101
|
Miras M, Truniger V, Silva C, Verdaguer N, Aranda MA, Querol-Audí J. Structure of eIF4E in Complex with an eIF4G Peptide Supports a Universal Bipartite Binding Mode for Protein Translation. PLANT PHYSIOLOGY 2017; 174:1476-1491. [PMID: 28522457 PMCID: PMC5490897 DOI: 10.1104/pp.17.00193] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/15/2017] [Indexed: 05/20/2023]
Abstract
The association-dissociation of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) with eIF4G is a key control step in eukaryotic translation. The paradigm on the eIF4E-eIF4G interaction states that eIF4G binds to the dorsal surface of eIF4E through a single canonical alpha-helical motif, while metazoan eIF4E-binding proteins (m4E-BPs) advantageously compete against eIF4G via bimodal interactions involving this canonical motif and a second noncanonical motif of the eIF4E surface. Metazoan eIF4Gs share this extended binding interface with m4E-BPs, with significant implications on the understanding of translation regulation and the design of therapeutic molecules. Here we show the high-resolution structure of melon (Cucumis melo) eIF4E in complex with a melon eIF4G peptide and propose the first eIF4E-eIF4G structural model for plants. Our structural data together with functional analyses demonstrate that plant eIF4G binds to eIF4E through both the canonical and noncanonical motifs, similarly to metazoan eIF4E-eIF4G complexes. As in the case of metazoan eIF4E-eIF4G, this may have very important practical implications, as plant eIF4E-eIF4G is also involved in a significant number of plant diseases. In light of our results, a universal eukaryotic bipartite mode of binding to eIF4E is proposed.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Espinardo, Murcia, Spain
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Espinardo, Murcia, Spain
| | - Cristina Silva
- Institut de Biologia Molecular de Barcelona/CSIC, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Núria Verdaguer
- Institut de Biologia Molecular de Barcelona/CSIC, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), 30100 Espinardo, Murcia, Spain
| | - Jordi Querol-Audí
- Institut de Biologia Molecular de Barcelona/CSIC, Parc Científic de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
102
|
Reappraisal to the study of 4E-BP1 as an mTOR substrate – A normative critique. Eur J Cell Biol 2017; 96:325-336. [DOI: 10.1016/j.ejcb.2017.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/20/2022] Open
|
103
|
Jansova D, Koncicka M, Tetkova A, Cerna R, Malik R, del Llano E, Kubelka M, Susor A. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle 2017; 16:927-939. [PMID: 28272965 PMCID: PMC5462087 DOI: 10.1080/15384101.2017.1295178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 01/03/2023] Open
Abstract
Fully grown mammalian oocytes utilize transcripts synthetized and stored during earlier development. RNA localization followed by a local translation is a mechanism responsible for the regulation of spatial and temporal gene expression. Here we show that the mouse oocyte contains 3 forms of cap-dependent translational repressor expressed on the mRNA level: 4E-BP1, 4E-BP2 and 4E-BP3. However, only 4E-BP1 is present as a protein in oocytes, it becomes inactivated by phosphorylation after nuclear envelope breakdown and as such it promotes cap-dependent translation after NEBD. Phosphorylation of 4E-BP1 can be seen in the oocytes after resumption of meiosis but it is not detected in the surrounding cumulus cells, indicating that 4E-BP1 promotes translation at a specific cell cycle stage. Our immunofluorescence analyses of 4E-BP1 in oocytes during meiosis I showed an even localization of global 4E-BP1, as well as of its 4E-BP1 (Thr37/46) phosphorylated form. On the other hand, 4E-BP1 phosphorylated on Ser65 is localized at the spindle poles, and 4E-BP1 phosphorylated on Thr70 localizes on the spindle. We further show that the main positive regulators of 4E-BP1 phosphorylation after NEBD are mTOR and CDK1 kinases, but not PLK1 kinase. CDK1 exerts its activity toward 4E-BP1 phosphorylation via phosphorylation and activation of mTOR. Moreover, both CDK1 and phosphorylated mTOR co-localize with 4E-BP1 phosphorylated on Thr70 on the spindle at the onset of meiotic resumption. Expression of the dominant negative 4E-BP1 mutant adversely affects translation and results in spindle abnormality. Taken together, our results show that the phosphorylation of 4E-BP1 promotes translation at the onset of meiosis to support the spindle assembly and suggest an important role of CDK1 and mTOR kinases in this process. We also show that the mTOR regulatory pathway is present in human oocytes and is likely to function in a similar way as in mouse oocytes.
Collapse
Affiliation(s)
- Denisa Jansova
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Marketa Koncicka
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Anna Tetkova
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Renata Cerna
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics, ASCR, Prague, Czech Republic
| | - Edgar del Llano
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| |
Collapse
|
104
|
Kumar P, Hellen CUT, Pestova TV. Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Genes Dev 2017; 30:1573-88. [PMID: 27401559 PMCID: PMC4949329 DOI: 10.1101/gad.282418.116] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022]
Abstract
Ribosomal attachment to mammalian capped mRNAs is achieved through the cap-eukaryotic initiation factor 4E (eIF4E)-eIF4G-eIF3-40S chain of interactions, but the mechanism by which mRNA enters the mRNA-binding channel of the 40S subunit remains unknown. To investigate this process, we recapitulated initiation on capped mRNAs in vitro using a reconstituted translation system. Formation of initiation complexes at 5'-terminal AUGs was stimulated by the eIF4E-cap interaction and followed "the first AUG" rule, indicating that it did not occur by backward scanning. Initiation complexes formed even at the very 5' end of mRNA, implying that Met-tRNAi (Met) inspects mRNA from the first nucleotide and that initiation does not have a "blind spot." In assembled initiation complexes, the cap was no longer associated with eIF4E. Omission of eIF4A or disruption of eIF4E-eIF4G-eIF3 interactions converted eIF4E into a specific inhibitor of initiation on capped mRNAs. Taken together, these results are consistent with the model in which eIF4E-eIF4G-eIF3-40S interactions place eIF4E at the leading edge of the 40S subunit, and mRNA is threaded into the mRNA-binding channel such that Met-tRNAi (Met) can inspect it from the first nucleotide. Before entering, eIF4E likely dissociates from the cap to overcome steric hindrance. We also found that the m(7)G cap specifically interacts with eIF3l.
Collapse
Affiliation(s)
- Parimal Kumar
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| |
Collapse
|
105
|
Steinberger J, Chu J, Maïga RI, Sleiman K, Pelletier J. Developing anti-neoplastic biotherapeutics against eIF4F. Cell Mol Life Sci 2017; 74:1681-1692. [PMID: 28004147 PMCID: PMC11107644 DOI: 10.1007/s00018-016-2430-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
Abstract
Biotherapeutics have revolutionized modern medicine by providing medicines that would not have been possible with small molecules. With respect to cancer therapies, this represents the current sector of the pharmaceutical industry having the largest therapeutic impact, as exemplified by the development of recombinant antibodies and cell-based therapies. In cancer, one of the most common regulatory alterations is the perturbation of translational control. Among these, changes in eukaryotic initiation factor 4F (eIF4F) are associated with tumor initiation, progression, and drug resistance in a number of settings. This, coupled with the fact that systemic suppression of eIF4F appears well tolerated, indicates that therapeutic agents targeting eIF4F hold much therapeutic potential. Here, we discuss opportunities offered by biologicals for this purpose.
Collapse
Affiliation(s)
- Jutta Steinberger
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jennifer Chu
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Rayelle Itoua Maïga
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Katia Sleiman
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, Rm 810, 3655 Drummond St., Montreal, QC, H3G 1Y6, Canada.
- The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Oncology, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
106
|
Joyce CE, Yanez AG, Mori A, Yoda A, Carroll JS, Novina CD. Differential Regulation of the Melanoma Proteome by eIF4A1 and eIF4E. Cancer Res 2017; 77:613-622. [PMID: 27879264 PMCID: PMC5362820 DOI: 10.1158/0008-5472.can-16-1298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022]
Abstract
Small molecules and antisense oligonucleotides that inhibit the translation initiation factors eIF4A1 and eIF4E have been explored as broad-based therapeutic agents for cancer treatment, based on the frequent upregulation of these two subunits of the eIF4F cap-binding complex in many cancer cells. Here, we provide support for these therapeutic approaches with mechanistic studies of eIF4F-driven tumor progression in a preclinical model of melanoma. Silencing eIF4A1 or eIF4E decreases melanoma proliferation and invasion. There were common effects on the level of cell-cycle proteins that could explain the antiproliferative effects in vitro Using clinical specimens, we correlate the common cell-cycle targets of eIF4A1 and eIF4E with patient survival. Finally, comparative proteomic and transcriptomic analyses reveal extensive mechanistic divergence in response to eIF4A1 or eIF4E silencing. Current models indicate that eIF4A1 and eIF4E function together through the 5'UTR to increase translation of oncogenes. In contrast, our data demonstrate that the common effects of eIF4A1 and eIF4E on translation are mediated by the coding region and 3'UTR. Moreover, their divergent effects occur through the 5'UTR. Overall, our work shows that it will be important to evaluate subunit-specific inhibitors of eIF4F in different disease contexts to fully understand their anticancer actions. Cancer Res; 77(3); 613-22. ©2016 AACR.
