101
|
Lingappa JR, Dooher JE, Newman MA, Kiser PK, Klein KC. Basic residues in the nucleocapsid domain of Gag are required for interaction of HIV-1 gag with ABCE1 (HP68), a cellular protein important for HIV-1 capsid assembly. J Biol Chem 2005; 281:3773-84. [PMID: 16275648 DOI: 10.1074/jbc.m507255200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During human immunodeficiency virus, type 1 (HIV-1) assembly, Gag polypeptides multimerize into immature HIV-1 capsids. The cellular ATP-binding protein ABCE1 (also called HP68 or RNase L inhibitor) appears to be critical for proper assembly of the HIV-1 capsid. In primate cells, ABCE1 associates with Gag polypeptides present in immature capsid assembly intermediates. Here we demonstrate that the NC domain of Gag is critical for interaction with endogenous primate ABCE1, whereas other domains in Gag can be deleted without eliminating the association of Gag with ABCE1. NC contains two Cys-His boxes that form zinc finger motifs and are responsible for encapsidation of HIV-1 genomic RNA. In addition, NC contains basic residues known to play a critical role in nonspecific RNA binding, Gag-Gag interactions, and particle formation. We demonstrate that basic residues in NC are needed for the Gag-ABCE1 interaction, whereas the cysteine and histidine residues in the zinc fingers are dispensable. Constructs that fail to interact with primate ABCE1 or interact poorly also fail to form capsids and are arrested at an early point in the immature capsid assembly pathway. Whereas others have shown that basic residues in NC bind nonspecifically to RNA, which in turn scaffolds or nucleates assembly, our data demonstrate that the same basic residues in NC act either directly or indirectly to recruit a cellular protein that also promotes capsid formation. Thus, in cells, basic residues in NC appear to act by two mechanisms, recruiting both RNA and a cellular ATPase in order to facilitate efficient assembly of HIV-1 capsids.
Collapse
Affiliation(s)
- Jaisri R Lingappa
- Department of Pathobiology, University of Washington, Seattle, 98195, USA.
| | | | | | | | | |
Collapse
|
102
|
Ono A, Waheed AA, Joshi A, Freed EO. Association of human immunodeficiency virus type 1 gag with membrane does not require highly basic sequences in the nucleocapsid: use of a novel Gag multimerization assay. J Virol 2005; 79:14131-40. [PMID: 16254348 PMCID: PMC1280195 DOI: 10.1128/jvi.79.22.14131-14140.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 08/30/2005] [Indexed: 12/30/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) particle production, a process driven by the Gag polyprotein precursor, occurs on the plasma membrane in most cell types. The plasma membrane contains cholesterol-enriched microdomains termed lipid rafts, which can be isolated as detergent-resistant membrane (DRM). Previously, we and others demonstrated that HIV-1 Gag is associated with DRM and that disruption of Gag-raft interactions impairs HIV-1 particle production. However, the determinants of Gag-raft association remain undefined. In this study, we developed a novel epitope-based Gag multimerization assay to examine whether Gag assembly is essential for its association with lipid rafts. We observed that membrane-associated, full-length Gag is poorly detected by immunoprecipitation relative to non-membrane-bound Gag. This poor detection is due to assembly-driven masking of Gag epitopes, as denaturation greatly improves immunoprecipitation. Gag mutants lacking the Gag-Gag interaction domain located in the N terminus of the nucleocapsid (NC) were efficiently immunoprecipitated without denaturation, indicating that the epitope masking is caused by higher-order Gag multimerization. We used this assay to examine the relationship between Gag assembly and Gag binding to total cellular membrane and DRM. Importantly, a multimerization-defective NC mutant displayed wild-type levels of membrane binding and DRM association, indicating that NC-mediated Gag multimerization is dispensable for association of Gag with membrane or DRM. We also demonstrate that different properties of sucrose and iodixanol membrane flotation gradients may explain some discrepancies regarding Gag-raft interactions. This report offers new insights into the association of HIV-1 Gag with membrane and with lipid rafts.
Collapse
Affiliation(s)
- Akira Ono
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland, USA.
| | | | | | | |
Collapse
|
103
|
Lu R, Vandegraaff N, Cherepanov P, Engelman A. Lys-34, dispensable for integrase catalysis, is required for preintegration complex function and human immunodeficiency virus type 1 replication. J Virol 2005; 79:12584-91. [PMID: 16160186 PMCID: PMC1211547 DOI: 10.1128/jvi.79.19.12584-12591.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Retroviral integrases (INs) function in the context of preintegration complexes (PICs). Two conserved Lys residues in the N-terminal domain of human immunodeficiency virus type 1 (HIV-1) IN were analyzed here for their roles in integration and virus replication. Whereas HIV-1(K46A) grew like the wild type, HIV-1(K34A) was dead. Yet recombinant IN(K34A) protein functioned in in vitro integration assays, and Vpr-IN(K34A) efficiently transcomplemented the infectivity defect of an IN active site mutant virus in cells. HIV-1(K34A) was therefore similar to a number of previously characterized mutant viruses that failed to replicate despite encoding catalytically competent IN. To directly analyze mutant PIC function, a sensitive PCR-based integration assay was developed. HIV-1(K34A) and related mutants failed to support detectable levels (<1% of wild type) of integration. We therefore concluded that mutations like K34A disrupted higher-order interactions important for PIC function/maturation compared to the innate catalytic activity of IN enzyme.
Collapse
Affiliation(s)
- Richard Lu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
104
|
Mark-Danieli M, Laham N, Kenan-Eichler M, Castiel A, Melamed D, Landau M, Bouvier NM, Evans MJ, Bacharach E. Single point mutations in the zinc finger motifs of the human immunodeficiency virus type 1 nucleocapsid alter RNA binding specificities of the gag protein and enhance packaging and infectivity. J Virol 2005; 79:7756-67. [PMID: 15919928 PMCID: PMC1143677 DOI: 10.1128/jvi.79.12.7756-7767.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A specific interaction between the nucleocapsid (NC) domain of the Gag polyprotein and the RNA encapsidation signal (Psi) is required for preferential incorporation of the retroviral genomic RNA into the assembled virion. Using the yeast three-hybrid system, we developed a genetic screen to detect human immunodeficiency virus type 1 (HIV-1) Gag mutants with altered RNA binding specificities. Specifically, we randomly mutated full-length HIV-1 Gag or its NC portion and screened the mutants for an increase in affinity for the Harvey murine sarcoma virus encapsidation signal. These screens identified several NC zinc finger mutants with altered RNA binding specificities. Furthermore, additional zinc finger mutants that also demonstrated this phenotype were made by site-directed mutagenesis. The majority of these mutants were able to produce normal virion-like particles; however, when tested in a single-cycle infection assay, some of the mutants demonstrated higher transduction efficiencies than that of wild-type Gag. In particular, the N17K mutant showed a seven- to ninefold increase in transduction, which correlated with enhanced vector RNA packaging. This mutant also packaged larger amounts of foreign RNA. Our results emphasize the importance of the NC zinc fingers, and not other Gag sequences, in achieving specificity in the genome encapsidation process. In addition, the described mutations may contribute to our understanding of HIV diversity resulting from recombination events between copackaged viral genomes and foreign RNA.
Collapse
Affiliation(s)
- Michal Mark-Danieli
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Srivastava P, Schito M, Fattah RJ, Hara T, Hartman T, Buckheit RW, Turpin JA, Inman JK, Appella E. Optimization of unique, uncharged thioesters as inhibitors of HIV replication. Bioorg Med Chem 2005; 12:6437-50. [PMID: 15556761 DOI: 10.1016/j.bmc.2004.09.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 09/16/2004] [Accepted: 09/16/2004] [Indexed: 11/27/2022]
Abstract
A combinatorial chemistry approach was employed to prepare a restricted library of N-substituted S-acyl-2-mercaptobenzamide thioesters. It was shown that many members of this chemotype display anti-HIV activity via their ability to interact with HIV-1, HIV-2, SIV-infected cells, cell-free virus, and chronically and latently infected cells in a manner consistent with targeting of the highly conserved HIV-1 NCp7 zinc fingers. Compounds were initially screened using two different in vitro antiviral assays and evaluated for stability in neutral buffer containing 10% pooled human serum using a spectrophotometric assay. These data revealed that there was no significant correlation between thioester stability and antiviral activity, however, a slight inverse correlation between serum stability and virucidal activity was noted. Based on the virucidal capability and the ability to select lead compounds to inhibit virus expression from latently infected TNFalpha-induced U1 cells, we next determined if these compounds could prevent HIV cell-to-cell transmission. Several thioesters demonstrated potent inhibition of HIV cell-to-cell transmission with EC50 values in the 80-100 nM range. Thus, we have optimized a series of restricted thioesters and provided evidence that serum stability is not required for antiviral activity. Moreover, selected compounds show potential for development as topical microbicides.
Collapse
Affiliation(s)
- Pratibha Srivastava
- Laboratory of Cell Biology, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Bombarda E, Roques BP, Mély Y, Grell E. Mechanism of Zinc Coordination by Point-Mutated Structures of the Distal CCHC Binding Motif of the HIV-1 NCp7 Protein†. Biochemistry 2005; 44:7315-25. [PMID: 15882070 DOI: 10.1021/bi047349+] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The kinetics of Zn(2+) binding by two point-mutated forms of the HIV-1 NCp7 C-terminal zinc finger, each containing tridentate binding motif HCC [Ser49(35-50)NCp7] or CCC [Ala44(35-50)NCp7], has been studied by stopped-flow spectrofluorimetry. Both the formation and dissociation rate constants of the complexes between Zn(2+) and the two model peptides depend on pH. The results are interpreted on the basis of a multistep reaction model involving three Zn(2+) binding paths due to three deprotonated states of the coordinating motif, acting as monodentate, bidentate, and tridentate ligands. For Ser49(35-50)NCp7 around neutral pH, binding preferentially occurs via the deprotonated Cys36 in the bidentate state also involving His44. The binding rate constants for the monodentate and bidentate states are 1 x 10(6) and 3.9 x 10(7) M(-)(1) s(-)(1), respectively. For Ala44(35-50)NCp7, intermolecular Zn(2+) binding predominantly occurs via the deprotonated Cys36 in the monodentate state with a rate constant of 3.6 x 10(7) M(-)(1) s(-)(1). In both mutants, the final state of the Zn(2+) complex is reached by subsequent stepwise ligand deprotonation and intramolecular substitution of coordinated water molecules. The rate constants for the intermolecular binding paths of the bidentate and tridentate states of Ala44(35-50)NCp7 and of the tridentate state of Ser49(35-50)NCp7 are much smaller than expected according to electrostatic considerations. This is attributed to conformational constraints required to achieve proper metal coordination during folding. The dissociation of Zn(2+) from both peptides is again characterized by a multistep process and takes place fastest via the protonated Zn(2+)-bound bidentate and monodentate states, with rate constants of approximately 0.3 and approximately 10(3) s(-)(1), respectively, for Ser49(35-50)NCp7 and approximately 4 x 10(-)(3) and approximately 500 s(-)(1), respectively, for Ala44(35-50)NCp7.
