101
|
Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog 2015; 11:e1004481. [PMID: 25658831 PMCID: PMC4450058 DOI: 10.1371/journal.ppat.1004481] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 09/18/2014] [Indexed: 12/28/2022] Open
Abstract
Infections with cytomegalovirus (CMV) can cause severe disease in immunosuppressed patients and infected newborns. Innate as well as cellular and humoral adaptive immune effector functions contribute to the control of CMV in immunocompetent individuals. None of the innate or adaptive immune functions are essential for virus control, however. Expansion of γδ T cells has been observed during human CMV (HCMV) infection in the fetus and in transplant patients with HCMV reactivation but the protective function of γδ T cells under these conditions remains unclear. Here we show for murine CMV (MCMV) infections that mice that lack CD8 and CD4 αβ-T cells as well as B lymphocytes can control a MCMV infection that is lethal in RAG-1-/- mice lacking any T- and B-cells. γδ T cells, isolated from infected mice can kill MCMV infected target cells in vitro and, importantly, provide long-term protection in infected RAG-1-/- mice after adoptive transfer. γδ T cells in MCMV infected hosts undergo a prominent and long-lasting phenotypic change most compatible with the view that the majority of the γδ T cell population persists in an effector/memory state even after resolution of the acute phase of the infection. A clonotypically focused Vγ1 and Vγ2 repertoire was observed at later stages of the infection in the organs where MCMV persists. These findings add γδ T cells as yet another protective component to the anti-CMV immune response. Our data provide clear evidence that γδ T cells can provide an effective control mechanism of acute CMV infections, particularly when conventional adaptive immune mechanisms are insufficient or absent, like in transplant patient or in the developing immune system in utero. The findings have implications in the stem cell transplant setting, as antigen recognition by γδ T cells is not MHC-restricted and dual reactivity against CMV and tumors has been described. Cytomegalovirus is a clinically important pathogen. While infection in hosts with a functional immune system is usually asymptomatic, the virus can cause significant morbidity and mortality in individuals with an immature or suppressed immune system. The virus causes severe clinical complication in transplant recipients and congenital CMV infections are the most common infectious cause of neurological disorders in children. Multiple layers of innate and adoptive immunity are involved in the control of CMV and single deficiencies of one immune cell type can be compensated by other immune cells. Expansions of γδ T lymphocytes, which are regarded as innate-like cells with adaptive-like potential, have been shown to be associated with CMV infections in human transplant patients and neonates. Their role in protective immunity against CMV has been unclear, however. Here we show direct evidence in the murine CMV model (MCMV) that γδ T lymphocytes can provide protection against a lethal MCMV infection in the absence of any other cells of the adoptive immune system. Upon infection, γδ T lymphocytes undergo a significant expansion and a prominent and long-lasting phenotypic change. These findings have implications for the development of new cellular therapy regimens in CMV infections in the transplant setting that should be evaluated in the future.
Collapse
|
102
|
Non-redundant and redundant roles of cytomegalovirus gH/gL complexes in host organ entry and intra-tissue spread. PLoS Pathog 2015; 11:e1004640. [PMID: 25659098 PMCID: PMC4450070 DOI: 10.1371/journal.ppat.1004640] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/22/2014] [Indexed: 01/05/2023] Open
Abstract
Herpesviruses form different gH/gL virion envelope glycoprotein complexes that serve as entry complexes for mediating viral cell-type tropism in vitro; their roles in vivo, however, remained speculative and can be addressed experimentally only in animal models. For murine cytomegalovirus two alternative gH/gL complexes, gH/gL/gO and gH/gL/MCK-2, have been identified. A limitation of studies on viral tropism in vivo has been the difficulty in distinguishing between infection initiation by viral entry into first-hit target cells and subsequent cell-to-cell spread within tissues. As a new strategy to dissect these two events, we used a gO-transcomplemented ΔgO mutant for providing the gH/gL/gO complex selectively for the initial entry step, while progeny virions lack gO in subsequent rounds of infection. Whereas gH/gL/gO proved to be critical for establishing infection by efficient entry into diverse cell types, including liver macrophages, endothelial cells, and hepatocytes, it was dispensable for intra-tissue spread. Notably, the salivary glands, the source of virus for host-to-host transmission, represent an exception in that entry into virus-producing cells did not strictly depend on either the gH/gL/gO or the gH/gL/MCK-2 complex. Only if both complexes were absent in gO and MCK-2 double-knockout virus, in vivo infection was abolished at all sites.
