strains of H. cinaedi isolated from humans, dogs, a cat, and hamsters were examined in addition to other Helicobacter species. The major ICMS profiles of H. cinaedi were identical and differed from those of Helicobacter bilis, which show >98% sequence similarity at the 16S rRNA sequence level. A phyloproteomic analysis of the H. cinaedi strains examined in this work revealed that human isolates formed a single cluster that was distinct from that of the animal isolates, with the exception of two strains from dogs. These phyloproteomic results agreed with those of the phylogenetic analysis based on the nucleotide sequences of the hsp60 gene. Because they formed a distinct cluster in both analyses, our data suggest that animal strains may not be a major source of infection in humans. In conclusion, the ICMS profiles obtained using a MALDI-TOF MS approach may be useful for the identification and subtyping of H. cinaedi.
Collapse
|
136
|
Del Chierico F, Petrucca A, Vernocchi P, Bracaglia G, Fiscarelli E, Bernaschi P, Muraca M, Urbani A, Putignani L. Proteomics boosts translational and clinical microbiology. J Proteomics 2013; 97:69-87. [PMID: 24145144 DOI: 10.1016/j.jprot.2013.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/28/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
Abstract
The application of proteomics to translational and clinical microbiology is one of the most advanced frontiers in the management and control of infectious diseases and in the understanding of complex microbial systems within human fluids and districts. This new approach aims at providing, by dedicated bioinformatic pipelines, a thorough description of pathogen proteomes and their interactions within the context of human host ecosystems, revolutionizing the vision of infectious diseases in biomedicine and approaching new viewpoints in both diagnostic and clinical management of the patient. Indeed, in the last few years, many laboratories have matured a series of advanced proteomic applications, aiming at providing individual proteome charts of pathogens, with respect to their morph and/or cell life stages, antimicrobial or antimycotic resistance profiling, epidemiological dispersion. Herein, we aim at reviewing the current state-of-the-art on proteomic protocols designed and set-up for translational and diagnostic microbiological purposes, from axenic pathogens' characterization to microbiota ecosystems' full description. The final goal is to describe applications of the most common MALDI-TOF MS platforms to advanced diagnostic issues related to emerging infections, increasing of fastidious bacteria, and generation of patient-tailored phylotypes. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- F Del Chierico
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - A Petrucca
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Diagnostic Science, Sant'Andrea Hospital, Via di Grottarossa 1035, 00185 Rome, Italy
| | - P Vernocchi
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - G Bracaglia
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - E Fiscarelli
- Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - P Bernaschi
- Unit of Microbiology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - M Muraca
- Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - A Urbani
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Rome, Italy; IRCCS-Santa Lucia Foundation, Rome, Italy
| | - L Putignani
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| |
Collapse
|
137
|
Han-Jen RE, Wai-Fong Y, Kok-Gan C. Pandoraea sp. RB-44, a novel quorum sensing soil bacterium. SENSORS 2013; 13:14121-32. [PMID: 24145919 PMCID: PMC3859112 DOI: 10.3390/s131014121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 11/16/2022]
Abstract
Proteobacteria are known to communicate via signaling molecules and this process is known as quorum sensing. The most commonly studied quorum sensing molecules are N-acylhomoserine lactones (AHLs) that consists of a homoserine lactone moiety and an N-acyl side chain with various chain lengths and degrees of saturation at the C-3 position. We have isolated a bacterium, RB-44, from a site which was formally a landfill dumping ground. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis, this isolate was identified as a Pandoraea sp.which was then screened for AHL production using biosensors which indicated its quorum sensing properties. To identify the AHL profile of Pandoraea sp. RB-44, we used high resolution tandem mass spectrometry confirming that this isolate produced N-octanoylhomoserine lactone (C8-HSL). To the best of our knowledge, this is the first report that showed quorum sensing activity exhibited by Pandoraea sp. Our data add Pandoraea sp. to the growing number of bacteria that possess QS systems.
