101
|
Alcalá AC, Hernández-Bravo R, Medina F, Coll DS, Zambrano JL, del Angel RM, Ludert JE. The dengue virus non-structural protein 1 (NS1) is secreted from infected mosquito cells via a non-classical caveolin-1-dependent pathway. J Gen Virol 2017; 98:2088-2099. [DOI: 10.1099/jgv.0.000881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Ana C. Alcalá
- Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - Raiza Hernández-Bravo
- Exploration and Production Research Office, Mexican Petroleum Institute (IMP), Mexico City, Mexico
| | - Fernando Medina
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - David S. Coll
- Center of Chemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Jose L. Zambrano
- Center of Microbiology and Cell Biology, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Rosa M. del Angel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| | - Juan E. Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), CDMX, Mexico
| |
Collapse
|
102
|
Tang YL, Liu IJ, Li PC, Chiu CY, Lin CY, Huang CH, Chen YH, Fu CY, Chao DY, King CC, Wu HC. Generation and Characterization of Antinonstructural Protein 1 Monoclonal Antibodies and Development of Diagnostics for Dengue Virus Serotype 2. Am J Trop Med Hyg 2017; 97:1049-1061. [PMID: 28749765 DOI: 10.4269/ajtmh.17-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dengue virus (DENV) circulates in tropical and subtropical areas around the world, where it causes high morbidity and mortality. There is no effective treatment of infection, with supportive care being the only option. Furthermore, early detection and diagnosis are important to facilitate clinical decisions. In this study, seven monoclonal antibodies (mAbs) recognizing nonstructural protein 1 (NS1) of DENV were generated by hybridoma techniques. These antibodies can be divided into two groups: serotype-specific (DB6-1, DB12-3, and DB38-1) and nonspecific (consisting of antibodies DB16-1, DB20-6, DB29-1, and DB41-2). The B-cell epitopes of DB20-6 and DB29-1 were identified by phage display and site-directed mutagenesis, and its binding motif, WXXWGK, was revealed to correspond to amino acid residues 115-120 of the DENV-2 NS1 protein. A diagnostic platform, consisting of a serotype-specific capture antibody and a complex detection antibody, exhibited a detection limit of about 1 ng/mL, which is sufficient to detect NS1 in clinical serum samples from dengue patients. This diagnostic platform displayed better specificity and sensitivity than two examined commercial NS1 diagnostic platforms. In summary, our results indicate that these newly generated mAbs are suitable for detection of NS1 protein of DENV-2 in clinical samples.
Collapse
Affiliation(s)
- Yin-Liang Tang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pi-Chun Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Yu Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Yu Lin
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chung-Hao Huang
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chi-Yu Fu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Chwan-Chuen King
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Han-Chung Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
103
|
Yap SSL, Nguyen-Khuong T, Rudd PM, Alonso S. Dengue Virus Glycosylation: What Do We Know? Front Microbiol 2017; 8:1415. [PMID: 28791003 PMCID: PMC5524768 DOI: 10.3389/fmicb.2017.01415] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/12/2017] [Indexed: 12/04/2022] Open
Abstract
In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play important roles during the infection cycle, ranging from entry to successful intracellular replication and host immune evasion. Dengue is no exception. Dengue virus glycoproteins, envelope protein (E) and non-structural protein 1 (NS1) are two popular sub-unit vaccine candidates. E protein on the virion surface is the major target of neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to induce a variety of host responses through its binding to several host factors. However, despite their critical role in disease and protection, the glycosylated variants of these two proteins and their biological importance have remained understudied. In this review, we seek to provide a comprehensive summary of the current knowledge on protein glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and disease pathogenesis.
Collapse
Affiliation(s)
- Sally S L Yap
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Pauline M Rudd
- Analytics Group, Bioprocessing Technology Institute, A∗STARSingapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology program, Life Sciences Institute, National University of SingaporeSingapore, Singapore
| |
Collapse
|
104
|
Transposon Mutagenesis of the Zika Virus Genome Highlights Regions Essential for RNA Replication and Restricted for Immune Evasion. J Virol 2017; 91:JVI.00698-17. [PMID: 28515302 DOI: 10.1128/jvi.00698-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
The molecular constraints affecting Zika virus (ZIKV) evolution are not well understood. To investigate ZIKV genetic flexibility, we used transposon mutagenesis to add 15-nucleotide insertions throughout the ZIKV MR766 genome and subsequently deep sequenced the viable mutants. Few ZIKV insertion mutants replicated, which likely reflects a high degree of functional constraints on the genome. The NS1 gene exhibited distinct mutational tolerances at different stages of the screen. This result may define regions of the NS1 protein that are required for the different stages of the viral life cycle. The ZIKV structural genes showed the highest degree of insertional tolerance. Although the envelope (E) protein exhibited particular flexibility, the highly conserved envelope domain II (EDII) fusion loop of the E protein was intolerant of transposon insertions. The fusion loop is also a target of pan-flavivirus antibodies that are generated against other flaviviruses and neutralize a broad range of dengue virus and ZIKV isolates. The genetic restrictions identified within the epitopes in the EDII fusion loop likely explain the sequence and antigenic conservation of these regions in ZIKV and among multiple flaviviruses. Thus, our results provide insights into the genetic restrictions on ZIKV that may affect the evolution of this virus.IMPORTANCE Zika virus recently emerged as a significant human pathogen. Determining the genetic constraints on Zika virus is important for understanding the factors affecting viral evolution. We used a genome-wide transposon mutagenesis screen to identify where mutations were tolerated in replicating viruses. We found that the genetic regions involved in RNA replication were mostly intolerant of mutations. The genes coding for structural proteins were more permissive to mutations. Despite the flexibility observed in these regions, we found that epitopes bound by broadly reactive antibodies were genetically constrained. This finding may explain the genetic conservation of these epitopes among flaviviruses.
Collapse
|
105
|
Dengue Virus NS1 Protein as a Diagnostic Marker: Commercially Available ELISA and Comparison to qRT-PCR and Serological Diagnostic Assays Currently Used by the State of Florida. J Trop Med 2017; 2017:8072491. [PMID: 28740517 PMCID: PMC5504952 DOI: 10.1155/2017/8072491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/30/2017] [Indexed: 11/29/2022] Open
Abstract
Background The proper management of patients infected with dengue virus requires early detection. Here, real-time molecular assays have proven useful but have limitations, whereas ELISAs that detect antibodies are still favored but results are obtained too late to be of clinical value. The production of DENV NS1 peaks early during infection and its detection can combine the advantages of both diagnostic approaches. Methods This study compared assays currently used for detecting DENV infection at the Florida Department of Health including anti-DENV IgM and IgG ELISAs as well as qRT-PCR, against a commercially available DENV NS1 ELISA. These comparisons were made among a group of 21 human sera. Results Nine of 14 (64.3%) DENV qRT-PCR+ samples were also DENV NS1+. Interestingly, the 5 NS1− samples that were qRT-PCR+ were additionally IgM− and IgG+ suggesting a nonprimary infection. Compared to qRT-PCR, the NS1 assay had a sensitivity of 64.3%, specificity 100%, PPV of 100%, and NPV of 58.3%. Conclusions The NS1 ELISA performed as expected in known DENV qRT-PCR+ samples; however negative NS1 results for qRT-PCR+ and IgG+ sera seemingly reduced the usefulness of the NS1 ELISA for nonprimary cases. We therefore conclude that diagnosis obtained via DENV NS1 ELISA deserves further investigation.
Collapse
|
106
|
Fusion to Flaviviral Leader Peptide Targets HIV-1 Reverse Transcriptase for Secretion and Reduces Its Enzymatic Activity and Ability to Induce Oxidative Stress but Has No Major Effects on Its Immunogenic Performance in DNA-Immunized Mice. J Immunol Res 2017; 2017:7407136. [PMID: 28717654 PMCID: PMC5498913 DOI: 10.1155/2017/7407136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/13/2017] [Indexed: 01/10/2023] Open
Abstract
Reverse transcriptase (RT) is a key enzyme in viral replication and susceptibility to ART and a crucial target of immunotherapy against drug-resistant HIV-1. RT induces oxidative stress which undermines the attempts to make it immunogenic. We hypothesized that artificial secretion may reduce the stress and make RT more immunogenic. Inactivated multidrug-resistant RT (RT1.14opt-in) was N-terminally fused to the signal providing secretion of NS1 protein of TBEV (Ld) generating optimized inactivated Ld-carrying enzyme RT1.14oil. Promotion of secretion prohibited proteasomal degradation increasing the half-life and content of RT1.14oil in cells and cell culture medium, drastically reduced the residual polymerase activity, and downmodulated oxidative stress. BALB/c mice were DNA-immunized with RT1.14opt-in or parental RT1.14oil by intradermal injections with electroporation. Fluorospot and ELISA tests revealed that RT1.14opt-in and RT1.14oil induced IFN-γ/IL-2, RT1.14opt-in induced granzyme B, and RT1.14oil induced perforin production. Perforin secretion correlated with coproduction of IFN-γ and IL-2 (R = 0,97). Both DNA immunogens induced strong anti-RT antibody response. Ld peptide was not immunogenic. Thus, Ld-driven secretion inferred little change to RT performance in DNA immunization. Positive outcome was the abrogation of polymerase activity increasing safety of RT-based DNA vaccines. Identification of the molecular determinants of low cellular immunogenicity of RT requires further studies.
