101
|
Yung CF, Lee KS, Thein TL, Tan LK, Gan VC, Wong JGX, Lye DC, Ng LC, Leo YS. Dengue serotype-specific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, singapore. Am J Trop Med Hyg 2015; 92:999-1005. [PMID: 25825386 PMCID: PMC4426593 DOI: 10.4269/ajtmh.14-0628] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/24/2015] [Indexed: 11/07/2022] Open
Abstract
Studies on serotype-specific features of dengue and disease severity on adults are limited. We prospectively recruited adult febrile patients without alternate diagnosis to dengue from April 2005 to December 2011. Outcomes were defined using both the World Health Organization (WHO) 1997 and 2009 criteria; Dengue hemorrhagic fever (DHF) and severe dengue (SD). Infecting serotype was identified in 469 dengue-confirmed patients comprising 22.0% dengue virus serotype 1 (DENV-1), 57.1% DENV-2, 17.1% DENV-3, and 3.8% DENV-4. Cases infected with DENV-1 were more likely to present with red eyes whereas presence of joint pain and lower platelet count was associated with DENV-2 cases. After adjusting for potential confounders, DENV-1 was associated with both DHF (adjusted Relative Risk [aRR] = 1.74) and SD (aRR = 2.1) whereas DENV-2 had a lower risk of DHF (aRR = 0.5). DENV-1 genotype 1 and DENV-2 cosmopolitan were the predominant genotypes identified. Infecting dengue serotype and possibly genotype may play an important role in disease severity among adult dengue patients in Singapore.
Collapse
Affiliation(s)
- Chee-Fu Yung
- *Address correspondence to Chee-Fu Yung, Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433. E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Hapuarachchi HC, Chua RCR, Shi Y, Thein TL, Lee LK, Lee KS, Lye DC, Ng LC, Leo YS. Clinical outcome and genetic differences within a monophyletic Dengue virus type 2 population. PLoS One 2015; 10:e0121696. [PMID: 25811657 PMCID: PMC4374945 DOI: 10.1371/journal.pone.0121696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 12/28/2022] Open
Abstract
The exact mechanisms of interplay between host and viral factors leading to severe dengue are yet to be fully understood. Even though previous studies have implicated specific genetic differences of Dengue virus (DENV) in clinical severity and virus attenuation, similar studies with large-scale, whole genome screening of monophyletic virus populations are limited. Therefore, in the present study, we compared 89 whole genomes of DENV-2 cosmopolitan clade III isolates obtained from patients diagnosed with dengue fever (DF, n = 58), dengue hemorrhagic fever (DHF, n = 30) and dengue shock syndrome (DSS, n = 1) in Singapore between July 2010 and January 2013, in order to determine the correlation of observed viral genetic differences with clinical outcomes. Our findings showed no significant difference between the number of primary and secondary infections that progressed to DHF and DSS (p>0.05) in our study cohort. Despite being highly homogenous, study isolates possessed 39 amino acid substitutions of which 10 substitutions were fixed in three main groups of virus isolates. None of those substitutions were specifically associated with DHF and DSS. Notably, two evolutionarily unique virus groups possessing C-P43T+NS1-S103T+NS2A-V83I+NS3-R337K+ NS3-I600T+ NS5-P136S and NS2A-T119N mutations were exclusively found in patients with DF, the benign form of DENV infections. Those mutants were significantly associated with mild disease outcome. These observations indicated that disease progression into DHF and DSS within our patient population was more likely to be due to host than virus factors. We hypothesize that selection for potentially less virulent groups of DENV-2 in our study cohort may be an evolutionary adaptation of viral strains to extend their survival in the human-mosquito transmission cycle.
Collapse
Affiliation(s)
| | - Rachel Choon Rong Chua
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
| | - Yuan Shi
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
| | - Tun Lin Thein
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Linda Kay Lee
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Kim Sung Lee
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489
| | - David Chien Lye
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
- * E-mail:
| | - Yee Sin Leo
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| |
Collapse
|
103
|
Sasmono RT, Wahid I, Trimarsanto H, Yohan B, Wahyuni S, Hertanto M, Yusuf I, Mubin H, Ganda IJ, Latief R, Bifani PJ, Shi PY, Schreiber MJ. Genomic analysis and growth characteristic of dengue viruses from Makassar, Indonesia. INFECTION GENETICS AND EVOLUTION 2015; 32:165-77. [PMID: 25784569 DOI: 10.1016/j.meegid.2015.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 11/20/2022]
Abstract
Dengue fever is currently the most important mosquito-borne viral disease in Indonesia. In South Sulawesi province, most regions report dengue cases including the capital city, Makassar. Currently, no information is available on the serotypes and genotypes of the viruses circulating in the area. To understand the dynamic of dengue disease in Makassar, we carried out dengue fever surveillance study during 2007-2010. A total of 455 patients were recruited, in which antigen and serological detection revealed the confirmed dengue cases in 43.3% of patients. Molecular detection confirmed the dengue cases in 27.7% of patients, demonstrating that dengue places a significant disease burden on the community. Serotyping revealed that dengue virus serotype 1 (DENV-1) was the most predominant serotype, followed by DENV-2, -3, and -4. To determine the molecular evolution of the viruses, we conducted whole-genome sequencing of 80 isolates. Phylogenetic analysis grouped DENV-2, -3 and -4 to the Cosmopolitan genotype, Genotype I and Genotype II, respectively. Intriguingly, each serotype paints a different picture of evolution and transmission. DENV-1 appears to be undergoing a clade replacement with Genotype IV being supplanted by Genotype I. The Cosmopolitan DENV-2 isolates were found to be regionally endemic and is frequently being exchanged between countries in the region. By contrast, DENV-3 and DENV-4 isolates were related to strains with a long history in Indonesia although the DENV-3 strains appear to have been following a distinct evolutionary path since approximately 1998. To assess whether the various DENV serotypes/genotypes possess different growth characteristics, we performed growth kinetic assays on selected viruses. We observed the relatively higher rate of replication for DENV-1 and -2 compared to DENV-3 and -4. Within the DENV-1, viruses from Genotype I grow faster than that of Genotype IV. This higher replication rate may underlie their ability to replace the circulation of Genotype IV in the community.
Collapse
Affiliation(s)
- R Tedjo Sasmono
- Novartis-Eijkman-Hasanuddin Clinical Research Initiative (NEHCRI), Indonesia; Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia.
| | - Isra Wahid
- Novartis-Eijkman-Hasanuddin Clinical Research Initiative (NEHCRI), Indonesia; Faculty of Medicine, Hasanuddin University, Jl. Perintis Kemerdekaan 10, Tamalanrea, Makassar 90245, Indonesia
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia; Agency for the Assessment and Application of Technology, Jakarta 10340, Indonesia
| | - Benediktus Yohan
- Novartis-Eijkman-Hasanuddin Clinical Research Initiative (NEHCRI), Indonesia; Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta 10430, Indonesia
| | - Sitti Wahyuni
- Novartis-Eijkman-Hasanuddin Clinical Research Initiative (NEHCRI), Indonesia; Faculty of Medicine, Hasanuddin University, Jl. Perintis Kemerdekaan 10, Tamalanrea, Makassar 90245, Indonesia
| | - Martin Hertanto
- Novartis-Eijkman-Hasanuddin Clinical Research Initiative (NEHCRI), Indonesia
| | - Irawan Yusuf
- Faculty of Medicine, Hasanuddin University, Jl. Perintis Kemerdekaan 10, Tamalanrea, Makassar 90245, Indonesia
| | - Halim Mubin
- Faculty of Medicine, Hasanuddin University, Jl. Perintis Kemerdekaan 10, Tamalanrea, Makassar 90245, Indonesia
| | - Idham J Ganda
- Faculty of Medicine, Hasanuddin University, Jl. Perintis Kemerdekaan 10, Tamalanrea, Makassar 90245, Indonesia
| | - Rachmat Latief
- Faculty of Medicine, Hasanuddin University, Jl. Perintis Kemerdekaan 10, Tamalanrea, Makassar 90245, Indonesia
| | - Pablo J Bifani
- Novartis Institute for Tropical Diseases (NITD), 10 Biopolis Road, Chromos #05-01, Singapore 138670, Singapore
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases (NITD), 10 Biopolis Road, Chromos #05-01, Singapore 138670, Singapore
| | - Mark J Schreiber
- Novartis Institute for Tropical Diseases (NITD), 10 Biopolis Road, Chromos #05-01, Singapore 138670, Singapore
| |
Collapse
|
104
|
Medina FA, Torres-Malavé G, Chase AJ, Santiago GA, Medina JF, Santiago LM, Muñoz-Jordán JL. Differences in type I interferon signaling antagonism by dengue viruses in human and non-human primate cell lines. PLoS Negl Trop Dis 2015; 9:e0003468. [PMID: 25768016 PMCID: PMC4359095 DOI: 10.1371/journal.pntd.0003468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022] Open
Abstract
Background/Objectives In vitro studies have shown that dengue virus (DENV) can thwart the actions of interferon (IFN)-α/β and prevent the development of an antiviral state in infected cells. Clinical studies looking at gene expression in patients with severe dengue show a reduced expression of interferon stimulated genes compared to patients with dengue fever. Interestingly, there are conflicting reports as to the ability of DENV or other flaviviruses to inhibit IFN-α/β signaling. Methodology/Principal Findings In order to determine the relative inhibition of IFN-α/β signaling by DENVs, a method combining flow cytometry and a four-parameter logistic regression model was established. A representative isolate from DENV-1, -3 and -4 and seventeen representative isolates encompassing all DENV-2 genotypes were evaluated. All of the DENVs evaluated in this study were capable of inhibiting IFN-α/β signaling. Most of the strains were able to inhibit IFN-α/β to a degree similar to DENV strain 16681; however, DENV-2 sylvatic strains demonstrated an increased inhibition of phosphorylated signal transducer and activator of transcription (pSTAT1). Surprisingly, we were unable to observe inhibition of pSTAT1 by DENV-2 sylvatic strains or the Asian strain 16681 in non-human primate (NHP) cell lines. Analysis in primary Rhesus macaque dendritic cells suggests that DENVs are capable of inhibiting IFN signaling in these cells. However, contrary to human dendritic cells, production of IFN-α was detected in the supernatant of DENV-infected Rhesus macaque dendritic cells. Conclusions The ability of DENVs to inhibit IFN-α/β signaling is conserved. Although some variation in the inhibition was observed, the moderate differences may be difficult to correlate with clinical outcomes. DENVs were unable to inhibit pSTAT1 in NHP cell lines, but their ability to inhibit pSTAT1 in primary Rhesus macaque dendritic cells suggests that this may be a cell specific phenomena or due to the transformed nature of the cell lines. Dengue is a viral illness acquired through the bite of an infected mosquito. This flu-like illness, which in rare instances can be fatal, threatens more than half of the world’s population. Both in vitro and clinical studies looking at how the virus operates have consistently found that the interferon response is modulated by the virus during infection. We looked at the ability of dengue virus (DENV) strains to inhibit phosphorylated signal transducer and activator of transcription (pSTAT1) after IFN-β stimulation and observed that contrary to earlier published reports; all DENVs are capable of inhibiting IFN-α/β signaling. Strains from the DENV-2 sylvatic genotype, which mainly infect non-human primates (NHP), displayed an increased ability to inhibit pSTAT1 compared to the Asian strain 16681. To our surprise, DENVs were only capable of inhibiting pSTAT1 in human cell lines, but not in NHP cell lines. Inhibition of pSTAT1 is observed in both human and NHP primary dendritic cells. These results have important implications in the use of NHP cell lines for studies of IFN-α/β inhibition by DENV in vitro and may be a relevant consideration when using NHPs for DENV pre-clinical studies.
