101
|
|
102
|
Gómez-Laguna J, Salguero FJ, Pallarés FJ, Carrasco L. Immunopathogenesis of porcine reproductive and respiratory syndrome in the respiratory tract of pigs. Vet J 2012; 195:148-55. [PMID: 23265866 PMCID: PMC7128372 DOI: 10.1016/j.tvjl.2012.11.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/09/2012] [Accepted: 11/15/2012] [Indexed: 12/12/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) impairs local pulmonary immune responses by damaging the mucociliary transport system, impairing the function of porcine alveolar macrophages and inducing apoptosis of immune cells. An imbalance between pro- and anti-inflammatory cytokines, including tumour necrosis factor-α and interleukin-10, in PRRS may impair the immune response of the lung. Pulmonary macrophage subpopulations have a range of susceptibilities to different PRRSV strains and different capacities to express cytokines. Infection with PRRSV decreases the bactericidal activity of macrophages, which increases susceptibility to secondary bacterial infections. PRRSV infection is associated with an increase in concentrations of haptoglobin, which may interact with the virus receptor (CD163) and induce the synthesis of anti-inflammatory mediators. The balance between pro- and anti-inflammatory cytokines modulates the expression of CD163, which may affect the pathogenicity and replication of the virus in different tissues. With the emergence of highly pathogenic PRRSV, there is a need for more information on the immunopathogenesis of different strains of PRRS, particularly to develop more effective vaccines.
Collapse
Affiliation(s)
- Jaime Gómez-Laguna
- Research and Development R&D, Centro de Investigación y Calidad Agroalimentaria del Valle de los Pedroches CICAP, 14400 Pozoblanco, Córdoba, Spain.
| | | | | | | |
Collapse
|
103
|
Dwivedi V, Manickam C, Binjawadagi B, Joyappa D, Renukaradhya GJ. Biodegradable nanoparticle-entrapped vaccine induces cross-protective immune response against a virulent heterologous respiratory viral infection in pigs. PLoS One 2012; 7:e51794. [PMID: 23240064 PMCID: PMC3519908 DOI: 10.1371/journal.pone.0051794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/09/2012] [Indexed: 01/10/2023] Open
Abstract
Biodegradable nanoparticle-based vaccine development research is unexplored in large animals and humans. In this study, we illustrated the efficacy of nanoparticle-entrapped UV-killed virus vaccine against an economically important respiratory viral disease of pigs called porcine reproductive and respiratory syndrome virus (PRRSV). We entrapped PLGA [poly (lactide-co-glycolides)] nanoparticles with killed PRRSV antigens (Nano-KAg) and detected its phagocytosis by pig alveolar macrophages. Single doses of Nano-KAg vaccine administered intranasally to pigs upregulated innate and PRRSV specific adaptive responses. In a virulent heterologous PRRSV challenge study, Nano-KAg vaccine significantly reduced the lung pathology and viremia, and the viral load in the lungs. Immunologically, enhanced innate and adaptive immune cell population and associated cytokines with decreased secretion of immunosuppressive mediators were observed at both mucosal sites and blood. In summary, we demonstrated the benefits of intranasal delivery of nanoparticle-based viral vaccine in eliciting cross-protective immune response in pigs, a potential large animal model.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States, and Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States, and Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States, and Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Dechamma Joyappa
- Foot and Mouth Disease Laboratory, Indian Veterinary Research Institute, Hebbal, Bengaluru, India
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States, and Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
104
|
Mussá T, Rodríguez-Cariño C, Sánchez-Chardi A, Baratelli M, Costa-Hurtado M, Fraile L, Domínguez J, Aragon V, Montoya M. Differential interactions of virulent and non-virulent H. parasuis strains with naïve or swine influenza virus pre-infected dendritic cells. Vet Res 2012; 43:80. [PMID: 23157617 PMCID: PMC3585918 DOI: 10.1186/1297-9716-43-80] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/31/2012] [Indexed: 12/24/2022] Open
Abstract
Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection.
