101
|
ITO N, MITA T, SHIMIZU K, ITO Y, MASATANI T, NAKAGAWA K, YAMAOKA S, ABE M, OKADERA K, MINAMOTO N, SUGIYAMA M. Amino Acid Substitution at Position 95 in Rabies Virus Matrix Protein Affects Viral Pathogenicity. J Vet Med Sci 2011; 73:1363-6. [DOI: 10.1292/jvms.11-0151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Naoto ITO
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Tetsuo MITA
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Kenta SHIMIZU
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Yuki ITO
- The United Graduate School of Veterinary Sciences, Gifu University
| | | | - Keisuke NAKAGAWA
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Satoko YAMAOKA
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Masako ABE
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Kota OKADERA
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Nobuyuki MINAMOTO
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University
- The United Graduate School of Veterinary Sciences, Gifu University
| | - Makoto SUGIYAMA
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University
- The United Graduate School of Veterinary Sciences, Gifu University
| |
Collapse
|
102
|
Yang DK, Oh YI, Cho SD, Kang HK, Lee KW, Kim YH, Song JY. Molecular Identification of the Vaccine Strain from the Inactivated Rabies Vaccine. ACTA ACUST UNITED AC 2011. [DOI: 10.4167/jbv.2011.41.1.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Dong-Kun Yang
- National Veterinary Research and Quarantine Service, Anyang, Korea, MIFAFF, Korea
| | - Yoon-I Oh
- National Veterinary Research and Quarantine Service, Anyang, Korea, MIFAFF, Korea
| | - Soo-Dong Cho
- National Veterinary Research and Quarantine Service, Anyang, Korea, MIFAFF, Korea
| | - Hee-Kyung Kang
- National Veterinary Research and Quarantine Service, Anyang, Korea, MIFAFF, Korea
| | - Kyung-Woo Lee
- National Veterinary Research and Quarantine Service, Anyang, Korea, MIFAFF, Korea
| | - Yeon-Hee Kim
- National Veterinary Research and Quarantine Service, Anyang, Korea, MIFAFF, Korea
| | - Jae-Young Song
- National Veterinary Research and Quarantine Service, Anyang, Korea, MIFAFF, Korea
| |
Collapse
|
103
|
Ugolini G. Advances in viral transneuronal tracing. J Neurosci Methods 2010; 194:2-20. [DOI: 10.1016/j.jneumeth.2009.12.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/28/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
104
|
Rabies virus (RV) glycoprotein expression levels are not critical for pathogenicity of RV. J Virol 2010; 85:697-704. [PMID: 21068252 DOI: 10.1128/jvi.01309-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous comparisons of different rabies virus (RV) strains suggested an inverse relationship between pathogenicity and the amount of glycoprotein produced in infected cells. In order to provide more insight into this relationship, we pursued an experimental approach that allowed us to alter the glycoprotein expression level without altering the glycoprotein sequence, thereby eliminating the contribution of amino acid changes to differences in viral virulence. To this end, we constructed an infectious clone of the highly pathogenic rabies virus strain CVS-N2c and replaced its cognate glycoprotein gene with synthetic versions in which silent mutations were introduced to replace wild-type codons with the most or least frequently used synonymous codons. A recombinant N2c variant containing the fully codon-optimized G gene and three variants carrying a partially codon-deoptimized G gene were recovered on mouse neuroblastoma cells and shown to express 2- to 3-fold more and less glycoprotein, respectively, than wild-type N2c. Pathogenicity studies in mice revealed the WT-N2c virus to be the most pathogenic strain. Variants containing partially codon-deoptimized glycoprotein genes or the codon-optimized gene were less pathogenic than WT-N2c but still caused significant mortality. We conclude that the expression level of the glycoprotein gene does have an impact on pathogenicity but is not a dominant factor that determines pathogenicity. Thus, strategies such as changes in codon usage that aim solely at altering the expression level of the glycoprotein gene do not suffice to render a pathogenic rabies virus apathogenic and are not a viable and safe approach for attenuation of a pathogenic strain.
Collapse
|
105
|
Two overlapping domains of a lyssavirus matrix protein that acts on different cell death pathways. J Virol 2010; 84:9897-906. [PMID: 20631119 DOI: 10.1128/jvi.00761-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The lyssavirus matrix (M) protein induces apoptosis. The regions of the M protein that are essential for triggering cell death pathways are not yet clearly defined. We therefore compared the M proteins from two viruses that have contrasting characteristics in terms of cellular apoptosis: a genotype 3 lyssavirus, Mokola virus (MOK), and a genotype 1 rabies virus isolated from a dog from Thailand (THA). We identified a 20-amino-acid fragment (corresponding to positions 67 to 86) that retained the cell death activities of the full-length M protein from MOK via both the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and inhibition of cytochrome c oxidase (CcO) activity. We found that the amino acids at positions 77 and 81 have an essential role in triggering these two cell death pathways. Directed mutagenesis demonstrated that the amino acid at position 77 affects CcO activity, whereas the amino acid at position 81 affects TRAIL-dependent apoptosis. Mutations in the full-length M protein that compromised induction of either of these two pathways resulted in delayed apoptosis compared with the time to apoptosis for the nonmutated control.
Collapse
|
106
|
Orbanz J, Finke S. Generation of recombinant European bat lyssavirus type 1 and inter-genotypic compatibility of lyssavirus genotype 1 and 5 antigenome promoters. Arch Virol 2010; 155:1631-41. [PMID: 20614145 DOI: 10.1007/s00705-010-0743-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/25/2010] [Indexed: 12/25/2022]
Abstract
Bat lyssaviruses (Fam. Rhabdoviridae) represent a source for the infection of terrestial mammals and the development of rabies disease. Molecular differences in the replication of bat and non-bat lyssaviruses and their contribution to pathogenicity, however, are unknown. One reason for this is the lack of reverse genetics systems for bat-restricted lyssaviruses. To investigate bat lyssavirus replication and host adaptation, we developed a reverse genetics system for European bat lyssavirus type 1 (EBLV-1; genotype 5). This was achieved by co-transfection of HEK-293T cells with a full-length EBLV-1 genome cDNA and expression plasmids for EBLV-1 proteins, resulting in recombinant EBLV-1 (rEBLV-1). Replication of rEBLV-1 was comparable to that of parental virus, showing that rEBLV-1 is a valid tool to investigate EBLV-1 replication functions. In a first approach, we tested whether the terminal promoter sequences of EBLV-1 are genotype-specific. Although genotype 1 (rabies virus) minigenomes were successfully amplified by EBLV-1 helper virus, in the context of the complete virus, only the antigenome promoter (AGP) sequence of EBLV-1 was replaceable, as indicated by comparable replication of rEBLV-1 and the chimeric virus. These analyses demonstrate that the terminal AGPs of genotype 1 and genotype 5 lyssaviruses are compatible with those of the heterologous genotype.
Collapse
Affiliation(s)
- Jeannette Orbanz
- Friedrich-Loeffler-Institut, Federal Research Institut for Animal Health, Institute of Molecular Biology, Greifswald, Insel Riems, Germany
| | | |
Collapse
|
107
|
Molecular basis of neurovirulence of flury rabies virus vaccine strains: importance of the polymerase and the glycoprotein R333Q mutation. J Virol 2010; 84:8926-36. [PMID: 20538851 DOI: 10.1128/jvi.00787-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms associated with rabies virus (RV) virulence are not fully understood. In this study, the RV Flury low-egg-passage (LEP) and high-egg-passage (HEP) strains were used as models to explore the attenuation mechanism of RV. The results of our studies confirmed that the R333Q mutation in the glycoprotein (G(R333Q)) is crucial for the attenuation of Flury RV in mice. The R333Q mutation is stably maintained in the HEP genome background but not in the LEP genome background during replication in mouse brain tissue or cell culture. Further investigation using chimeric viruses revealed that the polymerase L gene determines the genetic stability of the G(R333Q) mutation during replication. Moreover, a recombinant RV containing the LEP G protein with the R333Q mutation and the HEP L gene showed significant attenuation, genetic stability, enhancement of apoptosis, and immunogenicity. These results indicate that attenuation of the RV Flury strain results from the coevolution of G and L elements and provide important information for the generation of safer and more effective modified live rabies vaccine.
Collapse
|
108
|
Ito Y, Ito N, Saito S, Masatani T, Nakagawa K, Atoji Y, Sugiyama M. Amino acid substitutions at positions 242, 255 and 268 in rabies virus glycoprotein affect spread of viral infection. Microbiol Immunol 2010; 54:89-97. [PMID: 20377742 DOI: 10.1111/j.1348-0421.2009.00192.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rabies virus Nishigahara strain kills adult mice after intracerebral inoculation, whereas the derivative RC-HL strain does not. It has previously been reported by us that the R(G 242/255/268) strain, in which amino acids at positions 242, 255 and 268 on the G protein have been replaced by those from the Nishigahara strain in the genetic background of the RC-HL strain, kills adult mice. This indicates that these three amino acids of G protein are important for pathogenicity of the Nishigahara strain. In order to obtain insights into the mechanism by which these amino acids affect pathogenicity, in this study spread of viral infection and apoptosis-inducing ability of the attenuated RC-HL strain and the virulent R(G 242/255/268) strain were compared. RC-HL infection spread less efficiently in the mouse brain than did R(G 242/255/268) infection. However, the apoptosis-inducing abilities of both viruses were almost identical, as shown by both in vitro and in vivo experiments. It was demonstrated that cell-to-cell spread of RC-HL strain was less efficient than that of R(G 242/255/268) strain in mouse neuroblastoma cells. These results indicate that the three amino acid substitutions affect efficiency of cell-to-cell spread but not apoptosis-inducing ability, probably resulting in the distinct distributions of RC-HL and R(G 242/255/268) strain-infected cells in the mouse brain and, consequently, the different pathogenicities of these strains.