Collapse
Affiliation(s)
- Freddy A. Medina
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Giselle Torres-Malavé
- University of Puerto Rico Medical Science Campus, Department of Microbiology & Medical Zoology, San Juan, Puerto Rico, United States of America
| | - Amanda J. Chase
- Mercer University School of Medicine, Division of Basic Medical Sciences, Macon, Georgia, United States of America
| | - Gilberto A. Santiago
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Juan F. Medina
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Luis M. Santiago
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Jorge L. Muñoz-Jordán
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
105
|
Lyday B, Chen T, Kesari S, Minev B. Overcoming tumor immune evasion with an unique arbovirus. J Transl Med 2015; 13:3. [PMID: 25592450 PMCID: PMC4307212 DOI: 10.1186/s12967-014-0349-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/01/2014] [Indexed: 12/02/2022] Open
Abstract
Combining dendritic cell vaccination with the adjuvant effect of a strain of dengue virus may be a way to overcome known tumor immune evasion mechanisms. Dengue is unique among viruses as primary infections carry lower mortality than the common cold, but secondary infections carry significant risk of hypovolemic shock. While current immuno-therapies rely on a single axis of attack, this approach combines physiological (hyperthermic reduction of tumor perfusion), immunological (activation of effector cells of the adaptive and innate immune system), and apoptosis-inducing pathways (sTRAIL) to destroy tumor cells. The premise of using multiple mechanisms of action in synergy with a decline in the ability of the tumor cells to employ resistance methods suggests the potential of this combination approach in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Santosh Kesari
- Department of Neurosciences, Translational Neuro-Oncology Laboratories, UC San Diego, La Jolla, CA, 92093, USA. .,Moores UCSD Cancer Center, UC San Diego, La Jolla, CA, 92093, USA.
| | - Boris Minev
- Moores UCSD Cancer Center, UC San Diego, La Jolla, CA, 92093, USA. .,Division of Neurosurgery, UC San Diego, La Jolla, CA, 92093, USA. .,Genelux Corporation, San Diego Science Center, San Diego, CA, 92109, USA.
| |
Collapse
|
106
|
Vervaeke P, Vermeire K, Liekens S. Endothelial dysfunction in dengue virus pathology. Rev Med Virol 2014; 25:50-67. [PMID: 25430853 DOI: 10.1002/rmv.1818] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/07/2014] [Accepted: 10/14/2014] [Indexed: 02/04/2023]
Abstract
Dengue virus (DENV) is a leading cause of illness and death, mainly in the (sub)tropics, where it causes dengue fever and/or the more serious diseases dengue hemorrhagic fever and dengue shock syndrome that are associated with changes in vascular permeability. Despite extensive research, the pathogenesis of DENV is still poorly understood and, although endothelial cells represent the primary fluid barrier of the blood vessels, the extent to which these cells contribute to DENV pathology is still under debate. The primary target cells for DENV are dendritic cells and monocytes/macrophages that release various chemokines and cytokines upon infection, which can activate the endothelium and are thought to play a major role in DENV-induced vascular permeability. However, recent studies indicate that DENV also replicates in endothelial cells and that DENV-infected endothelial cells may directly contribute to viremia, immune activation, vascular permeability and immune targeting of the endothelium. Also, the viral non-structural protein-1 and antibodies directed against this secreted protein have been reported to be involved in endothelial cell dysfunction. This review provides an extensive overview of the effects of DENV infection on endothelial cell physiology and barrier function.
Collapse
Affiliation(s)
- Peter Vervaeke
- KU Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | | | | |
Collapse
|
107
|
Corbett KS, Katzelnick L, Tissera H, Amerasinghe A, de Silva AD, de Silva AM. Preexisting neutralizing antibody responses distinguish clinically inapparent and apparent dengue virus infections in a Sri Lankan pediatric cohort. J Infect Dis 2014; 211:590-9. [PMID: 25336728 DOI: 10.1093/infdis/jiu481] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dengue viruses (DENVs) are mosquito-borne flaviviruses that infect humans. The clinical presentation of DENV infection ranges from inapparent infection to dengue hemorrhagic fever and dengue shock syndrome. We analyzed samples from a pediatric dengue cohort study in Sri Lanka to explore whether antibody responses differentiated clinically apparent infections from clinically inapparent infections. In DENV-naive individuals exposed to primary DENV infections, we observed no difference in the quantity or quality of acquired antibodies between inapparent and apparent infections. Children who experienced primary infections had broad, serotype-cross-neutralizing antibody responses that narrowed in breadth to a single serotype over a 12-month period after infection. In DENV immune children who were experiencing a repeat infection, we observed a strong association between preexisting neutralizing antibodies and clinical outcome. Notably, children with preexisting monospecific neutralizing antibody responses were more likely to develop fever than children with cross-neutralizing responses. Preexisting DENV neutralizing antibodies are correlated with protection from dengue disease.
Collapse
Affiliation(s)
- Kizzmekia S Corbett
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill
| | - Leah Katzelnick
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill Centre of Pathogen Evolution, University of Cambridge, United Kingdom
| | | | | | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill
| |
Collapse
|
108
|
Srikiatkhachorn A, Kelley JF. Endothelial cells in dengue hemorrhagic fever. Antiviral Res 2014; 109:160-70. [PMID: 25025934 PMCID: PMC4148486 DOI: 10.1016/j.antiviral.2014.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/27/2014] [Accepted: 07/04/2014] [Indexed: 12/11/2022]
Abstract
Therapies to prevent or reverse endothelial dysfunction and vascular leak found in dengue hemorrhagic fever (DHF) have not been identified. In this review we summarize dengue viruses and the spectrum of human disease and highlight evidence of endothelial cell dysfunction in DHF based on studies in patients and mouse and tissue culture models. Evidence suggests that both virus antigen and host immune response, can cause endothelial cell dysfunction and weaken endothelial barrier integrity. We suggest possible therapeutic interventions and highlight how therapies targeting altered endothelial function might be evaluated in animal models and in patients with DHF.
Collapse
Affiliation(s)
- Anon Srikiatkhachorn
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - James F Kelley
- Faculty of Tropical Medicine, Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand; Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii, USA
| |
Collapse
|
109
|
Liu S, Vijayendran D, Carrillo-Tripp J, Miller WA, Bonning BC. Analysis of new aphid lethal paralysis virus (ALPV) isolates suggests evolution of two ALPV species. J Gen Virol 2014; 95:2809-2819. [PMID: 25170050 DOI: 10.1099/vir.0.069765-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aphid lethal paralysis virus (ALPV; family Dicistroviridae) was first isolated from the bird cherry-oat aphid, Rhopalosiphum padi. ALPV-like virus sequences have been reported from many insects and insect predators. We identified a new isolate of ALPV (ALPV-AP) from the pea aphid, Acyrthosiphon pisum, and a new isolate (ALPV-DvV) from western corn rootworm, Diabrotica virgifera virgifera. ALPV-AP has an ssRNA genome of 9940 nt. Based on phylogenetic analysis, ALPV-AP was closely related to ALPV-AM, an ALPV isolate from honeybees, Apis mellifera, in Spain and Brookings, SD, USA. The distinct evolutionary branches suggested the existence of two lineages of the ALPV virus. One consisted of ALPV-AP and ALPV-AM, whilst all other isolates of ALPV grouped into the other lineage. The similarity of ALPV-AP and ALPV-AM was up to 88 % at the RNA level, compared with 78-79 % between ALPV-AP and other ALPV isolates. The sequence identity of proteins between ALPV-AP and ALPV-AM was 98-99 % for both ORF1 and ORF2, whilst only 85-87 % for ORF1 and 91-92 % for ORF2 between ALPV-AP and other ALPV isolates. Sequencing of RACE (rapid amplification of cDNA ends) products and cDNA clones of the virus genome revealed sequence variation in the 5' UTRs and in ORF1, indicating that ALPV may be under strong selection pressure, which could have important biological implications for ALPV host range and infectivity. Our results indicated that ALPV-like viruses infect insects in the order Coleoptera, in addition to the orders Hemiptera and Hymenoptera, and we propose that ALPV isolates be classified as two separate viral species.