Collapse
Affiliation(s)
- Tufária Mussá
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Khatri M, Saif YM. Influenza virus infects bone marrow mesenchymal stromal cells in vitro: implications for bone marrow transplantation. Cell Transplant 2012; 22:461-8. [PMID: 23006541 DOI: 10.3727/096368912x656063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have differentiation, immunomodulatory, and self-renewal properties and are, therefore, an attractive tool for regenerative medicine and autoimmune diseases. MSCs may be of great value to treat graft-versus-host disease. Influenza virus causes highly contagious seasonal infection and occasional pandemics. The infection is severe in children, elderly, and immunocompromised hosts including hematopoietic stem cell transplant patients. The objective of this study was to determine if MSCs are permissive to influenza virus replication. We isolated MSCs from the bone marrow of 4- to 6-week-old germ-free pigs. Swine and human influenza virus strains were used to infect MSCs in vitro. MSCs expressed known influenza virus α-2,3 and α-2,6 sialic acid receptors and supported replication of swine and human influenza viruses. Viral infection of MSCs resulted in cell lysis and proinflammatory cytokine production. These findings demonstrate that bone marrow-derived MSCs are susceptible to influenza virus. The data also suggest that transplantation of bone marrow MSCs from influenza virus-infected donors may transmit infection to recipients. Also, MSCs may get infected if infused into a patient with an ongoing influenza virus infection.
Collapse
Affiliation(s)
- Mahesh Khatri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA.
| | | |
Collapse
|
106
|
Short KR, Brooks AG, Reading PC, Londrigan SL. The fate of influenza A virus after infection of human macrophages and dendritic cells. J Gen Virol 2012; 93:2315-2325. [PMID: 22894921 DOI: 10.1099/vir.0.045021-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Airway macrophages (MΦ) and dendritic cells (DC) are important components of the innate host defence. Historically, these immune cells have been considered to play a critical role in controlling the severity of influenza A virus (IAV) infection by limiting virus release, initiating local inflammatory responses and by priming subsequent adaptive immune responses. However, some IAV strains have been reported to replicate productively in human immune cells. Potential amplification and dissemination of IAV from immune cells may therefore be an important virulence determinant. Herein, we will review findings in relation to the fate of IAV following infection of MΦ and DC. Insights regarding the consequences and outcomes of IAV infection of airway MΦ and DC are discussed in order to gain a better understanding of the pathogenesis of influenza virus.
Collapse
Affiliation(s)
- Kirsty R Short
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Patrick C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria 3051, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
107
|
Oct4+ stem/progenitor swine lung epithelial cells are targets for influenza virus replication. J Virol 2012; 86:6427-33. [PMID: 22491467 DOI: 10.1128/jvi.00341-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated stem/progenitor epithelial cells from the lungs of 4- to 6-week-old pigs. The epithelial progenitor colony cells were surrounded by mesenchymal stromal cells. The progenitor epithelial colony cells expressed stem cell markers such as octamer binding transcription factor 4 (Oct4) and stage-specific embryonic antigen 1 (SSEA-1), as well as the epithelial markers pancytokeratin, cytokeratin-18, and occludin, but not mesenchymal (CD44, CD29, and CD90) and hematopoietic (CD45) markers. The colony cells had extensive self-renewal potential and had the capacity to undergo differentiation to alveolar type I- and type II-like pneumocytes. Additionally, these cells expressed sialic acid receptors and supported the active replication of influenza virus, which was accompanied by cell lysis. The lysis of progenitor epithelial cells by influenza virus may cause a marked reduction in the potential of progenitor cells for self renewal and for their ability to differentiate into specialized cells of the lung. These observations suggest the possible involvement of lung stem/progenitor cells in influenza virus infection.
