101
|
Burkham J, Coen DM, Hwang CB, Weller SK. Interactions of herpes simplex virus type 1 with ND10 and recruitment of PML to replication compartments. J Virol 2001; 75:2353-67. [PMID: 11160739 PMCID: PMC114819 DOI: 10.1128/jvi.75.5.2353-2367.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2000] [Accepted: 12/06/2000] [Indexed: 12/12/2022] Open
Abstract
Many of the events required for productive herpes simplex virus type 1 (HSV-1) infection occur within globular nuclear domains called replication compartments, whose formation appears to depend on interactions with cellular nuclear domains 10 (ND10). We have previously demonstrated that the formation of HSV-1 replication compartments involves progression through several stages, including the disruption of intact ND10 (stage I to stage II) and the formation of PML-associated prereplicative sites (stage III) and replication compartments (stage IV) (J. Burkham, D. M. Coen, and S. K. Weller, J. Virol. 72:10100-10107, 1998). In this paper, we show that some, but not all, PML isoforms are recruited to stage III foci and replication compartments. Genetic experiments showed that the recruitment of PML isoforms to stage III prereplicative sites and replication compartments requires the localization of the HSV-1 polymerase protein (UL30) to these foci but does not require polymerase catalytic activity. We also examined the stages of viral infection under conditions affecting ND10 integrity. Treatment with factors that increase the stability of ND10, arsenic trioxide and the proteasome inhibitor MG132, inhibited viral disruption of ND10, formation of replication compartments, and production of progeny virus. These results strengthen the previously described correlation between ND10 disruption and productive viral infection.
Collapse
Affiliation(s)
- J Burkham
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
102
|
Adamson AL, Kenney S. Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 2001; 75:2388-99. [PMID: 11160742 PMCID: PMC114822 DOI: 10.1128/jvi.75.5.2388-2399.2001] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although the immediate-early proteins of both herpes simplex virus (HSV) and cytomegalovirus (CMV) are known to modify promyelocytic leukemia (PML) (ND10) bodies in the nucleus of the host cell, it has been unclear whether lytic infection with gamma herpesviruses induces a similar effect. The PML protein is induced by interferon, involved in major histocompatibility complex class I presentation, and necessary for certain types of apoptosis. Therefore, it is likely that PML bodies function in an antiviral capacity. SUMO-1 modification of PML is known to be required for the formation of PML bodies. To examine whether Epstein-Barr virus (EBV) lytic replication interferes with PML bodies, we expressed the EBV immediate-early genes BZLF1 (Z) and BRLF1 (R) in EBV-positive cell lines and examined PML localization. Both Z and R expression resulted in PML dispersion in EBV-positive cells. Z but not R expression is sufficient to disrupt PML bodies in EBV-negative cell lines. We show that dispersion of PML bodies by Z requires a portion of the transcriptional activation domain of Z but not the DNA-binding function. As was previously reported for the HSV-1 ICP0 and CMV IE1 proteins, Z reduces the amount of SUMO-1-modified PML. We also found that Z itself is SUMO-1 modified (through amino acid 12) and that Z competes with PML for limiting amounts of SUMO-1. These results suggest that disruption of PML bodies is important for efficient lytic replication of EBV. Furthermore, Z may potentially alter the function of a variety of cellular proteins by inhibiting SUMO-1 modification.
Collapse
Affiliation(s)
- A L Adamson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | |
Collapse
|
103
|
Lehembre F, Müller S, Pandolfi PP, Dejean A. Regulation of Pax3 transcriptional activity by SUMO-1-modified PML. Oncogene 2001; 20:1-9. [PMID: 11244500 DOI: 10.1038/sj.onc.1204063] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2000] [Revised: 10/25/2000] [Accepted: 10/30/2000] [Indexed: 11/08/2022]
Abstract
Pax3 is an evolutionarily conserved transcription factor that plays a major role in a variety of developmental processes. Mutations in Pax3 lead to severe malformations as seen in human Waardenburg syndrome and in the Splotch mutant mice. The transcriptional activity of Pax3 was recently shown to be repressed by Daxx whereas the oncogenic fusion protein Pax3-FKHR is unresponsive to this repressive action. Here we demonstrate that Daxx-mediated repression of Pax3 can be inhibited by the nuclear body (NB)-associated protein PML. Interestingly, this suppression of Daxx properties correlates with its recruitment to the NBs. Factors such as arsenicals and interferons that enhance NB formation, trigger both the targeting of Daxx to these nuclear structures and the relief of the repressive activity of Daxx. Conversely, lack of structurally intact NBs profoundly impairs Pax3 transcriptional activity, likely by increasing the pool of available nucleoplasmic Daxx. Moreover, a PML mutant that can not be modified by the ubiquitin-related SUMO-1 modifier is no more able to interact with Daxx. Consistently, such a mutant fails both to inhibit the Daxx repressing effect on Pax3 and to induce its accumulation into the NBs. Taken together, these results argue that SUMO-1 modified PML can derepress Pax3 transcriptional activity through sequestration of the Daxx repressor into the NBs and suggest a role for these nuclear structures in the transcriptional control by Pax proteins. Oncogene (2001) 20, 1 - 9.
Collapse
Affiliation(s)
- F Lehembre
- Unité de Recombinaison et Expression Génétique, INSERM U 163, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
104
|
Faretta M, Di Croce L, Pelicci PG. Effects of the acute myeloid leukemia--associated fusion proteins on nuclear architecture. Semin Hematol 2001; 38:42-53. [PMID: 11172539 DOI: 10.1016/s0037-1963(01)90005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute myeloid leukemias (AMLs) are consistently associated with chromosomal rearrangements that result in the generation of chimeric genes and fusion proteins. One of the two affected genes is frequently a transcription factor Involved in the regulation of hematopoletic differentiation. Recent findings suggest a common leukemogenic mechanism for the fused transcription factor: abnormal recruitment of histone deacetylase (HDAC)-containing complexes to its target promoters. Inhibition of HDAC enzymatic activity reverts the leukemic phenotype in vitro and therefore represents a plausible strategy for antileukemic therapy. In this review, we first briefly describe the molecular structure and mechanisms of the most frequent AML associated fusion proteins (RAR, MLL, and CBF fusions) and then summarize available knowledge about their effects on the nuclear architecture. We propose that alteration of nuclear compartmentalization might represent an additional common mechanism of leukemogenesis.