Collapse
Affiliation(s)
- Sijun Liu
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | | | - Jimena Carrillo-Tripp
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Bryony C Bonning
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
110
|
Barcelos Figueiredo L, Sakamoto T, Leomil Coelho LF, de Oliveira Rocha ES, Gomes Cota MM, Ferreira GP, de Oliveira JG, Kroon EG. Dengue virus 2 American-Asian genotype identified during the 2006/2007 outbreak in Piauí, Brazil reveals a Caribbean route of introduction and dissemination of dengue virus in Brazil. PLoS One 2014; 9:e104516. [PMID: 25127366 PMCID: PMC4134198 DOI: 10.1371/journal.pone.0104516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is the most widespread arthropod-borne virus, and the number and severity of outbreaks has increased worldwide in recent decades. Dengue is caused by DENV-1, DENV- 2, DENV-3 and DENV-4 which are genetically distant. The species has been subdivided into genotypes based on phylogenetic studies. DENV-2, which was isolated from dengue fever patients during an outbreak in Piaui, Brazil in 2006/2007 was analyzed by sequencing the envelope (E) gene. The results indicated a high similarity among the isolated viruses, as well as to other DENV-2 from Brazil, Central America and South America. A phylogenetic and phylogeographic analysis based on DENV-2E gene sequences revealed that these viruses are grouped together with viruses of the American-Asian genotype in two distinct lineages. Our results demonstrate the co-circulation of two American-Asian genotype lineages in northeast Brazil. Moreover, we reveal that DENV-2 lineage 2 was detected in Piauí before it disseminated to other Brazilian states and South American countries, indicating the existence of a new dissemination route that has not been previously described.
Collapse
Affiliation(s)
| | - Tetsu Sakamoto
- Laboratório de Biodados, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
111
|
Rodriguez-Roche R, Hinojosa Y, Guzman MG. First dengue haemorrhagic fever epidemic in the Americas, 1981: insights into the causative agent. Arch Virol 2014; 159:3239-47. [PMID: 25091743 DOI: 10.1007/s00705-014-2188-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/17/2014] [Indexed: 02/01/2023]
Abstract
Historical records describe a disease in North America that clinically resembled dengue haemorrhagic fever during the latter part of the slave-trading period. However, the dengue epidemic that occurred in Cuba in 1981 was the first laboratory-confirmed and clinically diagnosed outbreak of dengue haemorrhagic fever in the Americas. At that time, the presumed source of the dengue type 2 strain isolated during this epidemic was considered controversial, partly because of the limited sequence data and partly because the origin of the virus appeared to be southern Asia. Here, we present a molecular characterisation at the whole-genome level of the original strains isolated at different time points during the epidemic. Phylogenetic trees constructed using Bayesian methods indicated that 1981 Cuban strains group within the Asian 2 genotype. In addition, the study revealed that viral evolution occurred during the epidemic - a fact that could be related to the increasing severity from month to month. Moreover, the Cuban strains exhibited particular amino acid substitutions that differentiate them from the New Guinea C prototype strain as well as from dengue type 2 strains isolated globally.
Collapse
Affiliation(s)
- Rosmari Rodriguez-Roche
- Department of Virology, PAHO/WHO Collaborating Centre for the Study of Dengue and its Vector, "Pedro Kouri" Tropical Medicine Institute (IPK), PO Box 601, Marianao 13, Havana, Cuba,
| | | | | |
Collapse
|
112
|
Abstract
Dengue virus (DENV) is an emerging mosquito-borne human pathogen that affects millions of individuals each year by causing severe and potentially fatal syndromes. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. Overcoming this limitation requires detailed understanding of the intimate relationship between the virus and its host cell, providing the basis to devise optimal prophylactic and therapeutic treatment options. With the advent of novel high-throughput technologies including functional genomics, transcriptomics, proteomics, and lipidomics, new important insights into the DENV replication cycle and the interaction of this virus with its host cell have been obtained. In this chapter, we provide a comprehensive overview on the current status of the DENV research field, covering every step of the viral replication cycle with a particular focus on virus-host cell interaction. We will also review specific chemical inhibitors targeting cellular factors and processes of relevance for the DENV replication cycle and their possible exploitation for the development of next generation antivirals.
Collapse
|
113
|
Jupille H, Vega-Rua A, Rougeon F, Failloux AB. Arboviruses: variations on an ancient theme. Future Virol 2014. [DOI: 10.2217/fvl.14.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT Arboviruses utilize different strategies to complete their transmission cycle between vertebrate and invertebrate hosts. Most possess an RNA genome coupled with an RNA polymerase lacking proofreading activity and generate large populations of genetically distinct variants, permitting rapid adaptation to environmental changes. With mutation rates of between 10- 6 and 10-4 substitutions per nucleotide, arboviral genomes rapidly acquire mutations that can lead to viral emergence. Arboviruses can be described in seven families, four of which have medical importance: Togaviridae, Flaviviridae, Bunyaviridae and Reoviridae. The Togaviridae and Flaviviridae both have ssRNA genomes, while the Bunyaviridae and Reoviridae possess segmented RNA genomes. Recent epidemics caused by these arboviruses have been associated with specific mutations leading to enhanced host ranges, vector shifts and virulence.
Collapse
Affiliation(s)
- Henri Jupille
- Department of Virology, Arboviruses & Insect Vectors, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Anubis Vega-Rua
- Department of Virology, Arboviruses & Insect Vectors, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
- Cellule Pasteur UPMC, Université Pierre et Marie Curie, Paris, France
| | | | - Anna-Bella Failloux
- Department of Virology, Arboviruses & Insect Vectors, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
114
|
Williams M, Mayer SV, Johnson WL, Chen R, Volkova E, Vilcarromero S, Widen SG, Wood TG, Suarez-Ognio L, Long KC, Hanley KA, Morrison AC, Vasilakis N, Halsey ES. Lineage II of Southeast Asian/American DENV-2 is associated with a severe dengue outbreak in the Peruvian Amazon. Am J Trop Med Hyg 2014; 91:611-20. [PMID: 25002298 DOI: 10.4269/ajtmh.13-0600] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
During 2010 and 2011, the Loreto region of Peru experienced a dengue outbreak of unprecedented magnitude and severity for the region. This outbreak coincided with the reappearance of dengue virus-2 (DENV-2) in Loreto after almost 8 years. Whole-genome sequence indicated that DENV-2 from the outbreak belonged to lineage II of the southeast Asian/American genotype and was most closely related to viruses circulating in Brazil during 2007 and 2008, whereas DENV-2 previously circulating in Loreto grouped with lineage I (DENV-2 strains circulating in South America since 1990). One amino acid substitution (NS5 A811V) in the 2010 and 2011 isolates resulted from positive selection. However, the 2010 and 2011 DENV-2 did not replicate to higher titers in monocyte-derived dendritic cells and did not infect or disseminate in a higher proportion of Aedes aegypti than DENV-2 isolates previously circulating in Loreto. These results suggest that factors other than enhanced viral replication played a role in the severity of this outbreak.
Collapse
Affiliation(s)
- Maya Williams
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Sandra V Mayer
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - William L Johnson
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Rubing Chen
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Evgeniya Volkova
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Stalin Vilcarromero
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Steven G Widen
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Thomas G Wood
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Luis Suarez-Ognio
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Kanya C Long
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Kathryn A Hanley
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Amy C Morrison
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Nikos Vasilakis
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| | - Eric S Halsey
- Department of Virology, US Naval Medical Research Unit No. 6, Lima, Peru; Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas; Department of Biology, New Mexico State University, Las Cruces, New Mexico; Department of Virology, US Naval Medical Research Unit No. 6, Iquitos, Peru; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas; Dirección General de Epidemiología del Ministerio de Salud del Perú, Lima, Perú; Entomology Department, University of California, Davis, California; Institute for Human Infections and Immunity and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
115
|
Mishra G, Jain A, Prakash O, Prakash S, Kumar R, Garg RK, Pandey N, Singh M. Molecular characterization of dengue viruses circulating during 2009-2012 in Uttar Pradesh, India. J Med Virol 2014; 87:68-75. [PMID: 24889214 DOI: 10.1002/jmv.23981] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2014] [Indexed: 11/08/2022]
Abstract
Dengue is the most rapidly spreading mosquito-borne viral disease in the world; in India it has taken endemic proportion implicating all the four known dengue virus serotypes. Dengue infection is caused by a small, single stranded RNA virus comprising of four antigenically distinct virus serotypes designated as dengue virus type 1-4 (DENV-1-4). On the basis of genomic variations, each serotype is classified further into its genotypes. Epidemiological studies have shown that the emergence of a newer dengue serotype/genotype after an interval always leads to a major outbreak; therefore a continuous epidemiological surveillance is needed to monitor the epidemiology of dengue viruses. The present study was planned to identify the serotype/genotype of dengue viruses circulating in Uttar Pradesh, India. Of 433 dengue suspected patients, tested by reverse transcriptase PCR (RT-PCR), 136 were positive for dengue virus RNA. Of these, DENV-1, 2, and 3 were detected in 26 (19.1%), 77 (56.6%), and 33 (24.3%) patients, respectively. Of 136 RT-PCR positive samples, 24 samples were sequenced to identify their genotypes. For sequencing C-prM gene junction of dengue virus genome was chosen. Phylogenetic analysis of sequenced dengue strains revealed that all the 12 DENV-1 strains were genotype III, all the eight DENV-2 strains were genotype IV (Cosmopolitan genotype) and among four DENV-3 strains, three were genotype III and one was genotype I. In conclusion, the co-circulation of multiple dengue virus serotypes and genotypes is alarming in U.P., India.
Collapse
Affiliation(s)
- Gitika Mishra
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Ocwieja KE, Fernando AN, Sherrill-Mix S, Sundararaman SA, Tennekoon RN, Tippalagama R, Krishnananthasivam S, Premawansa G, Premawansa S, De Silva AD. Phylogeography and molecular epidemiology of an epidemic strain of dengue virus type 1 in Sri Lanka. Am J Trop Med Hyg 2014; 91:225-34. [PMID: 24799375 DOI: 10.4269/ajtmh.13-0523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In 2009, a severe epidemic of dengue disease occurred in Sri Lanka, with higher mortality and morbidity than any previously recorded epidemic in the country. It corresponded to a shift to dengue virus 1 as the major disease-causing serotype in Sri Lanka. Dengue disease reached epidemic levels in the next 3 years. We report phylogenetic evidence that the 2009 epidemic DENV-1 strain continued to circulate within the population and caused severe disease in the epidemic of 2012. Bayesian phylogeographic analyses suggest that the 2009 Sri Lankan epidemic DENV-1 strain may have traveled directly or indirectly from Thailand through China to Sri Lanka, and after spreading within the Sri Lankan population, it traveled to Pakistan and Singapore. Our findings delineate the dissemination route of a virulent DENV-1 strain in Asia. Understanding such routes will be of particular importance to global control efforts.