Collapse
|
108
|
Dwivedi V, Manickam C, Binjawadagi B, Linhares D, Murtaugh MP, Renukaradhya GJ. Evaluation of immune responses to porcine reproductive and respiratory syndrome virus in pigs during early stage of infection under farm conditions. Virol J 2012; 9:45. [PMID: 22340040 PMCID: PMC3298799 DOI: 10.1186/1743-422x-9-45] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 02/16/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) causes chronic, economically devastating disease in pigs of all ages. Frequent mutations in the viral genome result in viruses with immune escape mutants. Irrespective of regular vaccination, control of PRRSV remains a challenge to swine farmers. In PRRSV-infected pigs, innate cytokine IFN-α is inhibited and the adaptive arm of the immunity is delayed. To elucidate both cellular and innate cytokine responses at very early stages of PRRSV infection, seven weeks old pigs maintained on a commercial pig farm were infected and analyzed. RESULTS One pig in a pen containing 25 pigs was PRRSV infected and responses from this pig and one penmate were assessed two days later. All the infected and a few of the contact neighbor pigs were viremic. At day 2 post-infection, approximately 50% of viremic pigs had greater than 50% reduction in NK cell-mediated cytotoxicity, and nearly a 1-fold increase in IFN-α production was detected in blood of a few pigs. Enhanced secretion of IL-4 (in ~90%), IL-12 (in ~40%), and IL-10 (in ~20%) (but not IFN-γ) in PRRSV infected pigs was observed. In addition, reduced frequency of myeloid cells, CD4(-)CD8(+) T cells, and CD4(+)CD8(+) T cells and upregulated frequency of lymphocytes bearing natural T regulatory cell phenotype were detected in viremic pigs. Interestingly, all viremic contact pigs also had comparable immune cell modulations. CONCLUSION Replicating PRRSV in both infected and contact pigs was found to be responsible for rapid modulation in NK cell-meditated cytotoxicity and alteration in the production of important immune cytokines. PRRSV-induced immunological changes observed simultaneously at both cellular and cytokine levels early post-infection appear to be responsible for the delay in generation of adaptive immunity. As the study was performed in pigs maintained under commercial environmental conditions, this study has practical implications in design of protective vaccines.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, 44691, USA
| | | | | | | | | | | |
Collapse
|
109
|
Yang XQ, Murani E, Ponsuksili S, Wimmers K. Association of TLR4 polymorphism with cytokine expression level and pulmonary lesion score in pigs. Mol Biol Rep 2012; 39:7003-9. [PMID: 22307794 DOI: 10.1007/s11033-012-1530-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/24/2012] [Indexed: 01/28/2023]
Abstract
The toll-like receptor 4 (TLR4), recognizing lipopolysaccharide of gram-negative bacteria, plays an essential role in immune responses. Variation in TLR4 alters host immune responses to pathogen and is associated with resistance/susceptibility to infectious diseases, as suggested by studies in humans and agricultural species, including cattle and chicken. In this study, we analyzed association of single nucleotide polymorphisms (SNPs) of TLR4 with cytokine expression level and pulmonary lesion score in swine. The SNP c.611 T>A showed significant association with the transcription levels of IFNG, TNFA, and IL-6 (P < 0.05); the SNP c.962 G>A showed significant association with the transcription of IFNG, IL-2, and IL-4 (P < 0.05); the SNP c.1,027 C>A showed significant association with the transcription of IFNG and IL-6 (P < 0.05); the haplotypes showed significant association with the transcription of IFNG, IL-2, IL-4, IL-6, and TNFA (P < 0.05). Both SNPs c.611 T>A and c.962 G>A showed significant association with pulmonary lesion scores (P < 0.01); and the combination genotypes of 3 polymorphic sites were also significantly associated with pulmonary lesion scores (P < 0.01). The observed relationship between TLR4 polymorphism and the transcription levels of cytokines indicate that these SNPs are related to the modulation of the cytokine mediated immune response.