Collapse
Affiliation(s)
- M Faretta
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | | |
Collapse
|
105
|
Zimonjic DB, Pollock JL, Westervelt P, Popescu NC, Ley TJ. Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc Natl Acad Sci U S A 2000; 97:13306-11. [PMID: 11087871 PMCID: PMC27220 DOI: 10.1073/pnas.97.24.13306] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously generated a transgenic mouse model for acute promyelocytic leukemia (APL) by expressing the promyelocytic leukemia (PML)-retinoic acid receptor (RARalpha) cDNA in early myeloid cells. This fusion protein causes a myeloproliferative disease in 100% of animals, but only 15-20% of the animals develop acute leukemia after a long latency period (6-13 months). PML-RARalpha is therefore necessary, but not sufficient, for APL development. The coexpression of a reciprocal form of the fusion, RARalpha-PML, increased the likelihood of APL development (55-60%), but did not shorten latency. Together, these results suggested that additional genetic events are required for the development of APL. We therefore evaluated the splenic tumor cells from 18 transgenic mice with APL for evidence of secondary genetic events, by using spectral karyotyping analysis. Interstitial or terminal deletions of the distal region of one copy of chromosome 2 [del(2)] were found in 1/5 tumors expressing PML-RARalpha, but in 11/13 tumors expressing both PML-RARalpha and RARalpha-PML (P < 0.05). Leukemic cells that contained a deletion on chromosome 2 often contained additional chromosomal gains (especially of 15), chromosomal losses (especially of 11 or X/Y), or were tetraploid (P </= 0.001). These changes did not commonly occur in nontransgenic littermates, nor in aged transgenic mice that did not develop APL. These results suggest that expression of RARalpha-PML increases the likelihood of chromosome 2 deletions in APL cells. Deletion 2 appears to predispose APL cells to further chromosomal instability, which may lead to the acquisition of additional changes that provide an advantage to the transformed cells.
Collapse
Affiliation(s)
- D B Zimonjic
- Molecular Cytogenetics Section, Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
106
|
Fogal V, Gostissa M, Sandy P, Zacchi P, Sternsdorf T, Jensen K, Pandolfi PP, Will H, Schneider C, Del Sal G. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J 2000; 19:6185-95. [PMID: 11080164 PMCID: PMC305840 DOI: 10.1093/emboj/19.22.6185] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Covalent modification of the promyelocytic leukaemia protein (PML) by SUMO-1 is a prerequisite for the assembly of nuclear bodies (NBs), subnuclear structures disrupted in various human diseases and linked to transcriptional and growth control. Here we demonstrate that p53 is recruited into NBs by a specific PML isoform (PML3) or by coexpression of SUMO-1 and hUbc9. NB targeting depends on the direct association of p53, through its core domain, with a C-terminal region of PML3. The relocalization of p53 into NBs enhances p53 transactivation in a promoter-specific manner and affects cell survival. Our results indicate the existence of a cross-talk between PML- and p53-dependent growth suppression pathways, implying an important role for NBs and their resident proteins as modulators of p53 functions.
Collapse
Affiliation(s)
- V Fogal
- Laboratorio Nazionale CIB, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Vannucchi S, Percario ZA, Chiantore MV, Matarrese P, Chelbi-Alix MK, Fagioli M, Pelicci PG, Malorni W, Fiorucci G, Romeo G, Affabris E. Interferon-beta induces S phase slowing via up-regulated expression of PML in squamous carcinoma cells. Oncogene 2000; 19:5041-53. [PMID: 11042692 DOI: 10.1038/sj.onc.1203883] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Type I Interferon (IFN) and all-trans retinoic acid (RA) inhibit cell proliferation of squamous carcinoma cell lines (SCC). Examinations of growth-affected cell populations show that SCC lines ME-180 and SiHa treated with IFN-beta undergo a specific slower progression through the S phase that seems to trigger cellular death. In combination treatment RA potentiates IFN-beta effect in SCC ME-180 but not in SiHa cell line, partially resistant to RA antiproliferative action. RA added as single agent affects cell proliferation differently by inducing a slight G1 accumulation. The IFN-beta-induced S phase lengthening parallels the increased expression of PML, a nuclear phosphoprotein specifically up-regulated at transcriptional level by IFN, whose overexpression induces cell growth inhibition and tumor suppression. We report that PML up-regulation may account for the alteration of cell cycle progression induced by IFN-beta in SCC by infecting cells with PML-PINCO recombinant retrovirus carrying the PML-3 cDNA under the control of the 5' LTR. In fact PML overexpression reproduces the IFN-beta-induced S phase lengthening. These findings provide important insight into the mechanism of tumor suppressing function of PML and could allow PML to be included in the pathways responsible for IFN-induced cell growth suppression.
Collapse
Affiliation(s)
- S Vannucchi
- Laboratory of Virology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 2000. [PMID: 10950866 DOI: 10.1101/gad.14.16.2015] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Oncogenic ras provokes a senescent-like arrest in human diploid fibroblasts involving the Rb and p53 tumor suppressor pathways. To further characterize this response, we compared gene expression patterns between ras-arrested and quiescent IMR90 fibroblasts. One of the genes up-regulated during ras-induced arrest was promyelocytic leukemia (PML) protein, a potential tumor suppressor that encodes a component of nuclear structures known as promyelocytic oncogenic domains (PODs). PML levels increased during both ras-induced arrest and replicative senescence, leading to a dramatic increase in the size and number of PODs. Forced PML expression was sufficient to promote premature senescence. Like oncogenic ras, PML increased the levels of p16, hypophosphorylated Rb, phosphoserine-15 p53, and expression of p53 transcriptional targets. The fraction of Rb and p53 that colocalized with PML markedly increased during ras-induced arrest, and expression of PML alone forced p53 to the PODs. E1A abolished PML-induced arrest and prevented PML induction and p53 phosphorylation in response to oncogenic ras. These results imply that PML acts with Rb and p53 to promote ras-induced senescence and provide new insights into PML regulation and activity.
