101
|
Kusov YY, Morace G, Probst C, Gauss-Müller V. Interaction of hepatitis A virus (HAV) precursor proteins 3AB and 3ABC with the 5' and 3' termini of the HAV RNA. Virus Res 1997; 51:151-7. [PMID: 9498613 DOI: 10.1016/s0168-1702(97)00089-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RNA secondary structures within the terminal nontranslated regions of entero- and rhinoviral genomes interact specifically with viral nonstructural proteins and are required in cis for viral RNA replication. Here we show that recombinant hepatitis A virus (HAV) polypeptide 3ABC specifically interacts in vitro with secondary RNA structures formed at both the 5' and 3' terminus of the viral genome. Similar to protein 3AB, HAV 3ABC bound to the 3' terminal RNA structure which did not interact with the mature proteinase 3C. In contrast to 3AB, 3ABC interacted with RNA stem-loop IIa and combinations of individual secondary structure elements of the 5' noncoding region. RNA binding of the precursor polypeptide 3ABC was 50 times stronger than that of 3AB and 3C, implicating a specific role of this stable processing intermediate in viral genome replication.
Collapse
Affiliation(s)
- Y Y Kusov
- Institute of Medical Microbiology, Medical University of Lübeck, Germany.
| | | | | | | |
Collapse
|
102
|
Yang D, Wilson JE, Anderson DR, Bohunek L, Cordeiro C, Kandolf R, McManus BM. In vitro mutational and inhibitory analysis of the cis-acting translational elements within the 5' untranslated region of coxsackievirus B3: potential targets for antiviral action of antisense oligomers. Virology 1997; 228:63-73. [PMID: 9024810 DOI: 10.1006/viro.1996.8366] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 5' untranslated region (5'UTR) of coxsackievirus B3 (CVB3) RNA forms a highly ordered secondary structure that has been implicated in controlling initiation of viral translation by internal ribosomal entry. To test this hypothesis, synthetic bicistronic RNAs, with all or part of the 5'UTR in the intercistronic space, were translated in rabbit reticulocyte lysates. In the presence of an upstream cistron, the chloramphenicol acetyltransferase gene, designed to block ribosomal scanning, the CVB3 5'UTR was capable of directing the internal initiation of translation of the downstream reporter gene (P1), confirming the presence of an internal ribosomal entry site (IRES). This finding was further supported by the data on predicted secondary structures within the 5'UTR. Of special note, analysis of various deletion mutants demonstrated that the IRES of CVB3 is located roughly at stem-loops G, H, and I spanning nucleotides (nt) 529 and 630. The region from nt 1 to 63 (stem-loop A) also appears important, and it may be an essential binding site for translation initiation factors. Based on these findings, in vitro translation inhibition assays using RNA fragments of the 5'UTR as inhibitor were performed. Both antisense and sense RNA segments transcribed from these two cis-acting regions and the surrounding sequence of the initiation codon AUG showed strong inhibition of viral protein synthesis. Antisense molecules may inhibit translation by blocking ribosome and initiation factor binding within the 5'UTR via specific hybridization to their viral RNA target sequences, while sense sequences may function by competing with viral RNA for ribosomes and/or translation initiation factors. These cis-acting translational elements may serve as potential targets for the antiviral action of oligomers.
Collapse
Affiliation(s)
- D Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia-St. Paul's Hospital, Vancouver, Canada.
| | | | | | | | | | | | | |
Collapse
|
103
|
Le SY, Maizel JV. A common RNA structural motif involved in the internal initiation of translation of cellular mRNAs. Nucleic Acids Res 1997; 25:362-69. [PMID: 9016566 PMCID: PMC146446 DOI: 10.1093/nar/25.2.362] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The 5'-non-translated regions (5'NTR) of human immunoglobulin heavy chain binding protein (BiP), Antennapedia (Antp) ofDrosophilaand human fibroblast growth factor 2 (FGF-2) mRNAs are reported to mediate translation initiation by an internal ribosome binding mechanism. In this study, we investigate predicted features of the higher order structures folded in these 5'NTR sequences. Statistical analyses of RNA folding detected a 92 nt unusual folding region (UFR) from 129 to 220, close to the initiator AUG in the BiP mRNA. Details of the structural analyses show that the UFR forms a Y-type stem-loop structure with an additional stem-loop in the 3'-end resembling the common structure core found in the internal ribosome entry site (IRES) elements of picornavirus. The Y-type structural motif is also conserved among a number of divergent BiP mRNAs. We also find two RNA elements in the 5'-leader sequence of human FGF-2. The first RNA element (96 nt) is 2 nt upstream of the first CUG start codon located in the reported IRES element of human FGF-2. The second (107 nt) is immediately upstream of the authentic initiator AUG of the main open reading frame. Intriguingly, the folded RNA structural motif in the two RNA elements is conserved in other members of FGF family and shares the same structural features as that found in the 5'NTR of divergent BiP mRNAs. We suggest that the common RNA structural motif conserved in the diverse BiP and FGF-2 mRNAs has a general function in the internal ribosome binding mechanism of cellular mRNAs.
Collapse
Affiliation(s)
- S Y Le
- Laboratory of Mathematical Biology, Division of Basic Sciences, National Cancer Institute, NIH, Building 469, Room 151, Frederick, MD 21702, USA.
| | | |
Collapse
|
104
|
Rijnbrand R, van der Straaten T, van Rijn PA, Spaan WJ, Bredenbeek PJ. Internal entry of ribosomes is directed by the 5' noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol 1997; 71:451-7. [PMID: 8985370 PMCID: PMC191071 DOI: 10.1128/jvi.71.1.451-457.1997] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bicistronic RNAs containing the 373-nucleotide-long 5' nontranslated region (NTR) of the classical swine fever virus (CSFV) genome as intercistronic spacer were used to show the presence of an internal ribosome entry site (IRES) in the 5' end of the CSFV genome. By coexpression of the poliovirus 2A protease it was demonstrated that the CSFV 5' NTR-driven translation is independent of the presence of functional eukaryotic initiation factor eIF-4F. Deletion analysis indicated that the 5' border of the IRES is located between nucleotides 28 and 66. The role of a proposed pseudoknot structure at the 3' end of the CSFV 5' NTR in IRES-mediated translation was investigated by site-directed mutagenesis. Mutant RNAs that had lost the ability to base pair in stem II of the pseudoknot were translationally inactive. Translation to wild-type levels could be restored through the introduction of compensatory complementary base changes that repaired base pairing in stem II. In addition, we showed that the AUG codon, which is located 7 nucleotides upstream of the polyprotein initiation site and is conserved in pestiviruses, could not be used to initiate translation. Also, an AUG codon introduced downstream of the polyprotein initiation site was not recognized as an initiation site by ribosomes. These data suggest that after internal entry on the CSFV 5' NTR, ribosomal scanning for the initiation codon is limited to a small region.
Collapse
Affiliation(s)
- R Rijnbrand
- Department of Virology, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
105
|
|
106
|
Funkhouser AW, Raychaudhuri G, Purcell RH, Govindarajan S, Elkins R, Emerson SU. Progress toward the development of a genetically engineered attenuated hepatitis A virus vaccine. J Virol 1996; 70:7948-57. [PMID: 8892918 PMCID: PMC190867 DOI: 10.1128/jvi.70.11.7948-7957.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations which positively affect growth of hepatitis A virus in cell culture may negatively affect growth in vivo. Therefore, development of an attenuated vaccine for hepatitis A may require a careful balancing of mutations to produce a virus that will grow efficiently in cells suitable for vaccine production and still maintain a satisfactory level of attenuation in vivo. Since such a balance could be achieved most directly by genetic engineering, we are analyzing mutations that accumulated during serial passage of the HM-175 strain of hepatitis A virus in MRC-5 cell cultures in order to determine the relative importance of the mutations for growth in MRC-5 cells and for attenuation in susceptible primates. Chimeric viral genomes of the HM-175 strain were constructed from cDNA clones derived from a virulent virus and from two attenuated viruses adapted to growth in African green monkey kidney (AGMK) and MRC-5 cells, respectively. Viruses encoded by these chimeric genomes were recovered by in vitro or in vivo transfection and assessed for their ability to grow in cultured MRC-5 cells or to cause hepatitis in primates (tamarins). The only MRC-5-specific mutations that substantially increased the efficiency of growth in MRC-5 cells were a group of four mutations in the 5' noncoding (NC) region. These 5' NC mutations and a separate group of 5' NC mutations that accumulated during earlier passages of the HM-175 virus in primary AGMK cells appeared, independently and additively, to result in decreased biochemical evidence of hepatitis in tamarins. However, neither group of 5' NC mutations had a demonstrable effect on the extent of virus excretion or liver pathology in these animals.
Collapse
Affiliation(s)
- A W Funkhouser
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
107
|
Abstract
The translation of picornavirus RNA occurs by a cap-independent mechanism directed by a region of about 450 nucleotides from the 5' untranslated region, termed an internal ribosome entry site (IRES). Internal initiation of protein synthesis occurs without any requirement for viral proteins. Furthermore, it is maintained when host cell protein synthesis is almost abolished. By using in vitro translation systems, two distinct families of IRES elements which have very different predicted RNA secondary structures have been defined. The cardiovirus and aphthovirus elements function very efficiently in rabbit reticulocyte lysate, whereas the enterovirus and rhinovirus elements function poorly in this system. However, supplementation of this translation system with additional cellular proteins can stimulate translation directed by the enterovirus and rhinovirus RNAs and reduce production of aberrant initiation products. The characterization of cellular proteins interacting with the picornavirus IRES is a major focus of research. Many different protein species can be observed to interact with regions of the IRES by in vitro analyses, e.g., UV cross-linking. However, the function and significance of many of these interactions are not always known. For two proteins, La and the polypyrimidine tract-binding protein, evidence has been obtained for a functional role of their interaction with IRES elements.