Collapse
Affiliation(s)
- X Q Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | | | | | | |
Collapse
|
110
|
Gao W, Sun W, Qu B, Cardona CJ, Powell K, Wegner M, Shi Y, Xing Z. Distinct regulation of host responses by ERK and JNK MAP kinases in swine macrophages infected with pandemic (H1N1) 2009 influenza virus. PLoS One 2012; 7:e30328. [PMID: 22279582 PMCID: PMC3261190 DOI: 10.1371/journal.pone.0030328] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/13/2011] [Indexed: 02/08/2023] Open
Abstract
Swine influenza is an acute respiratory disease in pigs caused by swine influenza virus (SIV). Highly virulent SIV strains cause mortality of up to 10%. Importantly, pigs have long been considered "mixing vessels" that generate novel influenza viruses with pandemic potential, a constant threat to public health. Since its emergence in 2009 and subsequent pandemic spread, the pandemic (H1N1) 2009 (H1N1pdm) has been detected in pig farms, creating the risk of generating new reassortants and their possible infection of humans. Pathogenesis in SIV or H1N1pdm-infected pigs remains poorly characterized. Proinflammatory and antiviral cytokine responses are considered correlated with the intensity of clinical signs, and swine macrophages are found to be indispensible in effective clearance of SIV from pig lungs. In this study, we report a unique pattern of cytokine responses in swine macrophages infected with H1N1pdm. The roles of mitogen-activated protein (MAP) kinases in the regulation of the host responses were examined. We found that proinflammatory cytokines IL-6, IL-8, IL-10, and TNF-α were significantly induced and their induction was ERK1/2-dependent. IFN-β and IFN-inducible antiviral Mx and 2'5'-OAS were sharply induced, but the inductions were effectively abolished when ERK1/2 was inhibited. Induction of CCL5 (RANTES) was completely inhibited by inhibitors of ERK1/2 and JNK1/2, which appeared also to regulate FasL and TNF-α, critical for apoptosis in pig macrophages. We found that NFκB was activated in H1N1pdm-infected cells, but the activation was suppressed when ERK1/2 was inhibited, indicating there is cross-talk between MAP kinase and NFκB responses in pig macrophages. Our data suggest that MAP kinase may activate NFκB through the induction of RIG-1, which leads to the induction of IFN-β in swine macrophages. Understanding host responses and their underlying mechanisms may help identify venues for effective control of SIV and assist in prevention of future influenza pandemics.
Collapse
Affiliation(s)
- Wei Gao
- Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Department of Respiratory Medicine, Clinical School of Medicine of Nanjing University, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Wenkui Sun
- Department of Respiratory Medicine, the Second Military Medical University, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Bingqian Qu
- Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Carol J. Cardona
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Kira Powell
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Marta Wegner
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| | - Yi Shi
- Department of Respiratory Medicine, Clinical School of Medicine of Nanjing University, Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Zheng Xing
- Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, Minnesota, United States of America
| |
Collapse
|
111
|
Swine influenza virus vaccines: to change or not to change-that's the question. Curr Top Microbiol Immunol 2012; 370:173-200. [PMID: 22976350 DOI: 10.1007/82_2012_266] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Commercial vaccines currently available against swine influenza virus (SIV) are inactivated, adjuvanted, whole virus vaccines, based on H1N1 and/or H3N2 and/or H1N2 SIVs. In keeping with the antigenic and genetic differences between SIVs circulating in Europe and the US, the vaccines for each region are produced locally and contain different strains. Even within a continent, there is no standardization of vaccine strains, and the antigen mass and adjuvants can also differ between different commercial products. Recombinant protein vaccines against SIV, vector, and DNA vaccines, and vaccines attenuated by reverse genetics have been tested in experimental studies, but they have not yet reached the market. In this review, we aim to present a critical analysis of the performance of commercial inactivated and novel generation SIV vaccines in experimental vaccination challenge studies in pigs. We pay special attention to the differences between commercial SIV vaccines and vaccination attitudes in Europe and in North America, to the issue of vaccine strain selection and changes, and to the potential advantages of novel generation vaccines over the traditional killed SIV vaccines.