Collapse
Affiliation(s)
- G Ferbeyre
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
109
|
Tsuzuki S, Towatari M, Saito H, Enver T. Potentiation of GATA-2 activity through interactions with the promyelocytic leukemia protein (PML) and the t(15;17)-generated PML-retinoic acid receptor alpha oncoprotein. Mol Cell Biol 2000; 20:6276-86. [PMID: 10938104 PMCID: PMC86102 DOI: 10.1128/mcb.20.17.6276-6286.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Accepted: 05/22/2000] [Indexed: 11/20/2022] Open
Abstract
The hematopoietically expressed GATA family of transcription factors function as key regulators of blood cell fate. Among these, GATA-2 is implicated in the survival and growth of multipotential progenitors. Here we report that the promyelocytic leukemia protein (PML) can complex with GATA-2 and potentiate its transactivation capacity. The binding is mediated through interaction of the zinc finger region of GATA-2 and the B-box domain of PML. The B-box region of PML is retained in the PML-RARalpha (retinoic acid receptor alpha) fusion protein generated by the t(15;17) translocation characteristic of acute promyelocytic leukemia (APL). Consistent with this, we provide evidence that GATA-2 can physically associate with PML-RARalpha. Functional experiments further demonstrated that this interaction has the capacity to render GATA-dependent transcription inducible by retinoic acid, raising the possibility that GATA target genes may be involved in the molecular pathogenesis of APL.
Collapse
MESH Headings
- Animals
- COS Cells
- Cell Line
- Cell Nucleus/metabolism
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Pair 17
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- GATA2 Transcription Factor
- Humans
- Leukemia, Promyelocytic, Acute/metabolism
- Mice
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/metabolism
- Nuclear Proteins
- Oncogene Proteins, Fusion
- Plasmids/metabolism
- Precipitin Tests
- Promyelocytic Leukemia Protein
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcriptional Activation
- Translocation, Genetic
- Tretinoin/pharmacology
- Tumor Cells, Cultured
- Tumor Suppressor Proteins
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- S Tsuzuki
- Section of Gene Function and Regulation, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | | | | | | |
Collapse
|
110
|
Abstract
PML, the gene associated with acute promyelocytic leukemia (APL); PML, the target of numerous viral agents; PML, the growth suppressor; PML, the mediator of multiple apoptotic pathways; PML, the tumor suppressor; PML, the protein which epitomizes a novel nuclear structure, the nuclear body; PML, the transcription co-factor. Despite the recent flurry of reports attributing multiple biological roles to the PML protein, PML still lacks a definitive biochemical function. This is probably the reason why PML is so attractive to many investigators. Here, we will summarize the facts and speculations on this puzzling protein.
Collapse
Affiliation(s)
- D Ruggero
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | |
Collapse
|
111
|
Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 2000; 14:2015-27. [PMID: 10950866 PMCID: PMC316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Oncogenic ras provokes a senescent-like arrest in human diploid fibroblasts involving the Rb and p53 tumor suppressor pathways. To further characterize this response, we compared gene expression patterns between ras-arrested and quiescent IMR90 fibroblasts. One of the genes up-regulated during ras-induced arrest was promyelocytic leukemia (PML) protein, a potential tumor suppressor that encodes a component of nuclear structures known as promyelocytic oncogenic domains (PODs). PML levels increased during both ras-induced arrest and replicative senescence, leading to a dramatic increase in the size and number of PODs. Forced PML expression was sufficient to promote premature senescence. Like oncogenic ras, PML increased the levels of p16, hypophosphorylated Rb, phosphoserine-15 p53, and expression of p53 transcriptional targets. The fraction of Rb and p53 that colocalized with PML markedly increased during ras-induced arrest, and expression of PML alone forced p53 to the PODs. E1A abolished PML-induced arrest and prevented PML induction and p53 phosphorylation in response to oncogenic ras. These results imply that PML acts with Rb and p53 to promote ras-induced senescence and provide new insights into PML regulation and activity.
Collapse
Affiliation(s)
- G Ferbeyre
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | |
Collapse
|
112
|
Zong RT, Das C, Tucker PW. Regulation of matrix attachment region-dependent, lymphocyte-restricted transcription through differential localization within promyelocytic leukemia nuclear bodies. EMBO J 2000; 19:4123-33. [PMID: 10921892 PMCID: PMC306587 DOI: 10.1093/emboj/19.15.4123] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/1999] [Revised: 04/25/2000] [Accepted: 06/05/2000] [Indexed: 01/19/2023] Open
Abstract
Bright (B cell regulator of IgH transcription) transactivates the immunoglobulin heavy chain (IgH) intronic enhancer, Emicro, by binding to matrix attachment regions (MARs), sites necessary for DNA attachment to the nuclear matrix. Here we report that Bright interacts with the ubiquitous autoantigen Sp100, a component of promyelocytic leukemia nuclear bodies (PML NBs), and with LYSp100B/Sp140, the lymphoid-restricted homolog of Sp100. Both in intact cells and in nuclear matrix preparations, the majority of Bright and Sp100 colocalize within PML NBs. In contrast, Bright colocalizes with only a small fraction of LYSp100B while inducing a redistribution of the majority of LYSp100B from its associated nuclear domains (LANDs) into nucleoplasm and cytoplasm. Sp100 represses the MAR-binding and transactivation activity of Bright. LYSp100B interacts more weakly with Bright but requires significantly higher levels than Sp100 to inhibit MAR binding. However, it strongly stimulates Bright transactivation through E mu. We suggest that Sp100 and LYSp100B interactions with Bright have different consequences for IgH transcription, potentially through differential association of E mu MARs with nuclear matrix- associated PML NBs and LANDs.
Collapse
Affiliation(s)
- R T Zong
- Department of Molecular Genetics and The Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
113
|
Abstract
The PML gene encodes a tumour suppressor protein associated with a distinct subnuclear domain, the nuclear body. Various functions have been attributed to the PML nuclear body, but its main biochemical role is still unclear. Recent findings indicate that PML is essential for the proper formation of the nuclear body and can act as a transcriptional co-factor. Here we summarize the current understanding of the biological functions of PML and the nuclear body, and discuss a role for these intra-nuclear structures in the regulation of transcription.
Collapse
Affiliation(s)
- S Zhong
- Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
114
|
Maul GG, Negorev D, Bell P, Ishov AM. Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol 2000; 129:278-87. [PMID: 10806078 DOI: 10.1006/jsbi.2000.4239] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nuclear domain 10 (ND10), also referred to as PML bodies or PODs, are discrete interchromosomal accumulations of several proteins including PML and Sp100. We describe here developments in the visualization of ND10 and the mechanism of ND10 assembly made possible by the identification of proteins that are essential for this process using cell lines that lack individual ND10-associated proteins. PML is critical for the proper localization of all other ND10-associated proteins under physiological conditions. Introducing PML into a PML -/- cell line by transient expression or fusion with PML-producing cells recruited ND10-associated proteins into de novo formed ND10, attesting to its essential nature in ND10 formation. This recruitment includes Daxx, a protein that can bind PML and is highly enriched in condensed chromatin in the absence of PML. The segregation of Daxx from condensed chromatin to ND10 by increased accumulation of Sentrin/SUMO-1 modified PML suggests the presence of a variable equilibrium between these two nuclear sites. These findings identify the basic requirements for ND10 formation and suggest a dynamic mechanism for protein recruitment to these nuclear domains controlled by the SUMO-1 modification state of PML. Additional adapter proteins are suggested to exist by the behavior of Sp100, and Sp100 will provide the basis for their identification. Further information about the dynamic balance of proteins between ND10 and the actual site of functional activity of these proteins will establish whether ND10 function as homeostatic regulators or only in storage of excess proteins destined for turnover.