Collapse
Affiliation(s)
- G J Belsham
- Biotechnology and Biological Sciences Research Council Institute for Animal Health, Pirbright, Woking, Surrey, United Kingdom
| | | |
Collapse
|
108
|
Abstract
A great deal of information on the molecular heterogeneity of hepatitis C virus (HCV) has been achieved since its discovery in 1989. However, little is known about the clinical significance of these variations. Based on the degree of sequence variation, HCV has been classified into six major groups or types, differing by 31-34% at the nucleotide level over the entire virus genome. Each type is divided into several subtypes that differ by 20-23% in nucleotide sequence. Viruses within the same subtype are up to 10% divergent and, within infected individuals, vary by up to 1.5%. Genotype distributions are not homogeneous around the world and may reflect both historical and recent parenteral routes of transmission. The clinical implication of these genomic variations are not yet fully elucidated: genotype 1b has been associated with end-stage liver disease, including liver cirrhosis and hepatocellular carcinoma, but this finding might rather reflect its earlier introduction to the populations studied. Consistent evidence exists that types 2 and 3 have a higher response rate to interferon treatment than type 1, although the interplay between genotype and viral load in determining the response is still unclear. Immunohistochemical studies indicate a stronger activation of the endogenous interferon system in the liver of patients infected with type 1 compared to those infected with types 2 and 3, explaining, at least in part, its low responsiveness to exogenous interferon treatment. Biological, sequence-dependent variations of genotypes have been poorly investigated to date, but differential efficiency of translation activity of the 5' non-coding region has been reported. The availability of "in vitro" systems for evaluating pathogenetic aspects and neutralization mechanisms will improve the present knowledge on this world-wide infectious disease and on the clinical usefulness of distinguishing between genotypes.
Collapse
Affiliation(s)
- D B Smith
- Department of Medical Microbiology, University of Edinburgh, UK
| | | |
Collapse
|
109
|
Schultz DE, Hardin CC, Lemon SM. Specific interaction of glyceraldehyde 3-phosphate dehydrogenase with the 5'-nontranslated RNA of hepatitis A virus. J Biol Chem 1996; 271:14134-42. [PMID: 8662893 DOI: 10.1074/jbc.271.24.14134] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Initiation of translation of hepatitis A virus (HAV) RNA occurs by internal entry and is likely to involve the interaction of trans-acting cellular protein factors with cis-acting structural elements of an internal ribosomal entry segment (IRES) within the 5'-nontranslated RNA. To characterize interactions between African green monkey kidney (BS-C-1) cell proteins and the predicted stem-loop IIIa (nucleotides 155-235) located at the 5' border of the HAV IRES, we utilized an electrophoresis mobility shift assay (EMSA) to identify a 39-kDa RNA-binding protein (p39). Amino-terminal amino acid sequencing of highly purified p39 revealed absolute identity with human glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The identity of p39 as simian GAPDH was further confirmed by antigenic and biochemical similarities between p39 and human GAPDH. Analysis of the RNA binding properties of simian GAPDH revealed that this cellular protein interacts with two additional sites in the HAV 5'-nontranslated RNA, one located between nucleotides 1-148 and the other between nucleotides 597-746. Competitive EMSAs also demonstrated that GAPDH and human polypyrimidine tract-binding protein, a putative picornavirus translation initiation factor, compete with each other for binding to stem-loop IIIa, suggesting that the relative cytoplasmic abundance of GAPDH and polypyrimidine tract-binding protein in individual cell-types may be an important determinant of viral translation activity. Human GAPDH was found to destabilize the folded structure of the stem-loop IIIa RNA based upon observed decreases in the circular dichroism spectra of this RNA following binding of the protein. This RNA helix-destabilizing activity of GAPDH could directly influence IRES-dependent translation and/or replication of picornavirus RNA.
Collapse
Affiliation(s)
- D E Schultz
- Department of Medicine, University of North Carolina at Chapel Hill, 27599-7030, USA
| | | | | |
Collapse
|
110
|
Jia XY, Tesar M, Summers DF, Ehrenfeld E. Replication of hepatitis A viruses with chimeric 5' nontranslated regions. J Virol 1996; 70:2861-8. [PMID: 8627760 PMCID: PMC190143 DOI: 10.1128/jvi.70.5.2861-2868.1996] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The role of the 5' nontranslated region in the replication of hepatitis A virus (HAV) was studied by analyzing the translation and replication of chimeric RNAs containing the encephalomyocarditis virus (EMCV) internal ribosome entry segment (IRES) and various lengths (237, 151, or 98 nucleotides [nt]) of the 5'-terminal HAV sequence. Translation of all chimeric RNAs, truncated to encode only capsid protein sequences, occurred with equal efficiency in rabbit reticulocyte lysates and was much enhanced over that exhibited by the HAV IRES. Transfection of FRhK-4 cells with the parental HAV RNA and with chimeric RNA generated a viable virus which was stable over continuous passage; however, more than 151 nt from the 5' terminus of HAV were required to support virus replication. Single-step growth curves of the recovered viruses from the parental RNA transfection and from transfection of RNA containing the EMCV IRES downstream of the first 237 nt of HAV demonstrated replication with similar kinetics and similar yields. When FRhK-4 cells infected with recombinant vaccinia virus producing SP6 RNA polymerase to amplify HAV RNA were transfected with plasmids coding for these viral RNAs or with subclones containing only HAV capsid coding sequences downstream of the parental or chimeric 5' nontranslated region, viral capsid antigens were synthesized from the HAV IRES with an efficiency equal to or greater than that achieved with the EMCV IRES. These data suggest that the inherent translation efficiency of the HAV IRES may not be the major limiting determinant of the slow-growth phenotype of HAV.
Collapse
Affiliation(s)
- X Y Jia
- Department of Microbiology and Molecular Genetics, University of California, Irvine 92717, USA
| | | | | | | |
Collapse
|
111
|
McKnight KL, Lemon SM. Capsid coding sequence is required for efficient replication of human rhinovirus 14 RNA. J Virol 1996; 70:1941-52. [PMID: 8627720 PMCID: PMC190023 DOI: 10.1128/jvi.70.3.1941-1952.1996] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mechanisms by which the plus-sense RNA genomes of picornaviruses are replicated remain poorly defined, but existing models do not suggest a role for sequences encoding the capsid proteins. However, candidate RNA replicons (delta P1 beta gal and delta P1Luc), representing the sequence of human rhinovirus 14 virus (HRV-14) with reporter protein sequences (beta-galactosidase or luciferase, respectively) replacing most of the P1 capsid-coding region, failed to replicate in transfected H1-HeLa cells despite efficient primary cleavage of the polyprotein. To determine which P1 sequences might be required for RNA replication, HRV-14 mutants in which segments of the P1 region were removed to frame from the genome were constructed. Mutants with deletions involving the 5'proximal 1,489 nucleotides of the P1 region replicated efficiently, while those with deletions involving the 3' 1,079 nucleotides did not. Reintroduction of the 3' P1 sequence into the nonreplicating delta P1Luc construct resulted in a new candidate replicon, delta P1Luc/VP3, which replicated well and expressed luciferase efficiently. Capsid proteins provided in trans by helper virus failed to rescue the nonreplicating delta P1Luc genome but were able to package the larger-than-genome-length delta P1Luc/VP3 replicon. Thus, a 3'-distal P1 capsid-coding sequence has a previously unrecognized cis-active function related to replication of HRV-14 RNA.
Collapse
Affiliation(s)
- K L McKnight
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill 27599-7030, USA
| | | |
Collapse
|
112
|
Kusov Y, Weitz M, Dollenmeier G, Gauss-Müller V, Siegl G. RNA-protein interactions at the 3' end of the hepatitis A virus RNA. J Virol 1996; 70:1890-7. [PMID: 8627714 PMCID: PMC190017 DOI: 10.1128/jvi.70.3.1890-1897.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The regulative cis-acting terminal RNA structures and the proteins involved in the amplification of the hepatitis A virus (HAV) genome are unknown. By UV cross-linking/label transfer experiments, we have analyzed sequences of the 3'-nontranslated region (3'NTR) and preceding domains of the viral genome for their ability to interact with host proteins. A series of cDNA constructs were used to create genomic- and antigenomic-sense transcripts. The results show that the 3'-NTR-poly(A) interacted with host cell proteins with molecular masses of 38, 45, 57, 84, and 110 kDa only weakly, compared with RNA structures also consisting of 3D-coding regions. Protein p38 was most efficiently labeled after interaction with secondary-structure elements located at the 3' end of the HAV RNA, p38 also interacted with a 5'-terminal RNA probe. Optimal RNA binding was found to be dependent on the salt concentration. The specificity of the RNA-protein interaction was proven by competition assays. These data might indicate that a higher-order structure formed at the junction of the 3Dpol-coding sequence and the 3'-NTR of the HAV genome (putative RNA pseudoknot) significantly improves binding of host proteins and thus suggests that this structure might be essential for the formation of the replication complex initiating minus-strand RNA synthesis.
Collapse
Affiliation(s)
- Y Kusov
- Institute of Clinical Microbiology and Immunology, St. Gallan, Switzerland,
| | | | | | | | | |
Collapse
|
113
|
Schultz DE, Honda M, Whetter LE, McKnight KL, Lemon SM. Mutations within the 5' nontranslated RNA of cell culture-adapted hepatitis A virus which enhance cap-independent translation in cultured African green monkey kidney cells. J Virol 1996; 70:1041-9. [PMID: 8551562 PMCID: PMC189910 DOI: 10.1128/jvi.70.2.1041-1049.1996] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in the 5' nontranslated RNA (5'NTR) of an attenuated, cell culture-adapted hepatitis A virus (HAV), HM175/P16, enhance growth in cultured African green monkey kidney (BS-C-1) cells but not in fetal rhesus monkey kidney (FRhK-4) cells (S. P. Day, P. Murphy, E. A. Brown, and S. M. Lemon, J. Virol. 66: 6533-6540, 1992). To determine whether these mutations enhance cap-independent translation directed by the HAV internal ribosomal entry site (IRES), we compared the translational activities of the 5'NTRs of wild-type and HM175/P16 viruses in two stably transformed cell lines (BT7-H and FRhK-T7) which constitutively express cytoplasmic bacteriophage T7 RNA polymerase and which are derived from BS-C-1 and FRhK-4 cells, respectively. Translational activity was assessed by monitoring expression of a reporter protein, chloramphenicol acetyltransferase (CAT), following transfection with plasmid DNAs containing bicistronic T7 transcriptional units of the form luciferase-5'NTR-CAT. In both cell types, transcripts containing the 5'NTR of HM175/P16 expressed CAT at levels that were 50- to 100-fold lower than transcripts containing the IRES elements of Sabin type 1 poliovirus or encephalomyocarditis virus, confirming the low activity of the HAV IRES. However, in BT7-H cells, transcripts containing the 5'NTR of wild-type virus. This translational enhancement was due to additive effects of a UU deletion at nucleotides 203 and 204 and a U-to-G substitution at nucleotide 687 of HM175/P16. These mutations did not enhance translation in FRhK-T7 or Huh-T7 cells (a T7 polymerase-expressing cell line derived from human hepatoblastoma cells) or in vitro in rabbit reticulocyte lysates. These results demonstrate that mutations in the 5'NTR of a cell culture-adapted HAV enhance viral replication by facilitating cap-independent translation in a cell-type-specific fashion and support the concept that picornaviral host range is determined in part by differences in cellular translation initiation factors.