Collapse
Affiliation(s)
- Yuki Ito
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
109
|
Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons. J Virol 2010; 84:4697-705. [PMID: 20181692 DOI: 10.1128/jvi.02654-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Rabies virus infection of dorsal root ganglia (DRG) was studied in vitro with cultured adult mouse DRG neurons. Recent in vivo studies of transgenic mice that express the yellow fluorescent protein indicate that neuronal process degeneration, involving both dendrites and axons, occurs in mice infected with the challenge virus standard (CVS) strain of rabies virus by footpad inoculation. Because of the similarities of the morphological changes in experimental rabies and in diabetic neuropathy and other diseases, we hypothesize that neuronal process degeneration occurs as a result of oxidative stress. DRG neurons were cultured from adult ICR mice. Two days after plating, they were infected with CVS. Immunostaining was evaluated with CVS- and mock-infected cultures for neuron specific beta-tubulin, rabies virus antigen, and amino acid adducts of 4-hydroxy-2-nonenal (4-HNE) (marker of lipid peroxidation and hence oxidative stress). Neuronal viability (by trypan blue exclusion), terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, and axonal growth were also assessed with the cultures. CVS infected 33 to 54% of cultured DRG neurons. Levels of neuronal viability and TUNEL staining were similar in CVS- and mock-infected DRG neurons. There were significantly more 4-HNE-labeled puncta at 2 and 3 days postinfection in CVS-infected cultures than in mock-infected cultures, and axonal outgrowth was reduced at these time points in CVS infection. Axonal swellings with 4-HNE-labeled puncta were also associated with aggregations of actively respiring mitochondria. We have found evidence that rabies virus infection in vitro causes axonal injury of DRG neurons through oxidative stress. Oxidative stress may be important in vivo in rabies and may explain previous observations of the degeneration of neuronal processes.
Collapse
|
110
|
Préhaud C, Wolff N, Terrien E, Lafage M, Mégret F, Babault N, Cordier F, Tan GS, Maitrepierre E, Ménager P, Chopy D, Hoos S, England P, Delepierre M, Schnell MJ, Buc H, Lafon M. Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci Signal 2010; 3:ra5. [PMID: 20086240 DOI: 10.1126/scisignal.2000510] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The capacity of a rabies virus to promote neuronal survival (a signature of virulence) or death (a marker of attenuation) depends on the cellular partners recruited by the PDZ-binding site (PDZ-BS) of its envelope glycoprotein (G). Neuronal survival requires the selective association of the PDZ-BS of G with the PDZ domains of two closely related serine-threonine kinases, MAST1 and MAST2. Here, we found that a single amino acid change in the PDZ-BS triggered the apoptotic death of infected neurons and enabled G to interact with additional PDZ partners, in particular the tyrosine phosphatase PTPN4. Knockdown of PTPN4 abrogated virus-mediated apoptosis. Thus, we propose that attenuation of rabies virus requires expansion of the set of host PDZ proteins with which G interacts, which interferes with the finely tuned homeostasis required for survival of the infected neuron.
Collapse
|
111
|
Abstract
Rabies virus, the prototypical neurotropic virus, causes one of the most lethal zoonotic diseases. According to official estimates, over 55,000 people die of the disease annually, but this is probably a severe underestimation. A combination of virulence factors enables the virus to enter neurons at peripheral sites and travel through the spinal cord to the brain of the infected host, where it often induces aggression that facilitates the transfer of the virus to a new host. This Review summarizes the current knowledge of the replication cycle of rabies virus and virus- host cell interactions, both of which are fundamental elements in our quest to understand the life cycle of rabies virus and the pathogenesis of rabies.
Collapse
|
112
|
KOJIMA D, PARK CH, TSUJIKAWA S, KOHARA K, HATAI H, OYAMAD T, NOGUCHI A, INOUE S. Lesions of the Central Nervous System Induced by Intracerebral Inoculation of BALB/c Mice with Rabies Virus (CVS-11). J Vet Med Sci 2010; 72:1011-6. [DOI: 10.1292/jvms.09-0550] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Daisuke KOJIMA
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University
| | - Chun-Ho PARK
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University
| | - Shintarou TSUJIKAWA
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University
| | - Keiko KOHARA
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University
| | - Hitoshi HATAI
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University
| | - Toshifumi OYAMAD
- Department of Veterinary Pathology, School of Veterinary Medicine, Kitasato University
| | - Akira NOGUCHI
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Satoshi INOUE
- Department of Veterinary Science, National Institute of Infectious Diseases
| |
Collapse
|
113
|
Intergenotypic replacement of lyssavirus matrix proteins demonstrates the role of lyssavirus M proteins in intracellular virus accumulation. J Virol 2009; 84:1816-27. [PMID: 19955305 DOI: 10.1128/jvi.01665-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lyssavirus assembly depends on the matrix protein (M). We compared lyssavirus M proteins from different genotypes for their ability to support assembly and egress of genotype 1 rabies virus (RABV). Transcomplementation of M-deficient RABV with M from European bat lyssavirus (EBLV) types 1 and 2 reduced the release of infectious virus. Stable introduction of the heterogenotypic M proteins into RABV led to chimeric viruses with reduced virus release and intracellular accumulation of virus genomes. Although the chimeras indicated genotype-specific evolution of M, rapid selection of a compensatory mutant suggested conserved mechanisms of lyssavirus assembly and the requirement for only few adaptive mutations to fit the heterogenotypic M to a RABV backbone. Whereas the compensatory mutant replicated to similar infectious titers as RABV M-expressing virus, ultrastructural analysis revealed that both nonadapted EBLV M chimeras and the compensatory mutant differed from RABV M expressing viruses in the lack of intracellular viruslike structures that are enveloped and accumulate in cisterna of the degranulated and dilated rough endoplasmic reticulum compartment. Moreover, all viruses were able to bud at the plasma membrane. Since the lack of the intracellular viruslike structures correlated with the type of M protein but not with the efficiency of virus release, we hypothesize that the M proteins of EBLV-1 and RABV differ in their target membranes for virus assembly. Although the biological function of intracellular assembly and accumulation of viruslike structures in the endoplasmic reticulum remain unclear, the observed differences could contribute to diverse host tropism or pathogenicity.
Collapse
|
114
|
Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications. Vaccine 2009; 27:7214-8. [DOI: 10.1016/j.vaccine.2009.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/03/2009] [Indexed: 11/21/2022]
|
115
|
Rossiter JP, Hsu L, Jackson AC. Selective vulnerability of dorsal root ganglia neurons in experimental rabies after peripheral inoculation of CVS-11 in adult mice. Acta Neuropathol 2009; 118:249-59. [PMID: 19252919 DOI: 10.1007/s00401-009-0503-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/08/2009] [Accepted: 02/16/2009] [Indexed: 12/25/2022]
Abstract
The involvement of dorsal root ganglia was studied in an in vivo model of experimental rabies virus infection using the challenge virus standard (CVS-11) strain. Dorsal root ganglia neurons infected with CVS in vitro show prolonged survival and few morphological changes, and are commonly used to study the infection. It has been established that after peripheral inoculation of mice with CVS the brain and spinal cord show relatively few neurodegenerative changes, but detailed studies of pathological changes in dorsal root ganglia have not previously been performed in this in vivo experimental model. In this study, adult ICR mice were inoculated in the right hindlimb footpad with CVS. Spinal cords and dorsal root ganglia were evaluated at serial time points for histopathological and ultrastructural changes and for biochemical markers of cell death. Light microscopy showed multifocal mononuclear inflammatory cell infiltrates in the sensory ganglia and a spectrum of degenerative neuronal changes. Ultrastructural changes in gangliocytes included features characteristic of the axotomy response, the appearance of numerous autophagic compartments, and aggregation of intermediate filaments, while the neurons retained relatively intact mitochondria and plasma membranes. Later in the process, there were more extensive degenerative neuronal changes without typical features of either apoptosis or necrosis. The degree of degenerative neuronal changes in gangliocytes contrasts with observations in CNS neurons in experimental rabies. Hence, gangliocytes exhibit selective vulnerability in this animal model. This contrasts markedly with the fact that they are, unlike CNS neurons, highly permissive to CVS infection in vitro. Further study is needed to determine mechanisms for this selective vulnerability, which will give us a better understanding of the pathogenesis of rabies.