Collapse
Affiliation(s)
- G G Maul
- The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | |
Collapse
|
115
|
Lai HK, Borden KL. The promyelocytic leukemia (PML) protein suppresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene 2000; 19:1623-34. [PMID: 10763819 DOI: 10.1038/sj.onc.1203473] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The majority of the promyelocytic leukemia (PML) protein is present in nuclear bodies which are altered in several pathogenic conditions including acute promyelocytic leukemia. PML nuclear bodies are found in nearly all cells yet their function remains unknown. Here, we demonstrate that PML and the eukaryotic initiation factor 4E (elF-4E) co-localize and co-immunopurify. eIF-4E is involved in nucleocytoplasmic transport of specific mRNAs including cyclin D1. eIF-4E overexpression leads to increased cyclin D1 protein levels; whereas, overexpression of PML leads to decreased cyclin D1 levels. Neither PML nor eIF-4E cause significant changes in cyclin D1 mRNA levels. The association with eIF-4E led us to investigate if PML could alter mRNA distribution as a possible post-transcriptional mechanism for suppressing cyclin D1 production. We show that overexpression of PML results in nuclear retention of cyclin D1 mRNA and that intact PML nuclear bodies are required. Addition of eIF-4E overcomes PML induced retention and alters the morphology of PML bodies suggesting a mechanism by which eIF-4E can modulate PML function. These results raise the possibility that PML nuclear bodies may participate in the regulation of nucleocytoplasmic transport of specific mRNAs.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Biological Transport
- Cell Line
- Cyclin D1/biosynthesis
- Cyclin D1/genetics
- Cytoplasm/chemistry
- Eukaryotic Initiation Factor-4E
- Fibroblasts
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Macromolecular Substances
- Mice
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/isolation & purification
- Neoplasm Proteins/physiology
- Nuclear Proteins
- Organelles/chemistry
- Organelles/physiology
- Peptide Initiation Factors/analysis
- Peptide Initiation Factors/isolation & purification
- Promyelocytic Leukemia Protein
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- RNA, Neoplasm/metabolism
- Recombinant Fusion Proteins/physiology
- Subcellular Fractions/chemistry
- Transcription Factors/chemistry
- Transcription Factors/isolation & purification
- Transcription Factors/physiology
- Transcription, Genetic
- Transfection
- Tumor Suppressor Proteins
Collapse
Affiliation(s)
- H K Lai
- Department of Physiology & Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
116
|
Pollock JL, Westervelt P, Kurichety AK, Pelicci PG, Grisolano JL, Ley TJ. A bcr-3 isoform of RARalpha-PML potentiates the development of PML-RARalpha-driven acute promyelocytic leukemia. Proc Natl Acad Sci U S A 1999; 96:15103-8. [PMID: 10611345 PMCID: PMC24780 DOI: 10.1073/pnas.96.26.15103] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute promyelocytic leukemia (APML) most often is associated with the balanced reciprocal translocation t(15;17) (q22;q11.2) and the expression of both the PML-RARalpha and RARalpha-PML fusion cDNAs that are formed by this translocation. In this report, we investigated the biological role of a bcr-3 isoform of RARalpha-PML for the development of APML in a transgenic mouse model. Expression of RARalpha-PML alone in the early myeloid cells of transgenic mice did not alter myeloid development or cause APML, but its expression significantly increased the penetrance of APML in mice expressing a bcr-1 isoform of PML-RARalpha (15% of animals developed APML with PML-RARalpha alone vs. 57% with both transgenes, P < 0.001). The latency of APML development was not altered substantially by the expression of RARalpha-PML, suggesting that it does not behave as a classical "second hit" for development of the disease. Leukemias that arose from doubly transgenic mice were less mature than those from PML-RARalpha transgenic mice, but they both responded to all-trans retinoic acid in vitro. These findings suggest that PML-RARalpha drives the development of APML and defines its basic phenotype, whereas RARalpha-PML potentiates this phenotype via mechanisms that are not yet understood.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells
- Cathepsins/genetics
- Crosses, Genetic
- Gene Expression
- Humans
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/mortality
- Mice
- Mice, Transgenic
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Penetrance
- Phenotype
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Spleen/pathology
- Translocation, Genetic
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- J L Pollock
- Washington University School of Medicine, Division of Bone Marrow Transplantation, Department of Internal Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
117
|
Everett RD, Lomonte P, Sternsdorf T, van Driel R, Orr A. Cell cycle regulation of PML modification and ND10 composition. J Cell Sci 1999; 112 ( Pt 24):4581-8. [PMID: 10574707 DOI: 10.1242/jcs.112.24.4581] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear sub-structures known as ND10, PODs or PML nuclear bodies can be rapidly modified by diverse stimuli, and the resultant structural changes correlate with events such as cellular transformation and successful virus infection. We show that the ND10 components PML and Sp100 undergo profound biochemical changes during the cell cycle. Both proteins are conjugated to the ubiquitin-like protein SUMO-1 during interphase, but they become de-conjugated during mitosis and an isoform of PML of distinct electrophoretic mobility appears. This mitosis-specific form of PML is highly labile in vitro, but is partially stabilised by phosphatase inhibitors. Treatment of interphase cells with phosphatase inhibitors induces the production of a PML isoform of similar gel mobility to the mitosis-specific species, and taken together these results suggest that phosphorylation is an important factor in the differential modification of PML during the cell cycle. PML and Sp100 normally tightly co-localise in ND10 in interphase cells, but they become separated during mitosis. Interphase cells treated with phosphatase inhibitors or subjected to heat shock also show structural changes in ND10, accompanied by alterations to the normal pattern of PML modification. Taken with previous findings on the effects of infection by herpes simplex virus and adenovirus on ND10 structure and PML modification, these results suggest that the many factors which have been shown to modify ND10 structure may do so by interaction with the biochemical mechanisms that act on ND10 components during the cell cycle.