Collapse
Affiliation(s)
- Karen E Ocwieja
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Anira N Fernando
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Scott Sherrill-Mix
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Sesh A Sundararaman
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rashika N Tennekoon
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rashmi Tippalagama
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Shivankari Krishnananthasivam
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Gayani Premawansa
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Sunil Premawansa
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Aruna Dharshan De Silva
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; Genetech Research Institute, Colombo, Sri Lanka; North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Zoology, University of Colombo, Colombo, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
117
|
Abstract
Dengue transmission has increased considerably in the past 20 years. Currently, it can only be reduced by mosquito control; however, the application of vector-control methods are labor intensive, require discipline and diligence, and are hard to sustain. In this context, a safe dengue vaccine that confers long-lasting protection against infection with the four dengue viruses is urgently required. This review will discuss the requirements of a dengue vaccine, problems, and advances that have been made. Finally, new targets for research will be presented.
Collapse
Affiliation(s)
- María G Guzmán
- Pedro Kourí Tropical Medicine Institute, Autopista Novia del Mediodía, Km 6 1\2 P.O. Box Marianao 13, C. Habana, Cuba.
| | | | | |
Collapse
|
118
|
Dengue research funded by the European Commission-scientific strategies of three European dengue research consortia. PLoS Negl Trop Dis 2013; 7:e2320. [PMID: 24349584 PMCID: PMC3861113 DOI: 10.1371/journal.pntd.0002320] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
119
|
Yamashita A, Sasaki T, Kurosu T, Yasunaga T, Ikuta K. Origin and distribution of divergent dengue virus: novel database construction and phylogenetic analyses. Future Virol 2013. [DOI: 10.2217/fvl.13.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dengue virus (DENV), a mosquito-borne agent that exists as four serotypes (DENV-1–4), induces dengue illness. DENV has a positive-sense, ssRNA genome of approximately 11 kb that encodes a capsid protein, a premembrane protein and an envelope glycoprotein, in addition to seven nonstructural proteins. These individual genes show sequence variations that can be analyzed phylogenetically to yield several genotypes within each serotype. Here, the sequences of individual DENV genes were collected and used to construct a novel DENV database. This database was then used to characterize the evolution of individual genotypes in several countries. Interestingly, the database provided evidence for recombination between two or three different genotypes to yield new genotypes. This novel database will be available on the internet and is expected to be highly useful for dengue genetic studies, including phylogenetic analyses.
Collapse
Affiliation(s)
- Akifumi Yamashita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tadahiro Sasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Kurosu
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Teruo Yasunaga
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuyoshi Ikuta
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
120
|
Rothan HA, Mohamed Z, Paydar M, Rahman NA, Yusof R. Inhibitory effect of doxycycline against dengue virus replication in vitro. Arch Virol 2013; 159:711-8. [PMID: 24142271 DOI: 10.1007/s00705-013-1880-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/29/2013] [Indexed: 11/25/2022]
Abstract
Doxycycline is an antibiotic derived from tetracycline that possesses antimicrobial and anti-inflammatory activities. Antiviral activity of doxycycline against dengue virus has been reported previously; however, its anti-dengue properties need further investigation. This study was conducted to determine the potential activity of doxycycline against dengue virus replication in vitro. Doxycycline inhibited the dengue virus serine protease (DENV2 NS2B-NS3pro) with an IC50 value of 52.3 ± 6.2 μM at 37 °C (normal human temperature) and 26.7 ± 5.3 μM at 40 °C (high fever temperature). The antiviral activity of doxycycline was first tested at different concentrations against DENV2 using a plaque-formation assay. The virus titter decreased significantly after applying doxycycline at levels lower than its 50 % cytotoxic concentration (CC50, 100 μM), showing concentration-dependent inhibition with a 50 % effective concentration (EC50) of approximately 50 μM. Doxycycline significantly inhibited viral entry and post-infection replication of the four dengue serotypes, with serotype-specific inhibition (high activity against DENV2 and DENV4 compared to DENV1 and DENV3). Collectively, these findings underline the need for further experimental and clinical studies on doxycycline, utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue virus infection.
Collapse
Affiliation(s)
- Hussin A Rothan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia,
| | | | | | | | | |
Collapse
|
121
|
HUHTAMO E, COMACH G, SIERRA G, CAMACHO DE, SIRONEN T, VAPALAHTI O, UZCÁTEGUI NY. Diversity and composition of dengue virus type 2 in Venezuela. Epidemiol Infect 2013; 141:1816-22. [PMID: 23110744 PMCID: PMC9156957 DOI: 10.1017/s0950268812002324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/07/2012] [Accepted: 09/23/2012] [Indexed: 11/07/2022] Open
Abstract
Dengue is a mosquito-borne disease caused by four closely related dengue virus (genus Flavivirus)serotypes (DENV-1–4). The clinical outcomes vary from mild febrile illness to life-threatening haemorrhagic manifestations. DENVs are endemic in the tropics and subtropics globally and currently no specific treatment or vaccines are available. In Venezuela, the American-Asian genotype of DENV-2 is the most prevalent and has been associated with severe disease outcomes.We aimed to follow-up the molecular epidemiology of DENV-2 in Venezuela to investigate if the evolution of the virus has remained the same throughout time or if the same dynamics documented in Brazil (hyperendemic co-circulation) also occurred. The results show that whereas the epidemiology of DENV in several endemic areas is characterized by serotype replacements through time, in Venezuela the American-Asian genotype DENV-2 has evolved into several genetic lineages and has remained in hyperendemic co-circulation with the other serotypes.
Collapse
Affiliation(s)
- E. HUHTAMO
- Research Programs Unit, Infection Biology & Department of Virology, Haartman Institute, University of Helsinki, Finland
| | - G. COMACH
- Laboratorio Regional de Diagnóstico e Investigación del Dengue y otras Enfermedades Virales (LARDIDEV), Instituto de Investigaciones Biomedicas de la Universidad de Carabobo (BIOMED-UC) Maracay, Estado Aragua, Venezuela
| | - G. SIERRA
- Laboratorio Regional de Diagnóstico e Investigación del Dengue y otras Enfermedades Virales (LARDIDEV), Instituto de Investigaciones Biomedicas de la Universidad de Carabobo (BIOMED-UC) Maracay, Estado Aragua, Venezuela
| | - D. E. CAMACHO
- Laboratorio Regional de Diagnóstico e Investigación del Dengue y otras Enfermedades Virales (LARDIDEV), Instituto de Investigaciones Biomedicas de la Universidad de Carabobo (BIOMED-UC) Maracay, Estado Aragua, Venezuela
| | - T. SIRONEN
- Research Programs Unit, Infection Biology & Department of Virology, Haartman Institute, University of Helsinki, Finland
| | - O. VAPALAHTI
- Research Programs Unit, Infection Biology & Department of Virology, Haartman Institute, University of Helsinki, Finland
- Department of Virology, HUSLAB, Hospital District of Helsinki and Uusimaa, Helsinki, Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - N. Y. UZCÁTEGUI
- Research Programs Unit, Infection Biology & Department of Virology, Haartman Institute, University of Helsinki, Finland
| |
Collapse
|
122
|
Bäck AT, Lundkvist A. Dengue viruses - an overview. Infect Ecol Epidemiol 2013; 3:19839. [PMID: 24003364 PMCID: PMC3759171 DOI: 10.3402/iee.v3i0.19839] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 07/11/2013] [Accepted: 07/16/2013] [Indexed: 12/11/2022] Open
Abstract
Dengue viruses (DENVs) cause the most common arthropod-borne viral disease in man with 50-100 million infections per year. Because of the lack of a vaccine and antiviral drugs, the sole measure of control is limiting the Aedes mosquito vectors. DENV infection can be asymptomatic or a self-limited, acute febrile disease ranging in severity. The classical form of dengue fever (DF) is characterized by high fever, headache, stomach ache, rash, myalgia, and arthralgia. Severe dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) are accompanied by thrombocytopenia, vascular leakage, and hypotension. DSS, which can be fatal, is characterized by systemic shock. Despite intensive research, the underlying mechanisms causing severe dengue is still not well understood partly due to the lack of appropriate animal models of infection and disease. However, even though it is clear that both viral and host factors play important roles in the course of infection, a fundamental knowledge gap still remains to be filled regarding host cell tropism, crucial host immune response mechanisms, and viral markers for virulence.
Collapse
Affiliation(s)
- Anne Tuiskunen Bäck
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden ; Swedish Institute for Communicable Disease Control, Solna, Sweden ; Swedish International Development Cooperation Agency, Unit for Research Cooperation, Stockholm, Sweden
| | | |
Collapse
|
123
|
Khoo CCH, Doty JB, Held NL, Olson KE, Franz AWE. Isolation of midgut escape mutants of two American genotype dengue 2 viruses from Aedes aegypti. Virol J 2013; 10:257. [PMID: 23937713 PMCID: PMC3751248 DOI: 10.1186/1743-422x-10-257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022] Open
Abstract
Background Several studies have shown that American genotype dengue 2 viruses (DENV2) have reduced viral fitness in the mosquito vector, Aedes aegypti, compared to other DENV2 genotypes. Diminished replication efficiency or inability to efficiently traverse membrane barriers encompassing organs such as the midgut or salivary glands are considered major factors negatively impacting viral fitness in the mosquito. Results We analyzed the vector competence of Ae. aegypti for two American DENV2 strains, QR94 and PR159 originating from Mexico and Puerto-Rico, respectively. Both strains infected mosquito midguts following acquisition of infectious bloodmeals. However, DENV2-QR94 and DENV2-PR159 poorly disseminated from the midgut at 7 or 14 days post-bloodmeal (pbm). We detected one virus isolate, EM33, among 31 DENV2-QR94 infected mosquitoes, and one isolate, EM41, among 121 DENV2-PR159 infected mosquitoes, generating high virus titers in mosquito carcasses at 7 days pbm. In oral challenge experiments, EM33 and EM41 showed midgut dissemination rates of 40-50%. Replication efficiency of EM41 in secondary mosquito tissue was similar to that of a dissemination-competent control strain, whereas the replication efficiency of EM33 was significantly lower than that of the control virus. The genome sequence of DENV2-QR94 encoded seven unique amino acids (aa), which were not found in 100 of the most closely related DENV2 strains. EM33 had one additional aa change, E202K, in the E protein. DENV2-PR159 encoded four unique aa residues, one of them E202K, whereas EM41 had two additional aa substitutions, Q77E in the E protein and E93D in NS3. Conclusions Our results indicate that the midgut of Ae. aegypti acts as a selective sieve for DENV2 in which genetically distinct, dissemination-competent virus variants are rapidly selected from the viral quasispecies to be transmitted to vertebrates.