Collapse
Affiliation(s)
- Robson Ee Han-Jen
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
138
|
Lee W, Cho SM, Kim M, Ko YG, Yong D, Lee K. Weissella confusa bacteremia in an immune-competent patient with underlying intramural hematomas of the aorta. Ann Lab Med 2013; 33:459-62. [PMID: 24205498 PMCID: PMC3819448 DOI: 10.3343/alm.2013.33.6.459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/14/2013] [Accepted: 07/03/2013] [Indexed: 12/02/2022] Open
Affiliation(s)
- Wonmok Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea. ; Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
139
|
Manji R, Bythrow M, Branda JA, Burnham CAD, Ferraro MJ, Garner OB, Jennemann R, Lewinski MA, Mochon AB, Procop GW, Richter SS, Rychert JA, Sercia L, Westblade LF, Ginocchio CC. Multi-center evaluation of the VITEK® MS system for mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli. Eur J Clin Microbiol Infect Dis 2013; 33:337-46. [PMID: 24019163 DOI: 10.1007/s10096-013-1961-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
Studies have demonstrated that matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid, accurate method for the identification of clinically relevant bacteria. The purpose of this study was to evaluate the performance of the VITEK MS v2.0 system (bioMérieux) for the identification of the non-Enterobacteriaceae Gram-negative bacilli (NEGNB). This multi-center study tested 558 unique NEGNB clinical isolates, representing 18 genera and 33 species. Results obtained with the VITEK MS v2.0 were compared with reference 16S rRNA gene sequencing and when indicated recA sequencing and phenotypic analysis. VITEK MS v2.0 provided an identification for 92.5 % of the NEGNB isolates (516 out of 558). VITEK MS v2.0 correctly identified 90.9 % of NEGNB (507 out of 558), 77.8 % to species level and 13.1 % to genus level with multiple species. There were four isolates (0.7 %) incorrectly identified to genus level and five isolates (0.9 %), with one incorrect identification to species level. The remaining 42 isolates (7.5 %) were either reported as no identification (5.0 %) or called "mixed genera" (2.5 %) since two or more different genera were identified as possible identifications for the test organism. These findings demonstrate that the VITEK MS v2.0 system provides accurate results for the identification of a challenging and diverse group of Gram-negative bacteria.
Collapse
Affiliation(s)
- R Manji
- Department of Pathology and Laboratory Medicine, North Shore-LIJ Health System Laboratories, 10 Nevada Drive, Lake Success, NY, 11042, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Matrix-assisted laser desorption ionization--time of flight mass spectrometry: an emerging tool for the rapid identification of mosquito vectors. PLoS One 2013; 8:e72380. [PMID: 23977292 PMCID: PMC3744494 DOI: 10.1371/journal.pone.0072380] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Background The identification of mosquito vectors is typically based on morphological characteristics using morphological keys of determination, which requires entomological expertise and training. The use of protein profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is increasingly being used for the routine identification of bacteria, has recently emerged for arthropod identification. Methods To investigate the usefulness of MALDI-TOF-MS as a mosquito identification tool, we tested protein extracts made from mosquito legs to create a database of reference spectra. The database included a total of 129 laboratory-reared and field-caught mosquito specimens consisting of 20 species, including 4 Aedes spp., 9 Anopheles spp., 4 Culex spp., Lutzia tigripes, Orthopodomyia reunionensis and Mansonia uniformis. For the validation study, blind tests were performed with 76 specimens consisting of 1 to 4 individuals per species. A cluster analysis was carried out using the MALDI-Biotyper and some spectra from all mosquito species tested. Results Biomarker mass sets containing 22 and 43 masses have been detected from 100 specimens of the Anopheles, Aedes and Culex species. By carrying out 3 blind tests, we achieved the identification of mosquito vectors at the species level, including the differentiation of An. gambiae complex, which is possible using MALDI-TOF-MS with 1.8 as the cut-off identification score. A cluster analysis performed with all available mosquito species showed that MALDI-Biotyper can distinguish between specimens at the subspecies level, as demonstrated for An gambiae M and S, but this method cannot yet be considered a reliable tool for the phylogenetic study of mosquito species. Conclusions We confirmed that even without any specific expertise, MALDI-TOF-MS profiling of mosquito leg protein extracts can be used for the rapid identification of mosquito vectors. Therefore, MALDI-TOF-MS is an alternative, efficient and inexpensive tool that can accurately identify mosquitoes collected in the field during entomological surveys.
Collapse
|
141
|
Tamura H, Hotta Y, Sato H. Novel accurate bacterial discrimination by MALDI-time-of-flight MS based on ribosomal proteins coding in S10-spc-alpha operon at strain level S10-GERMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1185-1193. [PMID: 23686278 DOI: 10.1007/s13361-013-0627-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/15/2013] [Accepted: 03/03/2013] [Indexed: 06/02/2023]
Abstract
Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.