Collapse
Affiliation(s)
- R D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland, UK.
| | | | | | | | | |
Collapse
|
118
|
A Novel BTB/POZ Transcriptional Repressor Protein Interacts With the Fanconi Anemia Group C Protein and PLZF. Blood 1999. [DOI: 10.1182/blood.v94.11.3737] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractFanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome. The phenotype includes developmental defects, bone marrow failure, and cell cycle abnormalities. At least eight complementation groups (A-H) exist, and although three of the corresponding complementation group genes have been cloned, they lack recognizable motifs, and their functions are unknown. We have isolated a binding partner for the Fanconi anemia group C protein (FANCC) by yeast two-hybrid screening. We show that the novel gene, FAZF, encodes a 486 amino acid protein containing a conserved amino terminal BTB/POZ protein interaction domain and three C-terminal Krüppel-like zinc fingers. FAZF is homologous to the promyelocytic leukemia zinc finger (PLZF) protein, which has been shown to act as a transcriptional repressor by recruitment of nuclear corepressors (N-CoR, Sin3, and HDAC1 complex). Consistent with a role in FA, BTB/POZ-containing proteins have been implicated in oncogenesis, limb morphogenesis, hematopoiesis, and proliferation. We show that FAZF is a transcriptional repressor that is able to bind to the same DNA target sequences as PLZF. Our data suggest that the FAZF/FANCC interaction maps to a region of FANCC deleted in FA patients with a severe disease phenotype. We also show that FAZF and wild-type FANCC can colocalize in nuclear foci, whereas a patient-derived mutant FANCC that is compromised for nuclear localization cannot. These results suggest that the function of FANCC may be linked to a transcriptional repression pathway involved in chromatin remodeling.
Collapse
|
119
|
Abstract
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome. The phenotype includes developmental defects, bone marrow failure, and cell cycle abnormalities. At least eight complementation groups (A-H) exist, and although three of the corresponding complementation group genes have been cloned, they lack recognizable motifs, and their functions are unknown. We have isolated a binding partner for the Fanconi anemia group C protein (FANCC) by yeast two-hybrid screening. We show that the novel gene, FAZF, encodes a 486 amino acid protein containing a conserved amino terminal BTB/POZ protein interaction domain and three C-terminal Krüppel-like zinc fingers. FAZF is homologous to the promyelocytic leukemia zinc finger (PLZF) protein, which has been shown to act as a transcriptional repressor by recruitment of nuclear corepressors (N-CoR, Sin3, and HDAC1 complex). Consistent with a role in FA, BTB/POZ-containing proteins have been implicated in oncogenesis, limb morphogenesis, hematopoiesis, and proliferation. We show that FAZF is a transcriptional repressor that is able to bind to the same DNA target sequences as PLZF. Our data suggest that the FAZF/FANCC interaction maps to a region of FANCC deleted in FA patients with a severe disease phenotype. We also show that FAZF and wild-type FANCC can colocalize in nuclear foci, whereas a patient-derived mutant FANCC that is compromised for nuclear localization cannot. These results suggest that the function of FANCC may be linked to a transcriptional repression pathway involved in chromatin remodeling.
Collapse
|
120
|
Grignani F, Gelmetti V, Fanelli M, Rogaia D, De Matteis S, Ferrara FF, Bonci D, Grignani F, Nervi C, Pelicci PG. Formation of PML/RAR alpha high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML/RAR alpha-mediated retinoic acid response. Oncogene 1999; 18:6313-21. [PMID: 10597230 DOI: 10.1038/sj.onc.1203029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinoic Acid (RA) treatment induces disease remission of Acute Promyelocytic Leukaemia (APL) patients by triggering terminal differentiation of neoplastic cells. RA-sensitivity in APL is mediated by its oncogenic protein, which results from the recombination of the PML and the RA receptor alpha (RAR alpha) genes (PML/RAR alpha fusion protein). Ectopic expression of PML/RAR alpha into haemopoietic cell lines results in increased response to RA-induced differentiation. By structure-function analysis of PML/RAR alpha-mediated RA-differentiation, we demonstrated that fusion of PML and RAR alpha sequences and integrity of the PML dimerization domain and of the RAR alpha DNA binding region are required for the effect of PML/RAR alpha on RA-differentiation. Indeed, direct fusion of the PML dimerization domain to the N- or C-terminal extremities of RAR alpha retained full biological activity. All the biologically active PML/RAR alpha mutants formed high molecular weight complexes in vivo. Functional analysis of mutations within the PML dimerization domain revealed that the capacity to form PML/RAR alpha homodimers, but not PML/RAR alpha-PML heterodimers, correlated with the RA-response. These results suggest that targeting of RAR alpha sequences by the PML dimerization domain and formation of nuclear PML/RAR alpha homodimeric complexes are crucial for the ability of PML/RAR alpha to mediate RA-response.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Binding Sites
- Cell Differentiation/drug effects
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Dimerization
- Gene Expression Regulation, Neoplastic/drug effects
- HeLa Cells/drug effects
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Molecular Weight
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/physiology
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/physiology
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/metabolism
- Structure-Activity Relationship
- Tretinoin/pharmacology
- U937 Cells/drug effects
- U937 Cells/metabolism
- Zinc Fingers
Collapse
Affiliation(s)
- F Grignani
- Istituto di Medicina Interna e Scienze Oncologiche, Policlinico Monteluce, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Zhong S, Delva L, Rachez C, Cenciarelli C, Gandini D, Zhang H, Kalantry S, Freedman LP, Pandolfi PP. A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nat Genet 1999; 23:287-95. [PMID: 10610177 DOI: 10.1038/15463] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PML and Tif1a are fused to RARA and Braf, respectively, resulting in the production of PML-RARalpha and Tif1alpha-B-Raf (T18) oncoproteins. Here we show that PML, Tif1alpha and RXRalpha/RARalpha function together in a transcription complex that is dependent on retinoic acid (RA). We found that PML acts as a ligand-dependent coactivator of RXRalpha/RARalpha. PML interacts with Tif1alpha and CBP. In Pml-/- cells, the RA-dependent induction of genes such as RARB2 and the ability of Tif1alpha and CBP to act as transcriptional coactivators on RA are impaired. We show that both PML and Tif1alpha are growth suppressors required for the growth-inhibitory activity of RA. T18, similar to PML-RARalpha, disrupts the RA-dependent activity of this complex in a dominant-negative manner resulting in a growth advantage. Our data define a new pathway for the control of cell growth and tumorigenesis, and provide a new model for the pathogenesis of acute promyelocytic leukaemia (APL).