Collapse
Affiliation(s)
- D E Schultz
- Department of Medicine, University of North Carolina at Chapel Hill 27599-7030, USA
| | | | | | | | | |
Collapse
|
114
|
Le SY, Siddiqui A, Maizel JV. A common structural core in the internal ribosome entry sites of picornavirus, hepatitis C virus, and pestivirus. Virus Genes 1996; 12:135-47. [PMID: 8879130 DOI: 10.1007/bf00572952] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cap-independent translations of viral RNAs of enteroviruses and rhinoviruses, cardioviruses and aphthoviruses, hepatitis A and C viruses (HAV and HCV), and pestivirus are initiated by the direct binding of 40S ribosomal subunits to a cis-acting genetic element termed the internal ribosome entry site (IRES) or ribosome landing pad (RLP) in the 5' noncoding region (5'NCR). RNA higher ordered structure models for these IRES elements were derived by a combined approach using thermodynamic RNA folding, Monte Carlo simulation, and phylogenetic comparative analysis. The structural differences among the three groups of picornaviruses arise not only from point mutations, but also from the addition or deletion of structural domains. However, a common core can be identified in the proposed structural models of these IRES elements from enteroviruses and rhinoviruses, cardioviruses and aphthoviruses, and HAV. The common structural core identified within the picornavirus IRES is also conserved in the 5'NCR of the divergent viruses, HCV, and pestiviruses. Furthermore, the proposed structural motif shares a structural feature similar to that observed in the catalytic core of the group 1 intron. The conserved structural motif from these divergent sequences that looks like the common core region of group 1 introns is probably a crucial element involved in the IRES-dependent translation.
Collapse
Affiliation(s)
- S Y Le
- Laboratory of Mathematical Biology, National Cancer Institute, NIH, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
115
|
Chen W, Baric RS. Function of a 5'-end genomic RNA mutation that evolves during persistent mouse hepatitis virus infection in vitro. J Virol 1995; 69:7529-40. [PMID: 7494259 PMCID: PMC189691 DOI: 10.1128/jvi.69.12.7529-7540.1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Persistently infected cultures of DBT cells were established with mouse hepatitis virus strain A59 (MHV-A59), and the evolution of the MHV leader RNA and 5' end of the genome was studied through 119 days postinfection. Sequence analysis of independent clones demonstrated an overall mutation frequency approaching 1.2 x 10(-3) to 6.7 x 10(-3). The rate of fixation of mutations was about 1.2 x 10(-5) to 7.6 x 10(-5) per nucleotide (nt) per day. In contrast to finding in bovine coronavirus, the MHV leader RNA sequences were extremely stable and did not evolve significantly during persistent infection. Rather, a 5' untranslated region (UTR) A-to-G mutation at nt 77 in the genomic RNA emerged by day 56 and accumulated until 50 to 80% of the genome-length molecules retained the mutation by 119 days postinfection. Although other 5'-end mutations were noted, only the nt 77 mutation was significantly associated with viral persistence in vitro. Mutations were also found in the 5' end of the p28 coding region, but no specific alterations accumulated in genome-length molecules through 119 days postinfection. The 5' UTR nt 77 mutation resulted in an 18-amino-acid open reading frame (ORF) upstream of the ORF 1a AUG start site. By in vitro translation assays, the small ORF was not translated into detectable product but the mutation significantly enhanced translation of the downstream p28 ORF about 2.5-fold. Variant viruses, containing either the nt 77 A-to-G mutation (V16-ATG+) or wild-type sequences at this locus (V1-ATG-), were isolated at 119 days postinfection. The variant viruses replicated more efficiently than wild-type virus and were extremely cytolytic in DBT cells, suggesting that the A-to-G mutation did not encode a nonlytic or attenuated phenotype. Consistent with the in vitro translation results, a significant increase (approximately 3.5-fold) in p28 expression was also observed with the mutant virus (V16-ATG+) in DBT cells compared with that in wild-type controls. These data indicate that MHV persistence was significantly associated with mutation and evolution in the 5'-end UTR which enhanced the translation of the ORF 1a and potentially ORF 1b polyproteins which function in virus transcription and replication.
Collapse
Affiliation(s)
- W Chen
- Department of Epidemiology, University of North Carolina at Chapel Hill 27599-7400, USA
| | | |
Collapse
|
116
|
Rojas-Eisenring IA, Cajero-Juarez M, del Angel RM. Cell proteins bind to a linear polypyrimidine-rich sequence within the 5'-untranslated region of rhinovirus 14 RNA. J Virol 1995; 69:6819-24. [PMID: 7474094 PMCID: PMC189594 DOI: 10.1128/jvi.69.11.6819-6824.1995] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Members of the picornavirus family initiate translation of their RNA genomes by a cap-independent mechanism in which ribosomes bind to an internal site in the 5' untranslated region (5'-UTR). This unique process requires an internal ribosome entry site (IRES), a highly structured RNA whose function is mediated in part by interactions with cell proteins. The IRES element of human rhinovirus 2 (HRV-2) extends from nucleotide (nt) 10 to between nt 544 and 568 and has been shown to interact with two cell proteins, pyrimidine tract-binding protein (pPTB) and p97. To map the specific regions of HRV-14 RNA that bind cell proteins, mobility shift, UV cross-linking and Western immunoblot analyses were performed. The results indicate that an RNA sequence from nt 538 to 591 interacts with pPTB and La, two proteins previously shown to functionally interact with the IRES elements of several picornaviruses. Two additional proteins, p97 and p68, were also cross-linked to nt 538 to 591 RNA. These four proteins interact with a putatively unstructured portion of the 5'-UTR that contains a polypyrimidine tract and has been shown to be present at the 3' border of sequences that are essential for IRES function of HRV-2. These protein-RNA interactions are likely to play a role in internal initiation of translation.
Collapse
Affiliation(s)
- I A Rojas-Eisenring
- Departamento de Patología Experimental, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | |
Collapse
|
117
|
Shaffer DR, Lemon SM. Temperature-sensitive hepatitis A virus mutants with deletions downstream of the first pyrimidine-rich tract of the 5' nontranslated RNA are impaired in RNA synthesis. J Virol 1995; 69:6498-506. [PMID: 7666551 PMCID: PMC189551 DOI: 10.1128/jvi.69.10.6498-6506.1995] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hepatitis A virus (HAV) mutants containing large deletions within the first pyrimidine-rich tract (pY1; nucleotides [nt] 99 to 138) of the 5' nontranslated RNA (5'NTR) replicate well in cultured cells, while those with pY1 deletions which extend in a 3' direction to include nt 140 to 144 (CUUGU) have a temperature-sensitive (ts) replication phenotype (D.R. Shaffer, E.A. Brown, and S.M. Lemon, J. Virol. 68:5568-5578, 1994). To characterize this replication defect, the ts mutant delta 131-144 was grown under one-step conditions at the nonpermissive temperature (37 degrees C). A shift to the permissive temperature (31 degrees C) for the first 18 h of the viral replication cycle did not enhance virus yields, indicating that temperature sensitivity is not due to a defect in viral entry or uncoating. Similarly, absence of increased yield with a late shift to 31 degrees C between 54 and 72 h suggested that the ts defect does not involve viral assembly. Although monocistronic RNA transcripts containing the delta 99-144 deletion directed translation 22 to 58% less efficiently than the standard 5'NTR in transfected BS-C-1 cells, this difference was present at both 31 and 37 degrees C. In addition, there were no temperature-dependent differences in the abilities of bicistronic transcripts containing either ts or non-ts 5'NTR sequences within the intercistronic space to direct translation of a downstream reporter gene. Thus, ts mutations do not confer a demonstrable temperature-related defect in cap-independent translation. In contrast, an RNase protection assay showed that synthesis of viral plus-strand RNA was markedly delayed in BS-C-1 cells infected with ts virus at 37 degrees C. Analysis of the nucleotide sequence surrounding the deletion in a non-ts revertant derived from delta 116-144 virus revealed that a single U-to-G transversion at nt 114 (CUUUU-->CUUGU) had restored the sequence normally present between nt 140 and 144. These results indicate that ts mutants of HAV with deletions extending downstream from the pY1 domain to nt 140 to 144 are defective in RNA synthesis and that the single-stranded RNA segment containing nt 140 to 144 plays a critical role in replication of HAV RNA.
Collapse
Affiliation(s)
- D R Shaffer
- Department of Microbiology, University of North Carolina at Chapel Hill 27599-7030, USA
| | | |
Collapse
|
118
|
Shaffer DR, Emerson SU, Murphy PC, Govindarajan S, Lemon SM. A hepatitis A virus deletion mutant which lacks the first pyrimidine-rich tract of the 5' nontranslated RNA remains virulent in primates after direct intrahepatic nucleic acid transfection. J Virol 1995; 69:6600-4. [PMID: 7666566 PMCID: PMC189567 DOI: 10.1128/jvi.69.10.6600-6604.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell culture-adapted variants of hepatitis A virus (HAV) in which the first pyrimidine-rich tract (pY1; nucleotides 99 to 138) of the 5' nontranslated region has been deleted (delta 96-137 or delta 96-139) replicate as well as parental virus in cultured cells (D.R. Shaffer, E.A. Brown, and S.M. Lemon, J. Virol. 68:5568-5578, 1994). To determine whether viruses with such large deletion mutations are able to replicate and to produce acute hepatitis in primates, we reconstructed the delta 96-137 deletion in the genetic background of a virulent virus which differs from the wild type by only one mutation in the 2B-coding region (HM175/8Y). Full-length synthetic delta 96-137/8Y RNA was injected into the livers of two HAV-seronegative marmosets (Saguinus mystax). Both animals developed serum liver enzyme elevations and inflammatory changes in serial liver biopsies within 3 to 4 weeks of inoculation which were comparable in magnitude to those observed previously following intrahepatic inoculation of marmosets with HM175/8Y RNA. Sequencing of RNA from virus shed in feces demonstrated the presence of the delta 96-137 deletion. These results indicate that the pY1 sequence of HAV is not required for efficient viral replication in hepatocytes in situ or for production of acute hepatic injury following intrahepatic RNA transfection in primates.