Collapse
|
124
|
Santiago GA, Vergne E, Quiles Y, Cosme J, Vazquez J, Medina JF, Medina F, Colón C, Margolis H, Muñoz-Jordán JL. Analytical and clinical performance of the CDC real time RT-PCR assay for detection and typing of dengue virus. PLoS Negl Trop Dis 2013; 7:e2311. [PMID: 23875046 PMCID: PMC3708876 DOI: 10.1371/journal.pntd.0002311] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/31/2013] [Indexed: 11/19/2022] Open
Abstract
Dengue is an acute illness caused by the positive-strand RNA dengue virus (DENV). There are four genetically distinct DENVs (DENV-1–4) that cause disease in tropical and subtropical countries. Most patients are viremic when they present with symptoms; therefore, RT-PCR has been increasingly used in dengue diagnosis. The CDC DENV-1–4 RT-PCR Assay has been developed as an in-vitro diagnostic platform and was recently approved by the US Food and Drug Administration (FDA) for detection of dengue in patients with signs or symptoms of mild or severe dengue. The primers and probes of this test have been designed to detect currently circulating strains of DENV-1–4 from around the world at comparable sensitivity. In a retrospective study with 102 dengue cases confirmed by IgM anti-DENV seroconversion in the convalescent sample, the RT-PCR Assay detected DENV RNA in 98.04% of the paired acute samples. Using sequencing as a positive indicator, the RT-PCR Assay had a 97.92% positive agreement in 86 suspected dengue patients with a single acute serum sample. After extensive validations, the RT-PCR Assay performance was highly reproducible when evaluated across three independent testing sites, did not produce false positive results for etiologic agents of other febrile illnesses, and was not affected by pathological levels of potentially interfering biomolecules. These results indicate that the CDC DENV-1–4 RT-PCR Assay provides a reliable diagnostic platform capable for confirming dengue in suspected cases. Significant expansion of the four DENV serotypes (DENV-1, -2, -3 and -4) has been reported throughout tropical and sub-tropical regions of the world, with estimates of 390 million cases annually. The need has arisen for expanded diagnostic testing for DENV infections in the United States, as dengue infection has been added to the list of national notifiable diseases. Timely and accurate diagnosis of dengue is important for clinical care, disease surveillance, disease prevention, and control activities. However, current testing is performed with laboratory-developed research-based assays available only in a limited number of laboratories that have not been validated or approved for diagnostic testing in the United States. Here we report the development and evaluation of the CDC DENV-1–4 Real Time RT-PCR Assay, the first molecular test approved by the US Food and Drug Administration for the diagnosis and serotyping of DENV in human serum or plasma samples. This test was designed and validated for the detection of contemporary, clinically relevant DENV strains transmitted globally, facilitating the global deployment of the test and increase detection of traveler-associated dengue cases.
Collapse
Affiliation(s)
- Gilberto A. Santiago
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Edgardo Vergne
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Yashira Quiles
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Joan Cosme
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Jesus Vazquez
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Juan F. Medina
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Freddy Medina
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Candimar Colón
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Harold Margolis
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
| | - Jorge L. Muñoz-Jordán
- Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Dengue Branch, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
125
|
Spiropoulou CF, Srikiatkhachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence 2013; 4:525-36. [PMID: 23841977 PMCID: PMC5359750 DOI: 10.4161/viru.25569] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The loss of the endothelium barrier and vascular leakage play a central role in the pathogenesis of hemorrhagic fever viruses. This can be caused either directly by the viral infection and damage of the vascular endothelium, or indirectly by a dysregulated immune response resulting in an excessive activation of the endothelium. This article briefly reviews our knowledge of the importance of the disruption of the vascular endothelial barrier in two severe disease syndromes, dengue hemorrhagic fever and hantavirus pulmonary syndrome. Both viruses cause changes in vascular permeability without damaging the endothelium. Here we focus on our understanding of the virus interaction with the endothelium, the role of the endothelium in the induced pathogenesis, and the possible mechanisms by which each virus causes vascular leakage. Understanding the dynamics between viral infection and the dysregulation of the endothelial cell barrier will help us to define potential therapeutic targets for reducing disease severity.
Collapse
|
126
|
Rodriguez-Roche R, Gould EA. Understanding the dengue viruses and progress towards their control. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690835. [PMID: 23936833 PMCID: PMC3722981 DOI: 10.1155/2013/690835] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023]
Abstract
Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this "scourge" of the tropical and subtropical world.
Collapse
Affiliation(s)
- Rosmari Rodriguez-Roche
- Pedro Kouri Tropical Medicine Institute, WHO/PAHO Collaborating Centre for the Study of Dengue and Its Vector, Havana, Cuba.
| | | |
Collapse
|
127
|
Wan SW, Lin CF, Wang S, Chen YH, Yeh TM, Liu HS, Anderson R, Lin YS. Current progress in dengue vaccines. J Biomed Sci 2013; 20:37. [PMID: 23758699 PMCID: PMC3686670 DOI: 10.1186/1423-0127-20-37] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/13/2013] [Indexed: 01/23/2023] Open
Abstract
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
PURPOSE OF REVIEW Dengue is one of the most rapidly spreading vector-borne diseases in the world, with the incidence increasing 30-fold in the past 50 years. There are currently no licensed treatments or vaccines for dengue. This review covers the recent advances in our understanding of dengue pathogenesis, including host and viral determinants. RECENT FINDINGS The pathogenesis of severe dengue is thought to be immune-mediated due to the timing of the clinical manifestations and higher incidence in secondary infections with a heterologous serotype. Recent evidence has provided further information of neutralizing versus enhancing monoclonal antibodies and their target epitopes on the dengue virion, which has major implications for vaccine design. The role of T-cell immunopathology has also been advanced with recent evidence of cross-reactive high pro-inflammatory cytokine producing T cells predominating in severe dengue. Recent large genome-wide association studies have identified specific susceptibility loci associated with severe disease. Epidemiological studies have served to define certain at-risk groups and specific viral virulence factors have recently been described. SUMMARY The pathogenesis of dengue is likely to be a complex interplay of host immunity and genetic predisposition combined with certain viral virulence factors. Better understanding of the underlying mechanisms leading to severe dengue is crucial if we are to develop prognostic markers, novel diagnostics and therapeutics and ultimately a balanced and safe vaccine.
Collapse
Affiliation(s)
- Sophie Yacoub
- Department of Medicine, Imperial College, Hammersmith Campus, London, UK.
| | | | | |
Collapse
|
129
|
Molecular identification of the first local dengue fever outbreak in Shenzhen city, China: a potential imported vertical transmission from Southeast Asia? Epidemiol Infect 2013; 142:225-33. [PMID: 23587429 DOI: 10.1017/s0950268813000897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A suspected dengue fever outbreak occurred in 2010 at a solitary construction site in Shenzhen city, China. To investigate this epidemic, we used serological, molecular biological, and bioinformatics techniques. Of nine serum samples from suspected patients, we detected seven positive for dengue virus (DENV) antibodies, eight for DENV-1 RNA, and three containing live viruses. The isolated virus, SZ1029 strain, was sequenced and confirmed as DENV-1, showing the highest E-gene homology to D1/Malaysia/36000/05 and SG(EHI)DED142808 strains recently reported in Southeast Asia. Further phylogenetic tree analysis confirmed their close relationship. At the epidemic site, we also detected 14 asymptomatic co-workers (out of 291) positive for DENV antibody, and DENV-1-positive mosquitoes. Thus, we concluded that DENV-1 caused the first local dengue fever outbreak in Shenzhen. Because no imported case was identified, the molecular fingerprints of the SZ1029 strain suggest this outbreak may be due to vertical transmission imported from Southeast Asia.