Collapse
Affiliation(s)
- Cailin E Joyce
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Adrienne G Yanez
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Akihiro Mori
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts, Worcester, Massachusetts
- Onami team, The Systems Biology Institute, Tokyo, Japan
- Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, Hyogo, Japan
| | - Akinori Yoda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Johanna S Carroll
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Carl D Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
107
|
Bi C, Zhang X, Lu T, Zhang X, Wang X, Meng B, Zhang H, Wang P, Vose JM, Chan WC, McKeithan TW, Fu K. Inhibition of 4EBP phosphorylation mediates the cytotoxic effect of mechanistic target of rapamycin kinase inhibitors in aggressive B-cell lymphomas. Haematologica 2017; 102:755-764. [PMID: 28104700 PMCID: PMC5395116 DOI: 10.3324/haematol.2016.159160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/18/2017] [Indexed: 12/29/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) complex 1 is a central integrator of nutrient and growth factor inputs that controls cell growth in eukaryotes. The second generation of mTOR kinase inhibitors (TORKi), directly targeting the mTOR catalytic site, are more effective than rapamycin and its analogs in cancer treatment, particularly in inducing apoptosis. However, the mechanism underlying the cytotoxic effect of TORKi remains elusive. Herein, we demonstrate that TORKi-induced apoptosis is predominantly dependent on the loss of mTOR complex 1-mediated 4EBP activation. Knocking out RICTOR, a key component of mTOR complex 2, or inhibiting p70S6K has little effect on TORKi-induced apoptosis. Conversely, increasing the eIF4E:4EBP ratio by either overexpressing eIF4E or knocking out 4EBP1/2 protects lymphoma cells from TORKi-induced cytotoxicity. Furthermore, downregulation of MCL1 expression plays an important role in TORKi-induced apoptosis, whereas BCL-2 overexpression confers resistance to TORKi treatment. We further show that the therapeutic effect of TORKi in aggressive B-cell lymphomas can be predicted by BH3 profiling, and improved by combining it with pro-apoptotic drugs, especially BCL-2 inhibitors, both in vitro and in vivo Taken together, the study herein provides mechanistic insight into TORKi cytotoxicity and identified a potential way to optimize its efficacy in the clinical treatment of aggressive B-cell lymphoma.
Collapse
Affiliation(s)
- Chengfeng Bi
- Departments of Pathology and Microbiology and Hematology Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xuan Zhang
- Departments of Pathology and Microbiology and Hematology Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ting Lu
- Departments of Pathology and Microbiology and Hematology Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaoyan Zhang
- Departments of Pathology and Microbiology and Hematology Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xianhuo Wang
- Departments of Pathology and Microbiology and Hematology Oncology, University of Nebraska Medical Center, Omaha, NE, USA.,The Sino-US Lymphoma Center, Tianjin Medical University Cancer Institute and Hospital, National Cancer Research Center, China
| | - Bin Meng
- The Sino-US Lymphoma Center, Tianjin Medical University Cancer Institute and Hospital, National Cancer Research Center, China
| | - Huilai Zhang
- The Sino-US Lymphoma Center, Tianjin Medical University Cancer Institute and Hospital, National Cancer Research Center, China
| | - Ping Wang
- The Sino-US Lymphoma Center, Tianjin Medical University Cancer Institute and Hospital, National Cancer Research Center, China
| | - Julie M Vose
- Departments of Pathology and Microbiology and Hematology Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | | | - Kai Fu
- Departments of Pathology and Microbiology and Hematology Oncology, University of Nebraska Medical Center, Omaha, NE, USA .,The Sino-US Lymphoma Center, Tianjin Medical University Cancer Institute and Hospital, National Cancer Research Center, China
| |
Collapse
|
108
|
Abstract
As obligate parasites, viruses strictly depend on host cell translation for the production of new progeny, yet infected cells also synthesize antiviral proteins to limit virus infection. Modulation of host cell translation therefore represents a frequent strategy by which viruses optimize their replication and spread. Here we sought to define how host cell translation is regulated during infection of human cells with dengue virus (DENV) and Zika virus (ZIKV), two positive-strand RNA flaviviruses. Polysome profiling and analysis of de novo protein synthesis revealed that flavivirus infection causes potent repression of host cell translation, while synthesis of viral proteins remains efficient. Selective repression of host cell translation was mediated by the DENV polyprotein at the level of translation initiation. In addition, DENV and ZIKV infection suppressed host cell stress responses such as the formation of stress granules and phosphorylation of the translation initiation factor eIF2α (α subunit of eukaryotic initiation factor 2). Mechanistic analyses revealed that translation repression was uncoupled from the disruption of stress granule formation and eIF2α signaling. Rather, DENV infection induced p38-Mnk1 signaling that resulted in the phosphorylation of the eukaryotic translation initiation factor eIF4E and was essential for the efficient production of virus particles. Together, these results identify the uncoupling of translation suppression from the cellular stress responses as a conserved strategy by which flaviviruses ensure efficient replication in human cells. For efficient production of new progeny, viruses need to balance their dependency on the host cell translation machinery with potentially adverse effects of antiviral proteins produced by the infected cell. To achieve this, many viruses evolved mechanisms to manipulate host cell translation. Here we find that infection of human cells with two major human pathogens, dengue virus (DENV) and Zika virus (ZIKV), leads to the potent repression of host cell translation initiation, while the synthesis of viral protein remains unaffected. Unlike other RNA viruses, these flaviviruses concomitantly suppress host cell stress responses, thereby uncoupling translation suppression from stress granule formation. We identified that the p38-Mnk1 cascade regulating phosphorylation of eIF4E is a target of DENV infection and plays an important role in virus production. Our results define several molecular interfaces by which flaviviruses hijack host cell translation and interfere with stress responses to optimize the production of new virus particles.
Collapse
|
109
|
Abstract
Fully grown oocytes arrest meiosis at prophase I and deposit maternal RNAs. A subset of maternal transcripts is stored in a dormant state in the oocyte, and the timely driven translation of specific mRNAs guides meiotic progression, the oocyte-embryo transition, and early embryo development. In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization and at the level of protein synthesis.This chapter focuses on the recent findings on RNA distribution related to the temporal and spatial translational control of the meiotic cycle progression in mammalian oocytes. We discuss the most relevant mechanisms involved in the organization of the oocyte's maternal transcriptome storage and localization, and the regulation of translation, in correlation with the regulation of oocyte meiotic progression.
Collapse
|
110
|
Chou WL, Chung YL, Fang JC, Lu CA. Novel interaction between CCR4 and CAF1 in rice CCR4-NOT deadenylase complex. PLANT MOLECULAR BIOLOGY 2017; 93:79-96. [PMID: 27714489 DOI: 10.1007/s11103-016-0548-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
Rice is an important crop in the world. However, little is known about rice mRNA deadenylation, which is an important regulation step of gene expression at the post-transcriptional level. The CCR4-NOT1 complex contains two key components, CCR4 and CAF1, which are the main cytoplasmic deadenylases in eukaryotic cells. In yeast and humans, CCR4 can interact with CAF1 via its N-terminal LRR domain. However, no CCR4 protein containing N-terminal LRR motifs have been found in plants. In this manuscript, we demonstrate a novel pattern of interaction between OsCCR4 and OsCAF1 in the rice CCR4-NOT complex, and that OsCAF1 acts as a bridge between OsCCR4 and OsNOT1 in this complex. Our results revealed that the Mynd-like domain at the N-terminus of rice CCR4 proteins and the PXLXP motif at the rice CAF1 N-terminus play critical roles in OsCCR4-OsCAF1 interaction. Deadenylation, also called poly(A) tail shortening, is the first rate-limiting step in general cytoplasmic mRNA degradation in eukaryotic cells. Carbon catabolite repressor (CCR)4 and CCR4-associated factor (CAF)1 in the CCR4-NOT complex function in mRNA poly(A) tail shortening. CCR4s contain N-terminal leucine-rich repeat (LRR) motifs that interact with CAF1s in yeast, fruit fly and mammals. In silico analysis has not identified any plant CCR4 proteins that contain LRR motifs. Here, two rice CCR4 homologous genes, OsCCR4a and OsCCR4b, were identified. The isolated recombinant exonuclease-endonuclease-phosphatase domain of OsCCR4a and OsCCR4b exhibited 3'-5' exonuclease activity in vitro, and point mutation of a catalytic residue in this domain disrupted the deadenylase activity. Both OsCCR4a and OsCCR4b fluorescent fusion proteins were localized in the rice cytoplasm and nucleus, and both associated with processing bodies via their N-terminus. Binding analyses showed that OsCCR4a and OsCCR4b directly interacted with three rice CAF1 family members: OsCAF1A, OsCAF1G and OsCAF1H. The zf-MYND-like domain at the N terminus of rice CCR4 and the PXLXP motif of rice CAF1 play critical roles in OsCCR4-OsCAF1 interaction. OsCAF1 proteins, but not OsCCR4 proteins, can interact with the MIG4G domain of rice OsNOT1. Our studies thus reveal a hitherto undiscovered novel interaction pattern that connects OsCCR4 and OsCAF1 in the rice CCR4-NOT complex.