Collapse
Affiliation(s)
- Elisa Bombarda
- UMR 7034 du CNRS, Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, Faculté de Pharmacie, Université Louis Pasteur, 74, Route du Rhin, F-67401 Illkirch Cedex, France
| | | | | | | |
Collapse
|
107
|
Beltz H, Clauss C, Piémont E, Ficheux D, Gorelick RJ, Roques B, Gabus C, Darlix JL, de Rocquigny H, Mély Y. Structural determinants of HIV-1 nucleocapsid protein for cTAR DNA binding and destabilization, and correlation with inhibition of self-primed DNA synthesis. J Mol Biol 2005; 348:1113-26. [PMID: 15854648 DOI: 10.1016/j.jmb.2005.02.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 02/17/2005] [Accepted: 02/17/2005] [Indexed: 11/30/2022]
Abstract
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) is formed of two highly conserved CCHC zinc fingers flanked by small basic domains. NC is required for the two obligatory strand transfers in viral DNA synthesis through its nucleic acid chaperoning properties. The first DNA strand transfer relies on NC's ability to bind and destabilize the secondary structure of complementary transactivation response region (cTAR) DNA, to inhibit self-priming, and to promote the annealing of cTAR to TAR RNA. To further investigate NC chaperone properties, our aim was to identify by fluorescence spectroscopy and gel electrophoresis, the NC structural determinants for cTAR binding and destabilization, and for the inhibition of self-primed DNA synthesis on a model system using a series of NC mutants and HIV-1 reverse transcriptase. NC destabilization and self-priming inhibition properties were found to be supported by the two fingers in their proper context and the basic (29)RAPRKKG(35) linker. The strict requirement of the native proximal finger suggests that its hydrophobic platform (Val13, Phe16, Thr24 and Ala25) is crucial for binding, destabilization and inhibition of self-priming. In contrast, only partial folding of the distal finger is required, probably for presenting the Trp37 residue in an appropriate orientation. Also, Trp37 and the hydrophobic residues of the proximal finger appear to be essential for the propagation of the melting from the cTAR ends up to the middle of the stem. Finally, both N-terminal and C-terminal basic domains contribute to cTAR binding but not to its destabilization.
Collapse
Affiliation(s)
- Hervé Beltz
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Jenkins LMM, Byrd JC, Hara T, Srivastava P, Mazur SJ, Stahl SJ, Inman JK, Appella E, Omichinski JG, Legault P. Studies on the Mechanism of Inactivation of the HIV-1 Nucleocapsid Protein NCp7 with 2-Mercaptobenzamide Thioesters. J Med Chem 2005; 48:2847-58. [PMID: 15828823 DOI: 10.1021/jm0492195] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The HIV-1 nucleocapsid protein (NCp7) is a small basic protein with two CysCysHisCys zinc-binding domains that specifically recognizes the Psi-site of the viral RNA. NCp7 plays a number of crucial roles in the viral lifecycle, including reverse transcription and RNA encapsidation. Several classes of potential anti-HIV compounds have been designed to inactivate NCp7 through zinc ejection, including a special class of thioester compounds. We have investigated the mechanism of action of two N-substituted-S-acyl-2-mercaptobenzamide compounds (compounds 1 and 2) that target NCp7. UV/Visible spectroscopy studies demonstrated that both thioesters were able to eject metal from NCp7. NMR and mass spectroscopy studies showed that the thioester compounds specifically ejected zinc from the carboxyl-terminal zinc-binding domain of NCp7 by covalent modification of Cys(39). Exposure of NCp7 to compounds 1 and 2 destroyed its ability to specifically bind RNA, whereas NCp7 already bound to RNA was protected from zinc ejection by the thioesters. The thiol component of the thioesters (compound 3, 2-mercaptobenzoyl-beta-alaninamide) did not eject zinc from NCp7, but when compound 3 was incubated with acetyl CoA prior to incubation with NCp7, we observed extensive metal ejection. Thus, the thiol released by the reaction of compounds 1 and 2 could be re-acylated in vivo by acyl CoA to form a new thioester compound that is able to react with NCp7. These studies provide a better understanding of the mechanism of action of thioester compounds, which is important for future design of anti-HIV-1 compounds that target NCp7.
Collapse
Affiliation(s)
- Lisa M Miller Jenkins
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Deml L, Speth C, Dierich MP, Wolf H, Wagner R. Recombinant HIV-1 Pr55gag virus-like particles: potent stimulators of innate and acquired immune responses. Mol Immunol 2005; 42:259-77. [PMID: 15488613 DOI: 10.1016/j.molimm.2004.06.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several previous reports have clearly demonstrated the strong effectiveness of human immunodeficiency virus (HIV) Gag polyprotein-based virus-like particles (VLP) to stimulate humoral and cellular immune responses in complete absence of additional adjuvants. Yet, the mechanisms underlying the strong immunogenicity of these particulate antigens are still not very clear. However, current reports strongly indicate that these VLP act as "danger signals" to trigger the innate immune system and possess potent adjuvant activity to enhance the immunogenicity of per se only weakly immunogenic peptides and proteins. Here, we review the current understanding of how various particle-associated substances and other impurities may contribute to the observed immune-activating properties of these complex immunogens.
Collapse
Affiliation(s)
- Ludwig Deml
- Institute of Medical Microbiology, University of Regensburg, Franz-Josef-Straurr-Allee 11, D-93053 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
110
|
Schäfer A, Bogerd HP, Cullen BR. Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. Virology 2004; 328:163-8. [PMID: 15464836 DOI: 10.1016/j.virol.2004.08.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
In cells infected by HIV-1 mutants lacking a functional Vif protein, APOBEC3G is specifically packaged into progeny virions and then interferes with the process of virus infection. Here, we show that incorporation of APOBEC3G into HIV-1 virions is mediated by the specific interaction of APOBEC3G with the carboxy-terminal nucleocapsid/p6 domain of the Gag polyprotein precursor. As a result, HIV-1 virus-like particles that lack the nucleocapsid domain fail to package APOBEC3G. Surprisingly, RNA was also found to be essential for formation of the nucleocapsid--APOBEC3G complex in vitro, thus raising the possibility that RNA may form a bridge between these two proteins.
Collapse
Affiliation(s)
- Alexandra Schäfer
- Howard Hughes Medical Institute and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
111
|
Melamed D, Mark-Danieli M, Kenan-Eichler M, Kraus O, Castiel A, Laham N, Pupko T, Glaser F, Ben-Tal N, Bacharach E. The conserved carboxy terminus of the capsid domain of human immunodeficiency virus type 1 gag protein is important for virion assembly and release. J Virol 2004; 78:9675-88. [PMID: 15331700 PMCID: PMC514996 DOI: 10.1128/jvi.78.18.9675-9688.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The retroviral Gag precursor plays an important role in the assembly of virion particles. The capsid (CA) protein of the Gag molecule makes a major contribution to this process. In the crystal structure of the free CA protein of the human immunodeficiency virus type 1 (HIV-1), 11 residues of the C terminus were found to be unstructured, and to date no information exists on the structure of these residues in the context of the Gag precursor molecule. We performed phylogenetic analysis and demonstrated a high degree of conservation of these 11 amino acids. Deletion of this cluster or introduction of various point mutations into these residues resulted in significant impairment of particle infectivity. In this cluster, two putative structural regions were identified, residues that form a hinge region (353-VGGP-356) and those that contribute to an alpha-helix (357-GHKARVL-363). Overall, mutations in these regions resulted in inhibition of virion production, but mutations in the hinge region demonstrated the most significant reduction. Although all the Gag mutants appeared to have normal Gag-Gag and Gag-RNA interactions, the hinge mutants were characterized by abnormal formation of cytoplasmic Gag complexes. Gag proteins with mutations in the hinge region demonstrated normal membrane association but aberrant rod-like membrane structures. More detailed analysis of these structures in one of the mutants demonstrated abnormal trapped Gag assemblies. These data suggest that the conserved CA C terminus is important for HIV-1 virion assembly and release and define a putative target for drug design geared to inhibit the HIV-1 assembly process.
Collapse
Affiliation(s)
- Daniel Melamed
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Manrique ML, Rauddi ML, González SA, Affranchino JL. Functional domains in the feline immunodeficiency virus nucleocapsid protein. Virology 2004; 327:83-92. [PMID: 15327900 DOI: 10.1016/j.virol.2004.06.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 05/18/2004] [Accepted: 06/11/2004] [Indexed: 10/26/2022]
Abstract
Retroviral nucleocapsid (NC) proteins are small Gag-derived products containing one or two zinc finger motifs that mediate genomic RNA packaging into virions. In this study, we addressed the role of the feline immunodeficiency virus (FIV) NC protein in the late stages of virus replication by analyzing the assembly phenotype of FIV NC mutant viruses and the RNA binding activity of a panel of recombinant FIV NC mutant proteins. Substitution of serine for the first cysteine residue in the NC proximal zinc finger was sufficient to impair both virion assembly and genomic RNA binding. A similar defective phenotype with respect to particle formation and RNA binding was observed when the basic residues Lys28 and Lys29 in the region connecting both zinc fingers were replaced by alanine. In contrast, mutation of the first cysteine residue in the distal zinc finger had no effect on virion production and allowed substantial RNA binding activity of the mutant NC protein. Moreover, this NC mutant virus exhibited wild-type replication kinetics in the feline MYA-1 T-cell line. Interestingly, amino acid substitutions disrupting the highly conserved PSAP and LLDL motifs present in the C-terminus of the FIV NC abrogated virion formation without affecting the NC RNA binding activity. Our results indicate that the proximal zinc finger of the FIV NC is more important for virion production and genomic RNA binding than the distal motif. In addition, this study suggests that assembly domains in the FIV NC C-terminus may be functionally equivalent to those present in the p6 domain of the Gag polyprotein of primate lentiviruses.