Collapse
|
130
|
Faria NRDC, Nogueira RMR, de Filippis AMB, Simões JBS, Nogueira FDB, da Rocha Queiroz Lima M, dos Santos FB. Twenty years of DENV-2 activity in Brazil: molecular characterization and phylogeny of strains isolated from 1990 to 2010. PLoS Negl Trop Dis 2013; 7:e2095. [PMID: 23516646 PMCID: PMC3597488 DOI: 10.1371/journal.pntd.0002095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/22/2013] [Indexed: 11/18/2022] Open
Abstract
In Brazil, dengue has been a major public health problem since its introduction in the 1980s. Phylogenetic studies constitute a valuable tool to monitor the introduction and spread of viruses as well as to predict the potential epidemiological consequences of such events. Aiming to perform the molecular characterization and phylogenetic analysis of DENV-2 during twenty years of viral activity in the country, viral strains isolated from patients presenting different disease manifestations (n = 34), representing six states of the country, from 1990 to 2010, were sequenced. Partial genome sequencing (genes C/prM/M/E) was performed in 25 DENV-2 strains and full-length genome sequencing (coding region) was performed in 9 strains. The percentage of similarity among the DENV-2 strains in this study and reference strains available in Genbank identified two groups epidemiologically distinct: one represented by strains isolated from 1990 to 2003 and one from strains isolated from 2007 to 2010. No consistent differences were observed on the E gene from strains isolated from cases with different clinical manifestations analyzed, suggesting that if the disease severity has a genetic origin, it is not only due to the differences observed on the E gene. The results obtained by the DENV-2 full-length genome sequencing did not point out consistent differences related to a more severe disease either. The analysis based on the partial and/or complete genome sequencing has characterized the Brazilian DENV-2 strains as belonging to the Southeast Asian genotype, however a distinction of two Lineages within this genotype has been identified. It was established that strains circulating prior DENV-2 emergence (1990–2003) belong to Southeast Asian genotype, Lineage I and strains isolated after DENV-2 emergence in 2007 belong to Southeast Asian genotype, Lineage II. Furthermore, all DENV-2 strains analyzed presented an asparagine (N) in E390, previously identified as a probable genetic marker of virulence observed in DHF strains from Asian origin. The percentage of identity of the latter with the Dominican Republic strain isolated in 2001 combined to the percentage of divergence with the strains first introduced in the country in the 1990s suggests that those viruses did not evolve locally but were due to a new viral Lineage introduction in the country from the Caribbean. In Brazil, the first dengue haemorrhagic cases were reported after the DENV-2 introduction in Rio de Janeiro, which spread to other states in the country. Aiming to perform the molecular characterization and phylogenetic analysis of DENV-2 during twenty years of viral activity in the country, strains isolated from patients presenting different disease manifestations were sequenced. Phylogeny characterized the DENV-2 as belonging to the Southeast Asian genotype, however a distinction of two Lineages within this genotype has been identified. Furthermore, all strains presented an asparagine in E390, previously identified as a probable genetic marker of virulence. The results show a temporal circulation of genetically different viruses in Brazil, probably due to the introduction of a new viral lineage from the Caribbean, which lead to the re-emergence of this serotype after 2007, causing the most severe epidemic already described in the country.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Flavia Barreto dos Santos
- Flavivirus Laboratory, Oswaldo Cruz Institute, Manguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
131
|
Guzman MG, Alvarez M, Halstead SB. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 2013; 158:1445-59. [PMID: 23471635 DOI: 10.1007/s00705-013-1645-3] [Citation(s) in RCA: 504] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/17/2013] [Indexed: 01/06/2023]
Abstract
Today, dengue viruses are the most prevalent arthropod-borne viruses in the world. Since the 1960s, numerous reports have identified a second heterologous dengue virus (DENV) infection as a principal risk factor for severe dengue disease (dengue hemorrhagic fever/dengue shock syndrome, DHF/DSS). Modifiers of dengue disease response include the specific sequence of two DENV infections, the interval between infections, and contributions from the human host, such as age, ethnicity, chronic illnesses and genetic background. Antibody-dependent enhancement (ADE) of dengue virus infection has been proposed as the early mechanism underlying DHF/DSS. Dengue cross-reactive antibodies raised following a first dengue infection combine with a second infecting virus to form infectious immune complexes that enter Fc-receptor-bearing cells. This results in an increased number of infected cells and increased viral output per cell. At the late illness stage, high levels of cytokines, possibly the result of T cell elimination of infected cells, result in vascular permeability, leading to shock and death. This review is focused on the etiological role of secondary infections (SI) and mechanisms of ADE.
Collapse
Affiliation(s)
- Maria G Guzman
- Institute of Tropical Medicine Pedro Kouri, Havana, Cuba.
| | | | | |
Collapse
|
132
|
Behura SK, Severson DW. Nucleotide substitutions in dengue virus serotypes from Asian and American countries: insights into intracodon recombination and purifying selection. BMC Microbiol 2013; 13:37. [PMID: 23410119 PMCID: PMC3598932 DOI: 10.1186/1471-2180-13-37] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/21/2013] [Indexed: 01/26/2023] Open
Abstract
Background Dengue virus (DENV) infection represents a significant public health problem in many subtropical and tropical countries. Although genetically closely related, the four serotypes of DENV differ in antigenicity for which cross protection among serotypes is limited. It is also believed that both multi-serotype infection as well as the evolution of viral antigenicity may have confounding effects in increased dengue epidemics. Numerous studies have been performed that investigated genetic diversity of DENV, but the precise mechanism(s) of dengue virus evolution are not well understood. Results We investigated genome-wide genetic diversity and nucleotide substitution patterns in the four serotypes among samples collected from different countries in Asia and Central and South America and sequenced as part of the Genome Sequencing Center for Infectious Diseases at the Broad Institute. We applied bioinformatics, statistical and coalescent simulation methods to investigate diversity of codon sequences of DENV samples representing the four serotypes. We show that fixation of nucleotide substitutions is more prominent among the inter-continental isolates (Asian and American) of serotypes 1, 2 and 3 compared to serotype 4 isolates (South and Central America) and are distributed in a non-random manner among the genes encoded by the virus. Nearly one third of the negatively selected sites are associated with fixed mutation sites within serotypes. Our results further show that of all the sites showing evidence of recombination, the majority (~84%) correspond to sites under purifying selection in the four serotypes. The analysis further shows that genetic recombination occurs within specific codons, albeit with low frequency (< 5% of all recombination sites) throughout the DENV genome of the four serotypes and reveals significant enrichment (p < 0.05) among sites under purifying selection in the virus. Conclusion The study provides the first evidence for intracodon recombination in DENV and suggests that within codons, genetic recombination has a significant role in maintaining extensive purifying selection of DENV in natural populations. Our study also suggests that fixation of beneficial mutations may lead to virus evolution via translational selection of specific sites in the DENV genome.
Collapse
Affiliation(s)
- Susanta K Behura
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, 46556, Notre Dame, IN, USA
| | | |
Collapse
|
133
|
Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase. Antimicrob Agents Chemother 2013; 57:1902-12. [PMID: 23403421 DOI: 10.1128/aac.02251-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) is the predominant mosquito-borne viral pathogen that infects humans with an estimated 50 to 100 million infections per year worldwide. Over the past 50 years, the incidence of dengue disease has increased dramatically and the virus is now endemic in more than 100 countries. Moreover, multiple serotypes of DENV are now found in the same geographic region, increasing the likelihood of more severe forms of disease. Despite extensive research, there are still no approved vaccines or therapeutics commercially available to treat DENV infection. Here we report the results of a high-throughput screen of a chemical compound library using a whole-virus assay that identified a novel small-molecule inhibitor of DENV, ST-610, that potently and selectively inhibits all four serotypes of DENV replication in vitro. Sequence analysis of drug-resistant virus isolates has identified a single point mutation, A263T, in the NS3 helicase domain that confers resistance to this compound. ST-610 inhibits DENV NS3 helicase RNA unwinding activity in a molecular-beacon-based helicase assay but does not inhibit nucleoside triphosphatase activity based on a malachite green ATPase assay. ST-610 is nonmutagenic, is well tolerated (nontoxic) in mice, and has shown efficacy in a sublethal murine model of DENV infection with the ability to significantly reduce viremia and viral load compared to vehicle controls.
Collapse
|
134
|
Dengue virus therapeutic intervention strategies based on viral, vector and host factors involved in disease pathogenesis. Pharmacol Ther 2013; 137:266-82. [DOI: 10.1016/j.pharmthera.2012.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 12/27/2022]
|
135
|
Complete genome sequence of dengue virus serotype 2 Cosmopolitan genotype strain in Guangdong, China. J Virol 2013; 86:13808-9. [PMID: 23166230 DOI: 10.1128/jvi.02562-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we report the complete genome sequence of a dengue virus serotype 2 (DENV-2) strain, GZ40, isolated in Guangdong, China, in 2010. A phylogenetic analysis classified GZ40 into the Cosmopolitan genotype, while previous Chinese DENV-2 isolates belong to the Asian I genotype. The reemergence of the Cosmopolitan genotype of DENV-2 in China deserves further investigation.
Collapse
|
136
|
Rajmane Y, Shaikh S, Basha K, Reddy GECV, Nair S, Kamath S, Sreejesh G, Rao H, Ramana V, Kumar ASM. Infant mouse brain passaged Dengue serotype 2 virus induces non-neurological disease with inflammatory spleen collapse in AG129 mice after splenic adaptation. Virus Res 2013; 173:386-97. [PMID: 23337909 DOI: 10.1016/j.virusres.2013.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/27/2012] [Accepted: 01/04/2013] [Indexed: 01/10/2023]
Abstract
AG129 mice are known to be permissive to infection by multiple serotypes of Dengue virus (DENV). There exists a concern that mouse passaged strains of the virus may induce neurological complications rather than increased vascular permeability in these mice, hence the use of human clinical isolates of the virus to develop the AG129 mouse model of Dengue disease with increased vascular permeability. The present study evaluated four mouse brain passaged DENV strains, each belonging to a different serotype and three of them having an original isolation history in India, for their suitability to serve as candidates to induce rapid lethal disease in AG129 mice. While all the viruses were able to establish a productive infection in the spleen, none of them induced paralysis despite their mouse brain passage history. Only the type-2 virus acquired the ability to induce a lethal disease after a single round of spleen to spleen passage, and became highly virulent after five more rounds. This apparently non-neurological lethal disease was characterized by high viral burden, elevated vascular permeability, serum TNF-α surge immediately before moribund stage, transient leukocytosis followed by severe leukopenia, lymphopenia throughout the course of the infection, and transient thrombocytopenia. The disease was also characterized by inflammatory splenic collapse during moribund stage, reminiscent of spontaneous splenic rupture reported in rare cases of severe Dengue in humans.