Collapse
|
116
|
Tobiume M, Sato Y, Katano H, Nakajima N, Tanaka K, Noguchi A, Inoue S, Hasegawa H, Iwasa Y, Tanaka J, Hayashi H, Yoshida S, Kurane I, Sata T. Rabies virus dissemination in neural tissues of autopsy cases due to rabies imported into Japan from the Philippines: Immunohistochemistry. Pathol Int 2009; 59:555-66. [DOI: 10.1111/j.1440-1827.2009.02406.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
117
|
Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proc Natl Acad Sci U S A 2009; 106:11300-5. [PMID: 19581599 DOI: 10.1073/pnas.0905640106] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies remains an important public health problem with more than 95% of all human rabies cases caused by exposure to rabid dogs in areas where effective, inexpensive vaccines are unavailable. Because of their ability to induce strong innate and adaptive immune responses capable of clearing the infection from the CNS after a single immunization, live-attenuated rabies virus (RV) vaccines could be particularly useful not only for the global eradication of canine rabies but also for late-stage rabies postexposure prophylaxis of humans. To overcome concerns regarding the safety of live-attenuated RV vaccines, we developed the highly attenuated triple RV G variant, SPBAANGAS-GAS-GAS. In contrast to most attenuated recombinant RVs generated thus far, SPBAANGAS-GAS-GAS is completely nonpathogenic after intracranial infection of mice that are either developmentally immunocompromised (e.g., 5-day-old mice) or have inherited deficits in immune function (e.g., antibody production or type I IFN signaling), as well as normal adult animals. In addition, SPBAANGAS-GAS-GAS induces immune mechanisms capable of containing a CNS infection with pathogenic RV, thereby preventing lethal rabies encephalopathy. The lack of pathogenicity together with excellent immunogenicity and the capacity to deliver immune effectors to CNS tissues makes SPBAANGAS-GAS-GAS a promising vaccine candidate for both the preexposure and postexposure prophylaxis of rabies.
Collapse
|
118
|
Schiøtz BL, Baekkevold ES, Poulsen LC, Mjaaland S, Gjøen T. Analysis of host- and strain-dependent cell death responses during infectious salmon anemia virus infection in vitro. Virol J 2009; 6:91. [PMID: 19566966 PMCID: PMC2715388 DOI: 10.1186/1743-422x-6-91] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 07/01/2009] [Indexed: 12/20/2022] Open
Abstract
Background Infectious salmon anemia virus (ISAV) is an aquatic orthomyxovirus and the causative agent of infectious salmon anemia (ISA), a disease of great importance in the Atlantic salmon farming industry. In vitro, ISAV infection causes cytophatic effect (CPE) in cell lines from Atlantic salmon, leading to rounding and finally detachment of the cells from the substratum. In this study, we investigated the mode of cell death during in vitro ISAV infection in different Atlantic salmon cell lines, using four ISAV strains causing different mortality in vivo. Results The results show that caspase 3/7 activity increased during the course of infection in ASK and SHK-1 cells, infected cells showed increased surface expression of phosphatidylserine and increased PI uptake, compared to mock infected cells; and morphological alterations of the mitochondria were observed. Expression analysis of immune relevant genes revealed no correlation between in vivo mortality and expression, but good correlation in expression of interferon genes. Conclusion Results from this study indicate that there is both strain and cell type dependent differences in the virus-host interaction during ISAV infection. This is important to bear in mind when extrapolating in vitro findings to the in vivo situation.
Collapse
Affiliation(s)
- Berit L Schiøtz
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway.
| | | | | | | | | |
Collapse
|
119
|
Ming P, Du J, Tang Q, Yan J, Nadin-Davis SA, Li H, Tao X, Huang Y, Hu R, Liang G. Molecular characterization of the complete genome of a street rabies virus isolated in China. Virus Res 2009; 143:6-14. [PMID: 19463716 DOI: 10.1016/j.virusres.2009.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/17/2009] [Accepted: 02/25/2009] [Indexed: 11/16/2022]
Abstract
In this study, the complete genomic sequence of a rabies virus isolate HN10, recovered from brain tissue of a rabid patient in China, was determined. This is the first Chinese street isolate that has been fully characterized. The overall organization of this virus is typical of that observed for all other rabies viruses. Alignments of amino acid sequences of the phosphoprotein, glycoprotein and large protein of HN10 with those of other rabies viruses were used to examine the extent of conservation of known functional regions. Phylogenetic analysis using either the complete or partial genomic sequence of HN10 determined that this isolate is most closely associated with viruses previously shown to circulate in Guangxi and Hunan provinces. In addition, of all vaccine strains used for comparison, the attenuated Chinese vaccine strain CTN181 is most closely related to HN10.
Collapse
Affiliation(s)
- Pinggang Ming
- State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention, China CDC, 100 Yingxin St., Xuan Wu District, Beijing 100052, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Hicks DJ, Nuñez A, Healy DM, Brookes SM, Johnson N, Fooks AR. Comparative pathological study of the murine brain after experimental infection with classical rabies virus and European bat lyssaviruses. J Comp Pathol 2008; 140:113-26. [PMID: 19111840 DOI: 10.1016/j.jcpa.2008.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 09/08/2008] [Indexed: 12/11/2022]
Abstract
European bat lyssaviruses (EBLVs) types 1 (EBLV-1) and 2 (EBLV-2) cause rabies in terrestrial species, but the pathological changes associated with neuroinvasion have yet to be fully elucidated. Swiss OF-1 mice were inoculated peripherally with strain RV61 (classical rabies virus), RV1423 (EBLV-1) or RV1332 (EBLV-2) to compare the nature and extent of histopathological changes produced. Inoculated animals developed varying degrees of non-suppurative encephalitis, and lyssavirus infection was confirmed by the detection of viral antigen. The lesions produced, which included perivascular cuffs and gliosis, were more severe after RV1423 or RV1332 infection than after RV61 infection. Perivascular cuffs were mainly localized to caudal brain regions, irrespective of the infecting strain; after RV1332 infection, however, they were particularly abundant, being composed of large numbers of inflammatory cells. T cells were the predominant lymphocytic component of the inflammatory infiltrate in both the Virchow-Robin space and the brain parenchyma. Viral antigen, which was widespread throughout the brain, was apparently unrelated to the degree of cuffing. The study suggested that there was increased immune activation after inoculation with strain RV1423 or RV1332, particularly the latter, but that this did not affect the final outcome.
Collapse
Affiliation(s)
- D J Hicks
- Department of Pathology, Veterinary Laboratories Agency (VLA Weybridge), Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | | | | | | | | | | |
Collapse
|
121
|
Jackson AC, Randle E, Lawrance G, Rossiter JP. Neuronal apoptosis does not play an important role in human rabies encephalitis. J Neurovirol 2008; 14:368-75. [PMID: 19023689 DOI: 10.1080/13550280802216502] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is generally accepted that there are not prominent features of neuronal cell death in rabies encephalitis. However, Hemachudha and coworkers recently reported widespread apoptosis in the central nervous system of several human rabies cases (BMC Infect Dis 5: 104, 2005). In this study we have evaluated morphological features and markers of neuronal apoptosis in postmortem brain tissue from 12 cases of human rabies who died in four different countries. Histopathological analysis, TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling) staining, and immunostaining for cleaved (activated) caspase-3 were performed on paraffin-embedded tissues from the cerebral cortex, hippocampus, and brainstem, and additional regional areas from one of the cases. We did not find morphological evidence of neuronal apoptosis or TUNEL staining in any of the cases of rabies encephalitis. Similarly, immunostained cleaved caspase-3 was not seen in neurons, but prominent staining was observed in microglial processes. We conclude that neuronal apoptosis does not play an important pathogenetic role in human rabies encephalitis.
Collapse
Affiliation(s)
- Alan C Jackson
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
122
|
Roy A, Hooper DC. Immune evasion by rabies viruses through the maintenance of blood-brain barrier integrity. J Neurovirol 2008; 14:401-11. [PMID: 19016377 DOI: 10.1080/13550280802235924] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The attenuated rabies virus (RV) strain Challenge Virus Standard (CVS)-F3 and a highly pathogenic strain associated with the silver-haired bats (SHBRV) can both be cleared from the central nervous system (CNS) tissues by appropriate antiviral immune mechanisms if the effectors are provided access across the blood-brain barrier (BBB). In the case of SHBRV infection, antiviral immunity develops normally in the periphery but fails to open the BBB, generally resulting in a lethal outcome. To determine whether or not an absence in the CNS targeted immune response is associated with the infection with other pathogenic RV strains, we have assessed the development of immunity, BBB permeability, and immune cell infiltration into the CNS tissues of mice infected with a variety of RV strains, including the dog variants responsible for the majority of human rabies cases. We demonstrate that the lethal outcomes of infection with a variety of known pathogenic RV strains are indeed associated with the inability to deliver immune effectors across the BBB. Survival from infection with certain of these viruses is improved in mice prone to CNS inflammation. The results suggest that competition between the activity of the immune effectors reaching CNS tissues and the inherent pathological attributes of the virus dictates the outcome and that intervention to deliver RV-specific immune effectors into CNS tissues may have general therapeutic value in rabies.
Collapse
Affiliation(s)
- Anirban Roy
- Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA
| | | |
Collapse
|
123
|
Proteomic analysis reveals selective impediment of neuronal remodeling upon Borna disease virus infection. J Virol 2008; 82:12265-79. [PMID: 18829749 DOI: 10.1128/jvi.01615-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neurotropic virus Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. BDV represents an intriguing example of a virus whose persistence in neurons leads to altered brain function in the absence of overt cytolysis and inflammation. The bases of BDV-induced behavioral impairment remain largely unknown. To better characterize the neuronal response to BDV infection, we compared the proteomes of primary cultures of cortical neurons with and without BDV infection. We used two-dimensional liquid chromatography fractionation, followed by protein identification by nanoliquid chromatography-tandem mass spectrometry. This analysis revealed distinct changes in proteins implicated in neurotransmission, neurogenesis, cytoskeleton dynamics, and the regulation of gene expression and chromatin remodeling. We also demonstrated the selective interference of BDV with processes related to the adaptative response of neurons, i.e., defects in proteins regulating synaptic function, global rigidification of the cytoskeleton network, and altered expression of transcriptional and translational repressors. Thus, this work provides a global view of the neuronal changes induced by BDV infection together with new clues to understand the mechanisms underlying the selective interference with neuronal plasticity and remodeling that characterizes BDV persistence.