Collapse
Affiliation(s)
- Wei-Lun Chou
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Yue-Lin Chung
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Jhen-Cheng Fang
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, ROC.
| |
Collapse
|
111
|
Sesma A, Castresana C, Castellano MM. Regulation of Translation by TOR, eIF4E and eIF2α in Plants: Current Knowledge, Challenges and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2017; 8:644. [PMID: 28491073 PMCID: PMC5405063 DOI: 10.3389/fpls.2017.00644] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/10/2017] [Indexed: 05/06/2023]
Abstract
An important step in eukaryotic gene expression is the synthesis of proteins from mRNA, a process classically divided into three stages, initiation, elongation, and termination. Translation is a precisely regulated and conserved process in eukaryotes. The presence of plant-specific translation initiation factors and the lack of well-known translational regulatory pathways in this kingdom nonetheless indicate how a globally conserved process can diversify among organisms. The control of protein translation is a central aspect of plant development and adaptation to environmental stress, but the mechanisms are still poorly understood. Here we discuss current knowledge of the principal mechanisms that regulate translation initiation in plants, with special attention to the singularities of this eukaryotic kingdom. In addition, we highlight the major recent breakthroughs in the field and the main challenges to address in the coming years.
Collapse
Affiliation(s)
- Ane Sesma
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- Departamento Biotecnología y Biología Vegetal, Universidad Politécnica de MadridMadrid, Spain
| | - Carmen Castresana
- Centro Nacional de Biotecnología – Consejo Superior de Investigaciones Científicas (CSIC)Madrid, Spain
| | - M. Mar Castellano
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- *Correspondence: M. Mar Castellano,
| |
Collapse
|
112
|
Freitag H, Christen F, Lewens F, Grass I, Briest F, Iwaszkiewicz S, Siegmund B, Grabowski P. Inhibition of mTOR's Catalytic Site by PKI-587 Is a Promising Therapeutic Option for Gastroenteropancreatic Neuroendocrine Tumor Disease. Neuroendocrinology 2017; 105:90-104. [PMID: 27513674 PMCID: PMC5475233 DOI: 10.1159/000448843] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/02/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND The characteristic clinical heterogeneity and mostly slow-growing behavior of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) cause problems in finding appropriate treatments. Thus, the current therapy options are not satisfactory. PKI-587 is a highly potent, novel dual inhibitor of PI3K and mTORC1/C2. AIM We assessed the effects of PKI-587 in different GEP-NEN tumor models, including the poorly differentiated cell line LCC-18, and compared them with those of the established mTORC1 inhibitor everolimus. METHODS We treated BON, QGP-1, KRJ-I, and LCC-18 cell lines with increasing concentrations of the inhibitor PKI-587, and compared the results with those of everolimus and DMSO. We assessed the impact of the treatments on viability (WST-1 assay), on apoptotic processes (caspase 3/7 assay, JC-1), and on cell cycle regulation (flow cytometry). We determined alterations in signaling mediators by phosphor-specific Western blot analysis and conducted multiplexed gene expression analysis (nCounter® technology). RESULTS In all cell lines, PKI-587 dose-dependently inhibited proliferation, whereas everolimus was less effective. Treatment with PKI-587 led to cell cycle arrest and induction of apoptosis and successfully suppressed activity of the direct mTORC1 target 4E-BP1, a crucial factor for tumor genesis only partially inhibited by everolimus. Gene expression analyses revealed relevant changes of RAS, MAPK, STAT, and PI3K pathway genes after treatment. Treatment-dependent and cell line-characteristic effects on AKT/Rb/E2F signaling regarding cell cycle control and apoptosis are extensively discussed in this paper. CONCLUSION PI3K/mTOR dual targeting is a promising new therapeutic approach in neuroendocrine tumor disease that should be evaluated in further clinical trials.
Collapse
Affiliation(s)
- Helma Freitag
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité - Universitätsmedizin Berlin, Germany
| | - Friederike Christen
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité - Universitätsmedizin Berlin, Germany
- Institute of Biology, Humboldt-Universität Berlin, Berlin, Germany
| | - Florentine Lewens
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité - Universitätsmedizin Berlin, Germany
| | - Irina Grass
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité - Universitätsmedizin Berlin, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Franziska Briest
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité - Universitätsmedizin Berlin, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sara Iwaszkiewicz
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité - Universitätsmedizin Berlin, Germany
- Institute of Biology, Humboldt-Universität Berlin, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité - Universitätsmedizin Berlin, Germany
| | - Patricia Grabowski
- Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité - Universitätsmedizin Berlin, Germany
- Department of Gastroenterology and Endocrinology, Zentralklinik Bad Berka GmbH, Bad Berka, Germany
- *Patricia Grabowski, Department of Gastroenterology, Infectious Diseases, Rheumatology CC13, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, DE-12203 Berlin (Germany), E-Mail
| |
Collapse
|
113
|
Zeng J, Jiang F, Wu YD. Mechanism of Phosphorylation-Induced Folding of 4E-BP2 Revealed by Molecular Dynamics Simulations. J Chem Theory Comput 2016; 13:320-328. [PMID: 28068774 DOI: 10.1021/acs.jctc.6b00848] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Site-specific phosphorylation of an intrinsically disordered protein, eIF4E-binding protein isoform 2 (4E-BP2), can suppress its native function by folding it into a four-stranded β-sheet, but the mechanism of this phosphorylation-induced folding is unclear. In this work, we use all-atom molecular dynamics simulations to investigate both the folded and unfolded states of 4E-BP2 under different phosphorylation states of T37 and T46. The results show that the phosphorylated forms of both T37 and T46 play important roles in stabilizing the folded structure, especially for the β-turns and the sequestered binding motif. The phosphorylated residues not only guide the folding of the protein through several intermediate states but also affect the conformational distribution of the unfolded ensemble. Significantly, the phosphorylated residues can function as nucleation sites for the folding of the protein by forming certain local structures that are stabilized by hydrogen bonding involving the phosphate group. The region around phosphorylated T46 appears to fold before that around phosphorylated T37. These findings provide new insight into the intricate effects of protein phosphorylation.
Collapse
Affiliation(s)
- Juan Zeng
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
114
|
Grüner S, Peter D, Weber R, Wohlbold L, Chung MY, Weichenrieder O, Valkov E, Igreja C, Izaurralde E. The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation. Mol Cell 2016; 64:467-479. [DOI: 10.1016/j.molcel.2016.09.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/22/2016] [Accepted: 09/14/2016] [Indexed: 10/20/2022]
|
115
|
Picard V, Mulner-Lorillon O, Bourdon J, Morales J, Cormier P, Siegel A, Bellé R. Model of the delayed translation of cyclin B maternal mRNA after sea urchin fertilization. Mol Reprod Dev 2016; 83:1070-1082. [PMID: 27699901 DOI: 10.1002/mrd.22746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/01/2016] [Indexed: 01/24/2023]
Abstract
Sea urchin eggs exhibit a cap-dependent increase in protein synthesis within minutes after fertilization. This rise in protein synthesis occurs at a constant rate for a great number of proteins translated from the different available mRNAs. Surprisingly, we found that cyclin B, a major cell-cycle regulator, follows a synthesis pattern that is distinct from the global protein population, so we developed a mathematical model to analyze this dissimilarity in biosynthesis kinetic patterns. The model includes two pathways for cyclin B mRNA entry into the translational machinery: one from immediately available mRNA (mRNAcyclinB) and one from mRNA activated solely after fertilization (XXmRNAcyclinB). Two coefficients, α and β, were added to fit the measured scales of global protein and cyclin B synthesis, respectively. The model was simplified to identify the synthesis parameters and to allow its simulation. The calculated parameters for activation of the specific cyclin B synthesis pathway after fertilization included a kinetic constant (ka ) of 0.024 sec-1 , for the activation of XXmRNAcyclinB, and a critical time interval (t2 ) of 42 min. The proportion of XXmRNAcyclinB form was also calculated to be largely dominant over the mRNAcyclinB form. Regulation of cyclin B biosynthesis is an example of a select protein whose translation is controlled by pathways that are distinct from housekeeping proteins, even though both involve the same cap-dependent initiation pathway. Therefore, this model should help provide insight to the signaling utilized for the biosynthesis of cyclin B and other select proteins. Mol. Reprod. Dev. 83: 1070-1082, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vincent Picard
- CNRS UMR 6241, Laboratoire LINA, Université de Nantes, Nantes, France.,CNRS, IRISA-UMR 6074, Campus de Beaulieu, Rennes, France.,INRIA, Centre Rennes-Bretagne Atlantique, Symbiose, Campus de Beaulieu, Rennes, France
| | - Odile Mulner-Lorillon
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France
| | - Jérémie Bourdon
- CNRS UMR 6241, Laboratoire LINA, Université de Nantes, Nantes, France
| | - Julia Morales
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France
| | - Patrick Cormier
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France
| | - Anne Siegel
- CNRS, IRISA-UMR 6074, Campus de Beaulieu, Rennes, France.,INRIA, Centre Rennes-Bretagne Atlantique, Symbiose, Campus de Beaulieu, Rennes, France
| | - Robert Bellé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Translation Cell Cycle and Development, Station Biologique de Roscoff, Roscoff Cedex, France
| |
Collapse
|
116
|
McGlory C, Devries MC, Phillips SM. Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling. J Appl Physiol (1985) 2016; 122:541-548. [PMID: 27742803 DOI: 10.1152/japplphysiol.00613.2016] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Exercise results in the rapid remodeling of skeletal muscle. This process is underpinned by acute and chronic changes in both gene and protein synthesis. In this short review we provide a brief summary of our current understanding regarding how exercise influences these processes as well as the subsequent impact on muscle protein turnover and resultant shift in muscle phenotype. We explore concepts of ribosomal biogenesis and the potential role of increased translational capacity vs. translational efficiency in contributing to muscular hypertrophy. We also examine whether high-intensity sprinting-type exercise promotes changes in protein turnover that lead to hypertrophy or merely a change in mitochondrial content. Finally, we propose novel areas for future study that will fill existing knowledge gaps in the fields of translational research and exercise science.