Collapse
Affiliation(s)
- Hiroto Tamura
- School of Agriculture, Meijo University, Shiogamaguchi, Tenpaku-ku, Nagoya, Japan,
| | | | | |
Collapse
|
142
|
Ranque S, Normand AC, Cassagne C, Murat JB, Bourgeois N, Dalle F, Gari-Toussaint M, Fourquet P, Hendrickx M, Piarroux R. MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory. Mycoses 2013; 57:135-40. [PMID: 23895114 DOI: 10.1111/myc.12115] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/29/2013] [Accepted: 07/08/2013] [Indexed: 11/27/2022]
Abstract
This study aimed to validate the effectiveness of a standardised procedure for the MALDI-TOF mass spectrometry (MS)-based identification on a large sample of filamentous fungi routinely identified in university hospitals' laboratories. Non-dermatophyte filamentous fungi prospectively isolated in the routine activity of five teaching hospitals in France were first identified by conventional methods in each laboratory and then by MS in one centre. DNA sequence-based identification resolved discrepancies between both methods. In this study, of the 625 analysed filamentous fungi of 58 species, 501 (80%) and 556 (89%) were correctly identified by conventional methods and MS respectively. Compared with the conventional method, MS dramatically enhanced the performance of the identification of the non-Aspergillus filamentous fungi with a 31-61% increase in correct identification rate. In conclusion, this study on a large sample of clinical filamentous fungi taxa demonstrates that species identification is significantly improved by MS compared with the conventional method. The main limitation is that MS identification is possible only if the species is included in the reference spectra library. Nevertheless, for the routine clinical laboratory, MS provides the means to attain markedly accurate results in filamentous fungi identification, which was previously restricted to only a few reference laboratories.
Collapse
Affiliation(s)
- Stéphane Ranque
- UMR MD3, Aix-Marseille Université, Marseille, France; Laboratoire de Parasitologie-Mycologie, APHM Timone, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Fehlberg LCC, Andrade LHS, Assis DM, Pereira RHV, Gales AC, Marques EA. Performance of MALDI-ToF MS for species identification of Burkholderia cepacia complex clinical isolates. Diagn Microbiol Infect Dis 2013; 77:126-8. [PMID: 23891221 DOI: 10.1016/j.diagmicrobio.2013.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/06/2013] [Accepted: 06/12/2013] [Indexed: 11/30/2022]
Abstract
We evaluated the performance of matrix-assisted laser desorption ionization-time of flight (MALDI-ToF) for identification of Bcc species compared with that of recA sequencing. MALDI-ToF was able of identifying 100% of Bcc isolates at the genus level, but 23.1% of Bcc isolates tested were not correctly identified at the species level. The misidentification occurred most frequently with Burkholderia contaminans (100%) and B. cepacia (33.3%).
Collapse
|
144
|
Schaumann R, Knoop N, Genzel GH, Losensky K, Rosenkranz C, Stîngu CS, Schellenberger W, Rodloff AC, Eschrich K. Discrimination of Enterobacteriaceae and Non-fermenting Gram Negative Bacilli by MALDI-TOF Mass Spectrometry. Open Microbiol J 2013; 7:118-22. [PMID: 23919091 PMCID: PMC3722536 DOI: 10.2174/1874285801307010118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/07/2013] [Accepted: 04/17/2013] [Indexed: 11/22/2022] Open
Abstract
Discrimination of Enterobacteriaceae and Non-fermenting Gram Negative Bacilli by MALDI-TOF Mass Spectrometry Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) has proven to be an effective identification tool in medical microbiology. Discrimination to subspecies or serovar level has been found to be challenging using commercially available identification software. By forming our own reference database and using alternative analysis methods, we could reliably identify all implemented Enterobacteriaceae and non-fermenting gram negative bacilli by MALDI-TOF MS and even succeeded to distinguish Shigella sonnei from Escherichia coli (E. coli) and Salmonella enterica spp. enterica serovar Enteritidis from Salmonella enterica spp. enterica serovar Typhimurium. Furthermore, the method showed the ability to separate Enterohemorrhagic E. coli (EHEC) and Enteropathogenic E. coli (EPEC) from non-enteropathogenic E. coli.
Collapse
Affiliation(s)
- Reiner Schaumann
- Institute for Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Performance of the Vitek MS v2.0 system in distinguishing Streptococcus pneumoniae from nonpneumococcal species of the Streptococcus mitis group. J Clin Microbiol 2013; 51:3079-82. [PMID: 23784130 DOI: 10.1128/jcm.00824-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Vitek MS v2.0 matrix-assisted laser desorption ionization-time of flight mass spectrometry system accurately distinguished Streptococcus pneumoniae from nonpneumococcal S. mitis group species. Only 1 of 116 nonpneumococcal isolates (<1%) was misidentified as S. pneumoniae. None of 95 pneumococcal isolates was misidentified. This method provides a rapid, simple means of discriminating among these challenging organisms.