Collapse
|
124
|
Amino acid at position 95 of the matrix protein is a cytopathic determinant of rabies virus. Virus Res 2008; 137:33-9. [DOI: 10.1016/j.virusres.2008.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/21/2008] [Accepted: 05/23/2008] [Indexed: 12/14/2022]
|
125
|
Cenna J, Tan GS, Papaneri AB, Dietzschold B, Schnell MJ, McGettigan JP. Immune modulating effect by a phosphoprotein-deleted rabies virus vaccine vector expressing two copies of the rabies virus glycoprotein gene. Vaccine 2008; 26:6405-14. [PMID: 18804506 DOI: 10.1016/j.vaccine.2008.08.069] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/22/2008] [Accepted: 08/25/2008] [Indexed: 12/25/2022]
Abstract
The type of immune response induced by a vaccine is a critical factor that determines its effectiveness in preventing infection or disease. Inactivated and live rabies virus (RV) vaccine strains elicit an IgG1-biased and IgG1/IgG2a-balanced antibody response, respectively. However, IgG2a antibodies are potent inducers of anti-viral effector functions, and therefore, a viral vaccine vector that can elicit an IgG2a-biased antibody response may be more effective against RV infection. Here we describe the humoral immune response of a live replication-deficient phosphoprotein (P)-deleted RV vector (SPBN-DeltaP), or a recombinant P-deleted virus that expresses two copies of the RV glycoprotein (G) gene (SPBN-DeltaP-RVG), and compare it to a UV-inactivated RV. Mice inoculated with UV-inactivated RV induced predominantly an IgG1-specific antibody response, while live recombinant SPBN-DeltaP exhibited a mixed IgG1/IgG2a antibody response, which is consistent with the isotype profiles from the replication-competent parental viruses. Survivorship in mice after pathogenic RV challenge indicates a 10-fold higher efficiency of live SPBN-DeltaP compared to UV-inactivated SPBN-DeltaP. In addition, SPBN-DeltaP-RVG induced a more rapid and robust IgG2a response that protected mice more effectively than SPBN-DeltaP. Of note, 10(3)ffu of SPBN-DeltaP-RVG-induced anti-RV antibodies that were 100% protective in mice against pathogenic RV challenge. The increased immune response was directed not only against RV G but also against the ribonucleoprotein (RNP), indicating that the expression of two RV G genes from SPBN-DeltaP-RVG enhances the immune response to other RV antigens as well. In addition, Rag2 mice inoculated intramuscularly with 10(5)ffu/mouse of SPBN-DeltaP showed no clinical signs of rabies, and no viral RNA was detected in the spinal cord or brain of inoculated mice. Therefore, the safety of the P-deleted vectors along with the onset and magnitude of the IgG2a-induced immune response by SPBN-DeltaP-RVG indicate that this vector holds great promise as either a therapeutic or preventative vaccine against RV or other infectious diseases.
Collapse
Affiliation(s)
- Jonathan Cenna
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-6799, USA
| | | | | | | | | | | |
Collapse
|
126
|
Dietzschold B, Li J, Faber M, Schnell M. Concepts in the pathogenesis of rabies. Future Virol 2008; 3:481-490. [PMID: 19578477 DOI: 10.2217/17460794.3.5.481] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rabies is a zoonotic disease that remains an important public health problem worldwide and causes more than 70,000 human deaths each year. The causative agent of rabies is rabies virus (RV), a negative-stranded RNA virus of the rhabdovirus family. Neuroinvasiveness and neurotropism are the main features that define the pathogenesis of rabies. Although RV pathogenicity is a multigenic trait involving several elements of the RV genome, the RV glycoprotein plays a major role in RV pathogenesis by controlling the rate of virus uptake and trans-synaptic virus spread, and by regulating the rate of virus replication. Pathogenic street RV strains differ significantly from tissue culture-adapted RV strains in their neuroinvasiveness. Whereas street RV strains are highly neuroinvasive, most tissue culture-adapted RV strains have either no or only limited ability to invade the CNS from a peripheral site. The high neuroinvasiveness of pathogenic street RVs is, at least in part, due to their ability to evade immune responses and to conserve the structures of neurons. The finding that tissue culture-adapted RV strains replicate very fast and induce strong innate and adaptive immune responses opens new avenues for therapeutic intervention against rabies.
Collapse
Affiliation(s)
- Bernhard Dietzschold
- Department of Microbiology & Immunology, Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, PA, USA, Tel.: +1 215 503 4692; ;
| | | | | | | |
Collapse
|
127
|
Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J Virol 2008; 82:10510-8. [PMID: 18753197 DOI: 10.1128/jvi.01419-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Morbilliviruses, including measles and canine distemper virus (CDV), are nonsegmented, negative-stranded RNA viruses that cause severe diseases in humans and animals. The transcriptional units in their genomes are separated by untranslated regions (UTRs), which contain essential transcription and translation signals. Due to its increased length, the region between the matrix (M) protein and fusion (F) protein open reading frames is of particular interest. In measles virus, the entire F 5' region is untranslated, while several start codons are found in most other morbilliviruses, resulting in a long F protein signal peptide (Fsp). To characterize the role of this region in morbillivirus pathogenesis, we constructed recombinant CDVs, in which either the M-F UTR was replaced with that between the nucleocapsid (N) and phosphoprotein (P) genes, or 106 Fsp residues were deleted. The Fsp deletion alone had no effect in vitro and in vivo. In contrast, substitution of the UTR was associated with a slight increase in F gene and protein expression. Animals infected with this virus either recovered completely or experienced prolonged disease and death due to neuroinvasion. The combination of both changes resulted in a virus with strongly increased F gene and protein expression and complete attenuation. Taken together, our results provide evidence that the region between the morbillivirus M and F genes modulates virulence through transcriptional control of the F gene expression.
Collapse
|
128
|
Gholami A, Kassis R, Real E, Delmas O, Guadagnini S, Larrous F, Obach D, Prevost MC, Jacob Y, Bourhy H. Mitochondrial dysfunction in lyssavirus-induced apoptosis. J Virol 2008; 82:4774-84. [PMID: 18321977 PMCID: PMC2346764 DOI: 10.1128/jvi.02651-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 02/22/2008] [Indexed: 12/25/2022] Open
Abstract
Lyssaviruses are highly neurotropic viruses associated with neuronal apoptosis. Previous observations have indicated that the matrix proteins (M) of some lyssaviruses induce strong neuronal apoptosis. However, the molecular mechanism(s) involved in this phenomenon is still unknown. We show that for Mokola virus (MOK), a lyssavirus of low pathogenicity, the M (M-MOK) targets mitochondria, disrupts the mitochondrial morphology, and induces apoptosis. Our analysis of truncated M-MOK mutants suggests that the information required for efficient mitochondrial targeting and dysfunction, as well as caspase-9 activation and apoptosis, is held between residues 46 and 110 of M-MOK. We used a yeast two-hybrid approach, a coimmunoprecipitation assay, and confocal microscopy to demonstrate that M-MOK physically associates with the subunit I of the cytochrome c (cyt-c) oxidase (CcO) of the mitochondrial respiratory chain; this is in contrast to the M of the highly pathogenic Thailand lyssavirus (M-THA). M-MOK expression induces a significant decrease in CcO activity, which is not the case with M-THA. M-MOK mutations (K77R and N81E) resulting in a similar sequence to M-THA at positions 77 and 81 annul cyt-c release and apoptosis and restore CcO activity. As expected, the reverse mutations, R77K and E81N, introduced in M-THA induce a phenotype similar to that due to M-MOK. These features indicate a novel mechanism for energy depletion during lyssavirus-induced apoptosis.
Collapse
Affiliation(s)
- Alireza Gholami
- Unité Postulante de Recherche et d'Expertise Dynamique des Lyssavirus et Adaptation à l'Hôte, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Nagaraja T, Madhusudana S, Desai A. Molecular characterization of the full-length genome of a rabies virus isolate from India. Virus Genes 2008; 36:449-59. [PMID: 18363090 DOI: 10.1007/s11262-008-0223-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
Rabies is an important public health problem in South East Asia, with cases in this part of the world contributing to about 70% of the global burden. A large number of rabies cases occur in India, however, there is no organized system of surveillance and hence there is a lack of reliable data. Moreover, comprehensive molecular epidemiological studies have not been performed on Indian virus isolates. In this study, we determined the complete nucleotide and deduced amino acid sequence of a primary isolate of rabies virus obtained from the brain of an infected patient. Comparison of the genomic sequence with those of the ten fully sequenced rabies strains available in GenBank showed nucleotide homology ranging from 97% with AY956319 to 81% with AY705373. Amino acid homology of nucleoprotein ranged from 99.7% with AY352493 to 92% with DQ875051. In case of the glycoprotein gene, the homology ranged from 98.8% with AY956319 to 87.2 % with AY705373. An extensive nucleoprotein, glycoprotein, and full-length genome-based phylogenetic analysis was performed along with sequences available from the GenBank. Phylogenetic analysis of the complete genome sequence indicated that this isolate exhibited close homology with the ex Indian strain AY956319.