Collapse
Affiliation(s)
- D R Shaffer
- Department of Microbiology, University of North Carolina at Chapel Hill 27599-7030, USA
| | | | | | | | | |
Collapse
|
119
|
Borman AM, Bailly JL, Girard M, Kean KM. Picornavirus internal ribosome entry segments: comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro. Nucleic Acids Res 1995; 23:3656-63. [PMID: 7478993 PMCID: PMC307262 DOI: 10.1093/nar/23.18.3656] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
On the basis of primary sequence comparisons and secondary structure predictions, picornavirus internal ribosome entry segments (IRESes) have been divided into three groups (entero- and rhinoviruses; cardio- and and aphthoviruses; and hepatitis A virus). Here, we describe a detailed comparison of the ability of IRESes from each group to direct internal initiation of translation in vitro using a single dicistronic mRNA (the only variable being the IRES inserted into the dicistronic region). We studied the influence of various parameters on the capacity of six different picornaviral IRESes, and the non-picornaviral hepatitis C virus IRES, to direct internal initiation of translation: salt concentration, the addition of HeLa cell proteins to rabbit reticulocyte lysate translation reactions, the presence of foot-and-mouth disease virus Lb or human rhinovirus 2A proteinase. On the basis of the characteristics of IRES-driven translation in vitro, the picornaviral IRESes can be classified in a similar manner to when sequence homologies are considered. IRESes from each of the three groups responded differently to all of the parameters tested, indicating that while all of these elements can direct internal ribosome entry, the functional requirements for efficient IRES activity vary dramatically. In the individual optimal conditions for translation initiation, the best IRESes were those from the cardio- and aphthoviruses, followed by those from the enteroviruses, which exhibited up to 70% of the efficiency of the EMCV element in directing internal initiation of translation.
Collapse
Affiliation(s)
- A M Borman
- Unit de Virologie Moléculaire (CNRS URA 1966), Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
120
|
Hoffman MA, Palmenberg AC. Mutational analysis of the J-K stem-loop region of the encephalomyocarditis virus IRES. J Virol 1995; 69:4399-406. [PMID: 7769702 PMCID: PMC189181 DOI: 10.1128/jvi.69.7.4399-4406.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cap-independent translation of encephalomyocarditis virus (EMCV) RNA is controlled by a segment of the 5' untranslated region termed the internal ribosomal entry site, or IRES. The IRES contains a series of stem-loop structural elements. The J and K stems (EMCV bases 682 to 795), near the center of the IRES, are well conserved among all cardio-, aphtho-, and hepatoviruses. We have examined the biological roles of these elements by constructing mutations within the J-K sequences of EMCV and testing the mutations for activity in translation, translation competition, UV cross-linking, and viral infectivity assays. Mutations near the helical junction of J and K proved severely detrimental to both cellular translation and cell-free translation of downstream cistrons. The same mutations reduced the ability of the IRES to compete for cellular factors in competition assays and reduced the infectivity of viral genomes carrying these lesions. A mutation in the terminal loop of J gave similar results. In contrast, mutations within the terminal loop of K had minimal impact on in vitro translation activity and IRES competitive ability. However, in vivo analysis of the K-loop mutations revealed deficiencies during cellular translation and further showed markedly reduced infectivity in HeLa cells. UV cross-linking experiments identified a 49-kDa protein which interacts strongly with the J-K region, but the identity of this protein and its contribution to IRES activity are unclear.
Collapse
Affiliation(s)
- M A Hoffman
- Institute for Molecular Virology, University of Wisconsin, Madison, USA
| | | |
Collapse
|
121
|
Wang C, Le SY, Ali N, Siddiqui A. An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5' noncoding region. RNA (NEW YORK, N.Y.) 1995; 1:526-537. [PMID: 7489514 PMCID: PMC1482419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Translation of the human hepatitis C virus (HCV) RNA genome occurs by a mechanism known as "internal ribosome entry." This unusual strategy of translation is employed by naturally uncapped picornaviral genomic RNAs and several cellular mRNAs. A common feature of these RNAs is a relatively long 5' noncoding region (NCR) that folds into a complex secondary structure harboring an internal ribosome entry site (IRES). Evidence derived from the use of dicistronic expression systems, combined with an extensive mutational analysis, demonstrated the presence of an IRES within the HCV 5'NCR. The results of our continued mutational analysis to map the critical structural elements of the HCV IRES has led to the identification of a pseudoknot structure upstream of the initiator AUG. The evidence presented in this study is based upon the mutational analysis of the putative pseudoknot structure. This is further substantiated by biochemical and enzymatic probing of the wild-type and mutant 5'NCR. Further, the thermodynamic calculations, based upon a modified RNAKNOT program, are consistent with the presence of a pseudoknot structure located upstream of the initiator AUG. Maintenance of this structural element is critical for internal initiation of translation. The pseudoknot structure in the 5'NCR represents a highly conserved feature of all HCV subtypes and members of the pestivirus family, including hog cholera virus and bovine viral diarrhea virus.
Collapse
Affiliation(s)
- C Wang
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
122
|
Beneduce F, Pisani G, Divizia M, Panà A, Morace G. Complete nucleotide sequence of a cytopathic hepatitis A virus strain isolated in Italy. Virus Res 1995; 36:299-309. [PMID: 7653108 DOI: 10.1016/0168-1702(95)00009-f] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular basis of the cytopathic effect induced in cell culture by some hepatitis A virus (HAV) strains and variants has not been determined. In order to assess the molecular mechanism(s) underlying this particular phenotype the genome of an Italian cytopathic isolate (strain FG) was sequenced from cDNAs obtained by RT-PCR. Sequence analysis revealed the presence of mutations common to either adapted or cytopathic variants of HAV. In particular, amino acid deletions in proteins VP1 and 3A were detected. Expression of protein 3A in E. coli showed that the N-terminal deletion renders this protein toxic to bacteria.
Collapse
Affiliation(s)
- F Beneduce
- Laboratory of Virology, Istituto Superiore di Sanitá, Rome, Italy
| | | | | | | | | |
Collapse
|
123
|
Le SY, Sonenberg N, Maizel JV. Unusual folding regions and ribosome landing pad within hepatitis C virus and pestivirus RNAs. Gene 1995; 154:137-43. [PMID: 7890155 DOI: 10.1016/0378-1119(94)00859-q] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A statistically significant folding region is identified in the 5' untranslated region (5'-UTR) of hepatitis C virus (HCV), bovine viral diarrhea virus and hog cholera virus. This unusual folding region (UFR) detected in HCV encompasses 199 nucleotides (nt) and coincides with the reported internal ribosome entry site or ribosome landing pad (RLP), as determined by the 5' and 3' deletions [Tsukiyama-Kohara et al., J. Virol. 66 (1992) 1476-1483]. The RNA structure predicted in the UFR of HCV consists of a large stem-loop and a pseudoknot. The proposed structural model is consistent with RNase sensitivity studies [Brown et al., Nucleic Acids Res. 20 (1992) 5041-5045]. Moreover, the structure is highly conserved among these divergent HCV and pestivirus RNAs. The covariation of paired bases in the helical regions offers support for the proposed structural models. The pseudoknot predicted in these UFR shares a similar structural feature to those proposed in the RLP of cardioviruses, aphthoviruses and hepatitis A virus. Based on the common structural motif, a putative base-pairing model between HCV RNA and 18S rRNA, as well as pestiviral RNAs and 18S rRNA are suggested. Intriguingly, the proposed base-pairing models in this study are comparable to those proposed in picornaviruses in terms of their folded shape and location of the predicted complementary sequences between viral RNAs and 18S rRNA. Taken together, we suggest that the common base-pairing model between the UFR detected in the 5'-UTR of pestivirus and HCV and 18S rRNA have a general function in the internal initiation of cap-independent translation.
Collapse
Affiliation(s)
- S Y Le
- Laboratory of Mathematical Biology, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | | | | |
Collapse
|
124
|
Argentini C, D'Ugo E, Bruni R, Gluck R, Giuseppetti R, Rapicetta M. Sequence and phylogenetic analysis of the VP1 gene in two cell culture-adapted HAV strains from a unique pathogenic isolate. Virus Genes 1995; 10:37-43. [PMID: 7483287 DOI: 10.1007/bf01724295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The nucleotide sequences of the VP1 coding region of two newly characterized, cell culture-adapted hepatitis A virus (HAV) strains (RG-SB11 and RG-SB16) were analyzed and compared with homologous regions of previously characterized HAV strains of human or monkey origin, and at different levels of tissue-culture adaptation. In particular, HM175wt and its derivative strains and MBB, LCDC1, PA21, and AGM27 isolates were considered. RG-SB11 and RG-SB16 HAV strains were derived from a pathogenic isolate from an acutely infected patient, purified from stool, and subjected to different strategies of adaptation. Several nucleotide differences were observed, but high conservation was found in the predicted VP1 protein sequences, which confirms structural constraints for this region. Furthermore, comparative amino-acid sequence analysis of VP1 from all HAV isolates studied has shown, particularly for those from naturally infected monkeys, that differences are limited to the amino and carboxy-terminal part of the molecule. The results of phylogenetic analysis have confirmed the common origin of the RG-SB11 and RG-SB16 strains. The complete nucleotide sequences of the VP1 coding region of the RG-SB11/16, HM175 derivative strains and of other HAV strains has shown that branch-length evolution can give a measure of the evolution of HAV during adaptation processes.