Collapse
Affiliation(s)
- Chris McGlory
- Department of Kinesiology, McMaster University, Ontario, Canada
| | | | | |
Collapse
|
117
|
Das S, Das B. eIF4G—an integrator of mRNA metabolism? FEMS Yeast Res 2016; 16:fow087. [DOI: 10.1093/femsyr/fow087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 11/14/2022] Open
|
118
|
Kashiwabara SI, Tsuruta S, Okada K, Yamaoka Y, Baba T. Adenylation by testis-specific cytoplasmic poly(A) polymerase, PAPOLB/TPAP, is essential for spermatogenesis. J Reprod Dev 2016; 62:607-614. [PMID: 27647534 PMCID: PMC5177979 DOI: 10.1262/jrd.2016-116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The testis-specific cytoplasmic poly(A) polymerase PAPOLB/TPAP is essential for spermatogenesis. Although this enzyme is responsible for poly(A) tail
extension of a subset of mRNAs in round spermatids, the stability and translational efficiency of these mRNAs are unaffected by the absence of PAPOLB. To
clarify the functional importance of this enzyme’s adenylation activity, we produced PAPOLB-null mice expressing a polyadenylation-defective PAPOLB mutant
(PAPOLBD114A), in which the catalytic Asp at residue 114 was mutated to Ala. Introducing PAPOLBD114A failed to rescue PAPOLB-null
phenotypes, such as reduced expression of haploid-specific mRNAs, spermiogenesis arrest, and male infertility. These results suggest that PAPOLB regulates
spermatogenesis through its adenylation activity.
Collapse
Affiliation(s)
- Shin-Ichi Kashiwabara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
119
|
Borden KLB. The eukaryotic translation initiation factor eIF4E wears a "cap" for many occasions. ACTA ACUST UNITED AC 2016; 4:e1220899. [PMID: 28090419 PMCID: PMC5173310 DOI: 10.1080/21690731.2016.1220899] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 01/11/2023]
Abstract
The eukaryotic translation initiation factor eIF4E plays important roles in controlling the composition of the proteome. Indeed, dysregulation of eIF4E is associated with poor prognosis cancers. The traditional view has been that eIF4E acts solely in translation. However, over the last ∼25 years, eIF4E was found in the nucleus where it acts in mRNA export and in the last ∼10 years, eIF4E was found in cytoplasmic processing bodies (P-bodies) where it functions in mRNA sequestration and stability. The common biochemical thread for these activities is the ability of eIF4E to bind the 7-methylguanosine cap on the 5′ end of mRNAs. Recently, the possibility that eIF4E directly binds some mRNA elements independently of the cap has also been raised. Importantly, the effects of eIF4E are not genome-wide with a subset of transcripts targeted depending on the presence of specific mRNA elements and context-dependent regulatory factors. Indeed, eIF4E governs RNA regulons through co-regulating the expression of groups of transcripts acting in the same biochemical pathways. In addition, studies over the past ∼15 years indicate that there are multiple strategies that regulatory factors employ to modulate eIF4E activities in context-dependent manners. This perspective focuses on these new findings and incorporates them into a broader model for eIF4E function.
Collapse
Affiliation(s)
- Katherine L B Borden
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer (IRIC), Université de Montréal , Montreal, Québec, Canada
| |
Collapse
|
120
|
Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation. Proc Natl Acad Sci U S A 2016; 113:8466-71. [PMID: 27402756 DOI: 10.1073/pnas.1607768113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian target of rapamycin (mTOR)-directed eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation promotes cap-dependent translation and tumorigenesis. During mitosis, cyclin-dependent kinase 1 (CDK1) substitutes for mTOR and fully phosphorylates 4E-BP1 at canonical sites (T37, T46, S65, and T70) and the noncanonical S83 site, resulting in a mitosis-specific hyperphosphorylated δ isoform. Colocalization studies with a phospho-S83 specific antibody indicate that 4E-BP1 S83 phosphorylation accumulates at centrosomes during prophase, peaks at metaphase, and decreases through telophase. Although S83 phosphorylation of 4E-BP1 does not affect general cap-dependent translation, expression of an alanine substitution mutant 4E-BP1.S83A partially reverses rodent cell transformation induced by Merkel cell polyomavirus small T antigen viral oncoprotein. In contrast to inhibitory mTOR 4E-BP1 phosphorylation, these findings suggest that mitotic CDK1-directed phosphorylation of δ-4E-BP1 may yield a gain of function, distinct from translation regulation, that may be important in tumorigenesis and mitotic centrosome function.
Collapse
|
121
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
122
|
Mukherjee A, Koli S, Reddy KVR. Rapamycin (Sirolimus) alters mechanistic target of rapamycin pathway regulation and microRNA expression in mouse meiotic spermatocytes. Andrology 2016; 3:979-90. [PMID: 26311343 DOI: 10.1111/andr.12075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 06/01/2015] [Accepted: 06/20/2015] [Indexed: 11/30/2022]
Abstract
Mechanistic target of rapamycin (mTOR) is a signal transduction pathway that modulates translation initiation in several animals including mammals. Rapamaycin, an allosteric inhibitor of mTOR pathway, is often used as an immunosuppressive drug following kidney transplantation and causes gonadal dysfunction and defects in spermatogenesis. The molecular mechanism behind rapamycin-mediated testicular dysfunction is not known. We have therefore explored the contribution of rapamycin in mTOR regulation and microRNA (miRNA) expression in mouse spermatocytes, the intermediate stage of spermatogenesis, where meiosis takes place. In the present study, we optimized the isolation of highly pure and viable spermatocytes by flow sorting, treated them with rapamycin, and investigated the expression of mTOR and downstream effector molecules. Western blot and immunocytochemical analysis confirm that rapamycin treatment suppresses mTOR and phopsphorylated P70S6 kinase activities in spermatocytes, but not that of phosphorylated 4E-binding protein 1. Also, rapamycin treatment modulates the expression of several spermatocyte-specific miRNAs. To complement these finding an in vivo study was also performed. In silico prediction of target genes of these miRNAs and their functional pathway analysis revealed that, several of them are involved in crucial biological process, cellular process and catalytic activities. miRNA-transcription factor (TF) network analysis enlisted different TFs propelling the transcription machineries of these miRNAs. In silico prediction followed by quatitative real-time PCR revealed two of these TFs namely, PU.1 and CCCTC binding factor (CTCF) are down and upregulated, respectively, which may be the reason of the altered expression of miRNAs following rapamycin treatment. In conclusion, for the first time, the present study provides insight into how rapamycin regulates mTOR pathway and spermatocyte-specific miRNA expression which in turn, regulate expression of target genes post-transcriptionally.
Collapse
Affiliation(s)
- A Mukherjee
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - S Koli
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - K V R Reddy
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
123
|
Di Marino D, D'Annessa I, Tancredi H, Bagni C, Gallicchio E. A unique binding mode of the eukaryotic translation initiation factor 4E for guiding the design of novel peptide inhibitors. Protein Sci 2016; 24:1370-82. [PMID: 26013047 DOI: 10.1002/pro.2708] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 12/24/2022]
Abstract
The interaction between the eukaryotic translation initiation factor 4E (eIF4E) and eIF4E binding proteins (4E-BP) is a promising template for the inhibition of eIF4E and the treatment of diseases such as cancer and a spectrum of autism disorders, including the Fragile X syndrome (FXS). Here, we report an atomically detailed model of the complex between eIF4E and a peptide fragment of a 4E-BP, the cytoplasmic Fragile X interacting protein (CYFIP1). This model was generated using computer simulations with enhanced sampling from an alchemical replica exchange approach and validated using long molecular dynamics simulations. 4E-BP proteins act as post-transcriptional regulators by binding to eIF4E and preventing mRNA translation. Dysregulation of eIF4E activity has been linked to cancer, FXS, and autism spectrum disorders. Therefore, the study of the mechanism of inhibition of eIF4E by 4E-BPs is key to the development of drug therapies targeting this regulatory pathways. The results obtained in this work indicate that CYFIP1 interacts with eIF4E by an unique mode not shared by other 4E-BP proteins and elucidate the mechanism by which CYFIP1 interacts with eIF4E despite having a sequence binding motif significantly different from most 4E-BPs. Our study suggests an alternative strategy for the design of eIF4E inhibitor peptides with superior potency and specificity than currently available.
Collapse
Affiliation(s)
- Daniele Di Marino
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York, 11210
| | - Ilda D'Annessa
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Holly Tancredi
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York, 11210.,Department of Computer Science, Brooklyn College of the City University of New York, Brooklyn, New York, 11210
| | - Claudia Bagni
- VIB Center for the Biology of Disease, Leuven, Belgium.,Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), Leuven, Belgium.,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York, 11210
| |
Collapse
|
124
|
Royall E, Locker N. Translational Control during Calicivirus Infection. Viruses 2016; 8:104. [PMID: 27104553 PMCID: PMC4848598 DOI: 10.3390/v8040104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
In this review, we provide an overview of the strategies developed by caliciviruses to subvert or regulate the host protein synthesis machinery to their advantage. As intracellular obligate parasites, viruses strictly depend on the host cell resources to produce viral proteins. Thus, many viruses have developed strategies that regulate the function of the host protein synthesis machinery, often leading to preferential translation of viral mRNAs. Caliciviruses lack a 5′ cap structure but instead have a virus-encoded VPg protein covalently linked to the 5′ end of their mRNAs. Furthermore, they encode 2–4 open reading frames within their genomic and subgenomic RNAs. Therefore, they use alternative mechanisms for translation whereby VPg interacts with eukaryotic initiation factors (eIFs) to act as a proteinaceous cap-substitute, and some structural proteins are produced by reinitiation of translation events. This review discusses our understanding of these key mechanisms during caliciviruses infection as well as recent insights into the global regulation of eIF4E activity.