Collapse
Affiliation(s)
- Tirumuru Nagaraja
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | | | | |
Collapse
|
130
|
Wu X, Rupprecht CE. Glycoprotein gene relocation in rabies virus. Virus Res 2008; 131:95-9. [PMID: 17850911 DOI: 10.1016/j.virusres.2007.07.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 11/29/2022]
Abstract
Unlike vesicular stomatitis virus, rabies virus glycoprotein gene has not been successfully relocated closer to promoter-proximal regions by reverse genetics. Here we describe an efficient system for the Evelyn-Rokitnicki-Abelseth (ERA) rabies virus with the glycoprotein gene switched with the matrix protein gene, creating a reshuffled virus ERAgm (gene order N-P-G-M-L). With the aid of an autogene plasmid, the T7 RNA polymerase containing a nuclear location signal from the SV40 large T antigen facilitated virus recovery. The rearranged ERAgm rabies virus replicated as well as the parental ERA (gene order N-P-M-G-L) virus, reaching 10(9) ffu/ml in infected BSR cells. The altered glycoprotein gene position in viral genome presented an alternative way to study the pathogenicity of rabies virus. This also provides a potential novel method for rabies vaccine development.
Collapse
Affiliation(s)
- Xianfu Wu
- Centers for Disease Control and Prevention, Rabies Program/PRB /DVRD/CDC, Building 17, Room 6045, MS-G33, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | | |
Collapse
|
131
|
Abstract
Various technological developments have revitalized the approaches employed to study the disease of rabies. In particular, reverse genetics has facilitated the generation of novel viruses used to improve our understanding of the fundamental aspects of rabies virus (RABV) biology and pathogenicity and yielded novel constructs potentially useful as vaccines against rabies and other diseases. Other techniques such as high throughput methods to examine the impact of rabies virus infection on host cell gene expression and two hybrid systems to explore detailed protein-protein interactions also contribute substantially to our understanding of virus-host interactions. This review summarizes much of the increased knowledge about rabies that has resulted from such studies but acknowledges that this is still insufficient to allow rational attempts at curing those who present with clinical disease.
Collapse
Affiliation(s)
- Susan A Nadin-Davis
- Centre of Expertise for Rabies, Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | | |
Collapse
|
132
|
The glycoprotein and the matrix protein of rabies virus affect pathogenicity by regulating viral replication and facilitating cell-to-cell spread. J Virol 2007; 82:2330-8. [PMID: 18094173 DOI: 10.1128/jvi.02327-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
While the glycoprotein (G) of rabies virus (RV) is known to play a predominant role in the pathogenesis of rabies, the function of the RV matrix protein (M) in RV pathogenicity is not completely clear. To further investigate the roles of these proteins in viral pathogenicity, we constructed chimeric recombinant viruses by exchanging the G and M genes of the attenuated SN strain with those of the highly pathogenic SB strain. Infection of mice with these chimeric viruses revealed a significant increase in the pathogenicity of the SN strain bearing the RV G from the pathogenic SB strain. Moreover, the pathogenicity was further increased when both G and M from SB were introduced into SN. Interestingly, the replacement of the G or M gene or both in SN by the corresponding genes of SB was associated with a significant decrease in the rate of viral replication and viral RNA synthesis. In addition, a chimeric SN virus bearing both the M and G genes from SB exhibited more efficient cell-to-cell spread than a chimeric SN virus in which only the G gene was replaced. Together, these data indicate that both G and M play an important role in RV pathogenesis by regulating virus replication and facilitating cell-to-cell spread.
Collapse
|
133
|
Ito N, Sugiyama M. [Progression in studies on pathogenesis of rabies virus]. Uirusu 2007; 57:191-198. [PMID: 18357757 DOI: 10.2222/jsv.57.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rabies virus causes lethal neurological symptoms in humans and animals. Rabies epidemics have continued to occur throughout the world, despite the fact that rabies can be effectively prevented by vaccination. The development of inexpensive and safe attenuated live vaccines and the establishment of cures are the keys to control rabies. To achieve these objectives, it is important to elucidate mechanism by which rabies virus causes disease. Here, previous studies on the pathogenesis of rabies virus are reviewed and ways to apply previous findings to rabies control are also discussed.
Collapse
Affiliation(s)
- Naoto Ito
- Laboratory of Zoonotic Diseases, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University 1-1 Yanagido, Gifu, 501-1193, Japan.
| | | |
Collapse
|
134
|
Structural abnormalities in neurons are sufficient to explain the clinical disease and fatal outcome of experimental rabies in yellow fluorescent protein-expressing transgenic mice. J Virol 2007; 82:513-21. [PMID: 17942540 DOI: 10.1128/jvi.01677-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under natural conditions and in some experimental models, rabies virus infection of the central nervous system causes relatively mild histopathological changes, without prominent evidence of neuronal death despite its lethality. In this study, the effects of rabies virus infection on the structure of neurons were investigated with experimentally infected transgenic mice expressing yellow fluorescent protein (YFP) in neuronal subpopulations. Six-week-old mice were inoculated in the hind-limb footpad with the CVS strain of fixed virus or were mock infected with vehicle (phosphate-buffered saline). Brain regions were subsequently examined by light, epifluorescent, and electron microscopy. In moribund CVS-infected mice, histopathological changes were minimal in paraffin-embedded tissue sections, although mild inflammatory changes were present. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling and caspase-3 immunostaining showed only a few apoptotic cells in the cerebral cortex and hippocampus. Silver staining demonstrated the preservation of cytoskeletal integrity in the cerebral cortex. However, fluorescence microscopy revealed marked beading and fragmentation of the dendrites and axons of layer V pyramidal neurons in the cerebral cortex, cerebellar mossy fibers, and axons in brainstem tracts. At an earlier time point, when mice displayed hind-limb paralysis, beading was observed in a few axons in the cerebellar commissure. Toluidine blue-stained resin-embedded sections from moribund YFP-expressing animals revealed vacuoles within the perikarya and proximal dendrites of pyramidal neurons in the cerebral cortex and hippocampus. These vacuoles corresponded with swollen mitochondria under electron microscopy. Vacuolation was also observed ultrastructurally in axons and in presynaptic nerve endings. We conclude that the observed structural changes are sufficient to explain the severe clinical disease with a fatal outcome in this experimental model of rabies.
Collapse
|
135
|
Dhingra V, Li X, Liu Y, Fu ZF. Proteomic profiling reveals that rabies virus infection results in differential expression of host proteins involved in ion homeostasis and synaptic physiology in the central nervous system. J Neurovirol 2007; 13:107-17. [PMID: 17505979 DOI: 10.1080/13550280601178226] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand how rabies virus (RV) infection results in neuronal dysfunction, the authors employed proteomics technology to profile host responses to RV infection. In mice infected with wild-type (wt) RV, the expression of proteins involved in ion homeostasis was altered. H(+) ATPase and Na(+)/K(+) ATPase were up-regulated whereas Ca(2+) ATPase was down-regulated, which resulted in reduction of the intracellular Na(+) and Ca(2+) concentrations. Furthermore, infection with wt RV resulted in down-regulation of soluble NSF attachment receptor proteins (SNAREs) such as alpha-synaptosome-associated protein (SNAP), tripartite motif-containing 9 (TRIM9), syntaxin, and pallidin, all of which are involved in docking and fusion of synaptic vesicles to and with presynaptic membrane. As a consequence, accumulation of synaptic vesicles was observed in the presynapses of mice infected with wt RV. These data demonstrate that infection with wt RV results in alteration of host protein expression, particularly those involved in ion homeostasis and docking and fusion of synaptic vesicles to presynaptic membrane, which may lead to neuronal dysfunction. On the other hand, attenuated RV up-regulated the expression of proteins involved in the induction of apoptosis, explaining why apoptosis is observed only in cells or animals infected with attenuated RV in previous studies.
Collapse
Affiliation(s)
- Vikas Dhingra
- Department of Pathology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
136
|
Marston DA, McElhinney LM, Johnson N, Müller T, Conzelmann KK, Tordo N, Fooks AR. Comparative analysis of the full genome sequence of European bat lyssavirus type 1 and type 2 with other lyssaviruses and evidence for a conserved transcription termination and polyadenylation motif in the G-L 3' non-translated region. J Gen Virol 2007; 88:1302-1314. [PMID: 17374776 DOI: 10.1099/vir.0.82692-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We report the first full-length genomic sequences for European bat lyssavirus type-1 (EBLV-1) and type-2 (EBLV-2). The EBLV-1 genomic sequence was derived from a virus isolated from a serotine bat in Hamburg, Germany, in 1968 and the EBLV-2 sequence was derived from a virus isolate from a human case of rabies that occurred in Scotland in 2002. A long-distance PCR strategy was used to amplify the open reading frames (ORFs), followed by standard and modified RACE (rapid amplification of cDNA ends) techniques to amplify the 3' and 5' ends. The lengths of each complete viral genome for EBLV-1 and EBLV-2 were 11 966 and 11 930 base pairs, respectively, and follow the standard rhabdovirus genome organization of five viral proteins. Comparison with other lyssavirus sequences demonstrates variation in degrees of homology, with the genomic termini showing a high degree of complementarity. The nucleoprotein was the most conserved, both intra- and intergenotypically, followed by the polymerase (L), matrix and glyco- proteins, with the phosphoprotein being the most variable. In addition, we have shown that the two EBLVs utilize a conserved transcription termination and polyadenylation (TTP) motif, approximately 50 nt upstream of the L gene start codon. All available lyssavirus sequences to date, with the exception of Pasteur virus (PV) and PV-derived isolates, use the second TTP site. This observation may explain differences in pathogenicity between lyssavirus strains, dependent on the length of the untranslated region, which might affect transcriptional activity and RNA stability.