Collapse
|
107
|
Singh S, Anupriya MG, Sreekumar E. Comparative whole genome analysis of dengue virus serotype-2 strains differing in trans-endothelial cell leakage induction in vitro. INFECTION GENETICS AND EVOLUTION 2017; 52:34-43. [PMID: 28456663 DOI: 10.1016/j.meegid.2017.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/16/2022]
Abstract
The role of genetic differences among dengue virus (DENV) in causing increased microvascular permeability is less explored. In the present study, we compared two closely related DENV serotype-2 strains of Cosmopolitan genotype for their in vitro infectivity phenotype and ability to induce trans-endothelial leakage. We found that these laboratory strains differed significantly in infecting human microvascular endothelial cells (HMEC-1) and hepatocytes (Huh7), two major target cells of DENV in in vivo infections. There was a reciprocal correlation in infectivity and vascular leakage induced by these strains, with the less infective strain inducing more trans-endothelial cell leakage in HMEC-1 monolayer upon infection. The cells infected with the strain capable of inducing more permeability were found to secrete more Non-Structural protein (sNS1) into the culture supernatant. A whole genome analysis revealed 37 predicted amino acid changes and changes in the secondary structure of 3' non-translated region between the strains. But none of these changes involved the signal sequence coded by the C-terminal of the Envelope protein and the two glycosylation sites within the NS1 protein critical for its secretion, and the N-terminal NS2A sequence important for surface targeting of NS1. The strain that secreted lower levels of NS1 and caused less leakage had two mutations within the NS1 protein coding region, F103S and T146I that significantly changed amino acid properties. A comparison of the sequences of the two strains with published sequences of various DENV strains known to cause clinically severe dengue identified a number of amino acid changes which could be implicated as possible key genetic differences. Our data supports the earlier observations that the vascular leakage induction potential of DENV strains is linked to the sNS1 levels. The results also indicate that viral genetic determinants, especially the mutations within the NS1 coding region, could affect this critical phenotype of DENV strains.
Collapse
Affiliation(s)
- Sneha Singh
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram 695014, Kerala, India
| | - M G Anupriya
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram 695014, Kerala, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
108
|
Steinhagen K, Probst C, Radzimski C, Schmidt-Chanasit J, Emmerich P, van Esbroeck M, Schinkel J, Grobusch MP, Goorhuis A, Warnecke JM, Lattwein E, Komorowski L, Deerberg A, Saschenbrecker S, Stöcker W, Schlumberger W. Serodiagnosis of Zika virus (ZIKV) infections by a novel NS1-based ELISA devoid of cross-reactivity with dengue virus antibodies: a multicohort study of assay performance, 2015 to 2016. ACTA ACUST UNITED AC 2017; 21:30426. [PMID: 28006649 PMCID: PMC5291135 DOI: 10.2807/1560-7917.es.2016.21.50.30426] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Serological diagnosis of Zika virus (ZIKV) infections is challenging due to high cross-reactivity between flaviviruses. We evaluated the diagnostic performance of a novel anti-ZIKV ELISA based on recombinant ZIKV non-structural protein 1 (NS1). Assay sensitivity was examined using sera from 27 patients with reverse transcription (RT)-PCR-confirmed and 85 with suspected ZIKV infection. Specificity was analysed using sera from 1,015 healthy individuals. Samples from 252 patients with dengue virus (n = 93), West Nile virus (n = 34), Japanese encephalitis virus (n = 25), chikungunya virus (n = 19) or Plasmodium spp. (n = 69) infections and from 12 yellow fever-vaccinated individuals were also examined. In confirmed ZIKV specimens collected ≥ 6 days after symptom onset, ELISA sensitivity was 58.8% (95% confidence interval (CI): 36.0-78.4) for IgM, 88.2% (95% CI: 64.4-98.0) for IgG, and 100% (95% CI: 78.4-100) for IgM/IgG, at 99.8% (95% CI: 99.2-100) specificity. Cross-reactivity with high-level dengue virus antibodies was not detected. Among patients with potentially cross-reactive antibodies anti-ZIKV positive rates were 0.8% (95% CI: 0-3.0) and 0.4% (95% CI: 0-2.4) for IgM and IgG, respectively. Providing high specificity and low cross-reactivity, the NS1-based ELISA has the potential to aid in counselling patients, pregnant women and travellers after returning from ZIKV-endemic areas.
Collapse
Affiliation(s)
- Katja Steinhagen
- Institute for Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | - Jonas Schmidt-Chanasit
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel, Hamburg, Germany
| | - Petra Emmerich
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marjan van Esbroeck
- National Reference Center for Arboviruses, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Janke Schinkel
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Public Health Service, Amsterdam, the Netherlands
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Abraham Goorhuis
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jens M Warnecke
- Institute for Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Erik Lattwein
- Institute for Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Lars Komorowski
- Institute for Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | - Andrea Deerberg
- Institute for Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | | - Winfried Stöcker
- Institute for Experimental Immunology, EUROIMMUN AG, Lübeck, Germany
| | | |
Collapse
|
109
|
Granger D, Leo YS, Lee LK, Theel ES. Serodiagnosis of dengue virus infection using commercially available antibody and NS1 antigen ELISAs. Diagn Microbiol Infect Dis 2017; 88:120-124. [PMID: 28389145 DOI: 10.1016/j.diagmicrobio.2017.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 11/27/2022]
Abstract
Accuracy of the InBios DENV Detect IgM, IgG and NS1 antigen (Ag) ELISAs (Seattle, WA) for detection of dengue virus (DENV) infection were evaluated using 100 retrospectively selected sera from acutely febrile patients presenting to a Singapore hospital. The InBios DENV NS1, IgM and IgG ELISAs had an overall sensitivity of 83.6%, 40% and 58.2% and an overall specificity of 97.8%, 97.8% and 55.6%, respectively. Simultaneous testing for NS1 and IgM-antibodies yielded a sensitivity and specificity of 85.5% and 95.5%, respectively, which did not significantly differ from testing for NS1 Ag alone. Using sera positive for IgM- or IgG-class antibodies to six common arboviruses, the InBios IgM and IgG ELISAs showed an overall analytic specificity of 89.2% and 66.4%, respectively. This study suggests that recent DENV infection can reliably be detected by the InBios NS1 Ag ELISA alone and that InBios DENV IgG reactivity should be interpreted with caution.
Collapse
Affiliation(s)
- D Granger
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Y S Leo
- Institute of Infectious Diseases and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore
| | - L K Lee
- Institute of Infectious Diseases and Epidemiology, Communicable Disease Centre, Tan Tock Seng Hospital, Singapore
| | - E S Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
110
|
Bedin F, Boulet L, Voilin E, Theillet G, Rubens A, Rozand C. Paper-based point-of-care testing for cost-effective diagnosis of acute flavivirus infections. J Med Virol 2017; 89:1520-1527. [DOI: 10.1002/jmv.24806] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/23/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Frederic Bedin
- Innovation, BioMerieux SA; Chemin de l'Orme; Marcy l'Etoile France
| | - Laurent Boulet
- Innovation, BioMerieux SA; Chemin de l'Orme; Marcy l'Etoile France
| | - Elodie Voilin
- Innovation, BioMerieux SA; Chemin de l'Orme; Marcy l'Etoile France
| | - Gerald Theillet
- Innovation, BioMerieux SA; Chemin de l'Orme; Marcy l'Etoile France
| | - Agnes Rubens
- Innovation, BioMerieux SA; Chemin de l'Orme; Marcy l'Etoile France
| | - Christine Rozand
- Innovation, BioMerieux SA; Chemin de l'Orme; Marcy l'Etoile France
| |
Collapse
|
111
|
Non-Canonical Roles of Dengue Virus Non-Structural Proteins. Viruses 2017; 9:v9030042. [PMID: 28335410 PMCID: PMC5371797 DOI: 10.3390/v9030042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae family comprises a number of human pathogens, which, although sharing structural and functional features, cause diseases with very different outcomes. This can be explained by the plurality of functions exerted by the few proteins coded by viral genomes, with some of these functions shared among members of a same family, but others being unique for each virus species. These non-canonical functions probably have evolved independently and may serve as the base to the development of specific therapies for each of those diseases. Here it is discussed what is currently known about the non-canonical roles of dengue virus (DENV) non-structural proteins (NSPs), which may account for some of the effects specifically observed in DENV infection, but not in other members of the Flaviviridae family. This review explores how DENV NSPs contributes to the physiopathology of dengue, evasion from host immunity, metabolic changes, and redistribution of cellular components during infection.