Collapse
|
112
|
Khatri M, Saif YM. Epithelial cells derived from swine bone marrow express stem cell markers and support influenza virus replication in vitro. PLoS One 2011; 6:e29567. [PMID: 22216319 PMCID: PMC3245290 DOI: 10.1371/journal.pone.0029567] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/30/2011] [Indexed: 01/25/2023] Open
Abstract
The bone marrow contains heterogeneous population of cells that are involved in the regeneration and repair of diseased organs, including the lungs. In this study, we isolated and characterized progenitor epithelial cells from the bone marrow of 4- to 5-week old germ-free pigs. Microscopically, the cultured cells showed epithelial-like morphology. Phenotypically, these cells expressed the stem cell markers octamer-binding transcription factor (Oct4) and stage-specific embryonic antigen-1 (SSEA-1), the alveolar stem cell marker Clara cell secretory protein (Ccsp), and the epithelial cell markers pan-cytokeratin (Pan-K), cytokeratin-18 (K-18), and occludin. When cultured in epithelial cell growth medium, the progenitor epithelial cells expressed type I and type II pneumocyte markers. Next, we examined the susceptibility of these cells to influenza virus. Progenitor epithelial cells expressed sialic acid receptors utilized by avian and mammalian influenza viruses and were targets for influenza virus replication. Additionally, differentiated type II but not type I pneumocytes supported the replication of influenza virus. Our data indicate that we have identified a unique population of progenitor epithelial cells in the bone marrow that might have airway reconstitution potential and may be a useful model for cell-based therapies for infectious and non-infectious lung diseases.
Collapse
Affiliation(s)
- Mahesh Khatri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA.
| | | |
Collapse
|
113
|
Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends Microbiol 2011; 20:50-7. [PMID: 22153753 PMCID: PMC7173122 DOI: 10.1016/j.tim.2011.11.002] [Citation(s) in RCA: 718] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/21/2011] [Accepted: 11/02/2011] [Indexed: 12/11/2022]
Abstract
An animal model to study human infectious diseases should accurately reproduce the various aspects of disease. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of anatomy, genetics and physiology, and represent an excellent animal model to study various microbial infectious diseases. Indeed, experiments in pigs are much more likely to be predictive of therapeutic treatments in humans than experiments in rodents. In this review, we highlight the numerous advantages of the pig model for infectious disease research and vaccine development and document a few examples of human microbial infectious diseases for which the use of pigs as animal models has contributed to the acquisition of new knowledge to improve both animal and human health.
Collapse
Affiliation(s)
- François Meurens
- Institut National de la Recherche Agronomique, Unité de Recherche 1282, Infectiologie Animale et Santé Publique, 37380, Nouzilly (Tours), France.
| | | | | | | | | |
Collapse
|
114
|
Zhao X, Su H, Yin G, Liu X, Liu Z, Suo X. High transfection efficiency of porcine peripheral blood T cells via nucleofection. Vet Immunol Immunopathol 2011; 144:179-86. [PMID: 22055481 DOI: 10.1016/j.vetimm.2011.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/04/2011] [Accepted: 10/10/2011] [Indexed: 12/27/2022]
|
115
|
Li Y, Zhou H, Wen Z, Wu S, Huang C, Jia G, Chen H, Jin M. Transcription analysis on response of swine lung to H1N1 swine influenza virus. BMC Genomics 2011; 12:398. [PMID: 21819625 PMCID: PMC3169531 DOI: 10.1186/1471-2164-12-398] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 08/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a mild, highly contagious, respiratory disease, swine influenza always damages the innate immune systems, and increases susceptibility to secondary infections which results in considerable morbidity and mortality in pigs. Nevertheless, the systematical host response of pigs to swine influenza virus infection remains largely unknown. To explore it, a time-course gene expression profiling was performed for comprehensive analysis of the global host response induced by H1N1 swine influenza virus in pigs. RESULTS At the early stage of H1N1 swine virus infection, pigs were suffering mild respiratory symptoms and pathological changes. A total of 268 porcine genes showing differential expression (DE) after inoculation were identified to compare with the controls on day 3 post infection (PID) (Fold change ≥ 2, p < 0.05). The DE genes were involved in many vital functional classes, mainly including signal transduction, immune response, inflammatory response, cell adhesion and cell-cell signalling. Noticeably, the genes associated with immune and inflammatory response showed highly overexpressed. Through the pathway analysis, the significant pathways mainly concerned with Cell adhesion molecules, Cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway and MAPK signaling pathway, suggesting that the host took different strategies to activate these pathways so as to prevent virus infections at the early stage. However, on PID 7, the predominant function classes of DE genes included signal transduction, metabolism, transcription, development and transport. Furthermore, the most significant pathways switched to PPAR signaling pathway and complement and coagulation cascades, showing that the host might start to repair excessive tissue damage by anti-inflammatory functions. These results on PID 7 demonstrated beneficial turnover for host to prevent excessive inflammatory damage and recover the normal state by activating these clusters of genes. CONCLUSIONS This study shows how the target organ responds to H1N1 swine influenza virus infection in pigs. The observed gene expression profile could help to screen the potential host agents for reducing the prevalence of swine influenza virus and further understand the molecular pathogenesis associated with H1N1 infection in pigs.