Collapse
Affiliation(s)
- C Argentini
- Laboratory of Virology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
125
|
Poole TL, Wang C, Popp RA, Potgieter LN, Siddiqui A, Collett MS. Pestivirus translation initiation occurs by internal ribosome entry. Virology 1995; 206:750-4. [PMID: 7831836 DOI: 10.1016/s0042-6822(95)80003-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The role of the 385 nucleotide 5' noncoding region (NCR) in the translation of the pestivirus genome was investigated. In vitro translation of an RNA transcript containing the 5' NCR of the bovine viral diarrhea virus (BVDV) genome followed by the coding sequence of the first gene product (p20) of the BVDV large open reading frame resulted in the synthesis of a 20-kDa polypeptide. Results from hybrid-arrest translation studies identified a region involving a predicted RNA stem-loop structure spanning nucleotides 154-261 within the 5' NCR that was important for p20 synthesis. An additional inhibitory oligonucleotide was complementary to the sequence at the base of this stem-loop and encompassed the initiating AUG at nucleotide 386. Antisense oligonucleotides both upstream and downstream of those that were inhibitory had no effect on p20 translation. RNA from a dicistronic expression vector in which the BVDV 5' NCR was inserted between two reporter genes, CAT and LUC, showed strong expression of the second (LUC) cistron upon in vitro translation. This expression was dramatically reduced in an analogous construct in which nucleotides 173-236 of the 5' NCR were deleted. Similar results were obtained when RNA from these same vectors was evaluated for expression after transfection into BHK cells. These results suggest that the BVDV 5' NCR contains an internal ribosome entry site for translation initiation. This translational mechanism is similar to that shown for hepatitis C virus, further demonstrating the close relationship between viruses of these two genera within the family Flaviviridae.
Collapse
Affiliation(s)
- T L Poole
- Oak Ridge National Laboratory, Biology Division, Tennessee 37831
| | | | | | | | | | | |
Collapse
|
126
|
Rhoads RE, Lamphear BJ. Cap-independent translation of heat shock messenger RNAs. Curr Top Microbiol Immunol 1995; 203:131-53. [PMID: 7555088 DOI: 10.1007/978-3-642-79663-0_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | |
Collapse
|
127
|
Hellen CU, Wimmer E. Translation of encephalomyocarditis virus RNA by internal ribosomal entry. Curr Top Microbiol Immunol 1995; 203:31-63. [PMID: 7555090 DOI: 10.1007/978-3-642-79663-0_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Picornavirus 5' NCRs contain IRES elements that have been divided into two groups, exemplified by PV (type 1) and EMCV (type 2). These elements are functionally related and have an intriguing level of structural and sequence similarity. Some conserved RNA sequences and/or structures may correspond to cis-acting elements involved in IRES function, so that there may also be similarities in the mechanism by which the two types or IRES promote initiation. The function of both types of IRES element appears to depend on a cellular 57 kDa polypeptide, which has been identified as the predominantly nuclear hnRNP protein PTB. However, a specific function for p57/PTB in translation has not yet been established. These two groups can be differentiated on the basis of their requirements for trans-acting factors. The EMCV IRES functions efficiently in a broader range of eukaryotic cell types than type 1 IRES elements, probably because the latter require additional factor(s). A second distinction between these IRES element is that initiation occurs directly at the 3' border of type 2 IRES elements, whereas a nonessential spacer of between 30 nt and 154 nt separates type 1 IRES elements from the downstream initiation codon.
Collapse
Affiliation(s)
- C U Hellen
- Department of Microbiology and Immunology, SUNY Health Sciences Center at Brooklyn 11203-2098, USA
| | | |
Collapse
|
128
|
Belsham GJ, Sonenberg N, Svitkin YV. The role of the La autoantigen in internal initiation. Curr Top Microbiol Immunol 1995; 203:85-98. [PMID: 7555092 DOI: 10.1007/978-3-642-79663-0_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- G J Belsham
- Dept of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
129
|
Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 7935446 DOI: 10.1128/mcb.14.11.7322] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation extracts were prepared from various strains of Saccharomyces cerevisiae. The translation of mRNA molecules in these extracts were cooperatively enhanced by the presence of 5'-terminal cap structures and 3'-terminal poly(A) sequences. These cooperative effects could not be observed in other translation systems such as those prepared from rabbit reticulocytes, wheat germ, and human HeLa cells. Because the yeast translation system mimicked the effects of the cap structure and poly(A) tail on translational efficiency seen in vivo, this system was used to study cap-dependent and cap-independent translation of viral and cellular mRNA molecules. Both the 5' noncoding regions of hepatitis C virus and those of coxsackievirus B1 conferred cap-independent translation to a reporter coding region during translation in the yeast extracts; thus, the yeast translational apparatus is capable of initiating cap-independent translation. Although the translation of most yeast mRNAs was cap dependent, the unusually long 5' noncoding regions of mRNAs encoding cellular transcription factors TFIID and HAP4 were shown to mediate cap-independent translation in these extracts. Furthermore, both TFIID and HAP4 5' noncoding regions mediated translation of a second cistron when placed into the intercistronic spacer region of a dicistronic mRNA, indicating that these leader sequences can initiate translation by an internal ribosome binding mechanism in this in vitro translation system. This finding raises the possibility that an internal translation initiation mechanism exists in yeast cells for regulated translation of endogenous mRNAs.
Collapse
|
130
|
Iizuka N, Najita L, Franzusoff A, Sarnow P. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:7322-30. [PMID: 7935446 PMCID: PMC359267 DOI: 10.1128/mcb.14.11.7322-7330.1994] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Translation extracts were prepared from various strains of Saccharomyces cerevisiae. The translation of mRNA molecules in these extracts were cooperatively enhanced by the presence of 5'-terminal cap structures and 3'-terminal poly(A) sequences. These cooperative effects could not be observed in other translation systems such as those prepared from rabbit reticulocytes, wheat germ, and human HeLa cells. Because the yeast translation system mimicked the effects of the cap structure and poly(A) tail on translational efficiency seen in vivo, this system was used to study cap-dependent and cap-independent translation of viral and cellular mRNA molecules. Both the 5' noncoding regions of hepatitis C virus and those of coxsackievirus B1 conferred cap-independent translation to a reporter coding region during translation in the yeast extracts; thus, the yeast translational apparatus is capable of initiating cap-independent translation. Although the translation of most yeast mRNAs was cap dependent, the unusually long 5' noncoding regions of mRNAs encoding cellular transcription factors TFIID and HAP4 were shown to mediate cap-independent translation in these extracts. Furthermore, both TFIID and HAP4 5' noncoding regions mediated translation of a second cistron when placed into the intercistronic spacer region of a dicistronic mRNA, indicating that these leader sequences can initiate translation by an internal ribosome binding mechanism in this in vitro translation system. This finding raises the possibility that an internal translation initiation mechanism exists in yeast cells for regulated translation of endogenous mRNAs.
Collapse
Affiliation(s)
- N Iizuka
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | |
Collapse
|
131
|
Wang C, Sarnow P, Siddiqui A. A conserved helical element is essential for internal initiation of translation of hepatitis C virus RNA. J Virol 1994; 68:7301-7. [PMID: 7933114 PMCID: PMC237171 DOI: 10.1128/jvi.68.11.7301-7307.1994] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Translation of hepatitis C virus (HCV) RNA is initiated by cap-independent internal ribosome binding to the 5' noncoding region (NCR). To identify the sequences and structural elements within the 5' NCR of HCV RNA that contribute to the initiation of translation, a series of point mutations was introduced within this sequence. Since the pyrimidine-rich tract is considered a characteristic feature of picornavirus internal ribosome entry site (IRES) elements, our mutational analysis focused on two putative pyrimidine tracts (Py-I and Py-II) within the HCV 5' NCR. Translational efficiency of these mutant RNAs was examined by in vitro translation and after RNA transfection into liver-derived cells. Mutational analysis of Py-I (nucleotides 120 to 130), supported by compensatory mutants, demonstrates that the primary sequence of this motif is not important but that a helical structural element associated with this region is critical for HCV IRES function. Mutations in Py-II (nucleotides 191 to 199) show that this motif is dispensable for IRES function as well. Thus, the pyrimidine-rich tract motif, which is considered as an essential element of the picornavirus IRES elements, does not appear to be a functional component of the HCV IRES. Further, the insertional mutagenesis study suggests a requirement for proper spacing between the initiator AUG and the upstream structures of the HCV IRES element for internal initiation of translation.
Collapse
Affiliation(s)
- C Wang
- Department of Microbiology, University of Colorado Medical School, Denver 80262
| | | | | |
Collapse
|
132
|
Shaffer DR, Brown EA, Lemon SM. Large deletion mutations involving the first pyrimidine-rich tract of the 5' nontranslated RNA of human hepatitis A virus define two adjacent domains associated with distinct replication phenotypes. J Virol 1994; 68:5568-78. [PMID: 8057438 PMCID: PMC236957 DOI: 10.1128/jvi.68.9.5568-5578.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The 5' nontranslated RNA (5'NTR) of the HM175 strain of human hepatitis A virus contains several pyrimidine-rich regions, the largest and most 5' of which (pY1) is an almost pure polypyrimidine tract located between nucleotides (nt) 99 and 138, which includes five tandem repeats of the sequence motif (U)UUCC(C). Previous modeling of the RNA secondary structure suggested that this region was likely to be single-stranded, but repetitive RNase V1 cleavage sites within these (U)UUCC(C) motifs indicated that pY1 possesses an ordered structure. To assess the role of this domain in replication of the virus, a series of large deletion mutations were created which involved the pY1 domain of an infectious cDNA clone. Deletion of 44 nt between nt 96 and 139, including the entire pY1 domain, did not reduce the capacity of the virus to replicate in BS-C-1 or FRhK-4 cells, as assessed by the size of replication foci in radioimmunofocus assays or by virus yields under one-step growth conditions. In contrast, viable virus could not be recovered from transfected RNAs in which the deletion was extended in a 5' direction by an additional 3 nt (delta 93-134), most likely because of the destabilization of a predicted stem-loop structure upstream of pY1. Deletion mutations extending in a 3' fashion to nt 140, 141, or 144 resulted in moderately (delta 96-140 and delta 96-141) or strongly (delta 99-144, delta 116-144, and delta 131-144) temperature-sensitive replication phenotypes. Although deletion of the pY1 domain did not by itself affect the replication phenotype of virus, the additional deletion of sequence elements within the pY1 domain (nt 99 to 130) substantially enhanced the temperature-sensitive phenotype of delta 131-144 virus. These data suggest that the (U)UUCC(C) motifs within the pY1 domain are conserved among wild-type viruses in order to serve a function required during infection in vivo but not in cell culture. In contrast, the single-stranded region located immediately downstream of pY1 (nt 140 to 144) is essential for efficient replication in cultured cells at physiological temperature. Viruses with deletion mutations involving nt 140 to 144 and viruses with large pY1 deletions but normal replication phenotypes in cell culture may have attenuation properties which could be exploited for vaccine development.