Collapse
|
112
|
Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol Cell Biol 2017; 95:491-495. [DOI: 10.1038/icb.2017.5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 12/26/2022]
|
113
|
A Mutation Identified in Neonatal Microcephaly Destabilizes Zika Virus NS1 Assembly in Vitro. Sci Rep 2017; 7:42580. [PMID: 28198446 PMCID: PMC5309781 DOI: 10.1038/srep42580] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
An unprecedented epidemic of Zika virus (ZIKV) infection had spread to South and Central America. ZIKV infection was recently confirmed by CDC (the Centers for Disease Control and Prevention) to cause neonatal microcephaly, which posed a significant public health emergency of international concern. No specific vaccines or drugs are currently available to fight ZIKV infection. ZIKV nonstructural protein 1 (NS1) plays an essential role in viral replication and immune evasion. We determined the crystal structure of ZIKV NS1172–352, which forms a head-to-head, symmetric dimer with a unique 14-stranded β-ladder conserved among flaviviruses. The assembly of the β-ladder dimer is concentration dependent. Strikingly, one pathogenic mutation T233A (NCBI accession no. KU527068), found in the brain tissue of infected fetus with neonatal microcephaly, is located at the dimer interface. Thr233, a unique residue found in ZIKV but not in other flaviviruses, organizes a central hydrogen bonding network at NS1 dimer interface. Mutation of Thr233 to Ala disrupts this elaborated interaction network, and destabilizes the NS1 dimeric assembly in vitro. In addition, our structural comparison of epitopes for protective antibody 22NS1, targeting West Nile Virus NS1, could potentially be valuable in understanding its anti-virus specificities and in the development of antibodies against ZIKV.
Collapse
|
114
|
Conde JN, Silva EM, Barbosa AS, Mohana-Borges R. The Complement System in Flavivirus Infections. Front Microbiol 2017; 8:213. [PMID: 28261172 PMCID: PMC5306369 DOI: 10.3389/fmicb.2017.00213] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/30/2017] [Indexed: 01/29/2023] Open
Abstract
The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical climates worldwide, affecting hundreds of millions of people each year. The Flaviviridae family includes dengue, West Nile, Zika, Japanese encephalitis, and yellow fever viruses that are typically transmitted by mosquitoes or ticks, and cause a wide range of symptoms, such as fever, shock, meningitis, paralysis, birth defects, and death. The flavivirus genome is composed of a single positive-sense RNA molecule encoding a single viral polyprotein. This polyprotein is further processed by viral and host proteases into three structural proteins (C, prM/M, E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) that are involved in viral replication and pathogenicity. The complement system has been described to play an important role in flavivirus infection either by protecting the host and/or by influencing disease pathogenesis. In this mini-review, we will explore the role of complement system inhibition and/or activation against infection by the Flavivirus genus, with an emphasis on dengue and West Nile viruses.
Collapse
Affiliation(s)
- Jonas N Conde
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Emiliana M Silva
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Angela S Barbosa
- Laboratório de Bacteriologia, Instituto Butantan São Paulo, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
115
|
Yockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL, Stutz B, Szigeti-Buck K, Van den Pol A, Lindenbach BD, Horvath TL, Iwasaki A. Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection. Cell 2016; 166:1247-1256.e4. [PMID: 27565347 DOI: 10.1016/j.cell.2016.08.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Zika virus (ZIKV) can be transmitted sexually between humans. However, it is unknown whether ZIKV replicates in the vagina and impacts the unborn fetus. Here, we establish a mouse model of vaginal ZIKV infection and demonstrate that, unlike other routes, ZIKV replicates within the genital mucosa even in wild-type (WT) mice. Mice lacking RNA sensors or transcription factors IRF3 and IRF7 resulted in higher levels of local viral replication. Furthermore, mice lacking the type I interferon (IFN) receptor (IFNAR) became viremic and died of infection after a high-dose vaginal ZIKV challenge. Notably, vaginal infection of pregnant dams during early pregnancy led to fetal growth restriction and infection of the fetal brain in WT mice. This was exacerbated in mice deficient in IFN pathways, leading to abortion. Our study highlights the vaginal tract as a highly susceptible site of ZIKV replication and illustrates the dire disease consequences during pregnancy.
Collapse
Affiliation(s)
- Laura J Yockey
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Luis Varela
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Tasfia Rakib
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - William Khoury-Hanold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Susan L Fink
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Bernardo Stutz
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Klara Szigeti-Buck
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Anthony Van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520 USA.
| |
Collapse
|
116
|
Kochakarn T, Kotanan N, Kümpornsin K, Loesbanluechai D, Thammasatta M, Auewarakul P, Wilairat P, Chookajorn T. Comparative genome analysis between Southeast Asian and South American Zika viruses. ASIAN PAC J TROP MED 2016; 9:1048-1054. [DOI: 10.1016/j.apjtm.2016.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/20/2016] [Accepted: 09/25/2016] [Indexed: 11/29/2022] Open
|
117
|
Medin CL, Rothman AL. Zika Virus: The Agent and Its Biology, With Relevance to Pathology. Arch Pathol Lab Med 2016; 141:33-42. [PMID: 27763795 DOI: 10.5858/arpa.2016-0409-ra] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Once obscure, Zika virus (ZIKV) has attracted significant medical and scientific attention in the past year because of large outbreaks associated with the recent introduction of this virus into the Western hemisphere. In particular, the occurrence of severe congenital infections and cases of Guillain-Barré syndrome has placed this virus squarely in the eyes of clinical and anatomic pathologists. This review article provides a basic introduction to ZIKV, its genetics, its structural characteristics, and its biology. A multidisciplinary effort will be essential to establish clinicopathologic correlations of the basic virology of ZIKV in order to advance development of diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
| | - Alan L Rothman
- From the Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence. Drs Medin and Rothman both contributed equally to the manuscript
| |
Collapse
|
118
|
Thiemmeca S, Tamdet C, Punyadee N, Prommool T, Songjaeng A, Noisakran S, Puttikhunt C, Atkinson JP, Diamond MS, Ponlawat A, Avirutnan P. Secreted NS1 Protects Dengue Virus from Mannose-Binding Lectin-Mediated Neutralization. THE JOURNAL OF IMMUNOLOGY 2016; 197:4053-4065. [PMID: 27798151 DOI: 10.4049/jimmunol.1600323] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/16/2016] [Indexed: 12/16/2022]
Abstract
Flavivirus nonstructural protein 1 (NS1) is a unique secreted nonstructural glycoprotein. Although it is absent from the flavivirus virion, intracellular and extracellular forms of NS1 have essential roles in viral replication and the pathogenesis of infection. The fate of NS1 in insect cells has been more controversial, with some reports suggesting it is exclusively cell associated. In this study, we confirm NS1 secretion from cells of insect origin and characterize its physical, biochemical, and functional properties in the context of dengue virus (DENV) infection. Unlike mammalian cell-derived NS1, which displays both high mannose and complex type N-linked glycans, soluble NS1 secreted from DENV-infected insect cells contains only high mannose glycans. Insect cell-derived secreted NS1 also has different physical properties, including smaller and more heterogeneous sizes and the formation of less stable NS1 hexamers. Both mammalian and insect cell-derived NS1 bind to complement proteins C1s, C4, and C4-binding protein, as well as to a novel partner, mannose-binding lectin. Binding of NS1 to MBL protects DENV against mannose-binding lectin-mediated neutralization by the lectin pathway of complement activation. As we detected secreted NS1 and DENV together in the saliva of infected Aedes aegypti mosquitoes, these findings suggest a mechanism of viral immune evasion at the very earliest phase of infection.
Collapse
Affiliation(s)
- Somchai Thiemmeca
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Graduate Program, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chamaiporn Tamdet
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nuntaya Punyadee
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tanapan Prommool
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Adisak Songjaeng
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - Chunya Puttikhunt
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| | - John P Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Alongkot Ponlawat
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Panisadee Avirutnan
- Division of Dengue Hemorrhagic Fever Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; .,Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 12120, Thailand
| |
Collapse
|
119
|
Xu X, Song H, Qi J, Liu Y, Wang H, Su C, Shi Y, Gao GF. Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS1 structure. EMBO J 2016; 35:2170-2178. [PMID: 27578809 PMCID: PMC5069551 DOI: 10.15252/embj.201695290] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 11/17/2022] Open
Abstract
The association of Zika virus (ZIKV) infections with microcephaly and neurological diseases has highlighted an emerging public health concern. Here, we report the crystal structure of the full‐length ZIKV nonstructural protein 1 (NS1), a major host‐interaction molecule that functions in flaviviral replication, pathogenesis, and immune evasion. Of note, a long intertwined loop is observed in the wing domain of ZIKV NS1, and forms a hydrophobic “spike”, which can contribute to cellular membrane association. For different flaviviruses, the amino acid sequences of the “spike” are variable but their common characteristic is either hydrophobic or positively charged, which is a beneficial feature for membrane binding. Comparative studies with West Nile and Dengue virus NS1 structures reveal conserved features, but diversified electrostatic characteristics on both inner and outer faces. Our results suggest different mechanisms of flavivirus pathogenesis and should be considered during the development of diagnostic tools.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqian Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Institute of Health Sciences, Anhui University, Hefei, China
| | - Haiyuan Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Chao Su
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, China .,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
120
|
Jayaraman B, Smith AM, Fernandes JD, Frankel AD. Oligomeric viral proteins: small in size, large in presence. Crit Rev Biochem Mol Biol 2016; 51:379-394. [PMID: 27685368 DOI: 10.1080/10409238.2016.1215406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Viruses are obligate parasites that rely heavily on host cellular processes for replication. The small number of proteins typically encoded by a virus is faced with selection pressures that lead to the evolution of distinctive structural properties, allowing each protein to maintain its function under constraints such as small genome size, high mutation rate, and rapidly changing fitness conditions. One common strategy for this evolution is to utilize small building blocks to generate protein oligomers that assemble in multiple ways, thereby diversifying protein function and regulation. In this review, we discuss specific cases that illustrate how oligomerization is used to generate a single defined functional state, to modulate activity via different oligomeric states, or to generate multiple functional forms via different oligomeric states.