Collapse
Affiliation(s)
- D A Marston
- Rabies & Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - L M McElhinney
- Rabies & Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - N Johnson
- Rabies & Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - T Müller
- Institute for Epidemiology, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Friedrich Loeffler Institute - Federal Research Institute for Animal Health, Seestrasse 55, D-16868 Wusterhausen, Germany
| | - K K Conzelmann
- Max-von-Pettenkofer Institute and Gene Center, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - N Tordo
- Unité Stratégies Antivirales, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - A R Fooks
- Rabies & Wildlife Zoonoses Group, Veterinary Laboratories Agency (VLA, Weybridge), WHO Collaborating Centre for the Characterisation of Rabies and Rabies-Related Viruses, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
137
|
Faber M, Faber ML, Li J, Preuss MAR, Schnell MJ, Dietzschold B. Dominance of a nonpathogenic glycoprotein gene over a pathogenic glycoprotein gene in rabies virus. J Virol 2007; 81:7041-7. [PMID: 17459937 PMCID: PMC1933278 DOI: 10.1128/jvi.00357-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nonpathogenic phenotype of the live rabies virus (RV) vaccine SPBNGAN is determined by an Arg-->Glu exchange at position 333 in the glycoprotein, designated GAN. We recently showed that after several passages of SPBNGAN in mice, an Asn-->Lys mutation arose at position 194 of GAN, resulting in GAK, which was associated with a reversion to the pathogenic phenotype. Because an RV vaccine candidate containing two GAN genes (SPBNGAN-GAN) exhibits increased immunogenicity in vivo compared to the single-GAN construct, we tested whether the presence of two GAN genes might also enhance the probability of reversion to pathogenicity. Comparison of SPBNGAN-GAN with RVs constructed to contain either both GAN and GAK genes (SPBNGAN-GAK and SPBNGAK-GAN) or two GAK genes (SPBNGAK-GAK) showed that while SPBNGAK-GAK was pathogenic, SPBNGAN-GAN and SPBNGAN-GAK were completely nonpathogenic and SPBNGAK-GAN showed strongly reduced pathogenicity. Analysis of genomic RV RNA in mouse brain tissue revealed significantly lower virus loads in SPBNGAN-GAK- and SPBNGAK-GAN-infected brains than those detected in SPBNGAK-GAK-infected brains, indicating the dominance of the nonpathogenic phenotype determined by GAN over the GAK-associated pathogenic phenotype. Virus production and viral RNA synthesis were markedly higher in SPBNGAN-, SPBNGAK-GAN-, and SPBNGAN-GAK-infected neuroblastoma cells than in the SPBNGAK- and SPBNGAK-GAK-infected counterparts, suggesting control of GAN dominance at the level of viral RNA synthesis. These data point to the lower risk of reversion to pathogenicity of a recombinant RV carrying two identical GAN genes compared to that of an RV carrying only a single GAN gene.
Collapse
Affiliation(s)
- Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
138
|
Cheng X, Cheng X, Mukhtar M, Acheampong EA, Srinivasan A, Rafi M, Pomerantz RJ, Parveen Z. HIV-1 Vpr potently induces programmed cell death in the CNS in vivo. DNA Cell Biol 2007; 26:116-31. [PMID: 17328670 DOI: 10.1089/dna.2006.0541] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human immunodeficiency virus type I (HIV-1) accessory protein Vpr has been associated with the induction of programmed cell death (apoptosis) and cell-cycle arrest. Studies have shown the apoptotic effect of Vpr on primary and established cell lines and on diverse tissues including the central nervous system (CNS) in vitro. However, the relevance of the effect of Vpr observed in vitro to HIV-1 neuropathogenesis in vivo, remains unknown. Due to the narrow host range of HIV-1 infection, no animal model is currently available. This has prompted us to consider a small animal model to evaluate the effects of Vpr on CNS in vivo through surrogate viruses expressing HIV-1Vpr. A single round of replication competent viral vectors, expressing Vpr, were used to investigate the apoptosis-inducing capabilities of HIV-1Vpr in vivo. Viral particles pseudotyped with VSV-G or N2c envelopes were generated from spleen necrosis virus (SNV) and HIV-1-based vectors to transduce CNS cells. The in vitro studies have demonstrated that Vpr generated by SNV vectors had less apoptotic effects on CNS cells compared with Vpr expressed by HIV-1 vectors. The in vivo study has suggested that viral particles, expressing Vpr generated by HIV-1-based vectors, when delivered through the ventricle, caused loss of neurons and dendritic processes in the cortical region. The apoptotic effect was extended beyond the cortical region and affected the hippocampus neurons, the lining of the choroids plexus, and the cerebellum. However, the effect of Vpr, when delivered through the cortex, showed neuronal damage only around the site of injection. Interestingly, the number of apoptotic neurons were significantly higher with HIV-1 vectors expressing Vpr than by the SNV vectors. This may be due to the differences in the proteins expressed by these viral vectors. These results suggest that Vpr induces apoptosis in CNS cells in vitro and in vivo. To our knowledge, this is the first study to investigate the apoptosis-inducing capabilities of HIV-1Vpr in vivo in neonatal mice. We propose that this, in expensive animal model, may be of value to design-targeted neuroprotective therapeutics.
Collapse
Affiliation(s)
- Xiaodong Cheng
- The Dorrance H. Hamilton Laboratories, Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Jackson AC, Scott CA, Owen J, Weli SC, Rossiter JP. Therapy with minocycline aggravates experimental rabies in mice. J Virol 2007; 81:6248-53. [PMID: 17409147 PMCID: PMC1900124 DOI: 10.1128/jvi.00323-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minocycline is a tetracycline derivative with antiapoptotic and anti-inflammatory properties, and the drug has been shown to have beneficial effects in a variety of models of neurological disorders. The potentially neuroprotective role of minocycline was assessed in experimental in vitro and in vivo models of rabies virus infection. In this study, 5 nM minocycline did not improve the viability of embryonic mouse cortical and hippocampal neurons infected in vitro with the attenuated SAD-D29 strain of rabies virus, based on assessments using trypan blue exclusion. Two-day-old ICR mice were inoculated in the right hind limb thigh muscle with SAD-D29, and they received daily subcutaneous injections of either 50 mg/kg minocycline or vehicle (phosphate-buffered saline). Infected minocycline-treated mice experienced an earlier onset of neurologic signs and greater mortality (83% versus 50%) than those receiving vehicle (log rank test, P=0.002 and P=0.003, respectively). Immunohistochemical analysis of rabies virus antigen distribution was performed at early time points and in moribund mice. There were greater numbers of infected neurons in the regional brain areas of minocycline-treated mice than in vehicle-treated mice, which was significant in the CA1 region of the hippocampus. There was less apoptosis (P=0.01) and caspase 3 immunostaining (P=0.0008) in the midbrains of mice treated with minocycline than in mice treated with vehicle, consistent with a neuroprotective role of neuronal apoptosis that may have had a mild effect of inhibiting viral spread. Reduced infiltration of CD3+ T cells was observed in the pons/medulla of moribund mice that received minocycline therapy (P=0.008), suggesting that the anti-inflammatory actions of minocycline may intensify the neurologic disease. These findings indicate that minocycline has important detrimental effects in the therapy of experimental rabies. Empirical therapy with minocycline should therefore be approached with caution in cases of human rabies and possibly other viral encephalitides until more experimental data become available.
Collapse
Affiliation(s)
- Alan C Jackson
- Department of Medicine (Neurology), Centre for Neuroscience Studies, Queen's University, and Kingston General Hospital, Connell 725, 76 Stuart Street, Kingston, ON, Canada K7L 2V7.
| | | | | | | | | |
Collapse
|
140
|
Shimizu K, Ito N, Mita T, Yamada K, Hosokawa-Muto J, Sugiyama M, Minamoto N. Involvement of nucleoprotein, phosphoprotein, and matrix protein genes of rabies virus in virulence for adult mice. Virus Res 2007; 123:154-60. [PMID: 17010466 DOI: 10.1016/j.virusres.2006.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 08/30/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
Rabies virus Ni-CE strain causes nonlethal infection in adult mice after intracerebral inoculation, whereas the parental Nishigahara strain kills mice. In this study, to identify viral gene(s) related to the difference in pathogenicity between Ni-CE and Nishigahara strains, we generated chimeric viruses with respective genes of the virulent Nishigahara strain in the background of the avirulent Ni-CE genome. Since chimeric viruses, which had the N, P, or M genes of the Nishigahara strain, respectively, killed adult mice after intracerebral inoculation, it became evident that the N, P, and M genes are related to the difference in pathogenicity between Ni-CE and Nishigahara strains. Previously, we showed that the G gene is a major contributor to the difference in pathogenicity between another avirulent strain, RC-HL, and the parental Nishigahara strain. These results imply that the attenuation mechanism of the Ni-CE strain is different from that of the RC-HL strain, thus suggesting that rabies virus can be attenuated by diverse mechanisms. This is the first report of changes in viral genes other than the G gene of rabies virus causing the reversion of pathogenicity of an avirulent strain.