Collapse
MESH Headings
- Animals
- CREB-Binding Protein
- Cell Differentiation/drug effects
- Cell Division/drug effects
- Cell Line
- Cell Nucleus/metabolism
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- DNA/genetics
- DNA/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Tumor Suppressor/genetics
- Genes, Tumor Suppressor/physiology
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mutation
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/chemistry
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors
- Trans-Activators/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Tretinoin/metabolism
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- S Zhong
- Department of Human Genetics, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Everett RD, Earnshaw WC, Pluta AF, Sternsdorf T, Ainsztein AM, Carmena M, Ruchaud S, Hsu WL, Orr A. A dynamic connection between centromeres and ND10 proteins. J Cell Sci 1999; 112 ( Pt 20):3443-54. [PMID: 10504293 DOI: 10.1242/jcs.112.20.3443] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ND10, otherwise known as nuclear dots, PML nuclear bodies or PODs, are punctate foci in interphase nuclei that contain several cellular proteins. The functions of ND10 have not been well defined, but they are sensitive to external stimuli such as stress and virus infection, and they are disrupted in malignant promyelocytic leukaemia cells. Herpes simplex virus type 1 regulatory protein Vmw110 induces the proteasome-dependent degradation of ND10 component proteins PML and Sp100, particularly the species of these proteins which are covalently conjugated to the ubiquitin-like protein SUMO-1. We have recently reported that Vmw110 also induces the degradation of centromere protein CENP-C with consequent disruption of centromere structure. These observations led us to examine whether there were hitherto undetected connections between ND10 and centromeres. In this paper we report that hDaxx and HP1 (which have been shown to interact with CENP-C and Sp100, respectively) are present in a proportion of both ND10 and interphase centromeres. Furthermore, the proteasome inhibitor MG132 induced an association between centromeres and ND10 proteins PML and Sp100 in a significant number of cells in the G(2) phase of the cell cycle. These results imply that there is a dynamic, cell cycle regulated connection between centromeres and ND10 proteins which can be stabilised by inhibition of proteasome-mediated proteolysis.
Collapse
Affiliation(s)
- R D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, Scotland UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Morris-Desbois C, Bochard V, Reynaud C, Jalinot P. Interaction between the Ret finger protein and the Int-6 gene product and co-localisation into nuclear bodies. J Cell Sci 1999; 112 ( Pt 19):3331-42. [PMID: 10504338 DOI: 10.1242/jcs.112.19.3331] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mouse int-6 gene was identified in mammary tumors as an integration site for the mouse mammary tumor virus. Its human counterpart encodes a product that interacts with the Tax viral oncoprotein of the human T cell leukaemia virus type 1. This interaction impedes the localisation of over-expressed Int-6 in nuclear bodies containing the promyelocytic leukaemia gene product (PML). In this study, Int-6 is characterised as a 52 kDa protein that is localised within nuclear bodies in primary lymphocytes. Screening of a human B cell cDNA library for proteins that interact with Int-6 led to isolation of four clones coding for the p110 subunit of eIF3, in accordance with previous detection of Int-6 in purified forms of this translation initiation factor. Another clone was interesting with respect to the subcellular localisation of Int-6. It encodes the Ret finger protein (Rfp) which interacts with PML and localises within a subset of PML nuclear bodies. The interaction of Rfp with Int-6 is mediated through a region in Rfp designated ‘Rfp domain’, distinct from that involved in the interaction with PML. Int-6 and Rfp are co-localised in certain PML nuclear bodies in lymphocytes and transfection studies in HeLa cells strongly suggest that Rfp triggers translocation of Int-6 to nuclear bodies.
Collapse
Affiliation(s)
- C Morris-Desbois
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR 5665 CNRS-ENSL, Allée d'Italie, France.
| | | | | | | |
Collapse
|
124
|
Grimwade D. The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol 1999; 106:591-613. [PMID: 10468848 DOI: 10.1046/j.1365-2141.1999.01501.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- D Grimwade
- Division of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine,, Department of Haematology, London
| |
Collapse
|
125
|
Abstract
Higher-eukaryotic nuclei contain numerous morphologically distinct substructures that are collectively called nuclear bodies. Although the precise functions of these subdomains remain unknown, elucidation of their molecular composition has been the subject of a great deal of research in recent years. Changes in the constitution of these nuclear inclusions are associated with disease phenotypes. The wide variety of components that concentrate within these subdomains makes them a likely interface for multiple cellular processes, including transcription, RNA processing, transport, RNP assembly, protein modification, apoptosis and cell-cycle control. This review discusses the different types of nuclear bodies, with emphasis on the two most prominent subtypes - the coiled and PML bodies.
Collapse
Affiliation(s)
- A G Matera
- Dept of Genetics, Center for Human Genetics and Program in Cell Biology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106-4955, USA.
| |
Collapse
|
126
|
Sternsdorf T, Puccetti E, Jensen K, Hoelzer D, Will H, Ottmann OG, Ruthardt M. PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Mol Cell Biol 1999; 19:5170-8. [PMID: 10373566 PMCID: PMC84360 DOI: 10.1128/mcb.19.7.5170] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusion proteins involving the retinoic acid receptor alpha (RARalpha) and PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemia (APL). APLs with PML-RARalpha or PLZF-RARalpha fusion protein differ only in their response to retinoic acid (RA) treatment: the t(15;17) (PML-RARalpha-positive) APL blasts are sensitive to RA in vitro, and patients enter disease remission after RA treatment, while those with t(11;17) (PLZF-RARalpha-positive) APLs do not. Recently it has been shown that complete remission can be achieved upon treatment with arsenic trioxide (As2O3) in PML-RARalpha-positive APL, even when the patient has relapsed and the disease is RA resistant. This appears to be due to apoptosis induced by As2O3 in the APL blasts by poorly defined mechanisms. Here we report that (i) As2O3 induces apoptosis only in cells expressing the PML-RARalpha, not the PLZF-RARalpha, fusion protein; (ii) PML-RARalpha is partially modified by covalent linkage with a PIC-1/SUMO-1-like protein prior to As2O3 treatment, whereas PLZF-RARalpha is not; (iii) As2O3 treatment induces a change in the modification pattern of PML-RARalpha toward highly modified forms; (iv) redistribution of PML nuclear bodies (PML-NBs) upon As2O3 treatment is accompanied by recruitment of PIC-1/SUMO-1 into PML-NBs, probably due to hypermodification of both PML and PML-RARalpha; (v) As2O3-induced apoptosis is independent of the DNA binding activity located in the RARalpha portion of the PML-RARalpha fusion protein; and (vi) the apoptotic process is bcl-2 and caspase 3 independent and is blocked only partially by a global caspase inhibitor. Taken together, these data provide novel insights into the mechanisms involved in As2O3-induced apoptosis in APL and predict that treatment of t(11;17) (PLZF-RARalpha-positive) APLs with As2O3 will not be successful.