Collapse
|
103
|
Stahl FR, Keyser KA, Heller K, Bischoff Y, Halle S, Wagner K, Messerle M, Förster R. Mck2-dependent infection of alveolar macrophages promotes replication of MCMV in nodular inflammatory foci of the neonatal lung. Mucosal Immunol 2015; 8:57-67. [PMID: 24894498 DOI: 10.1038/mi.2014.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/15/2014] [Indexed: 02/08/2023]
Abstract
Infection with cytomegalovirus (CMV) shows a worldwide high prevalence with only immunocompromised individuals or newborns to become symptomatic. The host's constitution and the pathogen's virulence determine whether disease occurs after infection. Mouse CMV (MCMV) is an appreciated pathogen for in vivo investigation of host-pathogen interactions. It has recently been reported that a single base pair deletion can spontaneously occur in the open reading frame of MCMV-encoded chemokine 2 (MCK2), preventing the expression of the full-length gene product. To study the consequences of this mutation, we compared the Mck2-defective reporter virus MCMV-3D with the newly generated repaired Mck2(+) mutant MCMV-3DR. Compared with MCMV-3D, neonatal mice infected with MCMV-3DR showed severe viral disease after lung infection. Viral disease coincided with high viral activity in multiple organs and increased virus replication in previously described nodular inflammatory foci (NIF) in the lung. Notably, MCMV-3DR showed tropism for alveolar macrophages in vitro and in vivo, whereas MCMV-3D did not infect this cell type. Moreover, in vivo depletion of alveolar macrophages reduced MCMV-3DR replication in the lung. We proposed an Mck2-mediated mechanism by which MCMV exploits alveolar macrophages to increase replication upon first encounter with the host's lung mucosa.
Collapse
Affiliation(s)
- F R Stahl
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - K A Keyser
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - K Heller
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Y Bischoff
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - S Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - K Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - M Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - R Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
104
|
Beverley PCL, Ruzsics Z, Hey A, Hutchings C, Boos S, Bolinger B, Marchi E, O'Hara G, Klenerman P, Koszinowski UH, Tchilian EZ. A novel murine cytomegalovirus vaccine vector protects against Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2306-16. [PMID: 25070842 PMCID: PMC4134927 DOI: 10.4049/jimmunol.1302523] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis remains a global health problem so that a more effective vaccine than bacillus Calmette–Guérin is urgently needed. Cytomegaloviruses persist lifelong in vivo and induce powerful immune and increasing (“inflationary”) responses, making them attractive vaccine vectors. We have used an m1–m16-deleted recombinant murine CMV (MCMV) expressing Mycobacterium tuberculosis Ag 85A to show that infection of mice with this recombinant significantly reduces the mycobacterial load after challenge with M. tuberculosis, whereas control empty virus has a lesser effect. Both viruses induce immune responses to H-2d–restricted epitopes of MCMV pp89 and M18 Ags characteristic of infection with other MCMVs. A low frequency of 85A-specific memory cells could be revealed by in vivo or in vitro boosting or after challenge with M. tuberculosis. Kinetic analysis of M. tuberculosis growth in the lungs of CMV-infected mice shows early inhibition of M. tuberculosis growth abolished by treatment with NK-depleting anti–asialo ganglio-N-tetraosylceramide Ab. Microarray analysis of the lungs of naive and CMV-infected mice shows increased IL-21 mRNA in infected mice, whereas in vitro NK assays indicate increased levels of NK activity. These data indicate that activation of NK cells by MCMV provides early nonspecific protection against M. tuberculosis, potentiated by a weak 85A-specific T cell response, and they reinforce the view that the innate immune system plays an important role in both natural and vaccine-induced protection against M. tuberculosis.
Collapse
Affiliation(s)
- Peter C L Beverley
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | - Zsolt Ruzsics
- Max von Pettenkofer Institute, Ludwig Maximilians University, D-80336 Munich, Germany
| | - Ariann Hey
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | - Claire Hutchings
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | - Simone Boos
- Max von Pettenkofer Institute, Ludwig Maximilians University, D-80336 Munich, Germany
| | - Beatrice Bolinger
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | - Emanuele Marchi
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | - Geraldine O'Hara
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| | - Ulrich H Koszinowski
- Max von Pettenkofer Institute, Ludwig Maximilians University, D-80336 Munich, Germany
| | - Elma Z Tchilian
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom; and
| |
Collapse
|
105
|
Murine cytomegalovirus virion-associated protein M45 mediates rapid NF-κB activation after infection. J Virol 2014; 88:9963-75. [PMID: 24942588 DOI: 10.1128/jvi.00684-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Murine cytomegalovirus (MCMV) rapidly induces activation of nuclear factor κB (NF-κB) upon infection of host cells. After a transient phase of activation, the MCMV M45 protein blocks all canonical NF-κB-activating pathways by inducing the degradation of the gamma subunit of the inhibitor of κB kinase complex (IKKγ; commonly referred to as the NF-κB essential modulator [NEMO]). Here we show that the viral M45 protein also mediates rapid NF-κB activation immediately after infection. MCMV mutants lacking M45 or expressing C-terminally truncated M45 proteins induced neither NF-κB activation nor transcription of NF-κB-dependent genes within the first 3 h of infection. Rapid NF-κB activation was absent in MCMV-infected NEMO-deficient fibroblasts, indicating that activation occurs at or upstream of the IKK complex. NF-κB activation was strongly reduced in murine fibroblasts lacking receptor-interacting protein 1 (RIP1), a known M45-interacting protein, but was restored upon complementation with murine RIP1. However, the ability of M45 to interact with RIP1 and NEMO was not sufficient to induce NF-κB activation upon infection. In addition, incorporation of the M45 protein into virions was required. This was dependent on a C-terminal region of M45, which is not required for interaction with RIP1 and NEMO. We propose a model in which M45 delivered by viral particles activates NF-κB, presumably involving an interaction with RIP1 and NEMO. Later in infection, expression of M45 induces the degradation of NEMO and the shutdown of canonical NF-κB activation. IMPORTANCE Transcription factor NF-κB is an important regulator of innate and adaptive immunity. Its activation can be beneficial or detrimental for viral pathogens. Therefore, many viruses interfere with NF-κB signaling by stimulating or inhibiting the activation of this transcription factor. Cytomegaloviruses, opportunistic pathogens that cause lifelong infections in their hosts, activate NF-κB rapidly and transiently upon infection but block NF-κB signaling soon thereafter. Here we report the surprising finding that the murine cytomegalovirus protein M45, a component of viral particles, plays a dual role in NF-κB signaling. It not only blocks NF-κB signaling later in infection but also triggers the rapid activation of NF-κB immediately following virus entry into host cells. Both activation and inhibition involve M45 interaction with the cellular signaling mediators RIP1 and NEMO. Similar dual functions in NF-κB signaling are likely to be found in other viral proteins.