Collapse
Affiliation(s)
- Mariana L Manrique
- Centro de Virología Animal (CEVAN-CONICET), C1414DEM Buenos Aires, Argentina
| | | | | | | |
Collapse
|
113
|
Russell RS, Liang C, Wainberg MA. Is HIV-1 RNA dimerization a prerequisite for packaging? Yes, no, probably? Retrovirology 2004; 1:23. [PMID: 15345057 PMCID: PMC516451 DOI: 10.1186/1742-4690-1-23] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 09/02/2004] [Indexed: 01/14/2023] Open
Abstract
During virus assembly, all retroviruses specifically encapsidate two copies of full-length viral genomic RNA in the form of a non-covalently linked RNA dimer. The absolute conservation of this unique genome structure within the Retroviridae family is strong evidence that a dimerized genome is of critical importance to the viral life cycle. An obvious hypothesis is that retroviruses have evolved to preferentially package two copies of genomic RNA, and that dimerization ensures the proper packaging specificity for such a genome. However, this implies that dimerization must be a prerequisite for genome encapsidation, a notion that has been debated for many years. In this article, we review retroviral RNA dimerization and packaging, highlighting the research that has attempted to dissect the intricate relationship between these two processes in the context of HIV-1, and discuss the therapeutic potential of these putative antiretroviral targets.
Collapse
Affiliation(s)
- Rodney S Russell
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Cote Ste-Catherine Road Montreal, Quebec, Canada H3T 1E2
- Department of Microbiology & Immunology Montreal, Quebec, Canada H3A 2B4
| | - Chen Liang
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Cote Ste-Catherine Road Montreal, Quebec, Canada H3T 1E2
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, 3755 Cote Ste-Catherine Road Montreal, Quebec, Canada H3T 1E2
- Department of Microbiology & Immunology Montreal, Quebec, Canada H3A 2B4
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
114
|
Tözsér J, Shulenin S, Louis JM, Copeland TD, Oroszlan S. In vitro processing of HIV-1 nucleocapsid protein by the viral proteinase: effects of amino acid substitutions at the scissile bond in the proximal zinc finger sequence. Biochemistry 2004; 43:4304-12. [PMID: 15065874 DOI: 10.1021/bi035625z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein flanked by Gag sequences (r-preNC) was expressed in Escherichia coli and purified. HIV-1 proteinase cleaved r-preNC to the "mature" NCp7 form, which is comprised of 55 residues. Further incubation resulted in cleavages of NCp7 itself between Phe16 and Asn17 of the proximal zinc finger domain and between Cys49 and Thr50 in the C-terminal part. Kinetic parameters determined for the cleavage of oligopeptides corresponding to the cleavage sites in r-preNC correlated well with the sequential processing of r-preNC. Mutations of Asn17 were introduced to alter the susceptibility of NC protein to HIV-1 proteinase. While mutating Asn17 to Ala resulted in a protein which was processed in a manner similar to that of the wild type, mutating it to Phe or Leu resulted in proteins which were processed at a substantially higher rate at this site than the wild type. Mutation of Asn17 to Lys or Gly resulted in proteins which were very poorly cleaved at this site. Oligopeptides containing the same amino acid substitutions at the cleavage site of the proximal zinc finger domain were also tested as substrates of the proteinase, and the kinetic parameters agreed well with the semiquantitative results obtained with the protein substrates.
Collapse
Affiliation(s)
- József Tözsér
- National Cancer Institute, Frederick, Maryland 21701, USA
| | | | | | | | | |
Collapse
|
115
|
Stote RH, Kellenberger E, Muller H, Bombarda E, Roques BP, Kieffer B, Mély Y. Structure of the His44 → Ala Single Point Mutant of the Distal Finger Motif of HIV-1 Nucleocapsid Protein: A Combined NMR, Molecular Dynamics Simulation, and Fluorescence Study. Biochemistry 2004; 43:7687-97. [PMID: 15196011 DOI: 10.1021/bi036137u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleocapsid protein (NCp7) of human immunodeficiency virus type 1 (HIV-1) contains two highly conserved CCHC zinc fingers that strongly bind Zn(2+) through coordination of one His and three Cys residues. It has been suggested that NCp7 function is conformation specific since substitution of any of the zinc coordinating residues in the zinc finger motifs leads to subsequent loss of viral infectivity. To further determine the structural requirements necessary for this specific conformation, we investigated by (1)H 2D NMR and molecular dynamics simulations the structure of the distal finger motif of NCp7 in which the zinc coordinating amino acid, His 44, was substituted by a noncoordinating Ala residue. While the fold of the N-terminal part of this mutated peptide was similar to that of the native peptide, an increased lability and significant conformational changes were observed in the vicinity of the His-to-Ala mutation. Moreover, molecular dynamics simulations suggested a mechanism by which the variant peptide can bind zinc ion even though one zinc-coordinating amino acid was lacking. Using the fluorescence of the naturally occurring Trp37 residue, the binding affinity of the variant peptide to the (TG)(3) model oligonucleotide was found to be decreased by about 2 orders of magnitude with respect with the native peptide. Modeling of the DNA:NCp7 complex using structures of the variant peptide suggests that the residues forming a hydrophobic cleft in the native protein are improperly oriented for efficient DNA binding by the variant peptide.
Collapse
Affiliation(s)
- Roland H Stote
- Laboratoire de Chimie Biophysique, ISIS UMR 7006 CNRS, Université Louis Pasteur, 8 allée Gaspard Monge, BP 70028, F-67083 Strasbourg Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
116
|
Wang SW, Noonan K, Aldovini A. Nucleocapsid-RNA interactions are essential to structural stability but not to assembly of retroviruses. J Virol 2004; 78:716-23. [PMID: 14694103 PMCID: PMC368744 DOI: 10.1128/jvi.78.2.716-723.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The process of RNA incorporation into nascent virions is thought to be critical for efficient retroviral particle assembly and production. Here we show that human immunodeficiency virus type 1 mutant particles (which are highly unstable and break down soon after release from the cell) lacking nucleocapsid (NC) core protein-mediated RNA incorporation are produced efficiently and can be recovered at the normal density when viral protease function is abolished. These results demonstrate that RNA binding by Gag is not necessary for retroviral particle assembly. Rather, the RNA interaction with NC is critical for retroviral particle structural stability subsequent to release from the membrane and protease-mediated Gag cleavage. Thus, the NC-RNA interaction, and not simply the presence of RNA, provides the virus with a structural function that is critical for stable retroviral particle architecture.
Collapse
Affiliation(s)
- Shainn-Wei Wang
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
117
|
Lyonnais S, Gorelick RJ, Mergny JL, Le Cam E, Mirambeau G. G-quartets direct assembly of HIV-1 nucleocapsid protein along single-stranded DNA. Nucleic Acids Res 2003; 31:5754-63. [PMID: 14500839 PMCID: PMC206446 DOI: 10.1093/nar/gkg716] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The d(TTGGGGGGTACAGTGCA) sequence, derived from the human immunodeficiency virus type 1 (HIV-1) central DNA flap, can form in vitro an intermolecular parallel DNA quadruplex. This work demonstrates that the HIV-1 nucleocapsid protein (NCp) exhibits a high affinity (10(8) M(-1)) for this quadruplex. This interaction is predominantly hydrophobic, maintained by a stabilization between G-quartet planes and the C-terminal zinc finger of the protein. It also requires 5 nt long tails flanking the quartets plus both the second zinc-finger and the N-terminal domain of NCp. The initial binding nucleates an ordered arrangement of consecutive NCp along the four single-stranded tails. Such a process requires the N-terminal zinc finger, and was found to occur for DNA site sizes shorter than usual in a sequence-dependent manner. Concurrently, NCp binding is efficient on a G'2 quadruplex also derived from the HIV-1 central DNA flap. Apart from their implication within the DNA flap, these data lead to a model for the nucleic acid architecture within the viral nucleocapsid, where adjacent single-stranded tails and NCp promote a compact assembly of NCp and nucleic acid growing from stably and primary bound NCp.
Collapse
Affiliation(s)
- Sébastien Lyonnais
- Laboratoire de Microscopie Moléculaire et Cellulaire, CNRS-UMR 8126, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | | | | | | | | |
Collapse
|
118
|
Rong L, Russell RS, Hu J, Laughrea M, Wainberg MA, Liang C. Deletion of stem-loop 3 is compensated by second-site mutations within the Gag protein of human immunodeficiency virus type 1. Virology 2003; 314:221-8. [PMID: 14517075 DOI: 10.1016/s0042-6822(03)00405-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Encapsidation of human immunodeficiency virus type 1 (HIV-1) RNA involves specific interactions between viral Gag proteins and viral RNA elements located at the 5' untranslated region (UTR). These RNA elements are termed packaging (psi) or encapsidation (E) signals and mainly comprise the stem-loop 1 (SL1) and SL3 RNA structures. We have previously shown that deletion of the SL1 sequences is compensated by second-site mutations within Gag. Similar studies are now extended to SL3 and the results demonstrate that deletion of this RNA structure is rescued by two point mutations, i.e., A11V in p2 and I12V in nucleocapsid (NC). These two compensatory mutations are different from those associated with the rescue of SL1 deletion, suggesting that SL1 and SL3 may bind to different residues of Gag during viral RNA packaging. Analysis of virion-derived RNA in native agarose gels shows that deletion of SL3 leads to decreases in both viral RNA packaging and dimerization. These defects are corrected by the compensatory mutations A11V and I12V. Yet, defects in viral RNA dimerization at an early stage that were caused by the SL3 deletion in the context of a viral protease-negative mutation cannot be overcome by these two suppressor mutations. Therefore, the positive effects of A11V and I12V on dimerization of the SL3-deleted RNA must have taken place at the maturation stage.