Collapse
Affiliation(s)
- T Sternsdorf
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität, D-20251 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
127
|
Labbaye C, Valtieri M, Grignani F, Puglisi R, Luchetti L, Masella B, Alcalay M, Testa U, Peschle C. Expression and role of PML gene in normal adult hematopoiesis: functional interaction between PML and Rb proteins in erythropoiesis. Oncogene 1999; 18:3529-40. [PMID: 10376531 DOI: 10.1038/sj.onc.1202682] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of the PML gene was investigated in purified early hematopoietic progenitor cells (HPCs) induced to unilineage erythroid or granulocytic differentiation. PML mRNA and protein, while barely detectable in quiescent HPCs, are consistently induced by growth factor stimulation through the erythroid or granulocytic lineage. Thereafter, PML is downmodulated in late granulocytic maturation, whereas it is sustainably expressed through the erythroid pathway. In functional studies, PML expression was inhibited by addition of antisense oligomers targeting PML mRNA (alpha-PML). Interestingly, early treatment (day 0 HPCs) with alpha-PML reduced the number of both erythroid and granulocytic colonies, whereas late treatment (day 5 culture) reduced erythroid, but not granulocytic, clonogenesis. These findings suggest that PML is required for early hematopoiesis and erythroid, but not granulocytic maturation. The pattern of PML expression in normal hematopoiesis mimics that of retinoblastoma pRb 105. Combined treatment of HPCs with alpha-PML and alpha-Rb oligomers inhibited both PML and Rb protein expression and completely blocked erythroid colony development. Furthermore, PML and pRb 105 were co-immunoprecipitated in cellular lysates derived from erythroid precursors indicating that this functional interaction may have a biochemical basis. These results suggest a key functional role of PML in early hematopoiesis and late erythropoiesis: the latter phenomenon may be related to the molecular and functional interaction of PML with pRb 105.
Collapse
Affiliation(s)
- C Labbaye
- Department of Hematology and Oncology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
The PML and SP100-containing nuclear bodies (NBs) represent the best-studied example of a defined nuclear substructure the integrity of which is compromised in certain human diseases, including leukemia, neurodegenerative disorders and viral infection. Although recent progress has underscored the unexpectedly broad involvement of NB constituents in the control of cell growth, gene regulation and apoptosis in both pathological and normal contexts, evidence for a specific physiological activity within the NBs remains scant, thus precluding a unifying hypothesis for NB function.
Collapse
Affiliation(s)
- J S Seeler
- Unité de Recombinaison et Expression Génétique INSERM U163 Institut Pasteur 28 rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | | |
Collapse
|
129
|
Deconstructing a Disease: RAR, Its Fusion Partners, and Their Roles in the Pathogenesis of Acute Promyelocytic Leukemia. Blood 1999. [DOI: 10.1182/blood.v93.10.3167.410k44_3167_3215] [Citation(s) in RCA: 808] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
130
|
Zhang Y, Xiong Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 1999; 3:579-91. [PMID: 10360174 DOI: 10.1016/s1097-2765(00)80351-2] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian ARF-INK4a locus uniquely encodes two cell cycle inhibitors by using separate promoters and alternative reading frames. p16INK4a maintains the retinoblastoma protein in its growth suppressive state while ARF stabilizes p53. We report that human ARF protein predominantly localizes to the nucleolus via a sequence within the exon 2-encoded C-terminal domain and is induced to leave the nucleolus by MDM2. ARF forms nuclear bodies with MDM2 and p53 and blocks p53 and MDM2 nuclear export. Tumor-associated mutations in ARF exon 2 disrupt ARF's nucleolus localization and reduce ARF's ability to block p53 nuclear export and to stabilize p53. Our results suggest an ARF-regulated MDM2-dependent p53 stabilization and link the human tumor-associated mutations in ARF with a functional alteration.
Collapse
Affiliation(s)
- Y Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
131
|
Guldner HH, Szostecki C, Schröder P, Matschl U, Jensen K, Lüders C, Will H, Sternsdorf T. Splice variants of the nuclear dot-associated Sp100 protein contain homologies to HMG-1 and a human nuclear phosphoprotein-box motif. J Cell Sci 1999; 112 ( Pt 5):733-47. [PMID: 9973607 DOI: 10.1242/jcs.112.5.733] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sp100 and PML are interferon-inducible proteins associated with a new class of nuclear domains (known as nuclear dots or PML bodies) which play a role in tumorigenesis, virus infections, and autoimmunity. While PML is extensively alternatively spliced, only two splice variants are known for Sp100. Here we describe the identification and characterization of several Sp100 splice variant proteins and support their existence by elucidation of the 3'-end of the Sp100 gene. Some of the splice variants contain a domain of significant sequence similarity with two previously described highly related interferon-inducible nuclear phosphoproteins as well as to suppressin and DEAF-1, which altogether define a novel protein motif, termed HNPP-box. One class of splice variants contains an almost complete and highly conserved copy of the DNA-binding high mobility group 1 protein sequence and thus represent novel HMG-box proteins. When expressed transiently, both major classes of Sp100 splice variant proteins localize in part to nuclear dots/PML bodies and in addition to different nuclear domains. Furthermore, PML was occasionally redistributed. These data indicate that alternatively spliced Sp100 proteins are expressed, differ in part in localization from Sp100, and might bind to chromatin via the HMG domain.