Collapse
Affiliation(s)
- D R Shaffer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill 27599-7030
| | | | | |
Collapse
|
133
|
Whetter LE, Day SP, Elroy-Stein O, Brown EA, Lemon SM. Low efficiency of the 5' nontranslated region of hepatitis A virus RNA in directing cap-independent translation in permissive monkey kidney cells. J Virol 1994; 68:5253-63. [PMID: 8035522 PMCID: PMC236470 DOI: 10.1128/jvi.68.8.5253-5263.1994] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To characterize in vivo the translational control elements present in the 5' nontranslated region (5'NTR) of hepatitis A virus (HAV) RNA, we created an HAV-permissive monkey kidney cell line (BT7-H) that stably expresses T7 RNA polymerase and carries out cytoplasmic transcription of uncapped RNA from transfected DNA containing the T7 promoter. The presence of an internal ribosomal entry site (IRES) within the 5'NTR of HAV was confirmed by using BT7-H cells transcribing bicistronic RNAs in which the 5'NTR was placed within the intercistronic space, controlling translation of a downstream reporter protein (bacterial chloramphenicol acetyltransferase). However, translation directed by the 5'NTR in these bicistronic transcripts and in monocistronic T7 transcripts in which the HAV 5'NTR was placed upstream of the chloramphenicol acetyltransferase coding sequence was very inefficient compared with the translation of monocistronic transcripts containing either the IRES of encephalomyocarditis (EMC) virus or a short nonpicornavirus 5' nontranslated leader sequence. A large deletion within the HAV IRES (delta 355-532) eliminated IRES activity in bicistronic transcripts. In contrast, larger deletions within the IRES in monocistronic transcripts (delta 1-354, delta 1-532, delta 1-633, and delta 158-633) resulted in 4- to 14-fold increases in translation. In the latter case, this was most probably due to a shift from IRES-directed translation to translation initiation by 5'-end-dependent scanning. Translation of RNAs containing either the EMC virus IRES or the nonpicornavirus leader was significantly enhanced by cotransfection of the reporter constructs with pEP2A, which directs transcription of RNA containing the EMC virus IRES fused to the poliovirus 2Apro coding region. This 2Apro enhancement of cap-independent translation suggests a greater availability of limiting cellular translation factors following 2Apro-mediated cleavage of the p220 subunit of the eukaryotic initiation factor eIF-4F and subsequent shutdown of 5' cap-dependent translation. In contrast, pEP2A cotransfection resulted in severe inhibition of translation directed by the HAV IRES in either monocistronic or bicistronic transcripts. This inhibition was due to competition from the EMC virus IRES present in pEP-2A transcripts, as well as the expression of proteolytically active 2Apro. 2Apro-mediated suppression of HAV translation was not seen with transcripts containing large deletions in the HAV IRES (delta 158-633, delta 1-532, or delta 1-633). These data suggest that the HAV IRES may have a unique requirement for intact p220 or that it may be dependent on active expression of another cellular translation factor which is normally present in severely limiting quantities.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L E Whetter
- Department of Medicine, University of North Carolina at Chapel Hill 27599-7030
| | | | | | | | | |
Collapse
|
134
|
Witherell GW, Wimmer E. Encephalomyocarditis virus internal ribosomal entry site RNA-protein interactions. J Virol 1994; 68:3183-92. [PMID: 8151781 PMCID: PMC236809 DOI: 10.1128/jvi.68.5.3183-3192.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Translational initiation of encephalomyocarditis virus (EMCV) mRNA occurs by ribosomal entry into the 5' nontranslated region of the EMCV mRNA, rather than by ribosomal scanning. Internal ribosomal binding requires a cis-acting element termed the internal ribosomal entry site (IRES). IRES elements have been proposed to be involved in the translation of picornavirus mRNAs and some cellular mRNAs. Internal ribosome binding likely requires the interaction of trans-acting factors that recognize both the mRNA and the ribosomal complex. Five cellular proteins (p52, p57, p70, p72, and p100) cross-link the EMCV IRES or fragments of the IRES. For one of these proteins, p57, binding to the IRES correlates with translation. Recently, p57 was identified to be very similar, if not identical, to polypyrimidine tract-binding protein. On the basis of cross-linking results with 21 different EMCV IRES fragments and cytoplasmic HeLa extract or rabbit reticulocyte lysate as the source of polypeptides, consensus binding sites for p52, p57, p70, and p100 are proposed. It is suggested that each of these proteins recognizes primarily a structural feature of the RNA rather than a specific sequence.
Collapse
Affiliation(s)
- G W Witherell
- Department of Microbiology, State University of New York at Stony Brook 11794
| | | |
Collapse
|
135
|
Brown EA, Zajac AJ, Lemon SM. In vitro characterization of an internal ribosomal entry site (IRES) present within the 5' nontranslated region of hepatitis A virus RNA: comparison with the IRES of encephalomyocarditis virus. J Virol 1994; 68:1066-74. [PMID: 8289336 PMCID: PMC236545 DOI: 10.1128/jvi.68.2.1066-1074.1994] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The lengthy 5' nontranslated region (5'NTR) of hepatitis A virus (HAV) forms a highly ordered secondary structure, which has been suggested to play an important role in controlling viral translation by allowing for translation initiation by internal ribosome entry. To test this hypothesis, synthetic bicistronic RNAs, with all or part of the HAV 5'NTR in the intercistronic space, were translated in rabbit reticulocyte lysates. In the presence of an upstream cistron designed to block ribosomal scanning, the HAV 5'NTR was capable of directing the internal initiation of translation, confirming the presence of an internal ribosome entry site (IRES). Analysis of various deletion mutants demonstrated that the 5' border of the IRES is located between nucleotides 151 and 257, while the 3' border extends to the 3' end of the 5'NTR, between nucleotide 695 and the first initiation codon at 735. Except for a segment between bases 638 and 694, deletion of stem-loop structures between bases 151 and the 3' end of the 5'NTR inhibited or abolished translation. The addition of a 5' cap structure (m7GpppN) to monocistronic or bicistronic transcripts decreased the translation of a reporter gene downstream of the HAV 5'NTR but enhanced translation of the upstream cistron in bicistronic transcripts. This finding indicates that a 5' cap structure is inhibitory to HAV IRES-directed translation initiation and that the cap structure and the HAV IRES probably compete for the same limiting translation factors. The efficiency with which monocistronic constructs containing the HAV 5'NTR directed translation in reticulocyte lysates was compared with results for monocistronic constructs containing the IRES of the more rapidly growing encephalomyocarditis virus (EMCV). These results indicated that the HAV 5'NTR was more than 25-fold less active than the EMCV IRES in producing translation product. HAV 5'NTR-directed translation was inhibited by the presence of a one-fifth molar quantity of RNA containing the EMCV IRES, while a fivefold molar excess of the HAV 5'NTR did not inhibit EMCV IRES-directed translation. The relatively weak activity of the HAV IRES may thus be due to a reduced affinity for cellular translation factors which are present in limiting quantities in rabbit reticulocyte lysate.
Collapse
Affiliation(s)
- E A Brown
- Department of Medicine, University of North Carolina at Chapel Hill 27599-7030
| | | | | |
Collapse
|
136
|
Drew J, Belsham GJ. trans complementation by RNA of defective foot-and-mouth disease virus internal ribosome entry site elements. J Virol 1994; 68:697-703. [PMID: 8289373 PMCID: PMC236505 DOI: 10.1128/jvi.68.2.697-703.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A region of about 435 bases from the 5' noncoding region of foot-and-mouth disease virus RNA directs internal initiation of protein synthesis. This region, termed the internal ribosome entry site (IRES), is predicted to contain extensive secondary structure. Precise deletion of five predicted secondary structure features has been performed. The mutant IRES elements have been constructed into vectors which express bicistronic mRNAs and assayed within cells. Each of the modified IRES elements was defective in directing internal initiation when assayed alone. However, coexpression of an intact foot-and-mouth disease virus IRES complemented four of these defective elements to an efficiency of up to 80% of wild-type activity. No complementation was observed with the structurally analogous element from encephalomyocarditis virus. The role of RNA-RNA interactions in the function of the picornavirus IRES is discussed.
Collapse
Affiliation(s)
- J Drew
- AFRC Institute for Animal Health, Pirbright, Woking, Surrey, United Kingdom
| | | |
Collapse
|
137
|
Graff J, Normann A, Feinstone SM, Flehmig B. Nucleotide sequence of wild-type hepatitis A virus GBM in comparison with two cell culture-adapted variants. J Virol 1994; 68:548-54. [PMID: 8254770 PMCID: PMC236320 DOI: 10.1128/jvi.68.1.548-554.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In order to study cell tropism and attenuation of hepatitis A virus (HAV), the genome of HAV wild-type GBM and two cell culture-adapted variants, GBM/FRhK and GBM/HFS, were cloned and sequenced after amplification by reverse transcriptase-PCR. During virus cultivation, the HAV variant GBM/FRhK had a strict host range for FRhK-4 cells, in contrast to GBM/HFS, which can be grown in HFS and FRhK-4 cells. The HAV variant GBM/HFS was shown to be attenuated when inoculated into chimpanzees (B. Flehmig, R. F. Mauler, G. Noll, E. Weinmann, and J. P. Gregerson, p. 87-90, in A. Zuckerman, ed., Viral Hepatitis and Liver Disease, 1988). On the basis of this biological background, the comparison of the nucleotide sequences of these three HAV GBM variants should elucidate differences which may be of importance for cell tropism and attenuation. The comparison of the genome between the GBM wild type and HAV wild types HM175 (J. I. Cohen, J. R. Ticehurst, R. H. Purcell, A. Buckler-White, and B. M. Baroudy, J. Virol. 61:50-59, 1987) and HAV-LA (R. Najarian, O. Caput, W. Gee, S. J. Potter, A. Renard, J. Merryweather, G. Van Nest, and D. Dina, Proc. Natl. Acad. Sci. USA 82:2627-2631, 1985) showed a 92 to 96.3% identity, whereas the identity was 99.3 to 99.6% between the GBM variants. Nucleotide differences between the wild-type and the cell culture-adapted variants, which were identical in both cell culture-adapted GBM variants, were localized in the 5' noncoding region; in 2B, 3B, and 3D; and in the 3' noncoding region. Our result concerning the 2B/2C region confirms a mutation at position 3889 (C-->T, alanine to valine), which had been shown to be of importance for cell culture adaptation (S. U. Emerson, C. McRill, B. Rosenblum, S. M. Feinstone, and R. H. Purcell, J. Virol. 65:4882-4886, 1991; S. U. Emerson, Y. K. Huang, C. McRill, M. Lewis, and R. H. Purcell, J. Virol. 66:650-654, 1992), whereas other mutations differ from published HAV sequence data and may be cell specific. Further comparison of the two cell culture-adapted GBM variants showed cell-specific mutations resulting in deletions of six amino acids in the VP1 region and three amino acids in the 3A region of the GBM variant GBM/FRhK.
