101
|
Dinkova-Kostova AT. The Role of Sulfhydryl Reactivity of Small Molecules for the Activation of the KEAP1/NRF2 Pathway and the Heat Shock Response. SCIENTIFICA 2012; 2012:606104. [PMID: 24278719 PMCID: PMC3820647 DOI: 10.6064/2012/606104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 05/28/2023]
Abstract
The KEAP1/NRF2 pathway and the heat shock response are two essential cytoprotective mechanisms that allow adaptation and survival under conditions of oxidative, electrophilic, and thermal stress by regulating the expression of elaborate networks of genes with versatile protective functions. The two pathways are independently regulated by the transcription factor nuclear factor-erythroid 2 p45-related factor 2 (NRF2) and heat shock factor 1 (HSF1), respectively. The activity of these transcriptional master regulators increases during conditions of stress and also upon encounter of small molecules (inducers), both naturally occurring as well as synthetically produced. Inducers have a common chemical property: the ability to react with sulfhydryl groups. The protein targets of such sulfhydryl-reactive compounds are equipped with highly reactive cysteine residues, which serve as sensors for inducers. The initial cysteine-sensed signal is further relayed to affect the expression of large networks of genes, which in turn can ultimately influence complex cell fate decisions such as life and death. The paper summarizes the multiple lines of experimental evidence demonstrating that the reactivity with sulfhydryl groups is a major determinant of the mechanism of action of small molecule dual activators of the KEAP1/NRF2 pathway and the heat shock response.
Collapse
Affiliation(s)
- Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, James Arrott Drive, Dundee DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
102
|
West JD, Wang Y, Morano KA. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 2012; 25:2036-53. [PMID: 22799889 DOI: 10.1021/tx300264x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases.
Collapse
Affiliation(s)
- James D West
- Biochemistry and Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, USA.
| | | | | |
Collapse
|
103
|
Leach MD, Tyc KM, Brown AJP, Klipp E. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans. PLoS One 2012; 7:e32467. [PMID: 22448221 PMCID: PMC3308945 DOI: 10.1371/journal.pone.0032467] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/31/2012] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.
Collapse
Affiliation(s)
- Michelle D. Leach
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Alistair J. P. Brown
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (AJPB); (EK)
| | - Edda Klipp
- Theoretische Biophysik, Humboldt-Universität, Berlin, Germany
- * E-mail: (AJPB); (EK)
| |
Collapse
|
104
|
Schreiber TB, Mäusbacher N, Soroka J, Wandinger SK, Buchner J, Daub H. Global Analysis of Phosphoproteome Regulation by the Ser/Thr Phosphatase Ppt1 in Saccharomyces cerevisiae. J Proteome Res 2012; 11:2397-408. [DOI: 10.1021/pr201134p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thiemo B. Schreiber
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Nina Mäusbacher
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Joanna Soroka
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Sebastian K. Wandinger
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department
of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Henrik Daub
- Department of Molecular
Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
105
|
Roy N, Nageshan RK, Ranade S, Tatu U. Heat shock protein 90 from neglected protozoan parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:707-11. [PMID: 22198098 DOI: 10.1016/j.bbamcr.2011.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 01/15/2023]
Abstract
Significant advances have been made in our understanding of heat shock protein 90 (Hsp90) in terms of its structure, biochemical characteristics, post-translational modifications, interactomes, regulation and functions. In addition to yeast as a model several new systems have now been examined including flies, worms, plants as well as mammalian cells. This review discusses themes emerging out of studies reported on Hsp90 from infectious disease causing protozoa. A common theme of sensing and responding to host cell microenvironment emerges out of analysis of Hsp90 in Malaria, Trypanosmiasis as well as Leishmaniasis. In addition to their functional roles, the potential of Hsp90 from these infectious disease causing organisms to serve as drug targets and the current status of this drug development endeavor are discussed. Finally, a unique and the only known example of a split Hsp90 gene from another disease causing protozoan Giardia lamblia and its evolutionary significance are discussed. Clearly studies on Hsp90 from protozoan parasites promise to reveal important new paradigms in Hsp90 biology while exploring its potential as an anti-infective drug target. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Nainita Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
106
|
Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 2011; 10:930-44. [PMID: 22129991 DOI: 10.1038/nrd3453] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and prion-based neurodegeneration are associated with the accumulation of misfolded proteins, resulting in neuronal dysfunction and cell death. However, current treatments for these diseases predominantly address disease symptoms, rather than the underlying protein misfolding and cell death, and are not able to halt or reverse the degenerative process. Studies in cell culture, fruitfly, worm and mouse models of protein misfolding-based neurodegenerative diseases indicate that enhancing the protein-folding capacity of cells, via elevated expression of chaperone proteins, has therapeutic potential. Here, we review advances in strategies to harness the power of the natural cellular protein-folding machinery through pharmacological activation of heat shock transcription factor 1--the master activator of chaperone protein gene expression--to treat neurodegenerative diseases.