Collapse
Affiliation(s)
- Yogesh Rajmane
- Therapeutic proteins Group, Dhirubhai Ambani Life Sciences Centre, Reliance Life Sciences Pvt Ltd., Rabale, Navi Mumbai 400 701, Maharashtra, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
de Castro MG, de Nogueira FB, Nogueira RMR, Lourenço-de-Oliveira R, dos Santos FB. Genetic variation in the 3' untranslated region of dengue virus serotype 3 strains isolated from mosquitoes and humans in Brazil. Virol J 2013; 10:3. [PMID: 23282086 PMCID: PMC3547765 DOI: 10.1186/1743-422x-10-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 12/27/2012] [Indexed: 11/17/2022] Open
Abstract
Summary
Collapse
|
138
|
|
139
|
Alhoot MA, Rathinam AK, Wang SM, Manikam R, Sekaran SD. Inhibition of dengue virus entry into target cells using synthetic antiviral peptides. Int J Med Sci 2013; 10:719-29. [PMID: 23630436 PMCID: PMC3638295 DOI: 10.7150/ijms.5037] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 03/07/2013] [Indexed: 11/05/2022] Open
Abstract
Despite the importance of DENV as a human pathogen, there is no specific treatment or protective vaccine. Successful entry into the host cells is necessary for establishing the infection. Recently, the virus entry step has become an attractive therapeutic strategy because it represents a barrier to suppress the onset of the infection. Four putative antiviral peptides were designed to target domain III of DENV-2 E protein using BioMoDroid algorithm. Two peptides showed significant inhibition of DENV when simultaneously incubated as shown by plaque formation assay, RT-qPCR, and Western blot analysis. Both DET4 and DET2 showed significant inhibition of virus entry (84.6% and 40.6% respectively) using micromolar concentrations. Furthermore, the TEM images showed that the inhibitory peptides caused structural abnormalities and alteration of the arrangement of the viral E protein, which interferes with virus binding and entry. Inhibition of DENV entry during the initial stages of infection can potentially reduce the viremia in infected humans resulting in prevention of the progression of dengue fever to the severe life-threatening infection, reduce the infected vector numbers, and thus break the transmission cycle. Moreover these peptides though designed against the conserved region in DENV-2 would have the potential to be active against all the serotypes of dengue and might be considered as Hits to begin designing and developing of more potent analogous peptides that could constitute as promising therapeutic agents for attenuating dengue infection.
Collapse
Affiliation(s)
- Mohammed Abdelfatah Alhoot
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
140
|
Wan SW, Lin CF, Yeh TM, Liu CC, Liu HS, Wang S, Ling P, Anderson R, Lei HY, Lin YS. Autoimmunity in dengue pathogenesis. J Formos Med Assoc 2012; 112:3-11. [PMID: 23332423 DOI: 10.1016/j.jfma.2012.11.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/09/2012] [Indexed: 11/17/2022] Open
Abstract
Dengue is one of the most important vector-borne viral diseases. With climate change and the convenience of travel, dengue is spreading beyond its usual tropical and subtropical boundaries. Infection with dengue virus (DENV) causes diseases ranging widely in severity, from self-limited dengue fever to life-threatening dengue hemorrhagic fever and dengue shock syndrome. Vascular leakage, thrombocytopenia, and hemorrhage are the major clinical manifestations associated with severe DENV infection, yet the mechanisms remain unclear. Besides the direct effects of the virus, immunopathogenesis is also involved in the development of dengue disease. Antibody-dependent enhancement increases the efficiency of virus infection and may suppress type I interferon-mediated antiviral responses. Aberrant activation of T cells and overproduction of soluble factors cause an increase in vascular permeability. DENV-induced autoantibodies against endothelial cells, platelets, and coagulatory molecules lead to their abnormal activation or dysfunction. Molecular mimicry between DENV proteins and host proteins may explain the cross-reactivity of DENV-induced autoantibodies. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development. For the development of a safe and effective dengue vaccine, the immunopathogenic complications of dengue disease need to be considered.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, 1 University Road,Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Honda ER, Zanchi F, Rios K, Lira E, DeusileneVieira, da Silva LH, De Paula SO. Design and heterologous expression of dengue virus envelope protein (E) peptides and their use for serological diagnosis. J Virol Methods 2012; 186:55-61. [DOI: 10.1016/j.jviromet.2012.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/02/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
142
|
Abstract
Dengue viruses and other members of the Flaviviridae family are emerging human pathogens. Dengue is transmitted to humans by Aedes aegypti female mosquitoes. Following infection through the bite, cells of the hematopoietic lineage, like dendritic cells, are the first targets of dengue virus infection. Dendritic cells (DCs) are key antigen presenting cells, sensing pathogens, processing and presenting the antigens to T lymphocytes, and triggering an adaptive immune response. Infection of DCs by dengue virus may induce apoptosis, impairing their ability to present antigens to T cells, and thereby contributing to dengue pathogenesis. This review focuses on general mechanisms by which dengue virus triggers apoptosis, and possible influence of DC-apoptosis on dengue disease severity.
Collapse
|
143
|
Amorim JH, Pereira Bizerra RS, dos Santos Alves RP, Sbrogio-Almeida ME, Levi JE, Capurro ML, de Souza Ferreira LC. A genetic and pathologic study of a DENV2 clinical isolate capable of inducing encephalitis and hematological disturbances in immunocompetent mice. PLoS One 2012; 7:e44984. [PMID: 23028722 PMCID: PMC3441697 DOI: 10.1371/journal.pone.0044984] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/15/2012] [Indexed: 11/20/2022] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue fever (DF), a mosquito-borne illness endemic to tropical and subtropical regions. There is currently no effective drug or vaccine formulation for the prevention of DF and its more severe forms, i.e., dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). There are two generally available experimental models for the study of DENV pathogenicity as well as the evaluation of potential vaccine candidates. The first model consists of non-human primates, which do not develop symptoms but rather a transient viremia. Second, mouse-adapted virus strains or immunocompromised mouse lineages are utilized, which display some of the pathological features of the infection observed in humans but may not be relevant to the results with regard to the wild-type original virus strains or mouse lineages. In this study, we describe a genetic and pathological study of a DENV2 clinical isolate, named JHA1, which is naturally capable of infecting and killing Balb/c mice and reproduces some of the symptoms observed in DENV-infected subjects. Sequence analyses demonstrated that the JHA1 isolate belongs to the American genotype group and carries genetic markers previously associated with neurovirulence in mouse-adapted virus strains. The JHA1 strain was lethal to immunocompetent mice following intracranial (i.c.) inoculation with a LD50 of approximately 50 PFU. Mice infected with the JHA1 strain lost weight and exhibited general tissue damage and hematological disturbances, with similarity to those symptoms observed in infected humans. In addition, it was demonstrated that the JHA1 strain shares immunological determinants with the DENV2 NGC reference strain, as evaluated by cross-reactivity of anti-envelope glycoprotein (domain III) antibodies. The present results indicate that the JHA1 isolate may be a useful tool in the study of DENV pathogenicity and will help in the evaluation of anti-DENV vaccine formulations as well as potential therapeutic approaches.
Collapse
Affiliation(s)
- Jaime Henrique Amorim
- Vaccine Development Laboratory, Department of Microbiology, University of São Paulo, Brazil
| | | | - Rúbens Prince dos Santos Alves
- Vaccine Development Laboratory, Department of Microbiology, University of São Paulo, Brazil
- State University of Santa Cruz, Ilhéus, Brazil
| | | | | | | | | |
Collapse
|
144
|
Kolekar P, Kale M, Kulkarni-Kale U. Alignment-free distance measure based on return time distribution for sequence analysis: applications to clustering, molecular phylogeny and subtyping. Mol Phylogenet Evol 2012; 65:510-22. [PMID: 22820020 DOI: 10.1016/j.ympev.2012.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 07/08/2012] [Indexed: 11/30/2022]
Abstract
The data deluge in post-genomic era demands development of novel data mining tools. Existing molecular phylogeny analyses (MPAs) developed for individual gene/protein sequences are alignment-based. However, the size of genomic data and uncertainties associated with alignments, necessitate development of alignment-free methods for MPA. Derivation of distances between sequences is an important step in both, alignment-dependant and alignment-free methods. Various alignment-free distance measures based on oligo-nucleotide frequencies, information content, compression techniques, etc. have been proposed. However, these distance measures do not account for relative order of components viz. nucleotides or amino acids. A new distance measure, based on the concept of 'return time distribution' (RTD) of k-mers is proposed, which accounts for the sequence composition and their relative orders. Statistical parameters of RTDs are used to derive a distance function. The resultant distance matrix is used for clustering and phylogeny using Neighbor-joining. Its performance for MPA and subtyping was evaluated using simulated data generated by block-bootstrap, receiver operating characteristics and leave-one-out cross validation methods. The proposed method was successfully applied for MPA of family Flaviviridae and subtyping of Dengue viruses. It is observed that method retains resolution for classification and subtyping of viruses at varying levels of sequence similarity and taxonomic hierarchy.
Collapse
|
145
|
Sierra B, Pérez AB, Alvarez M, García G, Vogt K, Aguirre E, Schmolke K, Volk HD, Guzmán MG. Variation in inflammatory/regulatory cytokines in secondary, tertiary, and quaternary challenges with dengue virus. Am J Trop Med Hyg 2012; 87:538-47. [PMID: 22802438 DOI: 10.4269/ajtmh.2012.11-0531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Secondary heterologous dengue infection is a risk factor for severe disease manifestations because of the immune-enhancement phenomenon. Succeeding clinical infections are seldom reported, and the clinical course of tertiary and quaternary dengue infections is not clear. Cuba represents a unique environment to study tertiary/quaternary dengue infections in a population with known clinical and serologic dengue markers and no dengue endemicity. We took advantage of this exceptional epidemiologic condition to study the effect of primary, secondary, tertiary, and quaternary dengue infection exposure on the expression of pro-inflammatory and regulatory cytokines, critical in dengue infection pathogenesis, by using a dengue infection ex vivo model. Whereas secondary exposure induced a high cytokine response, we found a significantly lower expression of tumor necrosis factor-α, interferon-γ, interleukin-10, and tumor growth factor-β after tertiary and quaternary infectious challenge. Significant differences in expression of the cytokines were seen between the dengue immune profiles, suggesting that the sequence in which the immune system encounters serotypes may be important in determining the nature of the immune response to subsequent infections.
Collapse
Affiliation(s)
- Beatriz Sierra
- Department of Virology, Tropical Medicine Institute Pedro Kourí, Havana, Cuba.