Collapse
Affiliation(s)
- Elizabeth Royall
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK.
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK.
| |
Collapse
|
125
|
Burger VM, Nolasco DO, Stultz CM. Expanding the Range of Protein Function at the Far End of the Order-Structure Continuum. J Biol Chem 2016; 291:6706-13. [PMID: 26851282 PMCID: PMC4807258 DOI: 10.1074/jbc.r115.692590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The traditional view of the structure-function paradigm is that a protein's function is inextricably linked to a well defined, three-dimensional structure, which is determined by the protein's primary amino acid sequence. However, it is now accepted that a number of proteins do not adopt a unique tertiary structure in solution and that some degree of disorder is required for many proteins to perform their prescribed functions. In this review, we highlight how a number of protein functions are facilitated by intrinsic disorder and introduce a new protein structure taxonomy that is based on quantifiable metrics of a protein's disorder.
Collapse
Affiliation(s)
- Virginia M Burger
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and
| | - Diego O Nolasco
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and
| | - Collin M Stultz
- From the Research Laboratory for Electronics, Department of Electrical Engineering & Computer Science, and the Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138
| |
Collapse
|
126
|
Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene 2016; 35:4675-88. [DOI: 10.1038/onc.2015.515] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 01/17/2023]
|
127
|
Moura DMN, Reis CRS, Xavier CC, da Costa Lima TD, Lima RP, Carrington M, de Melo Neto OP. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation. RNA Biol 2015; 12:305-19. [PMID: 25826663 DOI: 10.1080/15476286.2015.1017233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation.
Collapse
Affiliation(s)
- Danielle M N Moura
- a Centro de Pesquisas Aggeu Magalhães; Fundação Oswaldo Cruz ; Campus UFPE; Recife , PE , Brazil
| | | | | | | | | | | | | |
Collapse
|
128
|
Lama D, Brown CJ, Lane DP, Verma CS. Gating by Tryptophan 73 Exposes a Cryptic Pocket at the Protein-Binding Interface of the Oncogenic eIF4E Protein. Biochemistry 2015; 54:6535-44. [DOI: 10.1021/acs.biochem.5b00812] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dilraj Lama
- Bioinformatics
Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis
Street, #07-01 Matrix, Singapore 138671
| | - Christopher J. Brown
- p53
Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - David P. Lane
- p53
Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Chandra S. Verma
- Bioinformatics
Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis
Street, #07-01 Matrix, Singapore 138671
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, Singapore 117543
- School
of Biological Sciences, Nanyang Technological University, 50 Nanyang
Drive, Singapore 637551
| |
Collapse
|
129
|
Aumayr M, Fedosyuk S, Ruzicska K, Sousa-Blin C, Kontaxis G, Skern T. NMR analysis of the interaction of picornaviral proteinases Lb and 2A with their substrate eukaryotic initiation factor 4GII. Protein Sci 2015; 24:1979-96. [PMID: 26384734 PMCID: PMC4815241 DOI: 10.1002/pro.2807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 11/09/2022]
Abstract
Messenger RNA is recruited to the eukaryotic ribosome by a complex including the eukaryotic initiation factor (eIF) 4E (the cap-binding protein), the scaffold protein eIF4G and the RNA helicase eIF4A. To shut-off host-cell protein synthesis, eIF4G is cleaved during picornaviral infection by a virally encoded proteinase; the structural basis of this reaction and its stimulation by eIF4E is unclear. We have structurally and biochemically investigated the interaction of purified foot-and-mouth disease virus (FMDV) leader proteinase (Lb(pro)), human rhinovirus 2 (HRV2) 2A proteinase (2A(pro)) and coxsackievirus B4 (CVB4) 2A(pro) with purified eIF4GII, eIF4E and the eIF4GII/eIF4E complex. Using nuclear magnetic resonance (NMR), we completed (13)C/(15) N sequential backbone assignment of human eIF4GII residues 551-745 and examined their binding to murine eIF4E. eIF4GII551-745 is intrinsically unstructured and remains so when bound to eIF4E. NMR and biophysical techniques for determining stoichiometry and binding constants revealed that the papain-like Lb(pro) only forms a stable complex with eIF4GII(551-745) in the presence of eIF4E, with KD values in the low nanomolar range; Lb(pro) contacts both eIF4GII and eIF4E. Furthermore, the unrelated chymotrypsin-like 2A(pro) from HRV2 and CVB4 also build a stable complex with eIF4GII/eIF4E, but with K(D) values in the low micromolar range. The HRV2 enzyme also forms a stable complex with eIF4E; however, none of the proteinases tested complex stably with eIF4GII alone. Thus, these three picornaviral proteinases have independently evolved to establish distinct triangular heterotrimeric protein complexes that may actively target ribosomes involved in mRNA recruitment to ensure efficient host cell shut-off.
Collapse
Affiliation(s)
- Martina Aumayr
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, A-1030, Austria
| | - Sofiya Fedosyuk
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, A-1030, Austria
| | - Katharina Ruzicska
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, A-1030, Austria
| | - Carla Sousa-Blin
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, A-1030, Austria
| | - Georg Kontaxis
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna, A-1030, Austria
| | - Tim Skern
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, A-1030, Austria
| |
Collapse
|
130
|
Abstract
Translational control plays a critical role in the regulation of gene expression in eukaryotes and affects many essential cellular processes, including proliferation, apoptosis and differentiation. Under most circumstances, translational control occurs at the initiation step at which the ribosome is recruited to the mRNA. The eukaryotic translation initiation factor 4E (eIF4E), as part of the eIF4F complex, interacts first with the mRNA and facilitates the recruitment of the 40S ribosomal subunit. The activity of eIF4E is regulated at many levels, most profoundly by two major signalling pathways: PI3K (phosphoinositide 3-kinase)/Akt (also known and Protein Kinase B, PKB)/mTOR (mechanistic/mammalian target of rapamycin) and Ras (rat sarcoma)/MAPK (mitogen-activated protein kinase)/Mnk (MAPK-interacting kinases). mTOR directly phosphorylates the 4E-BPs (eIF4E-binding proteins), which are inhibitors of eIF4E, to relieve translational suppression, whereas Mnk phosphorylates eIF4E to stimulate translation. Hyperactivation of these pathways occurs in the majority of cancers, which results in increased eIF4E activity. Thus, translational control via eIF4E acts as a convergence point for hyperactive signalling pathways to promote tumorigenesis. Consequently, recent works have aimed to target these pathways and ultimately the translational machinery for cancer therapy.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, Canada H3A 1A3
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, Canada H3A 1A3
| |
Collapse
|
131
|
Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR. Clin Sci (Lond) 2015; 129:1131-41. [PMID: 26374858 PMCID: PMC4614027 DOI: 10.1042/cs20150511] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023]
Abstract
Inhibition of placental mechanistic target of rapamycin (mTOR) signalling, which activates NEDD4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2) ubiquitin ligase leading to increased sodium-coupled neutral amino acid transporter 2 (SNAT-2) ubiquitination and removal from the syncytiotrophoblast plasma membrane may constitute a key mechanism underlying decreased placental amino acid transport in human IUGR. Placental amino acid transport is decreased in intrauterine growth restriction (IUGR); however, the underlying mechanisms remain largely unknown. We have shown that mechanistic target of rapamycin (mTOR) signalling regulates system A amino acid transport by modulating the ubiquitination and plasma membrane trafficking of sodium-coupled neutral amino acid transporter 2 (SNAT-2) in cultured primary human trophoblast cells. We hypothesize that IUGR is associated with (1) inhibition of placental mTORC1 and mTORC2 signalling pathways, (2) increased amino acid transporter ubiquitination in placental homogenates and (3) decreased protein expression of SNAT-2 in the syncytiotrophoblast microvillous plasma membrane (MVM). To test this hypothesis, we collected placental tissue and isolated MVM from women with pregnancies complicated by IUGR (n=25) and gestational age-matched women with appropriately grown control infants (n=19, birth weights between the twenty-fifth to seventy-fifth percentiles). The activity of mTORC1 and mTORC2 was decreased whereas the protein expression of the ubiquitin ligase NEDD4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2; +72%, P<0.0001) and the ubiquitination of SNAT-2 (+180%, P<0.05) were increased in homogenates of IUGR placentas. Furthermore, IUGR was associated with decreased system A amino acid transport activity (–72%, P<0.0001) and SNAT-1 (–42%, P<0.05) and SNAT-2 (–31%, P<0.05) protein expression in MVM. In summary, these findings are consistent with the possibility that decreased placental mTOR activity causes down-regulation of placental system A activity by shifting SNAT-2 trafficking towards proteasomal degradation, thereby contributing to decreased fetal amino acid availability and restricted fetal growth in IUGR.