Collapse
|
107
|
Nakamura M, Morita M, Kurihara H, Mitarai S. Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades. Biol Open 2011; 1:75-81. [PMID: 23213399 PMCID: PMC3507200 DOI: 10.1242/bio.2011036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ocean acidification is an ongoing threat for marine organisms due to the increasing atmospheric CO2 concentration. Seawater acidification has a serious impact on physiologic processes in marine organisms at all life stages. On the other hand, potential tolerance to external pH changes has been reported in coral larvae. Information about the possible mechanisms underlying such tolerance responses, however, is scarce. In the present study, we examined the effects of acidified seawater on the larvae of Acropora digitifera at the molecular level. We targeted two heat shock proteins, Hsp70 and Hsp90, and a heat shock transcription factor, Hsf1, because of their importance in stress responses and in early life developmental stages. Coral larvae were maintained under the ambient and elevated CO2 conditions that are expected to occur within next 100 years, and then we evaluated the expression of hsps and hsf1 by quantitative real-time polymerase chain reaction (PCR). Expression levels of these molecules significantly differed among target genes, but they did not change significantly between CO2 conditions. These findings indicate that the expression of hsps is not changed due to external pH changes, and suggest that tolerance to acidified seawater in coral larvae may not be related to hsp expression.
Collapse
Affiliation(s)
- Masako Nakamura
- Marine Biophysics Unit, Okinawa Institute of Science and Technology , Okinawa 904-0412 , Japan
| | | | | | | |
Collapse
|
108
|
Anckar J, Sistonen L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 2011; 80:1089-115. [PMID: 21417720 DOI: 10.1146/annurev-biochem-060809-095203] [Citation(s) in RCA: 550] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To dampen proteotoxic stresses and maintain protein homeostasis, organisms possess a stress-responsive molecular machinery that detects and neutralizes protein damage. A prominent feature of stressed cells is the increased synthesis of heat shock proteins (Hsps) that aid in the refolding of misfolded peptides and restrain protein aggregation. Transcriptional activation of the heat shock response is orchestrated by heat shock factor 1 (HSF1), which rapidly translocates to hsp genes and induces their expression. Although the role of HSF1 in protecting cells and organisms against severe stress insults is well established, many aspects of how HSF1 senses qualitatively and quantitatively different forms of stresses have remained poorly understood. Moreover, recent discoveries that HSF1 controls life span have prompted new ways of thinking about an old transcription factor. Here, we review the established role of HSF1 in counteracting cell stress and prospect the role of HSF1 as a regulator of disease states and aging.
Collapse
Affiliation(s)
- Julius Anckar
- Department of Biosciences, Åbo Akademi University, BioCity, 20520 Turku, Finland.