Collapse
Affiliation(s)
- Bhargavi Jayaraman
- a Department of Biochemistry and Biophysics , University of California , San Francisco , CA , USA
| | - Amber M Smith
- a Department of Biochemistry and Biophysics , University of California , San Francisco , CA , USA
| | - Jason D Fernandes
- b UC Santa Cruz Genomics Institute , Santa Cruz , CA , USA.,c Howard Hughes Medical Institute, University of California , Santa Cruz , CA , USA
| | - Alan D Frankel
- a Department of Biochemistry and Biophysics , University of California , San Francisco , CA , USA
| |
Collapse
|
121
|
Alayli F, Scholle F. Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells. Virology 2016; 496:227-236. [PMID: 27348054 DOI: 10.1016/j.virol.2016.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 12/31/2022]
Abstract
Dengue virus (DV) has become the most prevalent arthropod borne virus due to globalization and climate change. It targets dendritic cells during infection and leads to production of pro-inflammatory cytokines and chemokines. Several DV non-structural proteins (NS) modulate activation of human dendritic cells. We investigated the effect of DV NS1 on human monocyte-derived dendritic cells (mo-DCs) during dengue infection. NS1 is secreted into the serum of infected individuals where it interacts with various immune mediators and cell types. We purified secreted DV1 NS1 from supernatants of 293T cells that over-express the protein. Upon incubation with mo-DCs, we observed NS1 uptake and enhancement of early DV1 replication. As a consequence, mo-DCs that were pre-exposed to NS1 produced more pro-inflammatory cytokines in response to subsequent DV infection compared to DCs exposed to heat-inactivated NS1 (HNS1). Therefore the presence of exogenous NS1 is able to modulate dengue infection in mo-DCs.
Collapse
Affiliation(s)
- Farah Alayli
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
122
|
Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med 2016; 7:304ra141. [PMID: 26355030 DOI: 10.1126/scitranslmed.aaa3787] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The four dengue virus serotypes (DENV1 to DENV4) are mosquito-borne flaviviruses that cause up to ~100 million cases of dengue annually worldwide. Severe disease is thought to result from immunopathogenic processes involving serotype cross-reactive antibodies and T cells that together induce vasoactive cytokines, causing vascular leakage that leads to shock. However, no viral proteins have been directly implicated in triggering endothelial permeability, which results in vascular leakage. DENV nonstructural protein 1 (NS1) is secreted and circulates in patients' blood during acute infection; high levels of NS1 are associated with severe disease. We show that inoculation of mice with DENV NS1 alone induces both vascular leakage and production of key inflammatory cytokines. Furthermore, simultaneous administration of NS1 with a sublethal dose of DENV2 results in a lethal vascular leak syndrome. We also demonstrate that NS1 from DENV1, DENV2, DENV3, and DENV4 triggers endothelial barrier dysfunction, causing increased permeability of human endothelial cell monolayers in vitro. These pathogenic effects of physiologically relevant amounts of NS1 in vivo and in vitro were blocked by NS1-immune polyclonal mouse serum or monoclonal antibodies to NS1, and immunization of mice with NS1 from DENV1 to DENV4 protected against lethal DENV2 challenge. These findings add an important and previously overlooked component to the causes of dengue vascular leak, identify a new potential target for dengue therapeutics, and support inclusion of NS1 in dengue vaccines.
Collapse
Affiliation(s)
- P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Sarah S Killingbeck
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Kaycie Hopkins
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.
| |
Collapse
|
123
|
Watterson D, Modhiran N, Young PR. The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design. Antiviral Res 2016; 130:7-18. [DOI: 10.1016/j.antiviral.2016.02.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|
124
|
Dechtawewat T, Paemanee A, Roytrakul S, Songprakhon P, Limjindaporn T, Yenchitsomanus PT, Saitornuang S, Puttikhunt C, Kasinrerk W, Malasit P, Noisakran S. Mass spectrometric analysis of host cell proteins interacting with dengue virus nonstructural protein 1 in dengue virus-infected HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1270-1280. [PMID: 27108190 DOI: 10.1016/j.bbapap.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/26/2016] [Accepted: 04/19/2016] [Indexed: 01/09/2023]
Abstract
Dengue virus (DENV) infection is a leading cause of the mosquito-borne infectious diseases that affect humans worldwide. Virus-host interactions appear to play significant roles in DENV replication and the pathogenesis of DENV infection. Nonstructural protein 1 (NS1) of DENV is likely involved in these processes; however, its associations with host cell proteins in DENV infection remain unclear. In this study, we used a combination of techniques (immunoprecipitation, in-solution trypsin digestion, and LC-MS/MS) to identify the host cell proteins that interact with cell-associated NS1 in an in vitro model of DENV infection in the human hepatocyte HepG2 cell line. Thirty-six novel host cell proteins were identified as potential DENV NS1-interacting partners. A large number of these proteins had characteristic binding or catalytic activities, and were involved in cellular metabolism. Coimmunoprecipitation and colocalization assays confirmed the interactions of DENV NS1 and human NIMA-related kinase 2 (NEK2), thousand and one amino acid protein kinase 1 (TAO1), and component of oligomeric Golgi complex 1 (COG1) proteins in virus-infected cells. This study reports a novel set of DENV NS1-interacting host cell proteins in the HepG2 cell line and proposes possible roles for human NEK2, TAO1, and COG1 in DENV infection.
Collapse
Affiliation(s)
- Thanyaporn Dechtawewat
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Atchara Paemanee
- Proteomics Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sawanan Saitornuang
- Division of Dengue Hemorrhagic Fever Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Division of Dengue Hemorrhagic Fever Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Watchara Kasinrerk
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Chiang Mai 50200, Thailand; Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prida Malasit
- Division of Dengue Hemorrhagic Fever Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Sansanee Noisakran
- Division of Dengue Hemorrhagic Fever Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand.
| |
Collapse
|
125
|
Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy. Arch Virol 2016; 161:1751-60. [PMID: 27068162 PMCID: PMC7087181 DOI: 10.1007/s00705-016-2855-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Abstract
Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.
Collapse
|
126
|
Banerjee N, Mukhopadhyay S. Viral glycoproteins: biological role and application in diagnosis. Virusdisease 2016; 27:1-11. [PMID: 26925438 PMCID: PMC4758313 DOI: 10.1007/s13337-015-0293-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022] Open
Abstract
The viruses that infect humans cause a huge global disease burden and produce immense challenge towards healthcare system. Glycoproteins are one of the major components of human pathogenic viruses. They have been demonstrated to have important role(s) in infection and immunity. Concomitantly high titres of antibodies against these antigenic viral glycoproteins have paved the way for development of novel diagnostics. Availability of appropriate biomarkers is necessary for advance diagnosis of infectious diseases especially in case of outbreaks. As human mobilization has increased manifold nowadays, dissemination of infectious agents became quicker that paves the need of rapid diagnostic system. In case of viral infection it is an emergency as virus spreads and mutates very fast. This review encircles the vast arena of viral glycoproteins, their importance in health and disease and their diagnostic applications.
Collapse
Affiliation(s)
- Nilotpal Banerjee
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073 India
| | - Sumi Mukhopadhyay
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073 India
| |
Collapse
|
127
|
Szentpáli-Gavallér K, Lim SM, Dencső L, Bányai K, Koraka P, Osterhaus ADME, Martina BEE, Bakonyi T, Bálint Á. In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model. Viruses 2016; 8:v8020049. [PMID: 26907325 PMCID: PMC4776204 DOI: 10.3390/v8020049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 12/25/2022] Open
Abstract
West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G, C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA.