Collapse
|
106
|
Zurbach KA, Moghbeli T, Snyder CM. Resolving the titer of murine cytomegalovirus by plaque assay using the M2-10B4 cell line and a low viscosity overlay. Virol J 2014; 11:71. [PMID: 24742045 PMCID: PMC4006460 DOI: 10.1186/1743-422x-11-71] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Murine cytomegalovirus (MCMV) is increasingly used as an infectious model to investigate host-pathogen interactions in mice. Detailed methods have been published for using primary murine embryonic fibroblasts (MEFs) for preparing stocks and determining viral titers of MCMV. For determining the titer of MCMV by plaque assay, these methods rely on a high viscosity media that restricts viral spreading through the supernatant of the culture, but is also usually too viscous to pipet. Moreover, MEFs must be repeatedly generated and can vary widely from batch-to-batch in purity, proliferation rates, and the development of senescence. In contrast, the M2-10B4 bone marrow stromal cell line (ATCC # CRL-1972), which is also permissive for MCMV, has been reported to produce high-titer stocks of MCMV and has the considerable advantages of growing rapidly and consistently. However, detailed methods using these cells have not been published. METHODS We modified existing protocols to use M2-10B4 cells for measuring MCMV titers by plaque assay. RESULTS We found that MCMV plaques could be easily resolved on monolayers of M2-10B4 cells. Moreover, plaques formed normally even when cultures of M2-10B4 cells were less than 50% confluent on the day of infection, as long as we also used a reduced viscosity overlay. CONCLUSIONS Overall, our protocol enabled us to use a consistent cell line to assess viral titers, rather than repeatedly producing primary MEFs. It also allowed us to start the assay with 4-fold fewer cells than would be required to generate a confluent monolayer, reducing the lead-time prior to the start of the assay. Finally, the reduced viscosity CMC could be handled by pipet and did not need to be pre-mixed with media, thus increasing its shelf-life and ease-of-use. We describe our results here, along with detailed protocols for the use of the M2-10B4 cell lines to determine the titer and grow stocks of MCMV.
Collapse
Affiliation(s)
| | | | - Christopher M Snyder
- Department of Microbiology and Immunology, Jefferson Medical College, Kimmel Cancer Center, Thomas Jefferson University, 233 S, 10th St BLSB, rm 526, Philadelphia, PA 19107, USA.
| |
Collapse
|
107
|
Zarama A, Pérez-Carmona N, Farré D, Tomic A, Borst EM, Messerle M, Jonjic S, Engel P, Angulo A. Cytomegalovirus m154 hinders CD48 cell-surface expression and promotes viral escape from host natural killer cell control. PLoS Pathog 2014; 10:e1004000. [PMID: 24626474 PMCID: PMC3953435 DOI: 10.1371/journal.ppat.1004000] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/31/2014] [Indexed: 11/19/2022] Open
Abstract
Receptors of the signalling lymphocyte-activation molecules (SLAM) family are involved in the functional regulation of a variety of immune cells upon engagement through homotypic or heterotypic interactions amongst them. Here we show that murine cytomegalovirus (MCMV) dampens the surface expression of several SLAM receptors during the course of the infection of macrophages. By screening a panel of MCMV deletion mutants, we identified m154 as an immunoevasin that effectively reduces the cell-surface expression of the SLAM family member CD48, a high-affinity ligand for natural killer (NK) and cytotoxic T cell receptor CD244. m154 is a mucin-like protein, expressed with early kinetics, which can be found at the cell surface of the infected cell. During infection, m154 leads to proteolytic degradation of CD48. This viral protein interferes with the NK cell cytotoxicity triggered by MCMV-infected macrophages. In addition, we demonstrate that an MCMV mutant virus lacking m154 expression results in an attenuated phenotype in vivo, which can be substantially restored after NK cell depletion in mice. This is the first description of a viral gene capable of downregulating CD48. Our novel findings define m154 as an important player in MCMV innate immune regulation.