Collapse
Affiliation(s)
- Kenta Shimizu
- The United Graduate School of Veterinary Sciences, Gifu University, Japan
| | | | | | | | | | | | | |
Collapse
|
141
|
Meng SL, Yan JX, Xu GL, Nadin-Davis SA, Ming PG, Liu SY, Wu J, Ming HT, Zhu FC, Zhou DJ, Xiao QY, Dong GM, Yang XM. A molecular epidemiological study targeting the glycoprotein gene of rabies virus isolates from China. Virus Res 2006; 124:125-38. [PMID: 17129631 DOI: 10.1016/j.virusres.2006.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Revised: 10/10/2006] [Accepted: 10/20/2006] [Indexed: 11/29/2022]
Abstract
A group of 31 rabies viruses (RABVs), recovered primarily from dogs, one deer and one human case, were collected from various areas in China between 1989 and 2006. Complete G gene sequences determined for these isolates indicated identities of nucleotide and amino acid sequences of >or=87% and 93.8%, respectively. Phylogenetic analysis of these and some additional Chinese isolates clearly supported the placement of all Chinese viruses in Lyssavirus genotype 1 and divided all Chinese isolates between four distinct groups (I-IV). Several variants identified within the most commonly encountered group I were distributed according to their geographical origins. A comparison of representative Chinese viruses with other isolates retrieved world-wide indicated a close evolutionary relationship between China group I and II viruses and those of Indonesia while China group III viruses formed an outlying branch to variants from Malaysia and Thailand. China group IV viruses were closely related to several vaccine strains. The predicted glycoprotein sequences of these RABVs variants are presented and discussed with respect to the utility of the anti-rabies biologicals currently employed in China.
Collapse
Affiliation(s)
- Sheng-Li Meng
- Wuhan Institute of Biological Products, Wuhan 430060, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Park CH, Kondo M, Inoue S, Noguchi A, Oyamada T, Yoshikawa H, Yamada A. The histopathogenesis of paralytic rabies in six-week-old C57BL/6J mice following inoculation of the CVS-11 strain into the right triceps surae muscle. J Vet Med Sci 2006; 68:589-95. [PMID: 16820716 DOI: 10.1292/jvms.68.589] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fatal encephalomyelitis was developed after intracerebral and hind limb inoculation of in 6-week-old C57BL/6J mice by the inoculation of fixed rabies virus (CVS-11 strain), intracerebrally and into hind. After the intracerebral inoculation, virus antigens were detected in the cerebral cortex and hippocampus at 2 days postinoculation (PI), and later spread centrifugally to thalamus, brain stem, cerebellum, spinal cord and spinal ganglia. At 4 days PI, severe apoptosis and DNA fragmentation were observed in the hippocampus and cerebral cortex. All mice infected intracerebrally were dead without limb paralysis at from 10 to 11 days PI. In contrast, mice infected with virus intramuscularly were persistently observed virus antigens in the myocytes at the site of inoculation from 2 days PI. At 4 days PI, the antigens were demonstrated in the spinal dorsal root ganglia, spinal cord and muscle spindles without their detection in the cerebrum and hippocampus. There were no apoptosis in the spinal cord and dorsal root ganglia, however hind limb paralysis was found in all infected mice. Hind limb paralysis was progressed to quadriparalysis, and mice were dead from 11 to 13 days PI. From 4 days PI, necrosis of neuron was observed in the the spinal and dorsal ganglia with infiltration of lymphocyte. This study suggested that the necrosis of spinal neurons was more important to cause the paralysis of hind limb rather than the severe cerebral infection and apoptosis in C57BL/6J mice infected with CVS-11 strain. The virus primarily replicated in the muscles was ascended the spinal cord via afferent fibers and retrogradely invaded the cerebrum, and with subsequent spread to muscle spindles.
Collapse
Affiliation(s)
- Chun-Ho Park
- Department of Veterinary Pathology, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Japan
| | | | | | | | | | | | | |
Collapse
|
143
|
Sarmento L, Tseggai T, Dhingra V, Fu ZF. Rabies virus-induced apoptosis involves caspase-dependent and caspase-independent pathways. Virus Res 2006; 121:144-51. [PMID: 16814422 DOI: 10.1016/j.virusres.2006.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/08/2006] [Accepted: 05/21/2006] [Indexed: 01/30/2023]
Abstract
Previously, it has been shown that the laboratory attenuated rabies virus CVS-B2C, but not the wild-type virus SHBRV, induces apoptosis in mice and the induction of apoptosis is mediated by viral glycoprotein. Induction of apoptosis by CVS-B2C limits the spread of the virus in the CNS. In the present study, we characterized the pathways by which CVS-B2C induces apoptosis. BSR cells were infected with CVS-B2C or SHBRV and harvested at different time points for detection of apoptosis by immunofluorescence and flow cytometry. Apoptosis was detected only in cells infected with CVS-B2C, but not SHBRV. Caspase activity and expression of several apoptotic proteins were analyzed by fluorometric assay and Western blotting. Activation of caspase-8 and -3, but not of caspase-9, was observed in CVS-B2C-infected cells. In addition, the level of expression of Apaf-1 did not change. Furthermore, PARP was cleaved confirming activation of downstream caspases. All these data suggest that CVS-B2C infection activates the extrinsic, but not the intrinsic, apoptotic pathway. In addition, AIF, a caspase-independent apoptotic protein was up-regulated and translocated from the cytoplasm to the nucleus post-infection, suggesting that apoptosis induced by CVS-B2C also involves the activation of a caspase-independent pathway.
Collapse
Affiliation(s)
- Luciana Sarmento
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
144
|
Lefeuvre A, Contamin H, Decelle T, Fournier C, Lang J, Deubel V, Marianneau P. Host-cell interaction of attenuated and wild-type strains of yellow fever virus can be differentiated at early stages of hepatocyte infection. Microbes Infect 2006; 8:1530-8. [PMID: 16697681 DOI: 10.1016/j.micinf.2006.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 11/24/2022]
Abstract
Yellow fever (YF) virus is currently found in tropical Africa and South America, and is responsible for a febrile to severe illness characterized by organ failure and shock. The attenuated YF 17D strain, used in YF vaccine, was derived from the wild-type strain Asibi. Although studies have been done on genetic markers of YF virulence, differentiation of the two strains in terms of host-cell interaction during infection remains elusive. As YF wild-type strains are hepatotropic, we chose a hepatic cell line (HepG2) to study YF virus-host cell interaction. HepG2 cells rapidly produced high titres of infectious viral particles for 17D and Asibi YF strains. However, HepG2 cells were more susceptible to the attenuated 17D virus infection, and only this virus strain induced early apoptosis in these cells. Molecular markers specific for the 17D virus were identified by microarray analysis and confirmed by quantitative RT-PCR analysis. As early as 1h postinfection, three genes, (IEX-1, IRF-1, DEC-1) all implicated in apoptosis pathways, were upregulated. Later in infection (48 h) two other genes (HSP70-1A and 1B), expressed in cases of cellular stress, were highly upregulated in 17D-infected HepG2 cells. The early specific upregulation of these cellular genes in HepG2 cells may be considered markers of the 17D virus. This study on the YF attenuated strain gives a new approach to the analysis of the factors involved in virus attenuation.
Collapse
Affiliation(s)
- Anabelle Lefeuvre
- Biology of Emergent Viral Infections Unit, Institut Pasteur, IFR 128 BioSciences Lyon-Gerland, 21 av. Tony Garnier, 69007 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
145
|
Jackson AC, Rasalingam P, Weli SC. Comparative pathogenesis of recombinant rabies vaccine strain SAD-L16 and SAD-D29 with replacement of Arg333 in the glycoprotein after peripheral inoculation of neonatal mice: less neurovirulent strain is a stronger inducer of neuronal apoptosis. Acta Neuropathol 2006; 111:372-8. [PMID: 16453143 DOI: 10.1007/s00401-005-0006-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 09/14/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
Less neurovirulent strains of rabies virus have been recognized to be stronger inducers of neuronal apoptosis in vitro than more neurovirulent strains, but few studies have clarified whether this also applies in vivo. A comparative study was performed in two-day-old ICR mice inoculated in a hindlimb thigh muscle with recombinant rabies virus vaccine strain SAD-L16 (L16) or SAD-D29 (D29), which contains an attenuating substitution of Arg333 in the rabies virus glycoprotein. Histopathological and immunohistochemical analyses of brains were performed at early daily time points and in moribund animals. Both viruses caused progressive limb weakness; mortality with L16 was 100% at day 7 post-inoculation (p.i.) and 75% at 17 days p.i. for D29 and Kaplan-Meyer survival curves were significantly different. L16 spread to the brain more quickly than D29, and both viruses produced multifocal lesions in the brainstem and cerebellum associated with inflammatory changes and neuronal apoptosis. There was more disseminated involvement of the brain and many more infected neurons in L16 infection, particularly in the neostriatum, hippocampus, and cerebral cortex. Both viruses induced neuronal apoptosis, which was most marked in the brainstem tegmentum and internal granular layer of the cerebellum. In light of the lower burden of infection and smaller number of neurons infected with D29, this less virulent virus was a stronger inducer of neuronal apoptosis than the more virulent L16. These findings support previous in vitro studies indicating that there is an inverse relationship between pathogenicity and apoptosis. Induction of apoptosis, which is an innate mechanism in which the host restricts viral spread, may contribute to severe clinical neurological disease when there is viral invasion into the central nervous system.