Collapse
Affiliation(s)
- H H Guldner
- Heinrich-Pette-Institut für experimentelle Virologie und Immunologie an der Universität Hamburg, Martinistr. 52, D-20251 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Hansen JB, Petersen RK, Larsen BM, Bartkova J, Alsner J, Kristiansen K. Activation of peroxisome proliferator-activated receptor gamma bypasses the function of the retinoblastoma protein in adipocyte differentiation. J Biol Chem 1999; 274:2386-93. [PMID: 9891007 DOI: 10.1074/jbc.274.4.2386] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The retinoblastoma protein (pRB) is an important regulator of development, proliferation, and cellular differentiation. pRB was recently shown to play a pivotal role in adipocyte differentiation, to interact physically with adipogenic CCAAT/enhancer-binding proteins (C/EBPs), and to positively regulate transactivation by C/EBPbeta. We show that PPARgamma-mediated transactivation is pRB-independent, and that ligand-induced transactivation by PPARgamma1 present in RB+/+ and RB-/- mouse embryo fibroblasts is sufficient to bypass the differentiation block imposed by the absence of pRB. The differentiated RB-/- cells accumulate lipid and express adipocyte markers, including C/EBPalpha and PPARgamma2. Interestingly, adipose conversion of pRB-deficient cells occurs in the absence of compensatory up-regulations of the other pRB family members p107 and p130. RB+/+ as well as RB-/- cells efficiently exit from the cell cycle after completion of clonal expansion following stimulation with adipogenic inducers. We conclude that ligand-induced activation of endogenous PPARgamma1 in mouse embryo fibroblasts is sufficient to initiate a transcriptional cascade resulting in induction of PPARgamma2 and C/EBPalpha expression, withdrawal from the cell cycle, and terminal differentiation in the absence of a functional pRB.
Collapse
Affiliation(s)
- J B Hansen
- Department of Molecular Biology, Odense University, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
133
|
Everett RD, Orr A, Preston CM. A viral activator of gene expression functions via the ubiquitin-proteasome pathway. EMBO J 1998; 17:7161-9. [PMID: 9857173 PMCID: PMC1171062 DOI: 10.1093/emboj/17.24.7161] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability of herpes simplex virus type 1 (HSV-1) to attain a latent state in sensory neurones and reactivate periodically is crucial for its biological and clinical properties. The active transcription of the entire 152 kb viral genome during lytic replication contrasts with the latent state, which is characterized by the production of a single set of nuclear-retained transcripts. Reactivation of latent genomes to re-initiate the lytic cycle therefore involves a profound change in viral transcriptional activity, but the mechanisms by which this fundamentally important process occurs are yet to be well understood. In this report we show that the stimulation of the onset of viral lytic infection mediated by the viral immediate-early (IE) protein Vmw110 is strikingly inhibited by inactivation of the ubiquitin-proteasome pathway. Similarly, the Vmw110-dependent reactivation of quiescent viral genomes in cultured cells is also dependent on proteasome activity. These results constitute the first demonstration that the transcriptional activity of a viral genome can be regulated by protein stability control pathways.
Collapse
Affiliation(s)
- R D Everett
- MRC Virology Unit, Church Street, Glasgow G11 5JR, UK.
| | | | | |
Collapse
|
134
|
Vallian S, Chin KV, Chang KS. The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol Cell Biol 1998; 18:7147-56. [PMID: 9819401 PMCID: PMC109296 DOI: 10.1128/mcb.18.12.7147] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/1998] [Accepted: 08/19/1998] [Indexed: 11/20/2022] Open
Abstract
The promyelocytic leukemia protein (PML) is a nuclear phosphoprotein with growth- and transformation-suppressing ability. Having previously shown it to be a transcriptional repressor of the epidermal growth factor receptor (EGFR) gene promoter, we have now shown that PML's repression of EGFR transcription is caused by inhibition of EGFR's Sp1-dependent activity. On functional analysis, the repressive effect of PML was mapped to a 150-bp element (the sequences between -150 and -16, relative to the ATG initiation site) of the promoter. Transient transfection assays with Sp1-negative Drosophila melanogaster SL2 cells showed that the transcription of this region was regulated by Sp1 and that the Sp1-dependent activity of the promoter was suppressed by PML in a dose-dependent manner. Coimmunoprecipitation and mammalian two-hybrid assays demonstrated that PML and Sp1 were associated in vivo. In vitro binding by means of the glutathione S-transferase (GST) pull-down assay, using the full-length and truncated GST-Sp1 proteins and in vitro-translated PML, showed that PML and Sp1 directly interacted and that the C-terminal (DNA-binding) region of Sp1 and the coiled-coil (dimerization) domain of PML were essential for this interaction. Analysis of the effects of PML on Sp1 DNA binding by electrophoretic mobility shift assay (EMSA) showed that PML could specifically disrupt the binding of Sp1 to DNA. Furthermore, cotransfection of PML specifically repressed Sp1, but not the E2F1-mediated activity of the dihydrofolate reductase promoter. Together, these data suggest that the association of PML and Sp1 represents a novel mechanism for negative regulation of EGFR and other Sp1 target promoters.
Collapse
Affiliation(s)
- S Vallian
- Division of Laboratory Medicine, The University of Texas, Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
135
|
Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de Thé H. PML induces a novel caspase-independent death process. Nat Genet 1998; 20:259-65. [PMID: 9806544 DOI: 10.1038/3068] [Citation(s) in RCA: 290] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PML nuclear bodies (NBs) are nuclear matrix-associated structures altered by viruses and oncogenes. We show here that PML overexpression induces rapid cell death, independent of de novo transcription and cell cycling. PML death involves cytoplasmic features of apoptosis in the absence of caspase-3 activation, and caspase inhibitors such as zVAD accelerate PML death. zVAD also accelerates interferon (IFN)-induced death, suggesting that PML contributes to IFN-induced apoptosis. The death effector BAX and the cdk inhibitor p27KIP1 are novel NB-associated proteins recruited by PML to these nuclear domains, whereas the acute promyelocytic leukaemia (APL) PML/RAR alpha oncoprotein delocalizes them. Arsenic enhances targeting of PML, BAX and p27KIP1 to NBs and synergizes with PML and IFN to induce cell death. Thus, cell death susceptibility correlates with NB recruitment of NB proteins. These findings reveal a novel cell death pathway that neither requires nor induces caspase-3 activation, and suggest that NBs participate in the control of cell survival.
Collapse
Affiliation(s)
- F Quignon
- CNRS UPR 9051, Laboratoire associé au comité de Paris de la ligue contre le cancer, Institut d'Hématologie de l'Université Paris VII, Hôpital St Louis, France
| | | | | | | | | | | |
Collapse
|
136
|
|
137
|
Hodges M, Tissot C, Howe K, Grimwade D, Freemont PS. Structure, organization, and dynamics of promyelocytic leukemia protein nuclear bodies. Am J Hum Genet 1998; 63:297-304. [PMID: 9683622 PMCID: PMC1377331 DOI: 10.1086/301991] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- M Hodges
- Molecular Structure and Function Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | | | |
Collapse
|