Collapse
Affiliation(s)
- J Graff
- Department of Virology and Epidemiology of Virus Diseases, Hygiene Institute, University of Tübingen, Germany
| | | | | | | |
Collapse
|
138
|
Whetter LE, Day SP, Brown EA, Elroy-Stein O, Lemon SM. Analysis of hepatitis A virus translation in a T7 polymerase-expressing cell line. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1994; 9:291-8. [PMID: 8032260 DOI: 10.1007/978-3-7091-9326-6_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hepatitis A virus (HAV) exhibits several characteristics which distinguish it from other picornaviruses, including slow growth in cell culture even after adaptation, and lack of host-cell protein synthesis shut-down. Like other picornaviruses, HAV contains a long 5' nontranslated region (NTR) incorporating an internal ribosomal entry site (IRES), which directs cap-independent translation. We compared HAV IRES-initiated translation with translation initiated by the structurally similar encephalomyocarditis virus (EMCV) IRES, using plasmids in which each of the 5'NTRs is linked in-frame with the chloramphenicol acetyltransferase (CAT) gene. Translation was assessed in an HAV-permissive cell line which constitutively expresses T7 RNA polymerase and transcribes high levels of uncapped RNA from these plasmids following transfection. RNAs containing the EMCV IRES were efficiently translated in these cells, while those containing the HAV IRES were translated very poorly. Analysis of translation of these RNAs in the presence of poliovirus protein 2A, which shuts down cap-dependent translation, demonstrated that their translation was cap independent. Our results suggest that the HAV IRES may function poorly in these cells, and that inefficient translation may contribute to the exceptionally slow replication cycle characteristic of cell culture-adapted HAV.
Collapse
Affiliation(s)
- L E Whetter
- Department of Medicine, University of North Carolina, Chapel Hill
| | | | | | | | | |
Collapse
|
139
|
Schmid M, Wimmer E. IRES-controlled protein synthesis and genome replication of poliovirus. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1994; 9:279-89. [PMID: 8032259 DOI: 10.1007/978-3-7091-9326-6_28] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Initiation of translation of the single-stranded genomic RNAs of picornaviruses such as poliovirus (PV) and encephalomyocarditis virus (EMCV) is cap-independent and controlled by a long segment within the 5' non-translated region (5'NTR), termed internal ribosomal entry site (IRES). Cellular RNA-binding proteins have been identified that are involved in IRES function in trans. One of these proteins (p57) has been found to be identical to the polypyrimidine tract binding protein (pPTB), a nuclear protein implicated in various processes involving pre-mRNA. Anti-pPTB antibodies inhibit picornavirus mRNA, but not globin mRNA translation, in vitro. Proof for the 5'-independent initiation of translation in vivo was obtained by inserting the EMCV IRES into the ORF of PV thereby constructing a dicistronic, viable poliovirus with the genotype [PV] 5'NTR-P1-[EMCV] IRES-[PV] P2-P3-3'NTR. Dicistronic polioviruses were also constructed that served as novel expression vectors where a foreign gene has been inserted into the PV genome. Incubation of poliovirus RNA in a HeLa cell-free extract leads to the synthesis and processing of viral proteins, viral RNA replication followed by formation of infectious virions. Cell-free synthesis of PV has nullified the dictum that no virus can multiply in a cell-free medium. The genome replication of poliovirus and the mechanism of recombination in poliovirus replication is still not fully understood. Biochemical evidence has been obtained that the conserved NTP-binding motif in PV protein 2C is essential for RNA replication and virus propagation. Finally by using genetic studies we found that during viral RNA synthesis a poliovirus containing two tandemly arranged VPgs (3A-VPg1-VPg2-3Cpro) led to the removal of the 3C-proximal VPg copy.
Collapse
Affiliation(s)
- M Schmid
- Department of Microbiology, School of Medicine, State University of New York at Stony Brook
| | | |
Collapse
|
140
|
Abstract
Although the 5' cap-dependent scanning mechanism can account for the translational initiation of most mRNAs in eukaryotic cells, several viral and cellular mRNAs contain nucleotide sequences in their 5' non-coding regions that can mediate binding of ribosomes to the mRNA, regardless of the modification state of the 5' ends. During the past year, some nuclear proteins normally involved in RNA processing have been shown also to facilitate 'internal' ribosome binding. Unexpected dual functions have, therefore, been suggested for these RNA-binding proteins, in both RNA biogenesis in the nucleus and RNA translation in the cytoplasm.
Collapse
Affiliation(s)
- S McBratney
- University of Colorado Health Sciences Center, Denver
| | | | | |
Collapse
|
141
|
Abstract
Translation initiation by internal ribosome binding is a recently discovered mechanism of eukaryotic viral and cellular protein synthesis in which ribosome subunits interact with the mRNAs at internal sites in the 5' untranslated RNA sequences and not with the 5' methylguanosine cap structure present at the extreme 5' ends of mRNA molecules. Uncapped poliovirus mRNAs harbor internal ribosome entry sites (IRES) in their long and highly structured 5' noncoding regions. Such IRES sequences are required for viral protein synthesis. In this study, a novel poliovirus was isolated whose genomic RNA contains two gross deletions removing approximately 100 nucleotides from the predicted IRES sequences within the 5' noncoding region. The deletions originated from previously in vivo-selected viral revertants displaying non-temperature-sensitive phenotypes. Each revertant had a different predicted stem-loop structure within the 5' noncoding region of their genomic RNAs deleted. The mutant poliovirus (Se1-5NC-delta DG) described in this study contains both stem-loop deletions in a single RNA genome, thereby creating a minimum IRES. Se1-5NC-delta DG exhibited slow growth and a pinpoint plaque phenotype following infection of HeLa cells, delayed onset of protein synthesis in vivo, and defective initiation during in vitro translation of the mutated poliovirus mRNAs. Interestingly, the peak levels of viral RNA synthesis in cells infected with Se1-5NC-delta DG occurred at slightly later times in infection than those achieved by wild-type poliovirus, but these mutant virus RNAs accumulated in the host cells during the late phases of virus infection. UV cross-linking assays with the 5' noncoding regions of wild-type and mutated RNAs were carried out in cytoplasmic extracts from HeLa cells and neuronal cells and in reticulocyte lysates to identify the cellular factors that interact with the putative IRES elements. The cellular proteins that were cross-linked to the minimum IRES may represent factors playing an essential role in internal translation initiation of poliovirus mRNAs.
Collapse
Affiliation(s)
- A A Haller
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717
| | | | | |
Collapse
|
142
|
Chang KH, Brown EA, Lemon SM. Cell type-specific proteins which interact with the 5' nontranslated region of hepatitis A virus RNA. J Virol 1993; 67:6716-25. [PMID: 8411373 PMCID: PMC238111 DOI: 10.1128/jvi.67.11.6716-6725.1993] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The 5' nontranslated region (5'NTR) of hepatitis A virus (HAV) RNA contains structural elements which facilitate 5' cap-independent initiation of virus translation and are likely to interact with cellular proteins functioning as translation initiation factors. To define these interactions, we characterized the binding of ribosome-associated proteins from several cell types to synthetic RNAs representing segments of the 5'NTR by using a UV cross-linking/label transfer assay. Four major proteins (p30, p39, p57, and p110) were identified. p30 and p39 were present in ribosomal salt washes prepared only from HAV-permissive BS-C-1 and FRhK-4 cells, while p57 was found only in HeLa cells and rabbit reticulocyte lysates. p110 was present in all cell types. Both p30 and p39 bound to multiple sites within the 5'NTR. Efficient transfer of label to p30 occurred with minimal RNA probes representing nucleotides (nt) 96 to 155, 151 to 354, and, to a much lesser extent, 634 to 744, while label transfer to p39 occurred with probes representing nt 96 to 155 and 634 to 744. All of these probes represent regions of the 5'NTR which are rich in pyrimidines. Competitive inhibition studies indicated that both p30 and p39 bound with greater affinity to sites in the 5' half of the NTR (a probe representing nt 1 to 354) than to the more 3' site (nt 634 to 744). Binding of p39 to the probe representing nt 96 to 155 was inhibited in the presence of an equal amount of proteins derived from HeLa cells, suggesting that p39 shares binding site specificity with one or more HeLa cell proteins. A 57-kDa protein in HeLa cell protein extracts reacted with antibody to polypyrimidine tract-binding protein in immunoblots, but no immunoreactive protein was identified in a similar BS-C-1 protein fraction. These results demonstrate that ribosome-associated proteins which bind to the 5'NTR of HAV vary substantially among different mammalian cell types, possibly accounting for differences in the extent to which individual cell types support growth of the virus. Mutations in the 5'NTR which enhance the growth of HAV in certain cell types may reflect specific adaptive responses to these or other proteins.