Collapse
Affiliation(s)
- Alan C Jackson
- Department of Medicine (Neurology), Queen's University, Kingston General Hospital, Connell 725, 76 Stuart Street, K7L 2V7 Kingston, ON, Canada.
| | | | | |
Collapse
|
146
|
Volmer R, Monnet C, Gonzalez-Dunia D. Borna disease virus blocks potentiation of presynaptic activity through inhibition of protein kinase C signaling. PLoS Pathog 2006; 2:e19. [PMID: 16552443 PMCID: PMC1401496 DOI: 10.1371/journal.ppat.0020019] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 01/30/2006] [Indexed: 01/19/2023] Open
Abstract
Infection by Borna disease virus (BDV) enables the study of the molecular mechanisms whereby a virus can persist in the central nervous system and lead to altered brain function in the absence of overt cytolysis and inflammation. This neurotropic virus infects a wide variety of vertebrates and causes behavioral diseases. The basis of BDV-induced behavioral impairment remains largely unknown. Here, we investigated whether BDV infection of neurons affected synaptic activity, by studying the rate of synaptic vesicle (SV) recycling, a good indicator of synaptic activity. Vesicular cycling was visualized in cultured hippocampal neurons synapses, using an assay based on the uptake of an antibody directed against the luminal domain of synaptotagmin I. BDV infection did not affect elementary presynaptic functioning, such as spontaneous or depolarization-induced vesicular cycling. In contrast, infection of neurons with BDV specifically blocked the enhancement of SV recycling that is observed in response to stimuli-induced synaptic potentiation, suggesting defects in long-term potentiation. Studies of signaling pathways involved in synaptic potentiation revealed that this blockade was due to a reduction of the phosphorylation by protein kinase C (PKC) of proteins that regulate SV recycling, such as myristoylated alanine-rich C kinase substrate (MARCKS) and Munc18–1/nSec1. Moreover, BDV interference with PKC-dependent phosphorylation was identified downstream of PKC activation. We also provide evidence suggesting that the BDV phosphoprotein interferes with PKC-dependent phosphorylation. Altogether, our results reveal a new mechanism by which a virus can cause synaptic dysfunction and contribute to neurobehavioral disorders. The central nervous system is the target of many persistent viral infections that can induce diverse pathological manifestations. Besides causing meningitis or encephalitis, viruses can infect neurons without overt structural damage, but nevertheless alter cellular functioning by yet-undefined molecular mechanisms, thereby disturbing homeostasis and causing disease. Here, the authors have studied the infection by Borna disease virus, an RNA virus that persists in the brain of a wide variety of animals and causes behavioral disturbances. Using primary cultures of neurons, they show that Borna disease virus interferes specifically with the activity-dependent enhancement of synaptic activity, one form of synaptic plasticity that is believed to be essential for memory formation. This interference was correlated to a reduced phosphorylation of neuronal targets by protein kinase C (PKC), a kinase that plays important roles in the regulation of neuronal activity. The authors also provide evidence that the viral phosphoprotein may be responsible for this interference, possibly by competing with the phosphorylation of endogenous cellular PKC substrates. These results illustrate an intriguing aspect of viral interference with neuronal function and reveal a new mechanism whereby a virus can cause synaptic dysfunction and contribute to neurobehavioral disorders.
Collapse
Affiliation(s)
- Romain Volmer
- Avenir group, INSERM, U563, Toulouse, France
- Unité des Virus Lents, CNRS URA 1930, Département de Virologie, Institut Pasteur, Paris, France
| | | | - Daniel Gonzalez-Dunia
- Avenir group, INSERM, U563, Toulouse, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
147
|
Sarmento L, Li XQ, Howerth E, Jackson AC, Fu ZF. Glycoprotein-mediated induction of apoptosis limits the spread of attenuated rabies viruses in the central nervous system of mice. J Neurovirol 2006; 11:571-81. [PMID: 16338751 DOI: 10.1080/13550280500385310] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Induction of apoptosis by rabies virus (RV) has been reported to be associated with the expression of the glycoprotein (G), but inversely correlated with pathogenicity. To further delineate the association between the expression of the G and the induction of apoptosis, recombinant RVs with replacement of only the G gene were used to infect mice by the intracerebral route. Recombinant viruses expressing the G from attenuated viruses expressed higher level of the G and induced more apoptosis in mice than recombinant RV expressing the G from wild-type (wt) or pathogenic RV, demonstrating that it is the G gene that determines the level of G expression and, consequently, the induction of apoptosis. Likewise, recombinant viruses expressing the G from wt or pathogenic RV are more pathogenic in mice than those expressing G from attenuated RV, confirming the inverse correlation between RV pathogenicity and the induction of apoptosis. To investigate the mechanism by which induction of apoptosis attenuates viral pathogenicity, mice were infected with wt or attenuated RV by the intramuscular route. It was found that low doses of attenuated RV induced apoptosis in the spinal cord and failed to spread to the brain or produce neurological disease. On the other hand, apoptosis was not observed in the spinal cord of mice infected with the same doses of wt RV and the virus spread to various parts of the brain and induced fatal neurologic disease. These results suggest that glycoprotein-mediated induction of apoptosis limits the spread of attenuated rabies viruses in the central nervous system (CNS) of mice.
Collapse
Affiliation(s)
- Luciana Sarmento
- Department of Pathology, University of Georgia, Athens, Georgia, USA
| | | | | | | | | |
Collapse
|
148
|
Takayama-Ito M, Inoue KI, Shoji Y, Inoue S, Iijima T, Sakai T, Kurane I, Morimoto K. A highly attenuated rabies virus HEP-Flury strain reverts to virulent by single amino acid substitution to arginine at position 333 in glycoprotein. Virus Res 2006; 119:208-15. [PMID: 16473429 DOI: 10.1016/j.virusres.2006.01.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 12/22/2005] [Accepted: 01/10/2006] [Indexed: 10/25/2022]
Abstract
An amino acid at position 333 in the glycoprotein of several fixed rabies virus strains is responsible for the pathogenicity in adult mice. Substitution of arginine at this position largely reduces the viral pathogenicity in adult mice. Attenuation by this single amino acid substitution has been established by using escape mutants selected by monoclonal antibodies and point-mutated virus generated by reverse-genetics. A highly attenuated HEP-Flury strain, which was selected by serial passages in cell cultures, has glutamine at this position. In this study, a point-mutated rHEP333R virus, having arginine at position 333, was generated and examined for the responsibility of this substitution in rabies pathogenicity. The rHEP333R acquired an ability to spread and propagate in mouse brain but the parental rHEP did not. The pathogenicity of rHEP333R to adult mice by intracerebral inoculation largely increased. We confirmed that an arginine at position 333 contributed to reversion of the pathogenicity in a highly attenuated HEP-Flury strain.
Collapse
Affiliation(s)
- Mutsuyo Takayama-Ito
- Department of Virology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Faber M, Faber ML, Papaneri A, Bette M, Weihe E, Dietzschold B, Schnell MJ. A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J Virol 2006; 79:14141-8. [PMID: 16254349 PMCID: PMC1280225 DOI: 10.1128/jvi.79.22.14141-14148.2005] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several rabies virus (RV) vaccine strains containing an aspartic acid (Asp) or glutamic acid (Glu) instead of an arginine (Arg) at position 333 of the RV glycoprotein (G) are apathogenic for immunocompetent mice even after intracranial inoculation. However, we previously showed that the nonpathogenic phenotype of the highly attenuated RV strain SPBNGA, which contains a Glu at position 333 of G, is unstable when this virus is passaged in newborn mice. While the Glu(333) remained unchanged after five mouse passages, an Asn(194)-->Lys(194) mutation occurred in RV G. This mutation was associated with increased pathogenicity for adult mice. Using site-directed mutagenesis to exchange Asn(194) with Lys(194) in the G protein of SPBNGA, resulting in SPBNGA-K, we show here that this mutation is solely responsible for the increase in pathogenicity and that the Asn(194)-->Lys(194) mutation does not arise when Asn(194) is exchanged with Ser(194) (SPBNGA-S). Our data presented indicate that the increased pathogenicity of SPBNGA-K is due to increased viral spread in vivo and in vitro, faster internalization of the pathogenic virus into cells, and a shift in the pH threshold for membrane fusion. These results are consistent with the notion that the RV G protein is a major contributor to RV pathogenesis and that the more pathogenic RVs escape the host responses by a faster spread than that of less pathogenic RVs.
Collapse
Affiliation(s)
- Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Ubol S, Kasisith J, Pitidhammabhorn D, Tepsumethanol V. Screening of pro-apoptotic genes upregulated in an experimental street rabies virus-infected neonatal mouse brain. Microbiol Immunol 2005; 49:423-31. [PMID: 15905604 DOI: 10.1111/j.1348-0421.2005.tb03746.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rabies virus (RABV) is able to induce apoptotic death of target cells. The molecular pathway of RABV-induced cell death is partially known. In the present study, cDNA array analysis was used as a tool to screen for pro-apoptotic genes that may be involved in RABV induction. RNA was extracted from the infected CNS and from mock-infected controls. When the mean gene expression was compared between the infected group and controls, 21 potential apoptotic genes were identified that exhibited more than 2.5-fold difference in their expression levels. These 21 genes can be grouped into two groups, those genes that participate in the commitment phase and those that play a role as executioners. Examples of genes in commitment phase were death receptors (Fas-L receptor, TNF-receptor), lysosomal proteases, calpain, caspase-1, signaling molecules (ERK, p38MAPK) and bcl-2 family members. Cytochrome c and caspase-3 were representatives of executioners. Based on types of genes activated during the commitment phase, two independent apoptotic mechanisms may be activated in response to the RV infection. The first is immune-mediated death which may operate through the receptor-ligand pathway activated by caspase-1 and the pro-inflammatory cytokine, IL-1beta. The other mechanism is a protease-mediated process which involves lysosomal proteases and calcium-dependent neutral proteases. These two stimulating pathways were followed by Bad, Bak, Bid activation and subsequently the upregulation of cytochrome c and caspase-3. In addition, mobilization of K+ ion and other accessory apoptotic genes such as annexins and clusterin were also upregulated.
Collapse
Affiliation(s)
- Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Ratchatewee, Bangkok, Thailand.
| | | | | | | |
Collapse
|