Collapse
Affiliation(s)
| | - Stephanie M Lim
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - László Dencső
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1143, Budapest, Hungary.
| | - Penelope Koraka
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | | | - Byron E E Martina
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - Tamás Bakonyi
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent István University, H-1143, Budapest, Hungary.
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, A-1210, Vienna, Austria.
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| |
Collapse
|
128
|
Alcalá AC, Medina F, González-Robles A, Salazar-Villatoro L, Fragoso-Soriano RJ, Vásquez C, Cervantes-Salazar M, del Angel RM, Ludert JE. The dengue virus non-structural protein 1 (NS1) is secreted efficiently from infected mosquito cells. Virology 2016; 488:278-87. [DOI: 10.1016/j.virol.2015.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
|
129
|
Ventrelli L, Marsilio Strambini L, Barillaro G. Microneedles for Transdermal Biosensing: Current Picture and Future Direction. Adv Healthc Mater 2015; 4:2606-40. [PMID: 26439100 DOI: 10.1002/adhm.201500450] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 01/01/2023]
Abstract
A novel trend is rapidly emerging in the use of microneedles, which are a miniaturized replica of hypodermic needles with length-scales of hundreds of micrometers, aimed at the transdermal biosensing of analytes of clinical interest, e.g., glucose, biomarkers, and others. Transdermal biosensing via microneedles offers remarkable opportunities for moving biosensing technologies and biochips from research laboratories to real-field applications, and envisages easy-to-use point-of-care microdevices with pain-free, minimally invasive, and minimal-training features that are very attractive for both developed and emerging countries. In addition to this, microneedles for transdermal biosensing offer a unique possibility for the development of biochips provided with end-effectors for their interaction with the biological system under investigation. Direct and efficient collection of the biological sample to be analyzed will then become feasible in situ at the same length-scale of the other biochip components by minimally trained personnel and in a minimally invasive fashion. This would eliminate the need for blood extraction using hypodermic needles and reduce, in turn, related problems, such as patient infections, sample contaminations, analysis artifacts, etc. The aim here is to provide a thorough and critical analysis of state-of-the-art developments in this novel research trend, and to bridge the gap between microneedles and biosensors.
Collapse
Affiliation(s)
- Letizia Ventrelli
- Dipartimento di Ingegneria dell'Informazione; Università di Pisa; Via G. Caruso 16 56122 Pisa Italy
| | | | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione; Università di Pisa; Via G. Caruso 16 56122 Pisa Italy
- Istituto di Fisiologia Clinica; Consiglio Nazionale delle Ricerche; via G. Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
130
|
Gonçalves AJS, Oliveira ERA, Costa SM, Paes MV, Silva JFA, Azevedo AS, Mantuano-Barradas M, Nogueira ACMA, Almeida CJ, Alves AMB. Cooperation between CD4+ T Cells and Humoral Immunity Is Critical for Protection against Dengue Using a DNA Vaccine Based on the NS1 Antigen. PLoS Negl Trop Dis 2015; 9:e0004277. [PMID: 26650916 PMCID: PMC4674122 DOI: 10.1371/journal.pntd.0004277] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 11/12/2015] [Indexed: 11/19/2022] Open
Abstract
Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50), which was abrogated with the increase of viral dose (40 LD50). The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity. Dengue is an emerging mosquito-borne disease present in an extensive area of the globe with an estimated risk exposure of half of the world’s population. Unfortunately, no specific treatment or vaccine is available to control this disease, which leads to approximately 20,000 casualties annually. The protective immune response against this pathogen consists of an important goal for the development of anti-dengue strategies. For years, the presence of neutralizing antibodies was believed to represent the major response for protection against dengue. However, a recent clinical trial showed that despite the induction of a balanced antibody response against all serotypes, vaccination had only a partial efficacy. In the present work, we aimed to elucidate the contribution of the cellular and humoral responses elicited by a DNA vaccine candidate encoding the non-structural 1 protein (NS1) from dengue virus. We observed that antibody as well as T cell responses are important for protection against dengue in a cooperative way. Our results demonstrated that an effective defense against virus was not achieved with antibodies or T cells alone, but rather with the combination of both responses. Therefore, we suggest that an ideal vaccine against dengue should induce both arms of the immune system.
Collapse
Affiliation(s)
- Antônio J. S. Gonçalves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Edson R. A. Oliveira
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Simone M. Costa
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marciano V. Paes
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Juliana F. A. Silva
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana S. Azevedo
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marcio Mantuano-Barradas
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Cristina M. A. Nogueira
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cecília J. Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ada M. B. Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
131
|
Scaturro P, Cortese M, Chatel-Chaix L, Fischl W, Bartenschlager R. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins. PLoS Pathog 2015; 11:e1005277. [PMID: 26562291 PMCID: PMC4643051 DOI: 10.1371/journal.ppat.1005277] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022] Open
Abstract
Non-structural protein 1 (NS1) is one of the most enigmatic proteins of the Dengue virus (DENV), playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E) and precursor Membrane (prM). Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles. Dengue virus (DENV) is a major arthropod-borne human pathogen, infecting more than 400 million individuals annually worldwide; however, neither a therapeutic drug nor a prophylactic vaccine is currently available. Amongst the DENV proteins, non-structural protein 1 (NS1) is one of the most enigmatic, being required for RNA replication, but also secreted from infected cells to counteract antiviral immune response, thus contributing to pathogenesis. Despite its essential role at early stages of the viral replication cycle, the molecular determinants governing NS1 functions are unknown. Here, we used a combination of genetic, high-resolution imaging and biochemical approaches and found that NS1 additionally plays an important role for the production of infectious virus particles. By using a novel trans-complementation system with fully functional epitope-tagged NS1, we show that NS1 interacts with the structural proteins residing in the envelope of the virus particle. An NS1 variant retained in the endoplasmic reticulum still supported efficient DENV particle production, demonstrating that secretion of NS1 is dispensable for virion production. This study expands the list of functions exerted by NS1 for the DENV replication cycle. Given this multi-functional nature, NS1 appears to be an attractive target for antiviral therapy.
Collapse
Affiliation(s)
- Pietro Scaturro
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- * E-mail: (PS); (RB)
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Laurent Chatel-Chaix
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Fischl
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- * E-mail: (PS); (RB)
| |
Collapse
|
132
|
Gelanew T, Poole-Smith BK, Hunsperger E. Development and characterization of mouse monoclonal antibodies against monomeric dengue virus non-structural glycoprotein 1 (NS1). J Virol Methods 2015; 222:214-23. [DOI: 10.1016/j.jviromet.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 06/06/2015] [Accepted: 06/07/2015] [Indexed: 11/17/2022]
|
133
|
Source and Purity of Dengue-Viral Preparations Impact Requirement for Enhancing Antibody to Induce Elevated IL-1β Secretion: A Primary Human Monocyte Model. PLoS One 2015; 10:e0136708. [PMID: 26301593 PMCID: PMC4547738 DOI: 10.1371/journal.pone.0136708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/07/2015] [Indexed: 12/30/2022] Open
Abstract
Dengue virus is a major global health threat and can lead to life-threatening hemorrhagic complications due to immune activation and cytokine production. Cross-reactive antibodies to an earlier dengue virus infection are a recognized risk factor for severe disease. These antibodies bind heterologous dengue serotypes and enhance infection into Fc-receptor-bearing cells, a process known as antibody-dependent enhancement of infection. One crucial cytokine seen elevated in severe dengue patients is IL-1β, a potent inflammatory cytokine matured by the inflammasome. We used a highly-physiologic system by studying antibody-dependent enhancement of IL-1β in primary human monocytes with anti-dengue human monoclonal antibodies isolated from patients. Antibody-enhancement increased viral replication in primary human monocytes inoculated with supernatant harvested from Vero cells infected with dengue virus serotype 2 (DENV-2) 16681. Surprisingly, IL-1β secretion induced by infectious supernatant harvested from two independent Vero cell lines was not enhanced by antibody. Secretion of multiple other inflammatory cytokines was also independent of antibody signaling. However, IL-1β secretion did require NLRP3 and caspase-1 activity. Immunodepletion of dengue virions from the infectious supernatant confirmed that virus was not the main IL-1β-inducing agent, suggesting that a supernatant component(s) not associated with the virion induced IL-1β production. We excluded RNA, DNA, contaminating LPS, viral NS1 protein, complement, and cytokines. In contrast, purified Vero-derived DENV-2 16681 exhibited antibody-enhancement of both infection and IL-1β induction. Furthermore, C6/36 mosquito cells did not produce such an inflammatory component, as crude supernatant harvested from insect cells infected with DENV-2 16681 induced antibody-dependent IL-1β secretion. This study indicates that Vero cells infected with DENV-2 16681 may produce inflammatory components during dengue virus propagation that mask the virus-specific immune response. Thus, the choice of host cell and viral purity should be carefully considered, while insect-derived virus represents a system that elicits antibody-dependent cytokine responses to dengue virus with fewer confounding issues.