Collapse
Affiliation(s)
- Liwei Rong
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
119
|
Lee N, Gorelick RJ, Musier-Forsyth K. Zinc finger-dependent HIV-1 nucleocapsid protein-TAR RNA interactions. Nucleic Acids Res 2003; 31:4847-55. [PMID: 12907727 PMCID: PMC169955 DOI: 10.1093/nar/gkg679] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the minus-strand transfer step of HIV-1 reverse transcription, the nucleocapsid protein (NC) promotes annealing of the 3' 'R' (repeat) region of the RNA genome to its complementary sequence located in the newly synthesized minus-strand strong-stop DNA. The R region contains the highly stable transactivation response (TAR) RNA hairpin. To gain insights into the molecular details of TAR RNA-NC interactions, we carried out hydroxyl radical footprinting, as well as gel-shift and fluorescence anisotropy binding assays using wild-type and mutant forms of NC. Our results support the conclusion that NC variants with mutations in their zinc finger domains have dramatically altered TAR RNA binding interactions relative to wild-type NC. These data demonstrate that a specific zinc finger architecture is required for optimal TAR RNA binding, and help to explain the requirement for the zinc finger motifs of NC in its role as a nucleic acid chaperone in minus-strand transfer.
Collapse
Affiliation(s)
- Nick Lee
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
120
|
McGrath CF, Buckman JS, Gagliardi TD, Bosche WJ, Coren LV, Gorelick RJ. Human cellular nucleic acid-binding protein Zn2+ fingers support replication of human immunodeficiency virus type 1 when they are substituted in the nucleocapsid protein. J Virol 2003; 77:8524-31. [PMID: 12857921 PMCID: PMC165261 DOI: 10.1128/jvi.77.15.8524-8531.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Accepted: 05/08/2003] [Indexed: 11/20/2022] Open
Abstract
A family of cellular nucleic acid binding proteins (CNBPs) contains seven Zn(2+) fingers that have many of the structural characteristics found in retroviral nucleocapsid (NC) Zn(2+) fingers. The sequence of the NH(2)-terminal NC Zn(2+) finger of the pNL4-3 clone of human immunodeficiency virus type 1 (HIV-1) was replaced individually with sequences from each of the seven fingers from human CNBP. Six of the mutants were normal with respect to protein composition and processing, full-length genomic RNA content, and infectivity. One of the mutants, containing the fifth CNBP Zn(2+) finger (CNBP-5) packaged reduced levels of genomic RNA and was defective in infectivity. There appear to be defects in reverse transcription in the CNBP-5 infections. Models of Zn(2+) fingers were constructed by using computational methods based on available structural data, and atom-atom interactions were determined by the hydropathic orthogonal dynamic analysis of the protein method. Defects in the CNBP-5 mutant could possibly be explained, in part, by restrictions of a set of required atom-atom interactions in the CNBP-5 Zn(2+) finger compared to mutant and wild-type Zn(2+) fingers in NC that support replication. The present study shows that six of seven of the Zn(2+) fingers from the CNBP protein can be used as substitutes for the Zn(2+) finger in the NH(2)-terminal position of HIV-1 NC. This has obvious implications in antiviral therapeutics and DNA vaccines employing NC Zn(2+) finger mutants.
Collapse
Affiliation(s)
- Connor F McGrath
- Developmental Therapeutics Program--Target Structure Based Drug Discovery Group, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
121
|
Mayasundari A, Rice WG, Diminnie JB, Baker DC. Synthesis, resolution, and determination of the absolute configuration of the enantiomers of cis-4,5-dihydroxy-1,2-dithiane 1,1-dioxide, an HIV-1NCp7 inhibitor. Bioorg Med Chem 2003; 11:3215-9. [PMID: 12818684 DOI: 10.1016/s0968-0896(03)00269-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The anti-HIV activity of (+/-)-cis-4,5-dihydroxy-1,2-dithiane 1,1-dioxide [(+/-)-cis-1,1-dioxo-[1,2]-dithiane-4,5-diol, NSC-624151] and its attack on the zinc finger domain of the HIV-1 nucleocapsid p7 (NCp7) protein has been established [Rice, W. G.; Baker, D. C.; Schaeffer, C. A.; Graham, L.; Bu, M.; Terpening, S.; Clanton, D.; Schultz, R.; Bader, J. P.; Buckheit, R. W.; Field, L.; Singh, P. K. Turpin, J. A. Antimicrob. Agents Chemother. 1997, 41, 419]. In order to determine which enantiomer of NSC-624151 is the more active component, the compound was resolved via its bis-'Mosher ester', which was prepared via its reaction with two equiv of (-)-(R)-alpha-methoxy-alpha-(trifluoromethyl)phenylacetyl chloride. The diastereoisomeric esters were separated, and each ester was hydrolyzed to yield enantiomers with (D)(21) +151 degrees (c 0.5, MeOH) and (D)(21) -146 degrees (c 0.5, MeOH). Single-crystal X-ray analysis of the (-)-bis-'Mosher ester' showed that the (-)-enantiomer is the (4S, 5R)-compound. The (-)-enantiomer (NSC 693195) was ca. twice as active (EC(50) 8.8+/-0.2 microM) as its (+)-counterpart (NSC 693194) (EC(50) 16.2+/-2.4 microM) in the XTT assay against HIV-1. All three compounds were found to be approximately equally effective in promoting Zn ejection from the NCp7 zinc finger. As the more anti-HIV active enantiomer is only slightly more active than the racemic form, it appears to offer no advantages over the racemic form.
Collapse
Affiliation(s)
- Anand Mayasundari
- Department of Chemistry, The University of Tennessee, Knoxville, Knoxville, TN 37996-1600, USA
| | | | | | | |
Collapse
|
122
|
Akahata W, Ido E, Hayami M. Mutational analysis of two zinc-finger motifs in the nucleocapsid protein of simian immunodeficiency virus mac239. J Gen Virol 2003; 84:1641-1648. [PMID: 12771435 DOI: 10.1099/vir.0.18865-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To clarify the physiological function of two zinc-finger (ZF) motifs in the nucleocapsid (NC) protein of simian immunodeficiency virus (SIV), we constructed three mutant viruses with alterations in either or both motifs using a molecular clone of SIVmac (SIVmac239). An immunoblot analysis of the cell lysates transfected with DNA mutated in either the first (ZF1) or second (ZF2) motif showed that the amount of partially processed Gag products (Pr46) was greater than that produced by the wild-type (WT). The genomic RNA contents in the viral particles released from the transfected cells were measured by quantitative RT-PCR. Values for the ZF1 and ZF2 mutants and the double mutant were 26, 20 and 7 % that of the WT, respectively, indicating that the two ZF motifs of SIVmac239 NC protein function almost equivalently with respect to RNA encapsidation and processing of Gag precursors. Despite the presence of some genomic RNA in the mutant viruses, they lost all viral infectivity. To determine the reason for this, we examined (using PCR) to which step viral DNA synthesis proceeded in the mutant viruses. We did not see any block up to the step of minus-strand DNA synthesis. However, plus-strand DNA synthesis after plus-strand transfer did not occur in any of the mutant viruses. These findings indicated that the mutations in the ZF motifs of SIVmac led to a loss of infectivity due partly to impairment of DNA synthesis, in addition to inefficient encapsidation of genomic RNA.
Collapse
Affiliation(s)
- Wataru Akahata
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Eiji Ido
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| | - Masanori Hayami
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawahara-cho, Kyoto 606-8507, Japan
| |
Collapse
|
123
|
Clever JL, Miranda D, Parslow TG. RNA structure and packaging signals in the 5' leader region of the human immunodeficiency virus type 1 genome. J Virol 2002; 76:12381-7. [PMID: 12414982 PMCID: PMC136901 DOI: 10.1128/jvi.76.23.12381-12387.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The leader region of the human immunodeficiency virus type 1 (HIV-1) genome has a highly folded structure, comprising at least two RNA stem-loops [the transactivation response (TAR) and poly(A) hairpins] near its 5' end and four others (SL1 to SL4) downstream. Each of these stem-loops contributes to the function of the HIV-1 packaging signal, which efficiently targets genomic RNA into nascent virions. The central 140-base region of the leader, which includes the U5 and primer binding site (PBS) sequences, is also believed to adopt a complex structure, but the nature of this structure and its possible role in RNA packaging have not been extensively explored. Here we report a mutational analysis identifying at least three separate loci within the U5-PBS region which, when mutated, impair both HIV-1 packaging specificity and infectivity in a single-round proviral assay. In common with those of all previously described packaging signals in the leader, the function of one of these loci appeared to depend on secondary structure rather than on sequence alone. By contrast, the activity of the other two loci did not correlate with any predicted conformations. Moreover, unlike SL1 to SL4, the TAR, poly(A), and U5-PBS hairpins were not bound with high affinity by the nucleocapsid portion of the HIV-1 Gag protein in vitro, implying that they contribute to packaging through a mechanism distinct from that of SL1 to SL4. Our findings confirm the existence and importance of secondary structure around the PBS and demonstrate that functional packaging signals are distributed across the entire HIV-1 leader.
Collapse
Affiliation(s)
- Jared L Clever
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143-0511, USA
| | | | | |
Collapse
|
124
|
Wang SW, Aldovini A. RNA incorporation is critical for retroviral particle integrity after cell membrane assembly of Gag complexes. J Virol 2002; 76:11853-65. [PMID: 12414928 PMCID: PMC136867 DOI: 10.1128/jvi.76.23.11853-11865.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid (NC) domain of retroviruses plays a critical role in specific viral RNA packaging and virus assembly. RNA is thought to facilitate viral particle assembly, but the results described here with NC mutants indicate that it also plays a critical role in particle integrity. We investigated the assembly and integrity of particles produced by the human immunodeficiency virus type 1 M1-2/BR mutant virus, in which 10 of the 13 positive residues of NC have been replaced with alanines and incorporation of viral genomic RNA is virtually abolished. We found that the mutations in the basic residues of NC did not disrupt Gag assembly at the cell membrane. The mutant Gag protein can assemble efficiently at the cell membrane, and viral proteins are detected outside the cell as efficiently as they are for the wild type. However, only approximately 10% of the Gag molecules present in the supernatant of this mutant sediment at the correct density for a retroviral particle. The reduction of positive charge in the NC basic domain of the M1-2/BR virus adversely affects both the specific and nonspecific RNA binding properties of NC, and thus the assembled Gag polyprotein does not bind significant amounts of viral or cellular RNA. We found a direct correlation between the percentage of Gag associated with sedimented particles and the amount of incorporated RNA. We conclude that RNA binding by Gag, whether the RNA is viral or not, is critical to retroviral particle integrity after cell membrane assembly and is less important for Gag-Gag interactions during particle assembly and release.