Collapse
Affiliation(s)
- Angela Zarama
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Domènec Farré
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Adriana Tomic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Eva Maria Borst
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Pablo Engel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Immunology Unit, Department of Cell Biology, Immunology, and Neurosciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Ana Angulo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Immunology Unit, Department of Cell Biology, Immunology, and Neurosciences, Medical School, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
108
|
Daley-Bauer LP, Roback LJ, Wynn GM, Mocarski ES. Cytomegalovirus hijacks CX3CR1(hi) patrolling monocytes as immune-privileged vehicles for dissemination in mice. Cell Host Microbe 2014; 15:351-62. [PMID: 24629341 PMCID: PMC3989205 DOI: 10.1016/j.chom.2014.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/10/2013] [Accepted: 02/04/2014] [Indexed: 12/24/2022]
Abstract
Peripheral blood myelomonocytic cells are important for cytomegalovirus dissemination to distal organs such as salivary glands where persistent replication and shedding dictates transmission patterns. We find that this process is markedly enhanced by the murine cytomegalovirus (MCMV)-encoded CC chemokine, MCK2, which promotes recruitment of CX3CR1(hi) patrolling monocytes to initial infection sites in the mouse. There, these cells become infected and traffic via the bloodstream to distal sites. In contrast, inflammatory monocytes, the other major myelomonocytic subset, remain virus negative. CX3CR1 deficiency prevents patrolling monocyte migration on the vascular endothelium and interrupts MCMV dissemination to the salivary glands independent of antiviral NK and T cell immune control. In this manner, CX3CR1(hi) patrolling monocytes serve as immune-privileged vehicles to transport MCMV via the bloodstream to distal organs. MCMV commandeers patrolling monocytes to mediate systemic infection and seed a persistent reservoir essential for horizontal transmission.
Collapse
Affiliation(s)
- Lisa P Daley-Bauer
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Linda J Roback
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Grace M Wynn
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
109
|
Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency. PLoS Pathog 2014; 10:e1003962. [PMID: 24586165 PMCID: PMC3930589 DOI: 10.1371/journal.ppat.1003962] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022] Open
Abstract
Herpesviruses establish a lifelong latent infection posing the risk for virus reactivation and disease. In cytomegalovirus infection, expression of the major immediate early (IE) genes is a critical checkpoint, driving the lytic replication cycle upon primary infection or reactivation from latency. While it is known that type I interferon (IFN) limits lytic CMV replication, its role in latency and reactivation has not been explored. In the model of mouse CMV infection, we show here that IFNβ blocks mouse CMV replication at the level of IE transcription in IFN-responding endothelial cells and fibroblasts. The IFN-mediated inhibition of IE genes was entirely reversible, arguing that the IFN-effect may be consistent with viral latency. Importantly, the response to IFNβ is stochastic, and MCMV IE transcription and replication were repressed only in IFN-responsive cells, while the IFN-unresponsive cells remained permissive for lytic MCMV infection. IFN blocked the viral lytic replication cycle by upregulating the nuclear domain 10 (ND10) components, PML, Sp100 and Daxx, and their knockdown by shRNA rescued viral replication in the presence of IFNβ. Finally, IFNβ prevented MCMV reactivation from endothelial cells derived from latently infected mice, validating our results in a biologically relevant setting. Therefore, our data do not only define for the first time the molecular mechanism of IFN-mediated control of CMV infection, but also indicate that the reversible inhibition of the virus lytic cycle by IFNβ is consistent with the establishment of CMV latency. Cytomegalovirus (CMV) is a widespread herpesvirus that establishes a détente with the host immune system. Therefore, the CMV reactivates from latency in immunocompromised hosts, resulting in life-threatening disease of the vulnerable patients. However, the exact mechanism by which the immune system keeps CMV at bay remains incompletely understood. To address this question, we have used a reporter system, based on infection of cells with the mouse CMV. Our results showed that interferon (IFN), a well-known antiviral protein, blocks CMV replication at the earliest stages after the virus has entered the cell. More importantly, removing the IFN from the infected cells restarted MCMV replication, indicating that its effects are consistent with viral latency. We showed that IFN blocked virus replication by inducing the expression of proteins located in the nuclear domain 10 (ND10), a compartment in the nucleus of cells to which the incoming viral genomes are directed. Similarly, IFN was sufficient to block CMV reactivation from cells of latently infected mice. In conclusion, IFN had the ability to drive CMV into a quiescent state matching the formal definition of latency and was sufficient to prevent reactivation of bona fide latent CMV.