Collapse
|
134
|
Klema VJ, Padmanabhan R, Choi KH. Flaviviral Replication Complex: Coordination between RNA Synthesis and 5'-RNA Capping. Viruses 2015; 7:4640-56. [PMID: 26287232 PMCID: PMC4576198 DOI: 10.3390/v7082837] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/28/2022] Open
Abstract
Genome replication in flavivirus requires (-) strand RNA synthesis, (+) strand RNA synthesis, and 51-RNA capping and methylation. To carry out viral genome replication, flavivirus assembles a replication complex, consisting of both viral and host proteins, on the cytoplasmic side of the endoplasmic reticulum (ER) membrane. Two major components of the replication complex are the viral non-structural (NS) proteins NS3 and NS5. Together they possess all the enzymatic activities required for genome replication, yet how these activities are coordinated during genome replication is not clear. We provide an overview of the flaviviral genome replication process, the membrane-bound replication complex, and recent crystal structures of full-length NS5. We propose a model of how NS3 and NS5 coordinate their activities in the individual steps of (-) RNA synthesis, (+) RNA synthesis, and 51-RNA capping and methylation.
Collapse
Affiliation(s)
- Valerie J Klema
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX 77555-0647, USA.
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC 20057, USA.
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX 77555-0647, USA.
| |
Collapse
|
135
|
Ganguly A, Malabadi RB, Bhatnagar PK, Tang X, Das D, Loebenberg R, Suresh MR, Sunwoo HH. Production and characterization of monospecific and bispecific antibodies against dengue virus NS1 protein. J Virol Methods 2015; 220:5-12. [DOI: 10.1016/j.jviromet.2015.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 11/28/2022]
|
136
|
De La Cruz Hernández SI, Reyes-del Valle J, Villegas-del Angel E, Ludert JE, del Angel RM. Dengue laboratory diagnosis: still some room for improvement. Future Virol 2015. [DOI: 10.2217/fvl.15.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dengue is the most important and widely distributed arthropod-borne viral disease affecting humans. The number of dengue virus infections has steadily grown and more than 100 countries survey dengue incidence every year. Due to the lack of an approved antiviral treatment or licensed preventative vaccine, accurate and opportune diagnosis is commended for efficient dengue epidemiological surveillance, to propose control measures in order to curtail outbreaks timely and treat patients satisfactorily. In this review, the basis, application and indications for different diagnostic tests are described, and their advantages and limitations considered. At the end of this piece, we speculate what the future may hold for the diagnosis of dengue infections.
Collapse
Affiliation(s)
- Sergio Isaac De La Cruz Hernández
- Department of Virology, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Mexico
- Departament of Infectomics & Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), D.F., Mexico
| | | | | | - Juan E Ludert
- Departament of Infectomics & Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), D.F., Mexico
| | - Rosa M del Angel
- Departament of Infectomics & Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), D.F., Mexico
| |
Collapse
|
137
|
Abstract
Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared Phase III, and efficacy results have been published. Excellent tetravalent seroconversion was seen, yet the protective efficacy against infection was surprisingly low. Here, we will describe the complicating factors involved in the generation of a safe and efficacious dengue vaccine. Furthermore, we will discuss the human antibody responses during infection, including the epitopes targeted in humans. Also, we will discuss the current understanding of the assays used to evaluate antibody response. We hope this review will aid future dengue vaccine development as well as fundamental research related to the phenomenon of antibody-dependent enhancement of dengue virus infection.
Collapse
Affiliation(s)
- Jacky Flipse
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
138
|
Tuan NM, Nhan HT, Chau NVV, Hung NT, Tuan HM, Tram TV, Ha NLD, Loi P, Quang HK, Kien DTH, Hubbard S, Chau TNB, Wills B, Wolbers M, Simmons CP. Sensitivity and specificity of a novel classifier for the early diagnosis of dengue. PLoS Negl Trop Dis 2015; 9:e0003638. [PMID: 25836753 PMCID: PMC4383489 DOI: 10.1371/journal.pntd.0003638] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022] Open
Abstract
Background Dengue is the commonest arboviral disease of humans. An early and accurate diagnosis of dengue can support clinical management, surveillance and disease control and is central to achieving the World Health Organisation target of a 50% reduction in dengue case mortality by 2020. Methods 5729 children with fever of <72hrs duration were enrolled into this multicenter prospective study in southern Vietnam between 2010-2012. A composite of gold standard diagnostic tests identified 1692 dengue cases. Using statistical methods, a novel Early Dengue Classifier (EDC) was developed that used patient age, white blood cell count and platelet count to discriminate dengue cases from non-dengue cases. Results The EDC had a sensitivity of 74.8% (95%CI: 73.0-76.8%) and specificity of 76.3% (95%CI: 75.2-77.6%) for the diagnosis of dengue. As an adjunctive test alongside NS1 rapid testing, sensitivity of the composite test was 91.6% (95%CI: 90.4-92.9%). Conclusions We demonstrate that the early diagnosis of dengue can be enhanced beyond the current standard of care using a simple evidence-based algorithm. The results should support patient management and clinical trials of specific therapies. Dengue is a very common acute infectious disease in the tropical world. Health care professionals are able to better care for dengue patients if they can make an early diagnosis and make a plan for case management. This current study investigated fever in 5729 children in Vietnam with 3 days or less of fever and identified 1692 dengue cases using advanced, gold standard methods. We systematically collected a range of medical and laboratory findings on each patient when they entered the study and used statistical tools to determine if these medical and laboratory findings could enable early diagnosis, independent of sophisticated, gold-standard laboratory tests. Our results, called the Early Dengue Classifier, had performance characteristics suggesting it could improve the diagnostic proficiency of health care professionals. However the performance of the Early Dengue Classifier is not perfect and likely will not change the practice of experienced doctors in dengue endemic settings. Our study highlights the need for 2nd generation, easy-to-use rapid diagnostic tests that can accurately diagnose dengue in the first few days of fever.
Collapse
Affiliation(s)
| | - Ho Thi Nhan
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | | | - Ha Manh Tuan
- Children’s Hospital No. 2, Ho Chi Minh City, Vietnam
| | - Ta Van Tram
- Tien Giang Provincial Hospital, My Tho, Tien Giang Province, Vietnam
| | - Nguyen Le Da Ha
- Dong Nai Children’s Hospital, Bien Hoa, Dong Nai Province, Vietnam
| | - Phan Loi
- Long An Provincial Hospital, Tan An, Long An Province, Vietnam
| | - Han Khoi Quang
- Binh Duong Provincial Hospital, Thu Dau Mot, Binh Duong Province, Vietnam
| | - Duong Thi Hue Kien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Sonya Hubbard
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Tran Nguyen Bich Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marcel Wolbers
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Cameron P. Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Nossal Institute of Global Health, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
139
|
Hapuarachchi HC, Chua RCR, Shi Y, Thein TL, Lee LK, Lee KS, Lye DC, Ng LC, Leo YS. Clinical outcome and genetic differences within a monophyletic Dengue virus type 2 population. PLoS One 2015; 10:e0121696. [PMID: 25811657 PMCID: PMC4374945 DOI: 10.1371/journal.pone.0121696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 12/28/2022] Open
Abstract
The exact mechanisms of interplay between host and viral factors leading to severe dengue are yet to be fully understood. Even though previous studies have implicated specific genetic differences of Dengue virus (DENV) in clinical severity and virus attenuation, similar studies with large-scale, whole genome screening of monophyletic virus populations are limited. Therefore, in the present study, we compared 89 whole genomes of DENV-2 cosmopolitan clade III isolates obtained from patients diagnosed with dengue fever (DF, n = 58), dengue hemorrhagic fever (DHF, n = 30) and dengue shock syndrome (DSS, n = 1) in Singapore between July 2010 and January 2013, in order to determine the correlation of observed viral genetic differences with clinical outcomes. Our findings showed no significant difference between the number of primary and secondary infections that progressed to DHF and DSS (p>0.05) in our study cohort. Despite being highly homogenous, study isolates possessed 39 amino acid substitutions of which 10 substitutions were fixed in three main groups of virus isolates. None of those substitutions were specifically associated with DHF and DSS. Notably, two evolutionarily unique virus groups possessing C-P43T+NS1-S103T+NS2A-V83I+NS3-R337K+ NS3-I600T+ NS5-P136S and NS2A-T119N mutations were exclusively found in patients with DF, the benign form of DENV infections. Those mutants were significantly associated with mild disease outcome. These observations indicated that disease progression into DHF and DSS within our patient population was more likely to be due to host than virus factors. We hypothesize that selection for potentially less virulent groups of DENV-2 in our study cohort may be an evolutionary adaptation of viral strains to extend their survival in the human-mosquito transmission cycle.