Collapse
Affiliation(s)
- Shainn-Wei Wang
- Department of Medicine, Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
125
|
Affiliation(s)
- H G Göttlinger
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Masachusetts, USA.
| |
Collapse
|
126
|
Guo J, Wu T, Kane BF, Johnson DG, Henderson LE, Gorelick RJ, Levin JG. Subtle alterations of the native zinc finger structures have dramatic effects on the nucleic acid chaperone activity of human immunodeficiency virus type 1 nucleocapsid protein. J Virol 2002; 76:4370-8. [PMID: 11932404 PMCID: PMC155087 DOI: 10.1128/jvi.76.9.4370-4378.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 has two zinc fingers, each containing the invariant CCHC zinc-binding motif; however, the surrounding amino acid context is not identical in the two fingers. Recently, we demonstrated that zinc coordination is required when NC unfolds complex secondary structures in RNA and DNA minus- and plus-strand transfer intermediates; this property of NC reflects its nucleic acid chaperone activity. Here we have analyzed the chaperone activities of mutants having substitutions of alternative zinc-coordinating residues, i.e., CCHH or CCCC, for the wild-type CCHC motif. We also investigated the activities of mutants that retain the CCHC motifs but have mutations that exchange or duplicate the zinc fingers (mutants 1-1, 2-1, and 2-2); these changes affect amino acid context. Our results indicate that in general, for optimal activity in an assay that measures stimulation of minus-strand transfer and inhibition of nonspecific self-priming, the CCHC motif in the zinc fingers cannot be replaced by CCHH or CCCC and the amino acid context of the fingers must be conserved. Context changes also reduce the ability of NC to facilitate primer removal in plus-strand transfer. In addition, we found that the first finger is a more crucial determinant of nucleic acid chaperone activity than the second finger. Interestingly, comparison of the in vitro results with earlier in vivo replication data raises the possibility that NC may adopt multiple conformations that are responsible for different NC functions during virus replication.
Collapse
Affiliation(s)
- Jianhui Guo
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Moscardini M, Pistello M, Bendinelli M, Ficheux D, Miller JT, Gabus C, Le Grice SFJ, Surewicz WK, Darlix JL. Functional interactions of nucleocapsid protein of feline immunodeficiency virus and cellular prion protein with the viral RNA. J Mol Biol 2002; 318:149-59. [PMID: 12054775 DOI: 10.1016/s0022-2836(02)00092-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
All lentiviruses and oncoretroviruses examined so far encode a major nucleic-acid binding protein (nucleocapsid or NC* protein), approximately 2500 molecules of which coat the dimeric RNA genome. Studies on HIV-1 and MoMuLV using in vitro model systems and in vivo have shown that NC protein is required to chaperone viral RNA dimerization and packaging during virus assembly, and proviral DNA synthesis by reverse transcriptase (RT) during infection. The human cellular prion protein (PrP), thought to be the major component of the agent causing transmissible spongiform encephalopathies (TSE), was recently found to possess a strong affinity for nucleic acids and to exhibit chaperone properties very similar to HIV-1 NC protein in the HIV-1 context in vitro. Tight binding of PrP to nucleic acids is proposed to participate directly in the prion disease process. To extend our understanding of lentiviruses and of the unexpected nucleic acid chaperone properties of the human prion protein, we set up an in vitro system to investigate replication of the feline immunodeficiency virus (FIV), which is functionally and phylogenetically distant from HIV-1. The results show that in the FIV model system, NC protein chaperones viral RNA dimerization, primer tRNA(Lys,3) annealing to the genomic primer-binding site (PBS) and minus strand DNA synthesis by the homologous FIV RT. FIV NC protein is able to trigger specific viral DNA synthesis by inhibiting self-priming of reverse transcription. The human prion protein was found to mimic the properties of FIV NC with respect to primer tRNA annealing to the viral RNA and chaperoning minus strand DNA synthesis.
Collapse
Affiliation(s)
- Mila Moscardini
- Department of Biomedicine, University of Pisa, I-56127 Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Bombarda E, Cherradi H, Morellet N, Roques BP, Mély Y. Zn(2+) binding properties of single-point mutants of the C-terminal zinc finger of the HIV-1 nucleocapsid protein: evidence of a critical role of cysteine 49 in Zn(2+) dissociation. Biochemistry 2002; 41:4312-20. [PMID: 11914077 DOI: 10.1021/bi015956g] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The two highly conserved Zn(2+) finger motifs of the HIV-1 nucleocapsid protein, NCp7, strongly bind Zn(2+) through coordination of one His and three Cys residues. To further analyze the role of these residues, we investigated the Zn(2+) binding and acid-base properties of four single-point mutants of a short peptide corresponding to the distal finger motif of NCp7. In each mutant, one Zn(2+)-coordinating residue is substituted with a noncoordinating one. Using the spectroscopic properties of Co(2+), we first establish that the four mutants retain their ability to bind a metal cation through a four- or five-coordinate geometry with the vacant ligand position(s) presumably occupied by water molecule(s). Moreover, the pK(a) values of the three Cys residues of the mutant apopeptide where His44 is substituted with Ala are found by (1)H NMR to be similar to those of the native peptide, suggesting that the mutations do not affect the acid-base properties of the Zn(2+)-coordinating residues. The binding of Zn(2+) was monitored by using the fluorescence of Trp37 as an intrinsic probe. At pH 7.5, the apparent Zn(2+) binding constants (between 1.6 x 10(8) and 1.3 x 10(10) M(-)(1)) of the four mutants are strongly reduced compared to those of the native peptide but are similar to those of various host Zn(2+) binding proteins. As a consequence, the loss of viral infectivity following the mutation of one Zn(2+)-coordinating residue in vivo may not be related to the total loss of Zn(2+) binding. The pH dependence of Zn(2+) binding indicates that the coordinating residues bind Zn(2+) stepwise and that the free energy provided by the binding of a given residue may be modulated by the entropic contribution of the residues already bound to Zn(2+). Finally, the pK(a) of Cys49 in the holopeptide is found to be 5.0, a value that is at least 0.7 unit higher than those for the other Zn(2+)-coordinating residues. This implies that Cys49 may act as a switch for Zn(2+) dissociation in the distal finger motif of NCp7, a feature that may contribute to the high susceptibility of Cys49 to electrophilic attack.
Collapse
Affiliation(s)
- E Bombarda
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
129
|
Goel A, Mazur SJ, Fattah RJ, Hartman TL, Turpin JA, Huang M, Rice WG, Appella E, Inman JK. Benzamide-based thiolcarbamates: a new class of HIV-1 NCp7 inhibitors. Bioorg Med Chem Lett 2002; 12:767-70. [PMID: 11858998 DOI: 10.1016/s0960-894x(02)00007-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The HIV-1 nucleocapsid protein NCp7, which contains two highly conserved zinc fingers, is being used as a novel target for AIDS therapy due to its pivotal role in viral replication and its mutationally intolerant nature. Herein we report a new class of NCp7 inhibitors that possess good antiviral activity with low cellular toxicity.
Collapse
Affiliation(s)
- Atul Goel
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Williams MC, Rouzina I, Bloomfield VA. Thermodynamics of DNA interactions from single molecule stretching experiments. Acc Chem Res 2002; 35:159-66. [PMID: 11900519 DOI: 10.1021/ar010045k] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
On the basis of our analysis of detailed measurements of the dependence of the overstretching transition of double-stranded DNA (dsDNA) on temperature, pH, and ionic strength, we have demonstrated that a model of force-induced melting accurately describes the thermodynamics of DNA overstretching. Measurements of this transition allow us to determine the stability of dsDNA and obtain information similar to that obtained in thermal melting studies. This single-molecule technique has the advantage that it can be used to measure DNA stability at any temperature. We discuss the use of this technique to study the nucleic acid chaperone activity of the HIV-1 nucleocapsid protein.
Collapse
Affiliation(s)
- Mark C Williams
- Department of Biochemistry, Molecular Biology, and Biophysics, 1479 Gortner Avenue, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
131
|
Guan Y, Diallo K, Detorio M, Whitney JB, Liang C, Wainberg MA. Partial restoration of replication of simian immunodeficiency virus by point mutations in either the dimerization initiation site (DIS) or Gag region after deletion mutagenesis within the DIS. J Virol 2001; 75:11920-3. [PMID: 11689677 PMCID: PMC114782 DOI: 10.1128/jvi.75.23.11920-11923.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used the simian immunodeficiency virus (SIV) molecular clone SIVmac239 to generate a deletion construct, termed SD2, in which we eliminated 22 nucleotides at positions +398 to +418 within the putative dimerization initiation site (DIS) stem. This SD2 deletion severely impaired viral replication, due to adverse effects on the packaging of viral genomic RNA, the processing of Gag proteins, and viral protein patterns. However, long-term culture of SD2 in either C8166 or CEMx174 cells resulted in restoration of replication capacity, due to two different sets of three compensatory point mutations, located within both the DIS and Gag regions. In the case of C8166 cells, both a K197R and a E49K mutation were identified within the capsid (CA) protein and the p6 protein of Gag, respectively, while the other point mutation (A423G) was found within the putative DIS loop. In the case of CEMx174 cells, two compensatory mutations were present within the viral nucleocapsid (NC) protein, E18G and Q31K, in addition to the same A423G substitution as observed with C8166 cells. A set of all three mutations was required in each case for restoration of replication capacity, and either set of mutations could be substituted for the other in both the C8166 and CEMx174 cell lines.