Collapse
|
110
|
Mouse CMV infection delays antibody class switch upon an unrelated virus challenge. Exp Gerontol 2014; 54:101-8. [PMID: 24462805 DOI: 10.1016/j.exger.2014.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/12/2014] [Accepted: 01/15/2014] [Indexed: 12/26/2022]
Abstract
Poor immune protection upon vaccination is a critical determinant of immunosenescence. Latent Cytomegalovirus (CMV) infection has been associated with poor antibody responses to vaccination, but a causative role for CMV in the poor immune response requires experimental evidence and thus could not be confirmed in clinical studies. To test the hypothesis that latent CMV infection causes poor antibody responses, we infected young or adult mice with mouse CMV and challenged them with Vesicular stomatitis virus (VSV) at 15 or 18months of age. Latent, but not primary infection with mouse CMV resulted in diminished neutralizing titers of the serum IgG fraction at day 7 post challenge, which recovered by day 14 post challenge. This phenomenon was specific for mice infected with mouse CMV, but not mice infected with other herpesviruses, like murine herpesvirus-68 or herpes simplex virus type 1, or mice infected with non-persistent viruses, such as influenza or Vaccinia virus. Hence, our data indicate a delay in IgG class-switch that was specific for the CMV infection. Herpesviral infections did not change the B-cell memory compartment, and increased the size of the effector-memory subset of blood CD4 T-cells only when administered in combination. Furthermore, CD4 T-cell response to VSV infection was maintained in latently infected mice. Therefore, our results argue that latent CMV infection impairs B-cell, but not T-cell responses to a challenge with VSV and delays antibody class-switch by a mechanism which may be independent of T-cell help.
Collapse
|
111
|
Thom JT, Walton SM, Torti N, Oxenius A. Salivary gland resident APCs are Flt3L- and CCR2-independent macrophage-like cells incapable of cross-presentation. Eur J Immunol 2013; 44:706-14. [DOI: 10.1002/eji.201343992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/11/2013] [Accepted: 11/22/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Jenny T. Thom
- Institute of Microbiology; ETH Zurich; Zurich Switzerland
| | | | - Nicole Torti
- Institute of Microbiology; ETH Zurich; Zurich Switzerland
| | | |
Collapse
|
112
|
Wagner FM, Brizic I, Prager A, Trsan T, Arapovic M, Lemmermann NAW, Podlech J, Reddehase MJ, Lemnitzer F, Bosse JB, Gimpfl M, Marcinowski L, MacDonald M, Adler H, Koszinowski UH, Adler B. The viral chemokine MCK-2 of murine cytomegalovirus promotes infection as part of a gH/gL/MCK-2 complex. PLoS Pathog 2013; 9:e1003493. [PMID: 23935483 PMCID: PMC3723581 DOI: 10.1371/journal.ppat.1003493] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 05/22/2013] [Indexed: 11/26/2022] Open
Abstract
Human cytomegalovirus (HCMV) forms two gH/gL glycoprotein complexes, gH/gL/gO and gH/gL/pUL(128,130,131A), which determine the tropism, the entry pathways and the mode of spread of the virus. For murine cytomegalovirus (MCMV), which serves as a model for HCMV, a gH/gL/gO complex functionally homologous to the HCMV gH/gL/gO complex has been described. Knock-out of MCMV gO does impair, but not abolish, virus spread indicating that also MCMV might form an alternative gH/gL complex. Here, we show that the MCMV CC chemokine MCK-2 forms a complex with the glycoprotein gH, a complex which is incorporated into the virion. We could additionally show that mutants lacking both, gO and MCK-2 are not able to produce infectious virus. Trans-complementation of these double mutants with either gO or MCK-2 showed that both proteins can promote infection of host cells, although through different entry pathways. MCK-2 has been extensively studied in vivo by others. It has been shown to be involved in attracting cells for virus dissemination and in regulating antiviral host responses. We now show that MCK-2, by forming a complex with gH, strongly promotes infection of macrophages in vitro and in vivo. Thus, MCK-2 may play a dual role in MCMV infection, as a chemokine regulating the host response and attracting specific target cells and as part of a glycoprotein complex promoting entry into cells crucial for virus dissemination. Several human herpesviruses form alternative gH/gL complexes which determine the tropism for different cell types. For murine cytomegalovirus (MCMV), a gH/gL/gO complex has recently been characterized. Here, we present the identification and characterization of an alternative gH/gL/MCK-2 complex which promotes MCMV spread and is important for efficient infection of macrophages in vitro and in vivo. Association of the MCMV CC chemokine MCK-2 with a glycoprotein complex promoting virus entry is a novel function for the well-characterized MCK-2. Virus mutants lacking MCK-2 have been shown to exhibit a reduced capacity to attract leukocytes and a disregulated T cell control of the MCMV infection in vivo. These defects can be attributed to the chemokine function of MCK-2. Yet, the observation that MCK-2 knock-out mutants additionally are impaired in infecting leukocytes in vivo is consistent with our new finding that MCK-2 forms a glycoprotein complex promoting entry into monocytic cells. gH/gL complexes associating with multifunctional proteins add a new level of complexity to the interpretation of infection phenotypes of the respective knock-out herpesviruses.