Collapse
Affiliation(s)
| | - Rachel Choon Rong Chua
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
| | - Yuan Shi
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
| | - Tun Lin Thein
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Linda Kay Lee
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Kim Sung Lee
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489
| | - David Chien Lye
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
- * E-mail:
| | - Yee Sin Leo
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| |
Collapse
|
140
|
Young LB, Melian EB, Setoh YX, Young PR, Khromykh AA. Last 20 aa of the West Nile virus NS1' protein are responsible for its retention in cells and the formation of unique heat-stable dimers. J Gen Virol 2015; 96:1042-1054. [PMID: 25614585 DOI: 10.1099/vir.0.000053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/13/2015] [Indexed: 12/24/2022] Open
Abstract
West Nile virus (WNV), a mosquito-borne flavivirus, is the major cause of arboviral encephalitis in the USA. As with other members of the Japanese encephalitis virus serogroup, WNV produces an additional non-structural protein, NS1', a C-terminal extended product of NS1 generated as the result of a -1 programmed ribosomal frameshift (PRF). We have previously shown that mutations abolishing the PRF, and consequently NS1', resulted in reduced neuroinvasiveness. However, whether this was caused by the PRF event itself or by the lack of a PRF product, NS1', or a combination of both, remains undetermined. Here, we showed that WNV NS1' formed a unique subpopulation of heat- and low-pH-stable dimers. C-terminal truncations and mutational analysis employing an NS1'-expressing plasmid showed that stability of NS1' dimers was linked to the penultimate 10 aa. To examine the role of NS1' heat-stable dimers in virus replication and pathogenicity, a stop codon mutation was introduced into NS1' to create a WNV producing a truncated version of NS1' lacking the last 20 aa, but not affecting the PRF. NS1' protein produced by this mutant virus was secreted more efficiently than WT NS1', indicating that the sequence of the last 20 aa of NS1' was responsible for its cellular retention. Further analysis of this mutant showed growth kinetics in cells and virulence in weanling mice after peripheral infection similar to the WT WNVKUN, suggesting that full-length NS1' was not essential for virus replication in vitro and for virulence in mice.
Collapse
Affiliation(s)
- Lucy B Young
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ezequiel Balmori Melian
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yin Xiang Setoh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Paul R Young
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alexander A Khromykh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
141
|
Nonstructural protein 1-specific immunoglobulin M and G antibody capture enzyme-linked immunosorbent assays in diagnosis of flaviviral infections in humans. J Clin Microbiol 2014; 53:557-66. [PMID: 25502522 DOI: 10.1128/jcm.02735-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IgM antibody- and IgG antibody-capture enzyme-linked immunosorbent assays (MAC/GAC-ELISAs) targeted at envelope protein (E) of dengue viruses (DENV), West Nile virus, and Japanese encephalitis virus (JEV) are widely used as serodiagnostic tests for presumptive confirmation of viral infection. Antibodies directed against the flavivirus nonstructural protein 1 (NS1) have been proposed as serological markers of natural infections among vaccinated populations. The aim of the current study is to optimize an IgM and IgG antibody-capture ELISA (MAC/GAC-ELISA) to detect anti-NS1 antibodies and compare it with anti-E MAC/GAC-ELISA. Plasmids to express premembrane/envelope (prM/E) or NS1 proteins of six medically important flaviviruses, including dengue viruses (DENV-1 to DENV-4), West Nile virus (WNV), and Japanese encephalitis virus (JEV), were constructed. These plasmids were used for the production of prM/E-containing virus-like particles (VLPs) and secreted NS1 (sNS1) from COS-1 cells. Archived clinical specimens from patients with confirmed DENV, JEV, and WNV infections, along with naive sera, were subjected to NS1-MAC/GAC-ELISAs before or after depletion of anti-prM/E antibodies by preabsorption with or without VLPs. Human serum specimens from previously confirmed DENV infections showed significantly enhanced positive-to-negative (P/N) ratios for NS1-MAC/GAC-ELISAs after the depletion of anti-prM/E antibodies. No statistical differences in sensitivities and specificities were found between the newly developed NS1- and VLP-MAC/GAC-ELISAs. Further application of the assays to WNV- and JEV-infected serum panels showed similar results. A novel approach to perform MAC/GAC-ELISAs for NS1 antibody detection was successfully developed with great potential to differentiate antibodies elicited by the tetravalent chimeric yellow fever-17D/dengue vaccine or DENV infection.
Collapse
|
142
|
Pal S, Dauner AL, Mitra I, Forshey BM, Garcia P, Morrison AC, Halsey ES, Kochel TJ, Wu SJL. Evaluation of dengue NS1 antigen rapid tests and ELISA kits using clinical samples. PLoS One 2014; 9:e113411. [PMID: 25412170 PMCID: PMC4239072 DOI: 10.1371/journal.pone.0113411] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/23/2014] [Indexed: 11/18/2022] Open
Abstract
Background Early diagnosis of dengue virus (DENV) infection can improve clinical outcomes by ensuring close follow-up, initiating appropriate supportive therapies and raising awareness to the potential of hemorrhage or shock. Non-structural glycoprotein-1 (NS1) has proven to be a useful biomarker for early diagnosis of dengue. A number of rapid diagnostic tests (RDTs) and enzyme-linked immunosorbent assays (ELISAs) targeting NS1 antigen (Ag) are now commercially available. Here we evaluated these tests using a well-characterized panel of clinical samples to determine their effectiveness for early diagnosis. Methodology/Principal Findings Retrospective samples from South America were used to evaluate the following tests: (i) “Dengue NS1 Ag STRIP” and (ii) “Platelia Dengue NS1 Ag ELISA” (Bio-Rad, France), (iii) “Dengue NS1 Detect Rapid Test (1st Generation)” and (iv) “DENV Detect NS1 ELISA” (InBios International, United States), (v) “Panbio Dengue Early Rapid (1st generation)” (vi) “Panbio Dengue Early ELISA (2nd generation)” and (vii) “SD Bioline Dengue NS1 Ag Rapid Test” (Alere, United States). Overall, the sensitivity of the RDTs ranged from 71.9%–79.1% while the sensitivity of the ELISAs varied between 85.6–95.9%, using virus isolation as the reference method. Most tests had lower sensitivity for DENV-4 relative to the other three serotypes, were less sensitive in detecting secondary infections, and appeared to be most sensitive on Day 3–4 post symptom onset. The specificity of all evaluated tests ranged from 95%–100%. Conclusions ELISAs had greater overall sensitivity than RDTs. In conjunction with other parameters, the performance data can help determine which dengue diagnostics should be used during the first few days of illness, when the patients are most likely to present to a clinic seeking care.
Collapse
Affiliation(s)
- Subhamoy Pal
- Naval Medical Research Center, Silver Spring, Maryland 20910-7500, United States of America
- * E-mail:
| | - Allison L. Dauner
- Naval Medical Research Center, Silver Spring, Maryland 20910-7500, United States of America
| | - Indrani Mitra
- Naval Medical Research Center, Silver Spring, Maryland 20910-7500, United States of America
| | | | - Paquita Garcia
- Peruvian Ministry of Health, Instituto Nacional de Salud, Lima, Peru
| | - Amy C. Morrison
- U.S. Naval Medical Research Unit, No. 6, Lima, Peru
- University of California Davis, Davis, CA, 95616, United States of America
| | | | - Tadeusz J. Kochel
- Naval Medical Research Center, Silver Spring, Maryland 20910-7500, United States of America
| | - Shuenn-Jue L. Wu
- Naval Medical Research Center, Silver Spring, Maryland 20910-7500, United States of America
| |
Collapse
|
143
|
Attenuated West Nile virus mutant NS1130-132QQA/175A/207A exhibits virus-induced ultrastructural changes and accumulation of protein in the endoplasmic reticulum. J Virol 2014; 89:1474-8. [PMID: 25392222 DOI: 10.1128/jvi.02215-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that ablation of the three N-linked glycosylation sites in the West Nile virus NS1 protein completely attenuates mouse neuroinvasiveness (≥1,000,000 PFU). Here, we compared the replication of the NS1130-132QQA/175A/207A mutant to that of the parental NY99 strain in monkey kidney Vero cells. The results suggest that the mechanism of attenuation is a lack of NS1 glycosylation, which blocks efficient replication, maturation, and NS1 secretion from the endoplasmic reticulum and results in changes to the virus-induced ultrastructure.
Collapse
|
144
|
Cedillo-Barrón L, García-Cordero J, Bustos-Arriaga J, León-Juárez M, Gutiérrez-Castañeda B. Antibody response to dengue virus. Microbes Infect 2014; 16:711-20. [PMID: 25124542 DOI: 10.1016/j.micinf.2014.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 12/23/2022]
Abstract
In this review, we discuss the current knowledge of the role of the antibody response against dengue virus and highlight novel insights into targets recognized by the human antibody response. We also discuss how the balance of pathological and protective antibody responses in the host critically influences clinical aspects of the disease.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico
| | - José Bustos-Arriaga
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, 20892 MD, USA
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Montes Urales #800, Col. Lomas de Virreyes, 11000, Mexico
| | - Benito Gutiérrez-Castañeda
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
145
|
Abstract
Dengue virus (DENV) is an emerging mosquito-borne human pathogen that affects millions of individuals each year by causing severe and potentially fatal syndromes. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. Overcoming this limitation requires detailed understanding of the intimate relationship between the virus and its host cell, providing the basis to devise optimal prophylactic and therapeutic treatment options. With the advent of novel high-throughput technologies including functional genomics, transcriptomics, proteomics, and lipidomics, new important insights into the DENV replication cycle and the interaction of this virus with its host cell have been obtained. In this chapter, we provide a comprehensive overview on the current status of the DENV research field, covering every step of the viral replication cycle with a particular focus on virus-host cell interaction. We will also review specific chemical inhibitors targeting cellular factors and processes of relevance for the DENV replication cycle and their possible exploitation for the development of next generation antivirals.