Collapse
Affiliation(s)
- Y Guan
- McGill AIDS Center, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
132
|
Khan MA, Aberham C, Kao S, Akari H, Gorelick R, Bour S, Strebel K. Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. J Virol 2001; 75:7252-65. [PMID: 11461998 PMCID: PMC114961 DOI: 10.1128/jvi.75.16.7252-7265.2001] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Vif protein plays a critical role in the production of infectious virions. Previous studies have demonstrated the presence of small amounts of Vif in virus particles. However, Vif packaging was assumed to be nonspecific, and its functional significance has been questioned. We now report that packaging of Vif is dependent on the packaging of viral genomic RNA in both permissive and restrictive HIV-1 target cells. Mutations in the nucleocapsid zinc finger domains that abrogate packaging of viral genomic RNA abolished packaging of Vif. Additionally, an RNA packaging-defective virus exhibited significantly reduced packaging of Vif. Finally, deletion of a putative RNA-interacting domain in Vif abolished packaging of Vif into virions. Virion-associated Vif was resistant to detergent extraction and copurified with components of the viral nucleoprotein complex and functional reverse transcription complexes. Thus, Vif is specifically packaged into virions as a component of the viral nucleoprotein complex. Our data suggest that the specific association of Vif with the viral nucleoprotein complex might be functionally significant and could be a critical requirement for infectivity of viruses produced from restrictive host cells.
Collapse
Affiliation(s)
- M A Khan
- Laboratory of Molecular Microbiology, Viral Biochemistry Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Bombarda E, Morellet N, Cherradi H, Spiess B, Bouaziz S, Grell E, Roques BP, Mély Y. Determination of the pK(a) of the four Zn2+-coordinating residues of the distal finger motif of the HIV-1 nucleocapsid protein: consequences on the binding of Zn2+. J Mol Biol 2001; 310:659-72. [PMID: 11439030 DOI: 10.1006/jmbi.2001.4770] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 is characterized by two highly conserved CCHC motifs that bind Zn2+ strongly. To elucidate the striking pH-dependence of the apparent Zn2+-binding constants of these motifs further, we investigated, using 1H NMR, potentiometry and fluorescence spectroscopy, the acid-base properties of the four Zn2+-coordinating residues of (35-50)NCp7, a peptide corresponding to the distal finger motif of NCp7. With the exception of the H(beta2) proton of Cys39, the pH-dependence of the H(beta) proton resonances of the three Cys residues and, the H(delta) and H(epsilon) resonances of His44 in the apopeptide could be fitted adequately with a single pK(a). This suggests that the protonating groups are non-interacting, a feature that was confirmed by a potentiometric titration. The pK(a) of His44, Cys36, Cys39, and Cys49 in the apopeptide were found to be 6.4, 8.0, 8.8 and 9.3, respectively. Accordingly, the deprotonation is almost sequential and may thus induce a sequential binding of Zn2+ to the four coordinating residues. The high pK(a) of Cys49 is probably related to the negative charge of the neighboring Asp48. Such a high pK(a) may be a general feature in nucleocapsid proteins (NCs), since an acidic residue generally occupies the (i-1) position of the C-terminal Cys residue of single-finger NCs and distal finger motifs in two-finger NCs. Molecular dynamics simulation suggested the formation of a hydrogen bonded network that weakly structured the Cys36-Cys39 segment in the apopeptide. This network depends on the protonation state of Cys36 and may thus explain the biphasic behavior of the pH-dependence of the Cys39 H(beta2) resonance. Finally, the pK(a) values were used to build up a model describing the coordination of Zn2+ to (35-50)NCp7 at equilibrium. It appears that each protonation step of the coordination complex decreases the Zn2+-binding constant by about four orders of magnitude and that a significant dissociation of Zn2+ from the holopeptide can be achieved in acidic cell compartments.
Collapse
Affiliation(s)
- E Bombarda
- Laboratoire de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7034 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, Illkirch Cedex, 67401, France
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Williams MC, Rouzina I, Wenner JR, Gorelick RJ, Musier-Forsyth K, Bloomfield VA. Mechanism for nucleic acid chaperone activity of HIV-1 nucleocapsid protein revealed by single molecule stretching. Proc Natl Acad Sci U S A 2001; 98:6121-6. [PMID: 11344257 PMCID: PMC33432 DOI: 10.1073/pnas.101033198] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc finger structures present in NC. Although both NC and SSHS NC facilitate annealing of complementary strands through electrostatic attraction, only NC destabilizes the helical form of DNA and reduces the cooperativity of the helix-coil transition. In particular, we find that the helix-coil transition free energy at room temperature is significantly reduced in the presence of NC. Thus, upon NC binding, it is likely that thermodynamic fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations to find the lowest energy state. The reduced cooperativity allows these fluctuations to occur in the middle of complex double-stranded structures. The reduced stability and cooperativity, coupled with the electrostatic attraction generated by the high charge density of NC, is responsible for the nucleic acid chaperone activity of this protein.
Collapse
Affiliation(s)
- M C Williams
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
135
|
Gonsky J, Bacharach E, Goff SP. Identification of residues of the Moloney murine leukemia virus nucleocapsid critical for viral DNA synthesis in vivo. J Virol 2001; 75:2616-26. [PMID: 11222684 PMCID: PMC115885 DOI: 10.1128/jvi.75.6.2616-2626.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid (NC) protein of retroviruses is a small nucleic acid-binding protein important in virion assembly and in the encapsidation of the viral RNA genome into the virion particle. Multiple single-amino-acid substitutions were introduced into the NC of Moloney murine leukemia virus to examine further its role in viral replication. Two residues were shown to play important roles in the early events of replication. Unlike viruses with previously characterized NC mutations, these viruses showed no impairment in the late events of replication. Viruses containing the substitutions L21A and K30A expressed the normal complement of properly processed viral Gag proteins. Analysis of the RNA content of mutant virions revealed normal levels of unspliced and spliced viral RNA, and the tRNA(Pro) primer was properly annealed to the primer binding site on the viral genome. The virions demonstrated no defect in initiation of reverse transcription using the endogenous tRNA primer or in the synthesis of long viral DNA products in vitro. Nonetheless, viruses possessing these NC mutations demonstrated significant defects in the synthesis and accumulation of viral DNA products in vivo.
Collapse
Affiliation(s)
- J Gonsky
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
136
|
Laughrea M, Shen N, Jetté L, Darlix JL, Kleiman L, Wainberg MA. Role of distal zinc finger of nucleocapsid protein in genomic RNA dimerization of human immunodeficiency virus type 1; no role for the palindrome crowning the R-U5 hairpin. Virology 2001; 281:109-16. [PMID: 11222101 DOI: 10.1006/viro.2000.0778] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic RNA isolated from HIV-1 variously mutated in nucleocapsid protein (NC) was characterized by nondenaturing gel electrophoresis. Mutations in the C-terminal, the N-terminal, and the linker regions had no effect on genomic RNA dimerization [they are R7R10K11S, P31L, R32G, S3(32-34), and K59L], while a C36S/C39S mutation in the distal zinc knuckle (Cys-His box or zinc finger) inhibited genome dimerization as much as disrupting the kissing-loop domain. The four mutations which inhibited tRNA(Lys3) genomic placement (i.e., the in vivo placement of tRNA(Lys3) on the primer binding site) had no effect on genome dimerization. Among five mutations which inhibited genome packaging, four had no effect on genome dimerization. Thus the N-terminal and linker regions of NC control genome packaging/tRNA(Lys3) placement (two processes which do not require mature NC) but have little influence on genome dimerization and 2-base extension of tRNA(Lys3) (two processes which are likely to require mature NC). It has been suggested, based on electron microscopy, that the AAGCUU82 palindrome crowning the R-U5 hairpin stimulates genomic RNA dimerization. To test this hypothesis, we deleted AGCU81 from wild-type viruses and from viruses bearing a disrupted kissing-loop hairpin or kissing-loop domain; in another mutant, we duplicated AGCU81. The loss of AGCU81 reduced dimerization by 2.5 +/- 4%; its duplication increased it by 3 +/- 6%. Dissociation temperature was left unchanged. We reach two conclusions. First, the palindrome crowning the R-U5 hairpin has no impact on HIV-1 genome dimerization. Second, genomic RNA dimerization is differentially influenced by NC sequence: it is Zn finger dependent but independent of the basic nature of the N-terminal and linker subdomains. We propose that the NC regions implicated in 2-base extension of tRNA(Lys3) are required for a second (maturation) step of tRNA placement. Genome dimerization and mature tRNA placement would then become two RNA-RNA interactions sharing similar NC sequence requirements.
Collapse
Affiliation(s)
- M Laughrea
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, H3T 1E2, Canada.
| | | | | | | | | | | |
Collapse
|
137
|
Lever AM. HIV RNA packaging and lentivirus-based vectors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:1-28. [PMID: 10987087 DOI: 10.1016/s1054-3589(00)48002-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the mid-1990s, the number of publications on lentivirus-based vectors has expanded dramatically as people have realized the opportunity that they represent. High-titer helper-virus free transfer of genes to nondividing cells is a reality and it can only be a short time before clinical trials are initiated. The most efficient vector to date appears to be HIV-1 and it is no coincidence that this is the virus in which there is the greatest theoretical understanding of the encapsidation process and viral assembly. Basic studies in the other viruses are at an earlier stage and this is reflected to some extent in their relative inefficiency. Emphasis is placed in some publications on non-HIV-based vector systems having the additional safety feature of a viral vector not based on a human pathogen. As yet, this is largely a cosmetic advantage in that no system would be used which was capable of regenerating a full-length wild-type HIV and the vectors all have single round replication kinetics. More important will be elucidation of the mechanism of packaging in the different lentiviruses. Cis and trans packaging preferences may influence efficiency. Accurate delineation of packaging signals will be important. Most influential, however, will be a deeper understanding of all the viral and cellular factors involved in the packaging pathway.