Collapse
Affiliation(s)
- Yongtao Li
- Unit of Animal Infectious Diseases, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Eichelberger MC, Green MD. Animal models to assess the toxicity, immunogenicity and effectiveness of candidate influenza vaccines. Expert Opin Drug Metab Toxicol 2011; 7:1117-27. [PMID: 21749266 DOI: 10.1517/17425255.2011.602065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Every year, > 100 million doses of licensed influenza vaccine are administered worldwide, with relatively few serious adverse events reported. Initiatives to manufacture influenza vaccines on different platforms have come about to ensure timely production of strain-specific as well as universal vaccines. To prevent adverse events that may be associated with these new vaccines, it is important to evaluate the toxicity of new formulations in animal models. AREAS COVERED This review outlines preclinical studies that evaluate safety, immunogenicity and effectiveness of novel products to support further development and clinical trials. This has been done through a review of the latest literature describing vaccines under development. EXPERT OPINION The objective of preclinical safety tests is to demonstrate the absence of toxic contaminants and adventitious agents. Additional tests that characterize vaccine content more completely, or demonstrate the absence of exacerbated disease following virus challenge in vaccinated animals, may provide additional data to ensure the safety of new vaccine strategies.
Collapse
Affiliation(s)
- Maryna C Eichelberger
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | |
Collapse
|
117
|
Dwivedi V, Manickam C, Patterson R, Dodson K, Weeman M, Renukaradhya GJ. Intranasal delivery of whole cell lysate of Mycobacterium tuberculosis induces protective immune responses to a modified live porcine reproductive and respiratory syndrome virus vaccine in pigs. Vaccine 2011; 29:4067-76. [PMID: 21419164 PMCID: PMC7126640 DOI: 10.1016/j.vaccine.2011.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/15/2011] [Accepted: 03/02/2011] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease to pork producers worldwide. Commercially, both live and killed PRRSV vaccines are available to control PRRS, but they are not always successful. Based on the results of mucosal immunization studies in other viral models, a good mucosal vaccine may be an effective way to elicit protective immunity to control PRRS outbreaks. In the present study, mucosal adjuvanticity of Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was evaluated in pigs administered a modified live PRRS virus vaccine (PRRS-MLV) intranasally. A Mtb WCL mediated increase in the frequency of NK cells, CD8(+)and CD4(+) T cells, and γδ T cells in pig lungs were detected. Importantly, an increased and early generation of PRRSV specific neutralizing antibodies were detected in PRRS-MLV+ Mtb WCL compared to pigs inoculated with vaccine alone. In addition, there was an increased secretion of Th1 cytokines (IFNγ and IL-12) that correlated with a reciprocal reduction in the production of immunosuppressive cytokines (IL-10 and TGFβ) as well as T-regulatory cells in pigs vaccinated with PRRS-MLV+ Mtb WCL. Further, a complete rescue in arginase levels in the lungs mediated through Mtb WCL was observed in pigs inoculated with PRRS-MLV. In conclusion, Mtb WCL may be a potent mucosal adjuvant for PRRS-MLV in order to potentiate the anti-PRRSV specific immune responses to control PRRS effectively.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | | | |
Collapse
|
118
|