Collapse
Affiliation(s)
- Felicia M. Wagner
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ilija Brizic
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adrian Prager
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tihana Trsan
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Arapovic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunology (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frederic Lemnitzer
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Bernhard Bosse
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Gimpfl
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lisa Marcinowski
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Margaret MacDonald
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, New York, United States of America
| | - Heiko Adler
- Research Unit Gene Vectors, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Ulrich H. Koszinowski
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Barbara Adler
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
113
|
Dag F, Weingärtner A, Butueva M, Conte I, Holzki J, May T, Adler B, Wirth D, Cicin-Sain L. A new reporter mouse cytomegalovirus reveals maintained immediate-early gene expression but poor virus replication in cycling liver sinusoidal endothelial cells. Virol J 2013; 10:197. [PMID: 23773211 PMCID: PMC3765632 DOI: 10.1186/1743-422x-10-197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/17/2013] [Indexed: 02/05/2023] Open
Abstract
Background The MCMV major immediate early promoter/enhancer (MIEP) is a bidirectional promoter that drives the expression of the three immediate early viral genes, namely ie1, ie2 and ie3. The regulation of their expression is intensively studied, but still incompletely understood. Methods We constructed a reporter MCMV, (MCMV-MIEPr) expressing YFP and tdTomato under the control of the MIEP as proxies of ie1 and ie2, respectively. Moreover, we generated a liver sinusoidal endothelial cell line (LSEC-uniLT) where cycling is dependent on doxycycline. We used these novel tools to study the kinetics of MIEP-driven gene expression in the context of infection and at the single cell level by flow cytometry and by live imaging of proliferating and G0-arrested cells. Results MCMV replicated to higher titers in G0-arrested LSEC, and cycling cells showed less cytopathic effect or YFP and tdTomato expression at 5 days post infection. In the first 24 h post infection, however, there was no difference in MIEP activity in cycling or G0-arrested cells, although we could observe different profiles of MIEP gene expression in different cell types, like LSECs, fibroblasts or macrophages. We monitored infected LSEC-uniLT in G0 by time lapse microscopy over five days and noticed that most cells survived infection for at least 96 h, arguing that quick lysis of infected cells could not account for the spread of the virus. Interestingly, we noticed a strong correlation between the ratio of median YFP and tdTomato expression and length of survival of infected cells. Conclusion By means of our newly developed genetic tools, we showed that the expression pattern of MCMV IE1 and IE2 genes differs between macrophages, endothelial cells and fibroblasts. Substantial and cell-cycle independent differences in the ie1 and ie2 transcription could also be observed within individual cells of the same population, and marked ie2 gene expression was associated with longer survival of the infected cells.
Collapse
|
114
|
A chemokine-like viral protein enhances alpha interferon production by plasmacytoid dendritic cells but delays CD8+ T cell activation and impairs viral clearance. J Virol 2013; 87:7911-20. [PMID: 23658453 DOI: 10.1128/jvi.00187-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Murine cytomegalovirus encodes numerous proteins that act on a variety of pathways to modulate the innate and adaptive immune responses. Here, we demonstrate that a chemokine-like protein encoded by murine cytomegalovirus activates the early innate immune response and delays adaptive immunity, thereby impairing viral clearance. The protein, m131/129 (also known as MCK-2), is not required to establish infection in the spleen; however, a mutant virus lacking m131/129 was cleared more rapidly from this organ. In the absence of m131/129 expression, there was enhanced activation of dendritic cells (DC), and virus-specific CD8(+) T cells were recruited into the immune response earlier. Viral mutants lacking m131/129 elicited weaker production of alpha interferon (IFN-α) at 40 h postinfection, indicating that this protein exerts its effects during early rounds of viral replication in the spleen. Furthermore, while wild-type and mutant viruses activated plasmacytoid dendritic cells (pDC) equally at this time, as measured by the upregulation of costimulatory molecules, the presence of m131/129 stimulated more pDC to secrete IFN-α, accounting for the stronger IFN-α response than from the wild-type virus. These data provide evidence for a novel immunomodulatory function of a viral chemokine and expose the multifunctionality of immune evasion proteins. In addition, these results broaden our understanding of the interplay between innate and adaptive immunity.