Collapse
|
132
|
Translation in the mammalian oocyte in space and time. Cell Tissue Res 2015; 363:69-84. [PMID: 26340983 DOI: 10.1007/s00441-015-2269-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023]
Abstract
A hallmark of oocyte development in mammals is the dependence on the translation and utilization of stored RNA and proteins rather than the de novo transcription of genes in order to sustain meiotic progression and early embryo development. In the absence of transcription, the completion of meiosis and early embryo development in mammals relies significantly on maternally synthesized RNAs. Post-transcriptional control of gene expression at the translational level has emerged as an important cellular function in normal development. Therefore, the regulation of gene expression in oocytes is controlled almost exclusively at the level of mRNA and protein stabilization and protein synthesis. This current review is focused on the recently emerged findings on RNA distribution related to the temporal and spatial translational control of the meiotic progression of the mammalian oocyte.
Collapse
|
133
|
Peter D, Weber R, Köne C, Chung MY, Ebertsch L, Truffault V, Weichenrieder O, Igreja C, Izaurralde E. Mextli proteins use both canonical bipartite and novel tripartite binding modes to form eIF4E complexes that display differential sensitivity to 4E-BP regulation. Genes Dev 2015; 29:1835-49. [PMID: 26294658 PMCID: PMC4573856 DOI: 10.1101/gad.269068.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022]
Abstract
Peter et al. present the crystal structures of the eIF4E-binding regions of the Drosophila melanogaster (Dm) and Caenorhabditis elegans (Ce) Mxt proteins in complex with eIF4E in the cap-bound and cap-free states. The structures reveal unexpected diversity in the binding modes of 4E-BPs, resulting in eIF4E complexes that display differential sensitivity to 4E-BP regulation. The eIF4E-binding proteins (4E-BPs) are a diverse class of translation regulators that share a canonical eIF4E-binding motif (4E-BM) with eIF4G. Consequently, they compete with eIF4G for binding to eIF4E, thereby inhibiting translation initiation. Mextli (Mxt) is an unusual 4E-BP that promotes translation by also interacting with eIF3. Here we present the crystal structures of the eIF4E-binding regions of the Drosophila melanogaster (Dm) and Caenorhabditis elegans (Ce) Mxt proteins in complex with eIF4E in the cap-bound and cap-free states. The structures reveal unexpected evolutionary plasticity in the eIF4E-binding mode, with a classical bipartite interface for Ce Mxt and a novel tripartite interface for Dm Mxt. Both interfaces comprise a canonical helix and a noncanonical helix that engage the dorsal and lateral surfaces of eIF4E, respectively. Remarkably, Dm Mxt contains a C-terminal auxiliary helix that lies anti-parallel to the canonical helix on the eIF4E dorsal surface. In contrast to the eIF4G and Ce Mxt complexes, the Dm eIF4E–Mxt complexes are resistant to competition by bipartite 4E-BPs, suggesting that Dm Mxt can bind eIF4E when eIF4G binding is inhibited. Our results uncovered unexpected diversity in the binding modes of 4E-BPs, resulting in eIF4E complexes that display differential sensitivity to 4E-BP regulation.
Collapse
Affiliation(s)
- Daniel Peter
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Carolin Köne
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Min-Yi Chung
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Linda Ebertsch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Vincent Truffault
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
134
|
Li H, Zhang H, Di C, Xie Y, Zhou X, Yan J, Zhao Q. Comparative proteomic profiling and possible toxicological mechanism of acute injury induced by carbon ion radiation in pubertal mice testes. Reprod Toxicol 2015; 58:45-53. [PMID: 26257270 DOI: 10.1016/j.reprotox.2015.07.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 01/07/2023]
Abstract
We investigated potential mechanisms of acute injury in pubertal mice testes after exposure to carbon ion radiation (CIR). Serum testosterone was measured following whole-body irradiation with a 2Gy carbon ion beam. Comparative proteomic profiling and Western blotting were applied to identify potential biomarkers and measure protein expression, and terminal dUTP nick end-labeling (TUNEL) was performed to detect apoptotic cells. Immunohistochemistry and immunofluorescence were used to investigate protein localization. Serum testosterone was lowest at 24h after CIR, and 10 differentially expressed proteins were identified at this time point that included eIF4E, an important regulator of initiation that combines with mTOR and 4EBP1 to control protein synthesis via the mTOR signaling pathway during proliferation and apoptosis. Protein expression and localization studies confirmed their association with acute injury following exposure to CIR. These three proteins may be useful molecular markers for detecting abnormal spermatogenesis following exposure to environmental and therapeutic radiation.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China.
| | - Cuixia Di
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Yi Xie
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Xin Zhou
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Jiawei Yan
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Qiuyue Zhao
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
135
|
Rojas-Araya B, Ohlmann T, Soto-Rifo R. Translational Control of the HIV Unspliced Genomic RNA. Viruses 2015; 7:4326-51. [PMID: 26247956 PMCID: PMC4576183 DOI: 10.3390/v7082822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 05/18/2015] [Accepted: 07/17/2015] [Indexed: 01/16/2023] Open
Abstract
Post-transcriptional control in both HIV-1 and HIV-2 is a highly regulated process that commences in the nucleus of the host infected cell and finishes by the expression of viral proteins in the cytoplasm. Expression of the unspliced genomic RNA is particularly controlled at the level of RNA splicing, export, and translation. It appears increasingly obvious that all these steps are interconnected and they result in the building of a viral ribonucleoprotein complex (RNP) that must be efficiently translated in the cytosolic compartment. This review summarizes our knowledge about the genesis, localization, and expression of this viral RNP.
Collapse
Affiliation(s)
- Bárbara Rojas-Araya
- Molecular and Cellular Virology Laboratory, Program of Virology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 834100, Santiago, Chile.
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon 69007, France.
- Inserm, U1111, Lyon 69007, France.
- Ecole Normale Supérieure de Lyon, Lyon 69007, France.
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69007, France.
- CNRS, UMR5308, Lyon 69007, France.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Program of Virology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 834100, Santiago, Chile.
| |
Collapse
|
136
|
Sekiyama N, Arthanari H, Papadopoulos E, Rodriguez-Mias RA, Wagner G, Léger-Abraham M. Molecular mechanism of the dual activity of 4EGI-1: Dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1. Proc Natl Acad Sci U S A 2015; 112:E4036-45. [PMID: 26170285 PMCID: PMC4522750 DOI: 10.1073/pnas.1512118112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The eIF4E-binding protein (4E-BP) is a phosphorylation-dependent regulator of protein synthesis. The nonphosphorylated or minimally phosphorylated form binds translation initiation factor 4E (eIF4E), preventing binding of eIF4G and the recruitment of the small ribosomal subunit. Signaling events stimulate serial phosphorylation of 4E-BP, primarily by mammalian target of rapamycin complex 1 (mTORC1) at residues T37/T46, followed by T70 and S65. Hyperphosphorylated 4E-BP dissociates from eIF4E, allowing eIF4E to interact with eIF4G and translation initiation to resume. Because overexpression of eIF4E is linked to cellular transformation, 4E-BP is a tumor suppressor, and up-regulation of its activity is a goal of interest for cancer therapy. A recently discovered small molecule, eIF4E/eIF4G interaction inhibitor 1 (4EGI-1), disrupts the eIF4E/eIF4G interaction and promotes binding of 4E-BP1 to eIF4E. Structures of 14- to 16-residue 4E-BP fragments bound to eIF4E contain the eIF4E consensus binding motif, (54)YXXXXLΦ(60) (motif 1) but lack known phosphorylation sites. We report here a 2.1-Å crystal structure of mouse eIF4E in complex with m(7)GTP and with a fragment of human 4E-BP1, extended C-terminally from the consensus-binding motif (4E-BP150-84). The extension, which includes a proline-turn-helix segment (motif 2) followed by a loop of irregular structure, reveals the location of two phosphorylation sites (S65 and T70). Our major finding is that the C-terminal extension (motif 3) is critical to 4E-BP1-mediated cell cycle arrest and that it partially overlaps with the binding site of 4EGI-1. The binding of 4E-BP1 and 4EGI-1 to eIF4E is therefore not mutually exclusive, and both ligands contribute to shift the equilibrium toward the inhibition of translation initiation.
Collapse
Affiliation(s)
- Naotaka Sekiyama
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Evangelos Papadopoulos
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Ricard A Rodriguez-Mias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Mélissa Léger-Abraham
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
137
|
Meleppattu S, Kamus-Elimeleh D, Zinoviev A, Cohen-Mor S, Orr I, Shapira M. The eIF3 complex of Leishmania-subunit composition and mode of recruitment to different cap-binding complexes. Nucleic Acids Res 2015; 43:6222-35. [PMID: 26092695 PMCID: PMC4513851 DOI: 10.1093/nar/gkv564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic initiation factor 3 (eIF3) is a multi-protein complex and a key participant in the assembly of the translation initiation machinery. In mammals, eIF3 comprises 13 subunits, most of which are characterized by conserved structural domains. The trypanosomatid eIF3 subunits are poorly conserved. Here, we identify 12 subunits that comprise the Leishmania eIF3 complex (LeishIF3a-l) by combining bioinformatics with affinity purification and mass spectrometry analyses. These results highlight the strong association of LeishIF3 with LeishIF1, LeishIF2 and LeishIF5, suggesting the existence of a multi-factor complex. In trypanosomatids, the translation machinery is tightly regulated in the different life stages of these organisms as part of their adaptation and survival in changing environments. We, therefore, addressed the mechanism by which LeishIF3 is recruited to different mRNA cap-binding complexes. A direct interaction was observed in vitro between the fully assembled LeishIF3 complex and recombinant LeishIF4G3, the canonical scaffolding protein of the cap-binding complex in Leishmania promastigotes. We further highlight a novel interaction between the C-terminus of LeishIF3a and LeishIF4E1, the only cap-binding protein that efficiently binds the cap structure under heat shock conditions, anchoring a complex that is deficient of any MIF4G-based scaffolding subunit.