Collapse
|
146
|
Oyero OG, Ayukekbong JA. High dengue NS1 antigenemia in febrile patients in Ibadan, Nigeria. Virus Res 2014; 191:59-61. [PMID: 25087878 DOI: 10.1016/j.virusres.2014.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 12/18/2022]
Abstract
We conducted a dengue seroprevalence survey among febrile patients positive or negative for malaria in Ibadan, Nigeria. Dengue IgG and NS1 seroprevalence of 73% and 35%, respectively, was observed, and 43% of those with malaria had acute dengue infection (NS1 determination). On the other hand, all participants with malaria were IgG dengue seropositive consistent with the endemicity of both arthropod-borne infections in the region. These data indicate that dengue is emerging as a major and neglected cause of fever in Nigeria.
Collapse
Affiliation(s)
- Olufunmilayo G Oyero
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - James A Ayukekbong
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Section for Clinical research, Redeem Biomedical System, Douala, Cameroon.
| |
Collapse
|
147
|
Pierson TC, Diamond MS. Vaccine Development as a Means to Control Dengue Virus Pathogenesis: Do We Know Enough? Annu Rev Virol 2014; 1:375-98. [PMID: 26958727 DOI: 10.1146/annurev-virology-031413-085453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dengue virus (DENV) is a mosquito-transmitted RNA virus responsible for 390 million infections each year and significant morbidity and mortality throughout tropical and subtropical regions of the world. Efforts to develop a DENV vaccine span 70 years and include the work of luminaries of the virus vaccine field. Although vaccines have been used to reduce the global health burden of other flaviviruses, the unique requirement for a single vaccine to protect against four different groups of dengue viruses, and the link between secondary infections and DENV disease pathogenesis, has limited success to date. In this review, we discuss several promising DENV vaccine candidates in clinical trials and assess how recent advances in understanding of DENV biology and immunity may expedite efforts toward the development of safe and effective vaccines.
Collapse
Affiliation(s)
- Theodore C Pierson
- Viral Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
148
|
Fan J, Liu Y, Yuan Z. Critical role of Dengue Virus NS1 protein in viral replication. Virol Sin 2014; 29:162-9. [PMID: 24903593 DOI: 10.1007/s12250-014-3459-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/16/2014] [Indexed: 11/27/2022] Open
Abstract
Dengue virus (DENV) nonstructural protein 1 (NS1) is a highly conserved 46-kDa protein that contains 2 glycosylation sites (Asn-130 and Asn-207) and 12 conserved cysteine (Cys) residues. Here, we performed site-directed mutagenesis to generate systematic mutants of viral strain TSV01. The results of the subsequent analysis showed that an alanine substitution at the second N-linked glycan Asn-207 in NS1 delayed viral RNA synthesis, reduced virus plaque size, and weakened the cytopathic effect. Three mutants at Cys sites (Cys-4, Cys-55, Cys-291) and a C-terminal deletion (ΔC) mutant significantly impaired RNA synthesis, and consequently abolished viral growth, whereas alanine mutations at Asn-130 and Glu-173 resulted in phenotypes that were similar to the wild-type (WT) virus. Further analysis showed that the Asn-207 mutation slightly delayed viral replication. These results suggest that the three conserved disulfide bonds and the second N-linked glycan in NS1 are required for DENV-2 replication.
Collapse
Affiliation(s)
- Jingjing Fan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | |
Collapse
|
149
|
Chagan-Yasutan H, Lacuesta TL, Ndhlovu LC, Oguma S, Leano PSA, Telan EFO, Kubo T, Morita K, Uede T, Dimaano EM, Hattori T. Elevated levels of full-length and thrombin-cleaved osteopontin during acute dengue virus infection are associated with coagulation abnormalities. Thromb Res 2014; 134:449-54. [PMID: 24861695 DOI: 10.1016/j.thromres.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Dengue virus (DENV) is transmitted by the mosquito vector, and causes a wide range of symptoms that lead to dengue fever (DF) or life-threatening dengue hemorrhagic fever (DHF). The host and viral correlates that contribute to DF and DHF are complex and poorly understood, but appear to be linked to inflammation and impaired coagulation. Full-length osteopontin (FL-OPN), a glycoprotein, and its activated thrombin-cleaved product, trOPN, integrate multiple immunological signals through the induction of pro-inflammatory cytokines. MATERIALS AND METHOD To understand the role of OPN in DENV-infection, we assessed circulating levels of FL-OPN, trOPN, and several coagulation markers (D-dimer, thrombin-antithrombin complex [TAT], thrombomodulin [TM], and ferritin in blood obtained from 65 DENV infected patients in the critical and recovery phases of DF and DHF during a dengue virus epidemic in the Philippines in 2010. RESULTS Levels of FL-OPN, trOPN, D-dimer, TAT, and TM were significantly elevated in the critical phase in both the DF and DHF groups, as compared with healthy controls. During the recovery phase, FL-OPN levels declined while trOPN levels increased dramatically in both the DF and DHF groups. FL-OPN levels were directly correlated with D-dimer and ferritin levels, while the generation of trOPN was associated with TAT levels, platelet counts, and viral RNA load. CONCLUSION Our study demonstrated the marked elevation of plasma levels of FL-OPN and thrombin-cleaved OPN product, trOPN, in DENV-infection for the first time. Further studies on the biological functions of these matricellular proteins in DENV-infection would clarify its pathogenesis.
Collapse
Affiliation(s)
- Haorile Chagan-Yasutan
- Division of Emerging Infectious Diseases, Department of Internal Medicine, Graduate School of Medicine; Laboratory of Disaster-related Infectious Disease, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | | | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of HI, Manoa, USA
| | - Shigeru Oguma
- Medical Informatics Division, Takeda General Hospital, Kyoto, Japan
| | - Prisca Susan A Leano
- National Reference Laboratory for HIV/AIDS, Hepatitis, and other STDs, STD/AIDS Cooperative Central Laboratory, Manila, Philippines
| | - Elizabeth Freda O Telan
- National Reference Laboratory for HIV/AIDS, Hepatitis, and other STDs, STD/AIDS Cooperative Central Laboratory, Manila, Philippines
| | - Toru Kubo
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Toshimitsu Uede
- Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Japan
| | - Efren M Dimaano
- Department of Blood Borne Diseases, San Lazaro Hospital, Manila, Philippines
| | - Toshio Hattori
- Division of Emerging Infectious Diseases, Department of Internal Medicine, Graduate School of Medicine; Laboratory of Disaster-related Infectious Disease, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
150
|
Crook KR, Miller-Kittrell M, Morrison CR, Scholle F. Modulation of innate immune signaling by the secreted form of the West Nile virus NS1 glycoprotein. Virology 2014; 458-459:172-82. [PMID: 24928049 DOI: 10.1016/j.virol.2014.04.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/17/2014] [Accepted: 04/22/2014] [Indexed: 12/28/2022]
Abstract
West Nile virus (WNV) employs several different strategies to escape the innate immune response. We have previously demonstrated that the WNV NS1 protein interferes with signal transduction from Toll-like receptor 3 (TLR3). NS1 is a glycoprotein that can be found intracellularly or associated with the plasma membrane. In addition, NS1 is secreted to high levels during flavivirus infections. We investigated whether the secreted form of NS1 inhibits innate immune signaling pathways in uninfected cells. Secreted NS1 (sNS1) was purified from supernatants of cells engineered to express the protein. Purified sNS1 associated with and repressed TLR3-induced cytokine production by HeLa cells, and inhibited signaling from TLR3 and other TLRs in bone marrow-derived macrophages and dendritic cells. Footpad administration of sNS1 showed the protein associated predominantly with macrophages and dendritic cells in the draining lymph node. Additionally, sNS1 significantly reduced TLR3 signaling and WNV replicon particle-mediated cytokine transcription in popliteal lymph nodes.
Collapse
Affiliation(s)
- Kristen R Crook
- Department of Biological Sciences, North Carolina State University, Raleigh, NC CB7614, USA
| | - Mindy Miller-Kittrell
- Department of Biological Sciences, North Carolina State University, Raleigh, NC CB7614, USA
| | - Clayton R Morrison
- Department of Biological Sciences, North Carolina State University, Raleigh, NC CB7614, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC CB7614, USA.
| |
Collapse
|