Collapse
|
115
|
CD27-CD70 costimulation controls T cell immunity during acute and persistent cytomegalovirus infection. J Virol 2013; 87:6851-65. [PMID: 23576505 DOI: 10.1128/jvi.03305-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytomegaloviruses (CMVs) establish lifelong infections that are controlled in part by CD4(+) and CD8(+) T cells. To promote persistence, CMVs utilize multiple strategies to evade host immunity, including modulation of costimulatory molecules on infected antigen-presenting cells. In humans, CMV-specific memory T cells are characterized by the loss of CD27 expression, which suggests a critical role of the costimulatory receptor-ligand pair CD27-CD70 for the development of CMV-specific T cell immunity. In this study, the in vivo role of CD27-CD70 costimulation during mouse CMV infection was examined. During the acute phase of infection, the magnitudes of CMV-specific CD4(+) and CD8(+) T cell responses were decreased in mice with abrogated CD27-CD70 costimulation. Moreover, the accumulation of inflationary memory T cells during the persistent phase of infection and the ability to undergo secondary expansion required CD27-CD70 interactions. The downmodulation of CD27 expression, however, which occurs gradually and exclusively on inflationary memory T cells, is ligand independent. Furthermore, the IL-2 production in both noninflationary and inflationary CMV-specific T cells was dependent on CD27-CD70 costimulation. Collectively, these results highlight the importance of the CD27-CD70 costimulation pathway for the development of CMV-specific T cell immunity during acute and persistent infection.
Collapse
|
116
|
Dekhtiarenko I, Jarvis MA, Ruzsics Z, Čičin-Šain L. The context of gene expression defines the immunodominance hierarchy of cytomegalovirus antigens. THE JOURNAL OF IMMUNOLOGY 2013; 190:3399-409. [PMID: 23460738 DOI: 10.4049/jimmunol.1203173] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural immunity to CMV dominates the CD4 and CD8 memory compartments of the CMV-seropositive host. This property has been recently exploited for experimental CMV-based vaccine vector strategies, and it has shown promise in animal models of AIDS and Ebola disease. Although it is generally agreed that CMV-based vaccine vectors may induce highly protective and persistent memory T cells, the influence of the gene expression context on Ag-specific T cell memory responses and immune protection induced by CMV vectors is not known. Using murine CMV (MCMV) recombinants expressing a single CD8 T cell epitope from HSV-1 fused to different MCMV genes, we show that magnitude and kinetics of T cell responses induced by CMV are dependent on the gene expression of CMV Ags. Interestingly, the kinetics of the immune response to the HSV-1 epitope was paralleled by a reciprocal depression of immune responses to endogenous MCMV Ags. Infection with a recombinant MCMV inducing a vigorous initial immune response to the recombinant peptide resulted in a depressed early response to endogenous MCMV Ag. Another recombinant virus, which induced a slowly developing "inflationary" T cell response to the HSV-1 peptide, induced weaker long-term responses to endogenous CMV Ags. Importantly, both mutants were able to protect mice from a challenge with HSV-1, mediating strong sterilizing immunity. Our data suggest that the context of gene expression markedly influences the T cell immunodominance hierarchy of CMV Ags, but the immune protection against HSV-1 does not require inflationary CD8 responses against the recombinant CMV-expressed epitope.
Collapse
Affiliation(s)
- Iryna Dekhtiarenko
- Department of Vaccinology, Helmholtz Center for Infection Research, Braunschweig 38124, Germany
| | | | | | | |
Collapse
|
117
|
Smith LM, McWhorter AR, Shellam GR, Redwood AJ. The genome of murine cytomegalovirus is shaped by purifying selection and extensive recombination. Virology 2012; 435:258-68. [PMID: 23107009 DOI: 10.1016/j.virol.2012.08.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/02/2012] [Accepted: 08/24/2012] [Indexed: 11/19/2022]
Abstract
The herpesvirus lifestyle results in a long-term interaction between host and invading pathogen, resulting in exquisite adaptation of virus to host. We have sequenced the genomes of nine strains of murine cytomegalovirus (a betaherpesvirus), isolated from free-living mice trapped at locations separated geographically and temporally. Despite this separation these genomes were found to have low levels of nucleotide variation. Of the more than 160 open reading frames, almost 90% had a dN/dS ratio of amino acid substitutions of less than 0.6, indicating the level of purifying selection on the coding potential of MCMV. Examination of selection acting on individual genes at the codon level however indicates some level of positive selection, with 0.03% of codons showing strong evidence for positive selection. Conversely, 1.3% of codons show strong evidence of purifying selection. Alignments of both genome sequences and coding regions suggested that high levels of recombination have shaped the MCMV genome.
Collapse
Affiliation(s)
- L M Smith
- School of Pathology and Laboratory Medicine, University of Western Australia, Australia
| | | | | | | |
Collapse
|
118
|
Cytomegalovirus impairs antiviral CD8+ T cell immunity by recruiting inflammatory monocytes. Immunity 2012; 37:122-33. [PMID: 22840843 DOI: 10.1016/j.immuni.2012.04.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 04/06/2012] [Accepted: 04/19/2012] [Indexed: 12/24/2022]
Abstract
Inflammatory monocytes are key early responders to infection that contribute to pathogen-host interactions in diverse ways. Here, we report that the murine cytomegalovirus-encoded CC chemokine, MCK2, enhanced CCR2-dependent recruitment of these cells to modulate antiviral immunity, impairing virus-specific CD8(+) T cell expansion and differentiation into effector cytotoxic T lymphocytes, thus reducing the capacity to eliminate viral antigen-bearing cells and slowing viral clearance. Adoptive transfer of inflammatory monocytes into Ccr2(-/-)Ccl2(-/-) mice impaired virus antigen-specific clearance. Cytomegalovirus therefore enhances a natural CCR2-dependent immune regulatory network to modulate adaptive immunity via nitric oxide production, reminiscent of the monocytic subtype of myeloid-derived suppressor cells primarily implicated in cancer immunomodulation.