Collapse
Affiliation(s)
- Shimi Meleppattu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Dikla Kamus-Elimeleh
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alexandra Zinoviev
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shahar Cohen-Mor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Irit Orr
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
138
|
Uversky VN. The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 2015; 589:2498-506. [PMID: 26073257 DOI: 10.1016/j.febslet.2015.06.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are important constituents of many protein complexes, playing various structural, functional, and regulatory roles. In such disorder-based protein complexes, functional disorder is used both internally (for assembly, movement, and functional regulation of the different parts of a given complex) and externally (for interactions of a complex with its external regulators). In complex assembly, IDPs/IDPRs serve as the molecular glue that cements complexes or as highly flexible scaffolds. Disorder defines the order of complex assembly and the ability of a protein to be involved in polyvalent interactions. It is at the heart of various binding mechanisms and interaction modes ascribed to IDPs. Disorder in protein complexes is related to multifarious applications of induced folding and induced functional unfolding, or defines the entropic chain activities, such as stochastic machines and binding rheostats. This review opens a FEBS Letters Special Issue on Dynamics, Flexibility, and Intrinsic Disorder in protein assemblies and represents a brief overview of intricate roles played by IDPs and IDPRs in various aspects of protein complexes.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation; Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
139
|
Di Marino D, Chillemi G, De Rubeis S, Tramontano A, Achsel T, Bagni C. MD and Docking Studies Reveal That the Functional Switch of CYFIP1 is Mediated by a Butterfly-like Motion. J Chem Theory Comput 2015; 11:3401-10. [DOI: 10.1021/ct500431h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Daniele Di Marino
- VIB
Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium
- Center
for Human Genetics, Leuven Research Institute for Neuroscience and
Disease, KU Leuven, 3000 Leuven, Belgium
| | - Giovanni Chillemi
- SCAI
SuperComputing Applications and Innovation Department, Cineca, Via dei Tizii 6, 00185 Rome, Italy
| | - Silvia De Rubeis
- VIB
Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium
- Center
for Human Genetics, Leuven Research Institute for Neuroscience and
Disease, KU Leuven, 3000 Leuven, Belgium
| | - Anna Tramontano
- Department
of Physics, Sapienza University of Rome, 00185 Rome, Italy
- Center
for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, P.le Aldo Moro 5, 00185 Rome, Italy
- Istituto
Pasteur, Fondazione Cenci Bolognetti, Sapienza University, P.le Aldo
Moro 5, 00185 Rome, Italy
| | - Tilmann Achsel
- VIB
Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium
- Center
for Human Genetics, Leuven Research Institute for Neuroscience and
Disease, KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- VIB
Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium
- Center
for Human Genetics, Leuven Research Institute for Neuroscience and
Disease, KU Leuven, 3000 Leuven, Belgium
- Department
of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
140
|
Abstract
Ribonucleoprotein complexes involved in pre-mRNA splicing and mRNA decay are often regulated by phosphorylation of RNA-binding proteins. Cells use phosphorylation-dependent signaling pathways to turn on and off gene expression. Not much is known about how phosphorylation-dependent signals transmitted by exogenous factors or cell cycle checkpoints regulate RNA-mediated gene expression at the atomic level. Several human diseases are linked to an altered phosphorylation state of an RNA binding protein. Understanding the structural response to the phosphorylation "signal" and its effect on ribonucleoprotein assembly provides mechanistic understanding, as well as new information for the design of novel drugs. In this review, I highlight recent structural studies that reveal the mechanisms by which phosphorylation can regulate protein-protein and protein-RNA interactions in ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Roopa Thapar
- BioSciences
at Rice, Biochemistry
and Cell Biology, Rice University, Houston, Texas 77251-1892, United States
| |
Collapse
|
141
|
Metskas LA, Rhoades E. Folding upon phosphorylation: translational regulation by a disorder-to-order transition. Trends Biochem Sci 2015; 40:243-4. [PMID: 25769422 DOI: 10.1016/j.tibs.2015.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/11/2023]
Abstract
4E binding proteins (4E-BPs) play an important role in the regulation of translation by binding to eukaryotic translation initiation factor 4E (eIF4E) and inhibiting assembly of the eIF4F complex. While phosphorylation of 4E-BPs is known to disrupt their binding to eIF4E, the mechanism by which this occurs has been unclear. In a recent study, Forman-Kay and coworkers demonstrate that this mechanism is primarily structure-based: phosphorylation of 4E-BPs results in a disorder-to-order transition, bringing them from their binding-competent disordered state to a folded state incompatible with eIF4E binding.
Collapse
Affiliation(s)
- Lauren Ann Metskas
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, CT 06520, USA
| | - Elizabeth Rhoades
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
142
|
Abstract
Dysregulation of mRNA translation is a frequent feature of neoplasia. Many oncogenes and tumour suppressors affect the translation machinery, making aberrant translation a widespread characteristic of tumour cells, independent of the genetic make-up of the cancer. Therefore, therapeutic agents that target components of the protein synthesis apparatus hold promise as novel anticancer drugs that can overcome intra-tumour heterogeneity. In this Review, we discuss the role of translation in cancer, with a particular focus on the eIF4F (eukaryotic translation initiation factor 4F) complex, and provide an overview of recent efforts aiming to 'translate' these results to the clinic.
Collapse
|
143
|
Sinvani H, Haimov O, Svitkin Y, Sonenberg N, Tamarkin-Ben-Harush A, Viollet B, Dikstein R. Translational tolerance of mitochondrial genes to metabolic energy stress involves TISU and eIF1-eIF4GI cooperation in start codon selection. Cell Metab 2015; 21:479-92. [PMID: 25738462 DOI: 10.1016/j.cmet.2015.02.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/22/2014] [Accepted: 02/09/2015] [Indexed: 11/30/2022]
Abstract
Protein synthesis is a major energy-consuming process, which is rapidly repressed upon energy stress by AMPK. How energy deficiency affects translation of mRNAs that cope with the stress response is poorly understood. We found that mitochondrial genes remain translationally active upon energy deprivation. Surprisingly, inhibition of translation is partially retained in AMPKα1/AMPKα2 knockout cells. Mitochondrial mRNAs are enriched with TISU, a translation initiator of short 5' UTR, which confers resistance specifically to energy stress. Purified 48S preinitiation complex is sufficient for initiation via TISU AUG, when preceded by a short 5' UTR. eIF1 stimulates TISU but inhibits non-TISU-directed initiation. Remarkably, eIF4GI shares this activity and also interacts with eIF1. Furthermore, eIF4F is released upon 48S formation on TISU. These findings describe a specialized translation tolerance mechanism enabling continuous translation of TISU genes under energy stress and reveal that a key step in start codon selection of short 5' UTR is eIF4F release.
Collapse
Affiliation(s)
- Hadar Sinvani
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ora Haimov
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yuri Svitkin
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ana Tamarkin-Ben-Harush
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Benoit Viollet
- University Paris Descartes, Institut Cochin, 75014 Paris, France
| | - Rivka Dikstein
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
144
|
Fraser CS. Quantitative studies of mRNA recruitment to the eukaryotic ribosome. Biochimie 2015; 114:58-71. [PMID: 25742741 DOI: 10.1016/j.biochi.2015.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
The process of peptide bond synthesis by ribosomes is conserved between species, but the initiation step differs greatly between the three kingdoms of life. This is illustrated by the evolution of roughly an order of magnitude more initiation factor mass found in humans compared with bacteria. Eukaryotic initiation of translation is comprised of a number of sub-steps: (i) recruitment of an mRNA and initiator methionyl-tRNA to the 40S ribosomal subunit; (ii) migration of the 40S subunit along the 5' UTR to locate the initiation codon; and (iii) recruitment of the 60S subunit to form the 80S initiation complex. Although the mechanism and regulation of initiation has been studied for decades, many aspects of the pathway remain unclear. In this review, I will focus discussion on what is known about the mechanism of mRNA selection and its recruitment to the 40S subunit. I will summarize how the 43S preinitiation complex (PIC) is formed and stabilized by interactions between its components. I will discuss what is known about the mechanism of mRNA selection by the eukaryotic initiation factor 4F (eIF4F) complex and how the selected mRNA is recruited to the 43S PIC. The regulation of this process by secondary structure located in the 5' UTR of an mRNA will also be discussed. Finally, I present a possible kinetic model with which to explain the process of mRNA selection and recruitment to the eukaryotic ribosome.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
145
|
Peter D, Igreja C, Weber R, Wohlbold L, Weiler C, Ebertsch L, Weichenrieder O, Izaurralde E. Molecular architecture of 4E-BP translational inhibitors bound to eIF4E. Mol Cell 2015; 57:1074-1087. [PMID: 25702871 DOI: 10.1016/j.molcel.2015.01.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 01/09/2023]
Abstract
The eIF4E-binding proteins (4E-BPs) represent a diverse class of translation inhibitors that are often deregulated in cancer cells. 4E-BPs inhibit translation by competing with eIF4G for binding to eIF4E through an interface that consists of canonical and non-canonical eIF4E-binding motifs connected by a linker. The lack of high-resolution structures including the linkers, which contain phosphorylation sites, limits our understanding of how phosphorylation inhibits complex formation. Furthermore, the binding mechanism of the non-canonical motifs is poorly understood. Here, we present structures of human eIF4E bound to 4E-BP1 and fly eIF4E bound to Thor, 4E-T, and eIF4G. These structures reveal architectural elements that are unique to 4E-BPs and provide insight into the consequences of phosphorylation. Guided by these structures, we designed and crystallized a 4E-BP mimic that shows increased repressive activity. Our studies pave the way for the rational design of 4E-BP mimics as therapeutic tools to decrease translation during oncogenic transformation.