Dwivedi V, Manickam C, Patterson R, Dodson K, Murtaugh M, Torrelles JB, Schlesinger LS, Renukaradhya GJ. Cross-protective immunity to porcine reproductive and respiratory syndrome virus by intranasal delivery of a live virus vaccine with a potent adjuvant. Vaccine 2011; 29:4058-66. [PMID: 21419162 PMCID: PMC7127856 DOI: 10.1016/j.vaccine.2011.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 11/26/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an immunosuppressive chronic respiratory viral disease of pigs that is responsible for major economic losses to the swine industry worldwide. The efficacy of parenteral administration of widely used modified live virus PRRS vaccine (PRRS-MLV) against genetically divergent PRRSV strains remains questionable. Therefore, we evaluated an alternate and proven mucosal immunization approach by intranasal delivery of PRRS-MLV (strain VR2332) with a potent adjuvant to elicit cross-protective immunity against a heterologous PRRSV (strain MN184). Mycobacterium tuberculosis whole cell lysate (Mtb WCL) was chosen as a potent mucosal adjuvant due to its Th1 biased immune response to PRRS-MLV. Unvaccinated pigs challenged with MN184 had clinical PRRS with severe lung pathology; however, vaccinated (PRRS-MLV+ Mtb WCL) pigs challenged with MN184 were apparently healthy. There was a significant increase in the body weight gain in vaccinated compared to unvaccinated PRRSV challenged pigs. Vaccinated compared to unvaccinated, virus-challenged pigs had reduced lung pathology associated with enhanced PRRSV neutralizing antibody titers and reduced viremia. Immunologically, an increased frequency of Th cells, Th/memory cells, γδ T cells, dendritic cells, and activated Th cells and a reduced frequency of T-regulatory cells were detected at both mucosal and systemic sites. Further, reduced secretion of immunosuppressive cytokines (IL-10 and TGF-β) and upregulation of the Th1 cytokine IFN-γ in blood and lungs were detected in mucosally vaccinated, PRRSV-challenged pigs. In conclusion, intranasal immunization of pigs with PRRS-MLV administered with Mtb WCL generated effective cross-protective immunity against PRRSV.
Collapse
Affiliation(s)
- Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, and Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Rasmuson J, Pourazar J, Linderholm M, Sandström T, Blomberg A, Ahlm C. Presence of activated airway T lymphocytes in human puumala hantavirus disease. Chest 2011; 140:715-722. [PMID: 21436245 DOI: 10.1378/chest.10-2791] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hantaviruses cause two clinical syndromes: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). The clinical spectrum in HFRS also often involves respiratory symptoms. As information about the pulmonary pathogenesis in HFRS is limited, we aimed to further study the local airway immune response in the lower airways. METHODS Bronchoscopy was performed in 15 hospitalized patients with HFRS, with sampling of endobronchial mucosal biopsies and BAL fluid. Biopsies were stained for leukocytes, lymphocyte subsets, and vascular endothelial adhesion molecules. BAL fluid and blood lymphocyte subsets were determined using flow cytometry. Fourteen healthy volunteers acted as a control group. RESULTS Compared with control subjects, endobronchial mucosal biopsies from patients with HFRS revealed increased numbers of CD8(+) T cells in both epithelium and submucosa (P ≤ .001), along with an increase in submucosal CD4(+) T cells (P = .001). In contrast, patients' submucosal neutrophil and eosinophil numbers were reduced (P < .001). The expression of vascular cell adhesion molecule-1 (VCAM-1) was enhanced in patients with HFRS (P < .001). In patients with HFRS, analyses of T-cell subsets in BAL fluid showed higher proportions of CD3(+) and CD8(+) T cells (P = .011 and P = .025) and natural killer cells (P < .001), together with an increased expression of activation markers human leukocyte antigen-DR (HLA-DR) and CD25 on T cells (P < .001 and P < .001). CONCLUSIONS The present findings indicate a local immune response in terms of activated T lymphocytes in the lungs of patients with HFRS. The elevated expression of activation markers and VCAM-1 further implies the importance of cytotoxic lymphocytes in the pathogenesis of pulmonary involvement in HFRS.
Collapse
Affiliation(s)
- Johan Rasmuson
- Infectious Diseases, Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| | - Jamshid Pourazar
- Respiratory Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Mats Linderholm
- Infectious Diseases, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Thomas Sandström
- Respiratory Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Respiratory Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Infectious Diseases, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|