Collapse
|
119
|
Marcinowski L, Tanguy M, Krmpotic A, Rädle B, Lisnić VJ, Tuddenham L, Chane-Woon-Ming B, Ruzsics Z, Erhard F, Benkartek C, Babic M, Zimmer R, Trgovcich J, Koszinowski UH, Jonjic S, Pfeffer S, Dölken L. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog 2012; 8:e1002510. [PMID: 22346748 PMCID: PMC3276556 DOI: 10.1371/journal.ppat.1002510] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/13/2011] [Indexed: 12/11/2022] Open
Abstract
Cytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only modestly alter the cellular miRNA profile. The most prominent alteration upon lytic murine cytomegalovirus (MCMV) infection is the rapid degradation of the cellular miR-27a and miR-27b. Here, we report that this regulation is mediated by the ∼1.7 kb spliced and highly abundant MCMV m169 transcript. Specificity to miR-27a/b is mediated by a single, apparently optimized, miRNA binding site located in its 3′-UTR. This site is easily and efficiently retargeted to other cellular and viral miRNAs by target site replacement. Expression of the 3′-UTR of m169 by an adenoviral vector was sufficient to mediate its function, indicating that no other viral factors are essential in this process. Degradation of miR-27a/b was found to be accompanied by 3′-tailing and -trimming. Despite its dramatic effect on miRNA stability, we found this interaction to be mutual, indicating potential regulation of m169 by miR-27a/b. Most interestingly, three mutant viruses no longer able to target miR-27a/b, either due to miRNA target site disruption or target site replacement, showed significant attenuation in multiple organs as early as 4 days post infection, indicating that degradation of miR-27a/b is important for efficient MCMV replication in vivo. MicroRNAs are small, non-coding RNAs which shape and fine-tune gene expression of at least a third of our genes. During millions of years of coevolution with their hosts, herpesviruses have both usurped the host cell miRNA machinery by expressing their own sets of miRNAs, and learned to modify host miRNA expression for their own needs. Recently, we reported on the rapid degradation of two cellular miRNAs upon lytic murine cytomegalovirus (MCMV) infection, namely miR-27a and miR-27b. In this paper, we show that their regulation is mediated by the highly abundant viral transcript m169. It targets miR-27a/b via a single binding site in its 3′-UTR, which can be efficiently retargeted to other cellular and viral miRNAs, enabling the efficient knock-down of individual miRNAs of interest. Degradation of miR-27a/b is preceded by its 3′-tailing and -trimming. Most interestingly, three mutant viruses unable to target miR-27a/b showed significantly lower virus titers in various organs during acute MCMV infection, indicating that degradation of miR-27a/b is important for efficient virus replication in vivo.
Collapse
Affiliation(s)
- Lisa Marcinowski
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mélanie Tanguy
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Astrid Krmpotic
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Rijeka, Croatia
| | - Bernd Rädle
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vanda J. Lisnić
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Rijeka, Croatia
| | - Lee Tuddenham
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Zsolt Ruzsics
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Florian Erhard
- Institute for Informatics, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Marina Babic
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Rijeka, Croatia
| | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joanne Trgovcich
- Department of Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - Ulrich H. Koszinowski
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine University of Rijeka, Rijeka, Croatia
- * E-mail: (SJ); (SP); (LD)
| | - Sébastien Pfeffer
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
- * E-mail: (SJ); (SP); (LD)
| | - Lars Dölken
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail: (SJ); (SP); (LD)
| |
Collapse
|
120
|
Back to BAC: the use of infectious clone technologies for viral mutagenesis. Viruses 2012; 4:211-35. [PMID: 22470833 PMCID: PMC3315213 DOI: 10.3390/v4020211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/18/2022] Open
Abstract
Bacterial artificial chromosome (BAC) vectors were first developed to facilitate the propagation and manipulation of large DNA fragments in molecular biology studies for uses such as genome sequencing projects and genetic disease models. To facilitate these studies, methodologies have been developed to introduce specific mutations that can be directly applied to the mutagenesis of infectious clones (icBAC) using BAC technologies. This has resulted in rapid identification of gene function and expression at unprecedented rates. Here we review the major developments in BAC mutagenesis in vitro. This review summarises the technologies used to construct and introduce mutations into herpesvirus icBAC. It also explores developing technologies likely to provide the next leap in understanding these important viruses.
Collapse
|