Collapse
|
146
|
Potential and limitations of MALDI-TOF MS for discrimination within the species Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides. J Verbrauch Lebensm 2013. [DOI: 10.1007/s00003-013-0826-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
147
|
Zampieri D, Santos VG, Braga PAC, Ferreira CR, Ballottin D, Tasic L, Basso AC, Sanches BV, Pontes JHF, da Silva BP, Garboggini FF, Eberlin MN, Tata A. Microorganisms in cryopreserved semen and culture media used in the in vitro production (IVP) of bovine embryos identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Theriogenology 2013; 80:337-45. [PMID: 23756041 DOI: 10.1016/j.theriogenology.2013.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 01/04/2023]
Abstract
Commercial cattle breeders produce their own herd offspring for the dairy and beef market using artificial insemination. The procedure involves sanitary risks associated with the collection and commercialization of the germplasm, and the in vitro production and transfer of the bovine embryos must be monitored by strict health surveillance. To avoid the spreading of infectious diseases, one must rely on using controlled and monitored germplasm, media, and reagents that are guaranteed free of pathogens. In this article, we investigated the use of a new mass spectrometric approach for fast and accurate identification of bacteria and fungi in bovine semen and in culture media employed in the embryo in vitro production process. The microorganisms isolated from samples obtained in a commercial bovine embryo IVP setting were identified in a few minutes by their conserved peptide/protein profile, obtained applying matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), matched against a commercial database. The successful microorganisms MS identification has been confirmed by DNA amplification and sequencing. Therefore, the MS technique seems to offer a powerful tool for rapid and accurate microorganism identification in semen and culture media samples.
Collapse
Affiliation(s)
- Dávila Zampieri
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Campinas, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria. J Clin Microbiol 2013; 51:2225-31. [PMID: 23658261 DOI: 10.1128/jcm.00682-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting.
Collapse
|
149
|
Sandrin TR, Goldstein JE, Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. MASS SPECTROMETRY REVIEWS 2013; 32:188-217. [PMID: 22996584 DOI: 10.1002/mas.21359] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 05/16/2023]
Abstract
Since the advent of the use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS) as a tool for microbial characterization, efforts to increase the taxonomic resolution of the approach have been made. The rapidity and efficacy of the approach have suggested applications in counter-bioterrorism, prevention of food contamination, and monitoring the spread of antibiotic-resistant bacteria. Strain-level resolution has been reported with diverse bacteria, using library-based and bioinformatics-enabled approaches. Three types of characterization at the strain level have been reported: strain categorization, strain differentiation, and strain identification. Efforts to enhance the library-based approach have involved sample pre-treatment and data reduction strategies. Bioinformatics approaches have leveraged the ever-increasing amount of publicly available genomic and proteomic data to attain strain-level characterization. Bioinformatics-enabled strategies have facilitated strain characterization via intact biomarker identification, bottom-up, and top-down approaches. Rigorous quantitative and advanced statistical analyses have fostered success at the strain level with both approaches. Library-based approaches can be limited by effects of sample preparation and culture conditions on reproducibility, whereas bioinformatics-enabled approaches are typically limited to bacteria, for which genetic and/or proteomic data are available. Biological molecules other than proteins produced in strain-specific manners, including lipids and lipopeptides, might represent other avenues by which strain-level resolution might be attained. Immunological and lectin-based chemistries have shown promise to enhance sensitivity and specificity. Whereas the limits of the taxonomic resolution of MALDI TOF MS profiling of bacteria appears bacterium-specific, recent data suggest that these limits might not yet have been reached.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85069, USA.
| | | | | |
Collapse
|
150
|
Patel R. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis 2013; 57:564-72. [PMID: 23595835 DOI: 10.1093/cid/cit247] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite widespread application of nucleic acid diagnostics, cultures remain integral in modern laboratories. Because cultures detect a large number of organism types, it is unlikely that they will disappear from clinical practice in the near future. Their downside is slow turn-around time, impacted by time to growth and identification of that growth. The latter is expedited using a new proteomic technology, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).
Collapse
Affiliation(s)
- Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology and Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|