Collapse
Affiliation(s)
- K H Chang
- Department of Medicine, University of North Carolina at Chapel Hill 27599-7030
| | | | | |
Collapse
|
143
|
Witherell GW, Gil A, Wimmer E. Interaction of polypyrimidine tract binding protein with the encephalomyocarditis virus mRNA internal ribosomal entry site. Biochemistry 1993; 32:8268-75. [PMID: 8394133 DOI: 10.1021/bi00083a030] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Translation of encephalomyocarditis virus (EMCV) mRNA occurs in a cap-independent manner, requiring instead a cis-acting element termed the internal ribosomal entry site (IRES). Binding of a 57-kDa ribosome-associated protein (p57) to the EMCV IRES has been found to correlate with cap-independent translation. p57 has recently been reported to be very similar, if not identical, to the polypyrimidine tract binding protein (pPTB), a spliceosome-associated factor possibly involved in U2 snRNP/pre-mRNA complex formation of 3'-splice-site recognition. The interaction between purified pPTB and the EMCV IRES was characterized in this study using nitrocellulose filter binding and UV cross-linking assays. pPTB bound the EMCV IRES with high affinity (Kd = 40 nM at 25 degrees C, pH 5.5, 80 mM ionic strength). pPTB also bound strongly to RNA fragments containing either the 5'-end, 3'-end, or an internal stem-loop of the IRES. The binding properties of 16 RNA variants derived from the IRES revealed however that purified pPTB bound with less specificity than pPTB in a mixture of cytoplasmic HeLa cell polypeptides. The addition of HeLa extract to purified pPTB increased the binding specificity, suggesting that factors within the extract alter the binding specificity of pPTB. The binding of pPTB to the full-length IRES and three IRES-derived fragments was studied in detail. Complex formation was optimal at low pH and was driven entirely by entropy. As many as four ion pairs are formed upon binding, with electrostatic interactions accounting for approximately 35% of the total free energy of complex formation.
Collapse
Affiliation(s)
- G W Witherell
- Department of Microbiology, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|
144
|
Martínez-Salas E, Sáiz JC, Dávila M, Belsham GJ, Domingo E. A single nucleotide substitution in the internal ribosome entry site of foot-and-mouth disease virus leads to enhanced cap-independent translation in vivo. J Virol 1993; 67:3748-55. [PMID: 8389904 PMCID: PMC237738 DOI: 10.1128/jvi.67.7.3748-3755.1993] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mutants of foot-and-mouth disease virus (FMDV) with altered biological properties can be selected during the course of persistent infection of BHK-21 cells with FMDV C-S8c1 (J. C. de la Torre, E. Martínez-Salas, J. Díez, A. Villaverde, F. Gebauer, E. Rocha, M. Dávila, and E. Domingo, J. Virol. 62:2050-2058, 1988). Two nucleotide substitutions, U to C at position -376 and A to G at position -15, (counting as +1 the A of the first functional AUG), were fixed within the internal ribosome entry site (IRES) of R100, the virus rescued after 100 passages of the carrier BHK-21 cells. IRES-directed cap-independent protein synthesis was quantitated by using bicistronic constructs of the form chloramphenicol acetyltransferase gene-IRES-luciferase gene. The IRES from R100 was 1.5- to 5-fold more active than that of C-S8c1 in directing cap-independent luciferase synthesis. This enhanced translational activity was observed when the RNAs were transcribed either in the nucleus or in the cytoplasm by a weak or a strong promoter, respectively. C-S8c1 and R100 IRES elements were functional in both FMDV-sensitive and FMDV-resistant cells (including persistently infected R cells), indicating that factors mediating cap-independent protein synthesis are not limited in any of the analyzed cell lines. Constructs in which each of the two mutations in the R100 IRES were analyzed separately indicate that the transition at position -376 is responsible for the enhanced activity of the R100 IRES. By estimating the effect that an increase in the initial translation efficiency may have on subsequent RNA replication steps, we suggest that the modifications in the IRES elements can account for the previously described hypervirulence of FMDV R100 for BHK-21 cells. The results show that a single point mutation in an IRES element of a picornavirus can cause an increase in translation efficiency.
Collapse
Affiliation(s)
- E Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | | | | | |
Collapse
|
145
|
Le SY, Chen JH, Sonenberg N, Maizel JV. Conserved tertiary structural elements in the 5' nontranslated region of cardiovirus, aphthovirus and hepatitis A virus RNAs. Nucleic Acids Res 1993; 21:2445-51. [PMID: 8389442 PMCID: PMC309545 DOI: 10.1093/nar/21.10.2445] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Statistical analyses of RNA folding in 5' nontranslated regions (5'NTR) of encephalomyocarditis virus, Theiler's murine encephalomyelitis virus, foot-and-mouth disease virus, and hepatitis A virus indicate that two highly significant folding regions occur in the 5' and 3' portions of the 5'NTR. The conserved tertiary structural elements are predicted in the unusual folding regions (UFR) for these viral RNAs. The theoretical, common structural elements predicted in the 3' parts of the 5'NTR occur in a cis-acting element that is critical for internal ribosome binding. These structural motifs are expected to be highly significant from extensive Monte Carlo simulations. Nucleotides (nt) in the conserved single-stranded polypyrimidine tract for these RNAs are involved in a distinctively tertiary interaction that is located at about 15 nt prior to the initiator AUG. Intriguingly, the proposed common tertiary structure in this study shares a similar structural feature to that proposed in human enteroviruses and rhinoviruses. Based on these common structural features, plausible base pairing models between these viral RNAs and 18 S rRNA are suggested, which are consistent with a general mechanism for regulation of internal initiation of cap-independent translation.
Collapse
Affiliation(s)
- S Y Le
- Laboratory of Mathematical Biology, National Cancer Institute, NIH, Frederick, MD 21702
| | | | | | | |
Collapse
|
146
|
Barton DJ, Flanegan JB. Coupled translation and replication of poliovirus RNA in vitro: synthesis of functional 3D polymerase and infectious virus. J Virol 1993; 67:822-31. [PMID: 8380467 PMCID: PMC237436 DOI: 10.1128/jvi.67.2.822-831.1993] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Poliovirus RNA polymerase and infectious virus particles were synthesized by translation of virion RNA in vitro in HeLa S10 extracts. The in vitro translation reactions were optimized for the synthesis of the viral proteins found in infected cells and in particular the synthesis of the viral polymerase 3Dpol. There was a linear increase in the amount of labeled protein synthesized during the first 6 h of the reaction. The appearance of 3Dpol in the translation products was delayed because of the additional time required for the proteolytic processing of precursor proteins. 3Dpol was first observed at 1 h in polyacrylamide gels, with significant amounts being detected at 6 h and later. Initial attempts to assay for polymerase activity directly in the translation reaction were not successful. Polymerase activity, however, was easily detected by adding a small amount (3 microliters) of translation products to a standard polymerase assay containing poliovirion RNA. Full-length minus-strand RNA was synthesized in the presence of an oligo(U) primer. In the absence of oligo(U), product RNA about twice the size of virion RNA was synthesized in these reactions. RNA stability studies and plaque assays indicated that a significant fraction of the input virion RNA in the translation reactions was very stable and remained intact for 20 h or more. Plaque assays indicated that infectious virus was synthesized in the in vitro translation reactions. Under optimal conditions, the titer of infectious virus produced in the in vitro translation reactions was greater than 100,000 PFU/ml. Virus was first detected at 6 h and increased to maximum levels by 12 h. Overall, the kinetics of poliovirus replication (protein synthesis, polymerase activity, and virus production) observed in the HeLa S10-initiation factor in vitro translation reactions were similar to those observed in infected cells.
Collapse
Affiliation(s)
- D J Barton
- Department of Immunology and Medical Microbiology, University of Florida College of Medicine, Gainesville 32610-0266
| | | |
Collapse
|
147
|
Belsham GJ. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1993; 60:241-60. [PMID: 8396787 PMCID: PMC7173301 DOI: 10.1016/0079-6107(93)90016-d] [Citation(s) in RCA: 243] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- G J Belsham
- AFRC Institute for Animal Health, Pirbright, Woking, Surrey, U.K
| |
Collapse
|
148
|
|
149
|
Lemon SM, Whetter L, Chang KH, Brown EA. Why do human hepatitis viruses replicate so poorly in cell cultures? FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05739.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
150
|
Le SY, Chen JH, Sonenberg N, Maizel JV. Conserved tertiary structure elements in the 5' untranslated region of human enteroviruses and rhinoviruses. Virology 1992; 191:858-66. [PMID: 1333125 PMCID: PMC7131026 DOI: 10.1016/0042-6822(92)90261-m] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A combination of comparative sequence analysis and thermodynamic methods reveals the conservation of tertiary structure elements in the 5' untranslated region (UTR) of human enteroviruses and rhinoviruses. The predicted common structural elements occur in the 3' end of a segment that is critical for internal ribosome binding, termed "ribosome landing pad" (RLP), of polioviruses. Base pairings between highly conserved 17-nucleotide (nt) and 21-nt sequences in the 5' UTR of human enteroviruses and rhinoviruses constitute a predicted pseudoknot that is significantly more stable than those that can be formed from a large set of randomly shuffled sequences. A conserved single-stranded polypyrimidine tract is located between two conserved tertiary elements. R. Nicholson, J. Pelletier, S.-Y. Le, and N. Sonenberg (1991, J. Virol. 65, 5886-5894) demonstrated that the point mutations of 3-nt UUU out of an essential 4-nt pyrimidine stretch sequence UUUC abolished translation. Structural analysis of the mutant sequence indicates that small point mutations within the short polypyrimidine sequence would destroy the tertiary interaction in the predicted, highly ordered structure. The proposed common tertiary structure can offer experimentalists a model upon which to extend the interpretations for currently available data. Based on these structural features possible base-pairing models between human enteroviruses and 18 S rRNA and between human rhinoviruses and 18 S rRNA are proposed. The proposed common structure implicates a biological function for these sequences in translational initiation.
Collapse
MESH Headings
- Base Composition
- Base Sequence
- Binding Sites
- Conserved Sequence
- Enterovirus/genetics
- Enterovirus/metabolism
- Humans
- Models, Genetic
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Poliovirus/genetics
- Poliovirus/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Regulatory Sequences, Nucleic Acid
- Rhinovirus/genetics
- Rhinovirus/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- S Y Le
- Laboratory of Mathematical Biology, National Cancer Institute, NIH, Frederick, Maryland 21702
| | | | | | | |
Collapse
|