| | | |
Collapse
|
109
|
Hsp90 in non-mammalian metazoan model systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:712-21. [PMID: 21983200 DOI: 10.1016/j.bbamcr.2011.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/26/2023]
Abstract
The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
|
110
|
Rupik W, Jasik K, Bembenek J, Widłak W. The expression patterns of heat shock genes and proteins and their role during vertebrate's development. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:349-66. [DOI: 10.1016/j.cbpa.2011.04.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 02/07/2023]
|
111
|
Abstract
BACKGROUND The 90-kDa heat-shock proteins (Hsp90) have rapidly evolved into promising therapeutic targets for the treatment of several diseases, including cancer and neurodegenerative diseases. Hsp90 is a molecular chaperone that aids in the conformational maturation of nascent polypeptides, as well as the rematuration of denatured proteins. DISCUSSION Many of the Hsp90-dependent client proteins are associated with cellular growth and survival and, consequently, inhibition of Hsp90 represents a promising approach for the treatment of cancer. Conversely, stimulation of heat-shock protein levels has potential therapeutic applications for the treatment of neurodegenerative diseases that result from misfolded and aggregated proteins. CONCLUSION Hsp90 modulation exhibits the potential to treat unrelated disease states, from cancer to neurodegenerative diseases, and, thus, to fold or not to fold, becomes a question of great value.
Collapse
|
112
|
Sengupta S, Badhwar I, Upadhyay M, Singh S, Ganesh S. Malin and laforin are essential components of a protein complex that protects cells from thermal stress. J Cell Sci 2011; 124:2277-86. [PMID: 21652633 DOI: 10.1242/jcs.082800] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat-shock response is a conserved cellular process characterized by the induction of a unique group of proteins known as heat-shock proteins. One of the primary triggers for this response, at least in mammals, is heat-shock factor 1 (HSF1)--a transcription factor that activates the transcription of heat-shock genes and confers protection against stress-induced cell death. In the present study, we investigated the role of the phosphatase laforin and the ubiquitin ligase malin in the HSF1-mediated heat-shock response. Laforin and malin are defective in Lafora disease (LD), a neurodegenerative disorder associated with epileptic seizures. Using cellular models, we demonstrate that these two proteins, as a functional complex with the co-chaperone CHIP, translocate to the nucleus upon heat shock and that all the three members of this complex are required for full protection against heat-shock-induced cell death. We show further that laforin and malin interact with HSF1 and contribute to its activation during stress by an unknown mechanism. HSF1 is also required for the heat-induced nuclear translocation of laforin and malin. This study demonstrates that laforin and malin are key regulators of HSF1 and that defects in the HSF1-mediated stress response pathway might underlie some of the pathological symptoms in LD.
Collapse
Affiliation(s)
- Sonali Sengupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
| | | | | | | | | |
Collapse
|
113
|
Wu C, Zhang W, Mai K, Xu W, Zhong X. Effects of dietary zinc on gene expression of antioxidant enzymes and heat shock proteins in hepatopancreas of abalone Haliotis discus hannai. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:1-6. [PMID: 21406247 DOI: 10.1016/j.cbpc.2011.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
The expression patterns of different genes encoding antioxidant enzymes and heat shock proteins were investigated, in present study, by real-time quantitative PCR in the hepatopancreas of abalone Haliotis discus hannai fed with different levels of dietary zinc (6.69, 33.8, 710.6 and 3462.5 mg/kg) for 20 weeks. The antioxidant enzymes include Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase (CAT), mu-glutathione-s-transferase (mu-GST) and thioredoxin peroxidase (TPx). The results showed that the mRNA expression of these antioxidant enzymes increased and reached the maximum at the dietary zinc level of 33.8 mg/kg, and then dropped progressively. Expression levels of the heat shock proteins (HSP26, HSP70 and HSP90) firstly increased at 33.8 mg/kg dietary Zn level, and reached to the maximum at 710.6 mg/kg, then dropped at 3462.5 mg/kg (p<0.05). Excessive dietary Zn (710.6 and 3462.5 mg/kg) significantly increases the Zn content and significantly decreases the total antioxidant capacity (T-AOC) in hepatopancreas (p<0.05). These findings showed that dietary Zn (33.8 mg/kg) could highly trigger the expression levels of antioxidant enzymes and heat shock proteins, but excessive dietary Zn (710.6 and 3462.5 mg/kg) induces a high oxidative stress in abalone.