Collapse
Affiliation(s)
- Daniel Peter
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Lara Wohlbold
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Catrin Weiler
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Linda Ebertsch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
146
|
Jones GD, Williams EP, Place AR, Jagus R, Bachvaroff TR. The alveolate translation initiation factor 4E family reveals a custom toolkit for translational control in core dinoflagellates. BMC Evol Biol 2015; 15:14. [PMID: 25886308 PMCID: PMC4330643 DOI: 10.1186/s12862-015-0301-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/29/2015] [Indexed: 01/27/2023] Open
Abstract
Background Dinoflagellates are eukaryotes with unusual cell biology and appear to rely on translational rather than transcriptional control of gene expression. The eukaryotic translation initiation factor 4E (eIF4E) plays an important role in regulating gene expression because eIF4E binding to the mRNA cap is a control point for translation. eIF4E is part of an extended, eukaryote-specific family with different members having specific functions, based on studies of model organisms. Dinoflagellate eIF4E diversity could provide a mechanism for dinoflagellates to regulate gene expression in a post-transcriptional manner. Accordingly, eIF4E family members from eleven core dinoflagellate transcriptomes were surveyed to determine the diversity and phylogeny of the eIF4E family in dinoflagellates and related lineages including apicomplexans, ciliates and heterokonts. Results The survey uncovered eight to fifteen (on average eleven) different eIF4E family members in each core dinoflagellate species. The eIF4E family members from heterokonts and dinoflagellates segregated into three clades, suggesting at least three eIF4E cognates were present in their common ancestor. However, these three clades are distinct from the three previously described eIF4E classes, reflecting diverse approaches to a central eukaryotic function. Heterokonts contain four clades, ciliates two and apicomplexans only a single recognizable eIF4E clade. In the core dinoflagellates, the three clades were further divided into nine sub-clades based on the phylogenetic analysis and species representation. Six of the sub-clades included at least one member from all eleven core dinoflagellate species, suggesting duplication in their shared ancestor. Conservation within sub-clades varied, suggesting different selection pressures. Conclusions Phylogenetic analysis of eIF4E in core dinoflagellates revealed complex layering of duplication and conservation when compared to other eukaryotes. Our results suggest that the diverse eIF4E family in core dinoflagellates may provide a toolkit to enable selective translation as a strategy for controlling gene expression in these enigmatic eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0301-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Grant D Jones
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA. .,University of Maryland, Baltimore, Graduate School, Baltimore, USA.
| | - Ernest P Williams
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Rosemary Jagus
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, USA.
| |
Collapse
|
147
|
Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat Commun 2015; 6:6078. [PMID: 25629602 PMCID: PMC4317492 DOI: 10.1038/ncomms7078] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023] Open
Abstract
The fully grown mammalian oocyte is transcriptionally quiescent and utilizes only transcripts synthesized and stored during early development. However, we find that an abundant RNA population is retained in the oocyte nucleus and contains specific mRNAs important for meiotic progression. Here we show that during the first meiotic division, shortly after nuclear envelope breakdown, translational hotspots develop in the chromosomal area and in a region that was previously surrounded the nucleus. These distinct translational hotspots are separated by endoplasmic reticulum and Lamin, and disappear following polar body extrusion. Chromosomal translational hotspots are controlled by the activity of the mTOR–eIF4F pathway. Here we reveal a mechanism that—following the resumption of meiosis—controls the temporal and spatial translation of a specific set of transcripts required for normal spindle assembly, chromosome alignment and segregation. Meiotic maturation of oocytes and early development of mammalian embryos is largely dependent on the translation of mRNAs stored in the oocyte. Here the authors uncover a population of mRNA retained in the oocyte nucleus whose translation is spatially and temporally regulated by the mTOR–eIF4F pathway during meiosis.
Collapse
|
148
|
Royall E, Doyle N, Abdul-Wahab A, Emmott E, Morley SJ, Goodfellow I, Roberts LO, Locker N. Murine norovirus 1 (MNV1) replication induces translational control of the host by regulating eIF4E activity during infection. J Biol Chem 2015; 290:4748-4758. [PMID: 25561727 PMCID: PMC4335213 DOI: 10.1074/jbc.m114.602649] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein synthesis is a tightly controlled process responding to several stimuli, including viral infection. As obligate intracellular parasites, viruses depend on the translation machinery of the host and can manipulate it by affecting the availability and function of specific eukaryotic initiation factors (eIFs). Human norovirus is a member of the Caliciviridae family and is responsible for gastroenteritis outbreaks. Previous studies on feline calicivirus and murine norovirus 1 (MNV1) demonstrated that the viral protein, genome-linked (VPg), acts to direct translation by hijacking the host protein synthesis machinery. Here we report that MNV1 infection modulates the MAPK pathway to activate eIF4E phosphorylation. Our results show that the activation of p38 and Mnk during MNV1 infection is important for MNV1 replication. Furthermore, phosphorylated eIF4E relocates to the polysomes, and this contributes to changes in the translational state of specific host mRNAs. We propose that global translational control of the host by eIF4E phosphorylation is a key component of the host-pathogen interaction.
Collapse
Affiliation(s)
- Elizabeth Royall
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Nicole Doyle
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Azimah Abdul-Wahab
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Ed Emmott
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Simon J Morley
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, JMS Building, Brighton BN1 9RH, United Kingdom
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Lisa O Roberts
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom
| | - Nicolas Locker
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford GU2 7HX, United Kingdom.
| |
Collapse
|
149
|
Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 2014; 519:106-9. [PMID: 25533957 DOI: 10.1038/nature13999] [Citation(s) in RCA: 426] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 10/24/2014] [Indexed: 11/09/2022]
Abstract
Intrinsically disordered proteins play important roles in cell signalling, transcription, translation and cell cycle regulation. Although they lack stable tertiary structure, many intrinsically disordered proteins undergo disorder-to-order transitions upon binding to partners. Similarly, several folded proteins use regulated order-to-disorder transitions to mediate biological function. In principle, the function of intrinsically disordered proteins may be controlled by post-translational modifications that lead to structural changes such as folding, although this has not been observed. Here we show that multisite phosphorylation induces folding of the intrinsically disordered 4E-BP2, the major neural isoform of the family of three mammalian proteins that bind eIF4E and suppress cap-dependent translation initiation. In its non-phosphorylated state, 4E-BP2 interacts tightly with eIF4E using both a canonical YXXXXLΦ motif (starting at Y54) that undergoes a disorder-to-helix transition upon binding and a dynamic secondary binding site. We demonstrate that phosphorylation at T37 and T46 induces folding of residues P18-R62 of 4E-BP2 into a four-stranded β-domain that sequesters the helical YXXXXLΦ motif into a partly buried β-strand, blocking its accessibility to eIF4E. The folded state of pT37pT46 4E-BP2 is weakly stable, decreasing affinity by 100-fold and leading to an order-to-disorder transition upon binding to eIF4E, whereas fully phosphorylated 4E-BP2 is more stable, decreasing affinity by a factor of approximately 4,000. These results highlight stabilization of a phosphorylation-induced fold as the essential mechanism for phospho-regulation of the 4E-BP:eIF4E interaction and exemplify a new mode of biological regulation mediated by intrinsically disordered proteins.
Collapse
Affiliation(s)
- Alaji Bah
- 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Robert M Vernon
- 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zeba Siddiqui
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Mickaël Krzeminski
- 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ranjith Muhandiram
- 1] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charlie Zhao
- Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Lewis E Kay
- 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada [3] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada [4] Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Julie D Forman-Kay
- 1] Molecular Structure and Function Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada [2] Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
150
|
Deficiency in either 4E-BP1 or 4E-BP2 augments innate antiviral immune responses. PLoS One 2014; 9:e114854. [PMID: 25531441 PMCID: PMC4273997 DOI: 10.1371/journal.pone.0114854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 11/14/2014] [Indexed: 01/08/2023] Open
Abstract
Genetic deletion of both 4E-BP1 and 4E-BP2 was found to protect cells against viral infections. Here we demonstrate that the individual loss of either 4E-BP1 or 4E-BP2 in mouse embryonic fibroblasts (MEFs) is sufficient to confer viral resistance. shRNA-mediated silencing of 4E-BP1 or 4E-BP2 renders MEFs resistant to viruses, and compared to wild type cells, MEFs knockout for either 4E-BP1 or 4E-BP2 exhibit enhanced translation of Irf-7 and consequently increased innate immune response to viruses. Accordingly, the replication of vesicular stomatitis virus, encephalomyocarditis virus, influenza virus and Sindbis virus is markedly suppressed in these cells. Importantly, expression of either 4E-BP1 or 4E-BP2 in double knockout or respective single knockout cells diminishes their resistance to viral infection. Our data show that loss of 4E-BP1 or 4E-BP2 potentiates innate antiviral immunity. These results provide further evidence for translational control of innate immunity and support targeting translational effectors as an antiviral strategy.
Collapse
|