Collapse
Affiliation(s)
- A M Lever
- University of Cambridge, Department of Medicine, Addenbrooke's Hospital, United Kingdom
| |
Collapse
|
138
|
Darlix JL, Cristofari G, Rau M, Péchoux C, Berthoux L, Roques B. Nucleocapsid protein of human immunodeficiency virus as a model protein with chaperoning functions and as a target for antiviral drugs. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:345-72. [PMID: 10987096 DOI: 10.1016/s1054-3589(00)48011-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- J L Darlix
- LaboRetro, Unité de Virologie Humaine INSERM 412, Ecole Normale Supérieure de Lyon, France
| | | | | | | | | | | |
Collapse
|
139
|
Guo J, Wu T, Anderson J, Kane BF, Johnson DG, Gorelick RJ, Henderson LE, Levin JG. Zinc finger structures in the human immunodeficiency virus type 1 nucleocapsid protein facilitate efficient minus- and plus-strand transfer. J Virol 2000; 74:8980-8. [PMID: 10982342 PMCID: PMC102094 DOI: 10.1128/jvi.74.19.8980-8988.2000] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) has two zinc fingers, each containing the invariant metal ion binding residues CCHC. Recent reports indicate that mutations in the CCHC motifs are deleterious for reverse transcription in vivo. To identify reverse transcriptase (RT) reactions affected by such changes, we have probed zinc finger functions in NC-dependent RT-catalyzed HIV-1 minus- and plus-strand transfer model systems. Our approach was to examine the activities of wild-type NC and a mutant in which all six cysteine residues were replaced by serine (SSHS NC); this mutation severely disrupts zinc coordination. We find that the zinc fingers contribute to the role of NC in complete tRNA primer removal from minus-strand DNA during plus-strand transfer. Annealing of the primer binding site sequences in plus-strand strong-stop DNA [(+) SSDNA] to its complement in minus-strand acceptor DNA is not dependent on NC zinc fingers. In contrast, the rate of annealing of the complementary R regions in (-) SSDNA and 3' viral RNA during minus-strand transfer is approximately eightfold lower when SSHS NC is used in place of wild-type NC. Moreover, unlike wild-type NC, SSHS NC has only a small stimulatory effect on minus-strand transfer and is essentially unable to block TAR-induced self-priming from (-) SSDNA. Our results strongly suggest that NC zinc finger structures are needed to unfold highly structured RNA and DNA strand transfer intermediates. Thus, it appears that in these cases, zinc finger interactions are important components of NC nucleic acid chaperone activity.
Collapse
Affiliation(s)
- J Guo
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Hermida-Matsumoto L, Resh MD. Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging. J Virol 2000; 74:8670-9. [PMID: 10954568 PMCID: PMC116378 DOI: 10.1128/jvi.74.18.8670-8679.2000] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Budding of lentiviruses occurs at the plasma membrane, but the preceding steps involved in particle assembly are poorly understood. Since the Gag polyprotein mediates virion assembly and budding, studies on the localization of Gag within the cell should provide insight into the mechanism of particle assembly. Here, we utilize biochemical fractionation techniques as well as high-resolution confocal imaging of live cells to demonstrate that Gag is localized at the plasma membrane in a striking punctate pattern. Mutation of the N-terminal myristoylation site results in the formation of large cytosolic complexes, whereas mutation of the N-terminal basic residue cluster in the matrix domain redirects the Gag protein to a region partially overlapping the Golgi apparatus. In addition, we show that Gag and Env colocalize at the plasma membrane and that mistargeting of a mutant Gag to the Golgi apparatus alters the pattern of surface expression of Env.
Collapse
Affiliation(s)
- L Hermida-Matsumoto
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
141
|
Rumlova-Klikova M, Hunter E, Nermut MV, Pichova I, Ruml T. Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J Virol 2000; 74:8452-9. [PMID: 10954545 PMCID: PMC116356 DOI: 10.1128/jvi.74.18.8452-8459.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mason-Pfizer monkey virus (M-PMV) preassembles immature capsids in the cytoplasm prior to transporting them to the plasma membrane. Expression of the M-PMV Gag precursor in bacteria results in the assembly of capsids indistinguishable from those assembled in mammalian cells. We have used this system to investigate the structural requirements for the assembly of Gag precursors into procapsids. A series of C- and N-terminal deletion mutants progressively lacking each of the mature Gag domains (matrix protein [MA]-pp24/16-p12-capsid protein [CA]-nucleocapsid protein [NC]-p4) were constructed and expressed in bacteria. The results demonstrate that both the CA and the NC domains are necessary for the assembly of macromolecular arrays (sheets) but that amino acid residues at the N terminus of CA define the assembly of spherical capsids. The role of these N-terminal domains is not based on a specific amino acid sequence, since both MA-CA-NC and p12-CA-NC polyproteins efficiently assemble into capsids. Residues N terminal of CA appear to prevent a conformational change in which the N-terminal proline plays a key role, since the expression of a CA-NC protein lacking this proline results in the assembly of spherical capsids in place of the sheets assembled by the CA-NC protein.
Collapse
Affiliation(s)
- M Rumlova-Klikova
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Academy of Sciences, 166 10 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
142
|
Liang C, Rong L, Russell RS, Wainberg MA. Deletion mutagenesis downstream of the 5' long terminal repeat of human immunodeficiency virus type 1 is compensated for by point mutations in both the U5 region and gag gene. J Virol 2000; 74:6251-61. [PMID: 10864634 PMCID: PMC112130 DOI: 10.1128/jvi.74.14.6251-6261.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the role of an RNA region at nucleotides (nt) +200 to +233, just downstream of the 5' long terminal repeat, in encapsidation of human immunodeficiency virus type 1 genomic RNA. Three deletion mutations, namely, BH-D0, BH-D1, and BH-D2, were generated to eliminate sequences at positions nt +200 to +219, +200 to +226, and +200 to +233. The result in each case was decreased levels of packaging of viral RNA into the mutated viruses, with the BH-D2 virus being the most severely affected. Consistently, all three deletions resulted in impaired viral infectiousness and the BH-D2 mutation showed the most dramatic impact in this regard. Further analysis revealed additional defects in Gag precursor processing and in the extension efficiency of the tRNA(3)(Lys) primer in reverse transcription reactions performed with these mutated viruses. To shed further light on the function of these deleted sequences in viral replication, the mutated viruses were cultured in MT-2 cells over prolonged periods to enable them to reacquire wild-type replication kinetics. Sequencing of the reverted viruses revealed point mutations in both the noncoding region and the gag gene. In the case of the BH-D0 revertant, two mutations were observed at positions G112A in the U5 region, termed M1, and T24I in the nucleocapsid protein, termed MNC, respectively. Either of these two mutations was able to confer wild-type replication capacity on BH-D0. In the case of BH-D1, each of the M1 mutations, a mutation termed M2, i.e., C227T, just downstream of the primer binding site, a mutation termed MP2 (T12I) in the p2 protein, and the MNC mutation were observed. A combination of either M1 and M2 or MP2 and MNC was able to rescue BH-D1. In the case of the BH-D2 deletion-containing viruses, three point mutations, i.e., M1, MP2, and MNC, were observed and the presence of all three was required to restore viral replication to wild-type levels.
Collapse
Affiliation(s)
- C Liang
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Québec, Canada H3T 1E2
| | | | | | | |
Collapse
|
143
|
Harrich D, Hooker CW, Parry E. The human immunodeficiency virus type 1 TAR RNA upper stem-loop plays distinct roles in reverse transcription and RNA packaging. J Virol 2000; 74:5639-46. [PMID: 10823871 PMCID: PMC112051 DOI: 10.1128/jvi.74.12.5639-5646.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) RNA genome is flanked by a repeated sequence (R) that is required for HIV-1 replication. The first 57 nucleotides of R form a stable stem-loop structure called the transactivation response element (TAR) that can interact with the virally encoded transcription activator protein, Tat, to promote high levels of gene expression. Recently, we demonstrated that TAR is also important for efficient HIV-1 reverse transcription, since HIV-1 mutated in the upper stem-loop of TAR showed a reduced ability both to initiate and to complete reverse transcription. We have analyzed a series of HIV-1 mutant viruses to better defined the structural or sequence elements required for natural endogenous reverse transcription and packaging of virion RNA. Our results indicate that the requirement for TAR in reverse transcription is conformation dependent, since mutants with mutations that alter the upper stem-loop orientation are defective for reverse transcription initiation and have minor defects in RNA packaging. In contrast, TAR mutations that allowed the formation of alternative upper stem-loop structure greatly reduced RNA packaging but did not affect reverse transcription efficiency. These results are consistent with direct involvement of the upper stem-loop structure in packaging of genomic RNA and suggest that the TAR RNA stem-loop from nucleotide +18 to +42 interacts with other components of the reverse transcription initiation complex to promote efficient reverse transcription.
Collapse
Affiliation(s)
- D Harrich
- HIV Research Unit, National Centre for HIV Virology Research, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston, Queensland, Australia 4029.
| | | | | |
Collapse
|
144
|
Accola MA, Strack B, Göttlinger HG. Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. J Virol 2000; 74:5395-402. [PMID: 10823843 PMCID: PMC112023 DOI: 10.1128/jvi.74.12.5395-5402.2000] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag precursor Pr55(gag) by itself is capable of assembling into retrovirus-like particles (VLP). In the present study, we attempted to identify the minimal Gag sequences required for the formation of VLP. Our results show that about 80% of Pr55(gag) can be either deleted or replaced by heterologous sequences without significantly compromising VLP production. The smallest chimeric molecule still able to efficiently form VLP was only about 16 kDa. This minimal Gag construct contained the leucine zipper domain of the yeast transcription factor GCN4 to substitute for the assembly function of nucleocapsid (NC), followed by a P-P-P-P-Y motif to provide late budding (L) domain function, and retained only the myristylation signal and the C-terminal capsid-p2 domain of Pr55(gag). We also show that the L domain function of HIV-1 p6(gag) is not dependent on the presence of an active viral protease and that the NC domain of Pr55(gag) is dispensable for the incorporation of Vpr into VLP.