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Genome-wide patterns of intrahuman dengue virus diversity reveal associations with viral phylogenetic clade and interhost diversity. J Virol 2012; 86:8546-58. [PMID: 22647702 DOI: 10.1128/jvi.00736-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analogous to observations in RNA viruses such as human immunodeficiency virus, genetic variation associated with intrahost dengue virus (DENV) populations has been postulated to influence viral fitness and disease pathogenesis. Previous attempts to investigate intrahost genetic variation in DENV characterized only a few viral genes or a limited number of full-length genomes. We developed a whole-genome amplification approach coupled with deep sequencing to capture intrahost diversity across the entire coding region of DENV-2. Using this approach, we sequenced DENV-2 genomes from the serum of 22 Nicaraguan individuals with secondary DENV infection and captured ∼75% of the DENV genome in each sample (range, 40 to 98%). We identified and quantified variants using a highly sensitive and specific method and determined that the extent of diversity was considerably lower than previous estimates. Significant differences in intrahost diversity were detected between genes and also between antigenically distinct domains of the Envelope gene. Interestingly, a strong association was discerned between the extent of intrahost diversity in a few genes and viral clade identity. Additionally, the abundance of viral variants within a host, as well as the impact of viral mutations on amino acid encoding and predicted protein function, determined whether intrahost variants were observed at the interhost level in circulating Nicaraguan DENV-2 populations, strongly suggestive of purifying selection across transmission events. Our data illustrate the value of high-coverage genome-wide analysis of intrahost diversity for high-resolution mapping of the relationship between intrahost diversity and clinical, epidemiological, and virological parameters of viral infection.
Collapse
|
147
|
Halsey ES, Marks MA, Gotuzzo E, Fiestas V, Suarez L, Vargas J, Aguayo N, Madrid C, Vimos C, Kochel TJ, Laguna-Torres VA. Correlation of serotype-specific dengue virus infection with clinical manifestations. PLoS Negl Trop Dis 2012; 6:e1638. [PMID: 22563516 PMCID: PMC3341333 DOI: 10.1371/journal.pntd.0001638] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 03/23/2012] [Indexed: 11/24/2022] Open
Abstract
Background Disease caused by the dengue virus (DENV) is a significant cause of morbidity throughout the world. Although prior research has focused on the association of specific DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) with the development of severe outcomes such as dengue hemorrhagic fever and dengue shock syndrome, relatively little work has correlated other clinical manifestations with a particular DENV serotype. The goal of this study was to estimate and compare the prevalence of non-hemorrhagic clinical manifestations of DENV infection by serotype. Methodology and Principal Findings Between the years 2005–2010, individuals with febrile disease from Peru, Bolivia, Ecuador, and Paraguay were enrolled in an outpatient passive surveillance study. Detailed information regarding clinical signs and symptoms, as well as demographic information, was collected. DENV infection was confirmed in patient sera with polyclonal antibodies in a culture-based immunofluorescence assay, and the infecting serotype was determined by serotype-specific monoclonal antibodies. Differences in the prevalence of individual and organ-system manifestations were compared across DENV serotypes. One thousand seven hundred and sixteen individuals were identified as being infected with DENV-1 (39.8%), DENV-2 (4.3%), DENV-3 (41.5%), or DENV-4 (14.4%). When all four DENV serotypes were compared with each other, individuals infected with DENV-3 had a higher prevalence of musculoskeletal and gastrointestinal manifestations, and individuals infected with DENV-4 had a higher prevalence of respiratory and cutaneous manifestations. Conclusions/Significance Specific clinical manifestations, as well as groups of clinical manifestations, are often overrepresented by an individual DENV serotype. Dengue virus (DENV) causes disease in millions of people annually and disproportionately affects those in the developing world. DENVs may be divided into four serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) and a geographical region may be affected by one or more DENV serotypes simultaneously. Infection with DENV may cause life-threatening disease such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), but more often causes less severe manifestations affecting a wide range of organs. Although many previous reports have explored the role of the different DENV serotypes in the development of severe manifestations, little attention has focused on the relative role of each DENV serotype in the development of cutaneous, respiratory, gastrointestinal, musculoskeletal, and neurological manifestations. We recruited a large group of participants from four countries in South America to compare the prevalence of more than 30 manifestations among the four different DENV serotypes. We found that certain DENV serotypes were often associated with a higher prevalence of a certain manifestation (e.g., DENV-3 and diarrhea) or manifestation group (e.g., DENV-4 and cutaneous manifestations).
Collapse
Affiliation(s)
- Eric S Halsey
- United States Naval Medical Research Unit Six, Lima, Perú.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Synergistic interactions between the NS3(hel) and E proteins contribute to the virulence of dengue virus type 1. PLoS Negl Trop Dis 2012; 6:e1624. [PMID: 22530074 PMCID: PMC3328427 DOI: 10.1371/journal.pntd.0001624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 03/08/2012] [Indexed: 01/04/2023] Open
Abstract
Background Dengue includes a broad range of symptoms, ranging from fever to hemorrhagic fever and may occasionally have alternative clinical presentations. Many possible viral genetic determinants of the intrinsic virulence of dengue virus (DENV) in the host have been identified, but no conclusive evidence of a correlation between viral genotype and virus transmissibility and pathogenicity has been obtained. Methodology/Principal Findings We used reverse genetics techniques to engineer DENV-1 viruses with subsets of mutations found in two different neuroadapted derivatives. The mutations were inserted into an infectious clone of DENV-1 not adapted to mice. The replication and viral production capacity of the recombinant viruses were assessed in vitro and in vivo. The results demonstrated that paired mutations in the envelope protein (E) and in the helicase domain of the NS3 (NS3hel) protein had a synergistic effect enhancing viral fitness in human and mosquito derived cell lines. E mutations alone generated no detectable virulence in the mouse model; however, the combination of these mutations with NS3hel mutations, which were mildly virulent on their own, resulted in a highly neurovirulent phenotype. Conclusions/Significance The generation of recombinant viruses carrying specific E and NS3hel proteins mutations increased viral fitness both in vitro and in vivo by increasing RNA synthesis and viral load (these changes being positively correlated with central nervous system damage), the strength of the immune response and animal mortality. The introduction of only pairs of amino acid substitutions into the genome of a non-mouse adapted DENV-1 strain was sufficient to alter viral fitness substantially. Given current limitations to our understanding of the molecular basis of dengue neuropathogenesis, these results could contribute to the development of attenuated strains for use in vaccinations and provide insights into virus/host interactions and new information about the mechanisms of basic dengue biology. Dengue virus constitutes a significant public health problem in tropical regions of the world. Despite the high morbidity and mortality of this infection, no effective antiviral drugs or vaccines are available for the treatment or prevention of dengue infections. The profile of clinical signs associated with dengue infection has changed in recent years with an increase in the number of episodes displaying unusual signs. We use reverse genetics technology to engineer DENV-1 viruses with subsets of mutations previously identified in highly neurovirulent strains to provide insights into the molecular mechanisms underlying dengue neuropathogenesis. We found that single mutations affecting the E and NS3hel proteins, introduced in a different genetic context, had a synergistic effect increasing DENV replication capacity in human and mosquito derived cells in vitro. We also demonstrated correlations between the presence of these mutations and viral replication efficiency, viral loads, the induction of innate immune response genes and pathogenesis in a mouse model. These results should improve our understanding of the DENV-host cell interaction and contribute to the development of effective antiviral strategies.
Collapse
|
149
|
OhAinle M, Balmaseda A, Macalalad AR, Tellez Y, Zody MC, Saborío S, Nuñez A, Lennon NJ, Birren BW, Gordon A, Henn MR, Harris E. Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med 2012; 3:114ra128. [PMID: 22190239 DOI: 10.1126/scitranslmed.3003084] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rapid spread of dengue is a worldwide public health problem. In two clinical studies of dengue in Managua, Nicaragua, we observed an abrupt increase in disease severity across several epidemic seasons of dengue virus serotype 2 (DENV-2) transmission. Waning DENV-1 immunity appeared to increase the risk of severe disease in subsequent DENV-2 infections after a period of cross-protection. The increase in severity coincided with replacement of the Asian/American DENV-2 NI-1 clade with a new virus clade, NI-2B. In vitro analyses of viral isolates from the two clades and analysis of viremia in patient blood samples support the emergence of a fitter virus in later, relative to earlier, epidemic seasons. In addition, the NI-1 clade of viruses was more virulent specifically in children who were immune to DENV-1, whereas DENV-3 immunity was associated with more severe disease among NI-2B infections. Our data demonstrate that the complex interaction between viral genetics and population dynamics of serotype-specific immunity contributes to the risk of severe dengue disease. Furthermore, this work provides insights into viral evolution and the interaction between viral and immunological determinants of viral fitness and virulence.
Collapse
Affiliation(s)
- Molly OhAinle
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-7354, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Machain-Williams C, Mammen MP, Zeidner NS, Beaty BJ, Prenni JE, Nisalak A, Blair CD. Association of human immune response to Aedes aegypti salivary proteins with dengue disease severity. Parasite Immunol 2012; 34:15-22. [PMID: 21995849 DOI: 10.1111/j.1365-3024.2011.01339.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dengue viruses (DENV; family Flaviviridae, genus Flavivirus) are transmitted by Aedes aegypti mosquitoes and can cause dengue fever (DF), a relatively benign disease, or more severe dengue haemorrhagic fever (DHF). Arthropod saliva contains proteins delivered into the bite wound that can modulate the host haemostatic and immune responses to facilitate the intake of a blood meal. The potential effects on DENV infection of previous exposure to Ae. aegypti salivary proteins have not been investigated. We collected Ae. aegypti saliva, concentrated the proteins and fractionated them by nondenaturing polyacrylamide gel electrophoresis (PAGE). By the use of immunoblots, we analysed reactivity with the mosquito salivary proteins (MSP) of sera from 96 Thai children diagnosed with secondary DENV infections leading either to DF or DHF, or with no DENV infection, and found that different proportions of each patient group had serum antibodies reactive to specific Ae. aegypti salivary proteins. Our results suggest that prior exposure to MSP might play a role in the outcome of DENV infection in humans.
Collapse
Affiliation(s)
- C Machain-Williams
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, CO, USA.
| | | | | | | | | | | | | |
Collapse
|