Collapse
Affiliation(s)
- M A Accola
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
145
|
Mouland AJ, Mercier J, Luo M, Bernier L, DesGroseillers L, Cohen EA. The double-stranded RNA-binding protein Staufen is incorporated in human immunodeficiency virus type 1: evidence for a role in genomic RNA encapsidation. J Virol 2000; 74:5441-51. [PMID: 10823848 PMCID: PMC112028 DOI: 10.1128/jvi.74.12.5441-5451.2000] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human Staufen (hStau), a double-stranded RNA (dsRNA)-binding protein that is involved in mRNA transport, is incorporated in human immunodeficiency virus type 1 (HIV-1) and in other retroviruses, including HIV-2 and Moloney murine leukemia virus. Sucrose and Optiprep gradient analyses reveal cosedimentation of hStau with purified HIV-1, while subtilisin assays demonstrate that it is internalized. hStau incorporation in HIV-1 is selective, is dependent on an intact functional dsRNA-binding domain, and quantitatively correlates with levels of encapsidated HIV-1 genomic RNA. By coimmunoprecipitation and reverse transcription-PCR analyses, we demonstrate that hStau is associated with HIV-1 genomic RNA in HIV-1-expressing cells and purified virus. Overexpression of hStau enhances virion incorporation levels, and a corresponding, threefold increase in HIV-1 genomic RNA encapsidation levels. This coordinated increase in hStau and genomic RNA packaging had a significant negative effect on viral infectivity. This study is the first to describe hStau within HIV-1 particles and provides evidence that hStau binds HIV-1 genomic RNA, indicating that it may be implicated in retroviral genome selection and packaging into assembling virions.
Collapse
MESH Headings
- Binding Sites
- Cell Line
- Centrifugation, Density Gradient
- Cloning, Molecular
- Drosophila Proteins
- Gene Expression
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Genome, Viral
- HIV-1/chemistry
- HIV-1/genetics
- HIV-1/metabolism
- HIV-1/pathogenicity
- HIV-2/chemistry
- HIV-2/metabolism
- Humans
- Moloney murine leukemia virus/chemistry
- Moloney murine leukemia virus/metabolism
- Mutation/genetics
- Precipitin Tests
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Viral/analysis
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/analysis
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Substrate Specificity
- Subtilisin/metabolism
- Transfection
- Virus Assembly
Collapse
Affiliation(s)
- A J Mouland
- Departments of Microbiology & Immunology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
146
|
Ono A, Demirov D, Freed EO. Relationship between human immunodeficiency virus type 1 Gag multimerization and membrane binding. J Virol 2000; 74:5142-50. [PMID: 10799589 PMCID: PMC110867 DOI: 10.1128/jvi.74.11.5142-5150.2000] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag precursor, Pr55(Gag), is necessary and sufficient for the assembly and release of viruslike particles. Binding of Gag to membrane and Gag multimerization are both essential steps in virus assembly, yet the domains responsible for these events have not been fully defined. In addition, the relationship between membrane binding and Gag-Gag interaction remains to be elucidated. To investigate these issues, we analyzed, in vivo, the membrane-binding and assembly properties of a series of C-terminally truncated Gag mutants. Pr55(Gag) was truncated at the C terminus of matrix (MAstop), between the N- and C-terminal domains of capsid (CA146stop), at the C terminus of capsid (p41stop), at the C terminus of p2 (p43stop), and after the N-terminal 35 amino acids of nucleocapsid (NC35stop). The ability of these truncated Gag molecules to assemble and release viruslike particles and their capacity to copackage into particles when coexpressed with full-length Gag were determined. We demonstrate that the amount of truncated Gag incorporated into particles is incrementally increased by extension from CA146 to NC35, suggesting that multiple sites in this region are involved in Gag multimerization. Using membrane flotation centrifugation, we observe that MA shows significantly reduced membrane binding relative to full-length Gag but that CA146 displays steady-state membrane-binding properties comparable to those of Pr55(Gag). The finding that the CA146 mutant, which contains only matrix and the N-terminal domain of capsid, exhibits levels of steady-state membrane binding equivalent to those of full-length Gag indicates that strong Gag-Gag interaction domains are not required for the efficient binding of HIV-1 Gag to membrane.
Collapse
Affiliation(s)
- A Ono
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | |
Collapse
|
147
|
Basrur V, Song Y, Mazur SJ, Higashimoto Y, Turpin JA, Rice WG, Inman JK, Appella E. Inactivation of HIV-1 nucleocapsid protein P7 by pyridinioalkanoyl thioesters. Characterization of reaction products and proposed mechanism of action. J Biol Chem 2000; 275:14890-7. [PMID: 10809733 DOI: 10.1074/jbc.275.20.14890] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synthesis and antiviral properties of pyridinioalkanoyl thioester (PATE) compounds that target nucleocapsid p7 protein (NCp7) of the human immunodeficiency virus type 1 (HIV-1) have been described previously (Turpin, J. A., Song, Y., Inman, J. K., Huang, M., Wallqvist, A., Maynard, A., Covell, D. G., Rice, W. G., and Appella, E. (1999) J. Med. Chem. 42, 67-86). In the present study, fluorescence and electrospray ionization-mass spectrometry were employed to determine the mechanism of modification of NCp7 by two lead compounds, N-[2-(5-pyridiniovaleroylthio)benzoyl]sulfacetamide bromide and N-[2-(5-pyridiniovaleroylthio)benzoyl]-4-(4-nitrophenylsulfonyl )anili ne bromide (compounds 45 and 47, respectively). Although both compounds exhibit antiviral activity in cell-based assays, we failed to detect appreciable ejection of zinc from NCp7 under conditions in which previously described NCp7-active disulfides readily eject zinc. However, upon "activation" by Ag(+), compound 45 reacted with NCp7 resulting in the zinc ejection from both zinc fingers. The reaction followed a two-step mechanism in which zinc was ejected from the carboxyl-terminal zinc finger faster than from the amino-terminal zinc finger. Both compounds covalently modified the protein with pyridinioalkanoyl groups. Compound 45 modified cysteines 36 and 49 of the carboxyl-terminal zinc finger. The results obtained herein demonstrate that PATE compounds can be constructed that selectively target only one of the two zinc fingers of NCp7, thus providing an impetus to pursue development of highly selective zinc finger inhibitors.
Collapse
Affiliation(s)
- V Basrur
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Cimarelli A, Sandin S, Höglund S, Luban J. Rescue of multiple viral functions by a second-site suppressor of a human immunodeficiency virus type 1 nucleocapsid mutation. J Virol 2000; 74:4273-83. [PMID: 10756042 PMCID: PMC111944 DOI: 10.1128/jvi.74.9.4273-4283.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human immunodeficiency type 1 (HIV-1) bearing the nucleocapsid (NC) mutation R10A/K11A is replication defective. After serial passage of the mutant virus in tissue culture, we isolated a revertant that retained the original mutation. It had acquired, in addition, a new mutation (E21K) that was formally demonstrated to be sufficient for restoration of viral replication. Detailed analysis of the replication defect of R10A/K11A revealed a threefold reduction in virion yield and a fivefold reduction in packaging of viral genomic RNA. Real-time PCR was then used to quantitate viral DNA synthesis following infection of Jurkat T cells. After adjustment for the assembly and packaging defects, a minor (twofold) reduction in synthesis of either strong-stop, full-length linear DNA or 2-LTR circles was observed with R10A/K11A virions, indicating that reverse transcription and nuclear transport of the viral genome were largely intact. However, after adjustment for the amounts of full-length or 2-LTR circles produced, R10A/K11A virions were at least 10-fold less infectious than wild type, indicating that viral DNA produced by the R10A/K11A mutant failed to integrate. Each of the above-mentioned defects was corrected by introduction of the second-site compensatory mutation E21K. These results demonstrate that the replication defect of mutant R10A/K11A can be explained by impairment at multiple steps in the viral life cycle, most important among them being integration and RNA packaging. The E21K mutation is predicted to restore positive charge to the face of the R10A/K11A mutant NC protein that interacts with the HIV-1 SL3 RNA stem-loop, emphasizing the importance of NC basic residues for HIV-1 replication.
Collapse
Affiliation(s)
- A Cimarelli
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
149
|
Cimarelli A, Sandin S, Höglund S, Luban J. Basic residues in human immunodeficiency virus type 1 nucleocapsid promote virion assembly via interaction with RNA. J Virol 2000; 74:3046-57. [PMID: 10708419 PMCID: PMC111803 DOI: 10.1128/jvi.74.7.3046-3057.2000] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Retroviral Gag polyproteins drive virion assembly by polymerizing to form a spherical shell that lines the inner membrane of nascent virions. Deletion of the nucleocapsid (NC) domain of the Gag polyprotein disrupts assembly, presumably because NC is required for polymerization. Human immunodeficiency virus type 1 NC possesses two zinc finger motifs that are required for specific recognition and packaging of viral genomic RNA. Though essential, zinc fingers and genomic RNA are not required for virion assembly. NC promiscuously associates with cellular RNAs, many of which are incorporated into virions. It has been hypothesized that Gag polymerization and virion assembly are promoted by nonspecific interaction of NC with RNA. Consistent with this model, we found an inverse relationship between the number of NC basic residues replaced with alanine and NC's nonspecific RNA-binding activity, Gag's ability to polymerize in vitro and in vivo, and Gag's capacity to assemble virions. In contrast, mutation of NC's zinc fingers had only minor effects on these properties.
Collapse
Affiliation(s)
- A Cimarelli
- Departments of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
150
|
Clever JL, Taplitz RA, Lochrie MA, Polisky B, Parslow TG. A heterologous, high-affinity RNA ligand for human immunodeficiency virus Gag protein has RNA packaging activity. J Virol 2000; 74:541-6. [PMID: 10590146 PMCID: PMC111568 DOI: 10.1128/jvi.74.1.541-546.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral RNA encapsidation depends on the specific binding of Gag proteins to packaging (psi) signals in genomic RNA. We investigated whether an in vitro-selected, high-affinity RNA ligand for the nucleocapsid (NC) portion of the Gag protein from human immunodeficiency virus type 1 (HIV-1) could mediate packaging into HIV-1 virions. We find that this ligand can functionally substitute for one of the Gag-binding elements (termed SL3) in the HIV-1 psi locus to support packaging and viral infectivity in cis. By contrast, this ligand, which fails to dimerize spontaneously in vitro, is unable to replace a different psi element (termed SL1) which is required for both Gag binding and dimerization of the HIV-1 genome. A single point mutation within the ligand that eliminates high-affinity in vitro Gag binding also abolishes its packaging activity at the SL3 position. These results demonstrate that specific binding of Gag or NC protein is a critical determinant of genomic RNA packaging.
Collapse
Affiliation(s)
- J L Clever
- Departments of Pathology, University of California, San Francisco, California 94143-0506, USA
| | | | | | | | | |
Collapse
|