Collapse
Affiliation(s)
- Chenglong Wu
- The Key Laboratory of Mariculture (Education Ministry of China), Ocean University of China, 5 Yushan Road, Qingdao 266003, P.R. China
| | | | | | | | | |
Collapse
|
114
|
Madrigal-Matute J, Martin-Ventura JL, Blanco-Colio LM, Egido J, Michel JB, Meilhac O. Heat-shock proteins in cardiovascular disease. Adv Clin Chem 2011; 54:1-43. [PMID: 21874755 DOI: 10.1016/b978-0-12-387025-4.00001-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heat-shock proteins (HSPs) belong to a group of highly conserved families of proteins expressed by all cells and organisms and their expression may be constitutive or inducible. They are generally considered as protective molecules against different types of stress and have numerous intracellular functions. Secretion or release of HSPs has also been described, and potential roles for extracellular HSPs reported. HSP expression is modulated by different stimuli involved in all steps of atherogenesis including oxidative stress, proteolytic aggression, or inflammation. Also, antibodies to HSPs may be used to monitor the response to different types of stress able to induce changes in HSP levels. In the present review, we will focus on the potential implication of HSPs in atherogenesis and discuss the limitations to the use of HSPs and anti-HSPs as biomarkers of atherothrombosis. HSPs could also be considered as potential therapeutic targets to reinforce vascular defenses and delay or avoid clinical complications associated with atherothrombosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Lab, IIS, Fundación Jiménez Díaz, Autónoma University, Av. Reyes Católicos 2, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
115
|
Björk JK, Sistonen L. Regulation of the members of the mammalian heat shock factor family. FEBS J 2010; 277:4126-39. [PMID: 20945529 DOI: 10.1111/j.1742-4658.2010.07828.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulation of gene expression is fundamental in all living organisms and is facilitated by transcription factors, the single largest group of proteins in humans. For cell- and stimulus-specific gene regulation, strict control of the transcription factors themselves is crucial. Heat shock factors are a family of transcription factors best known as master regulators of induced gene expression during the heat shock response. This evolutionary conserved cellular stress response is characterized by massive production of heat shock proteins, which function as cytoprotective molecular chaperones against various proteotoxic stresses. In addition to promoting cell survival under stressful conditions, heat shock factors are involved in the regulation of life span and progression of cancer and they are also important for developmental processes such as gametogenesis, neurogenesis and maintenance of sensory organs. Here, we review the regulatory mechanisms steering the activities of the mammalian heat shock factors 1–4.
Collapse
Affiliation(s)
- Johanna K Björk
- Department of Biosciences, Åbo Akademi University, Turku, Finland
| | | |
Collapse
|
116
|
Transcriptional modulation of heat-shock protein gene expression. Biochem Res Int 2010; 2011:238601. [PMID: 21152185 PMCID: PMC2989708 DOI: 10.1155/2011/238601] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/02/2010] [Indexed: 01/05/2023] Open
Abstract
Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex signaling pathways regulating Hsp expression may lead to novel therapeutic targets.
Collapse
|
117
|
Geach TJ, Zimmerman LB. Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker. BMC DEVELOPMENTAL BIOLOGY 2010; 10:75. [PMID: 20637071 PMCID: PMC2919470 DOI: 10.1186/1471-213x-10-75] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 07/16/2010] [Indexed: 11/10/2022]
Abstract
Background The protein components of mature skeletal muscle have largely been characterized, but the mechanics and sequence of their assembly during normal development remain an active field of study. Chaperone proteins specific to sarcomeric myosins have been shown to be necessary in zebrafish and invertebrates for proper muscle assembly and function. Results The Xenopus tropicalis mutation dicky ticker results in disrupted skeletal muscle myofibrillogenesis, paralysis, and lack of heartbeat, and maps to a missense mutation in the muscle-specific chaperone unc45b. Unc45b is known to be required for folding the head domains of myosin heavy chains, and mutant embryos fail to incorporate muscle myosin into sarcomeres. Mutants also show delayed polymerization of α-actinin-rich Z-bodies into the Z-disks that flank the myosin-containing A-band. Conclusions The dicky ticker phenotype confirms that a requirement for myosin-specific chaperones is conserved in tetrapod sarcomerogenesis, and also suggests a novel role for myosin chaperone function in Z-body maturation.
Collapse
Affiliation(s)
- Timothy J Geach
- Division of Developmental Biology, MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|
118
|
Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 2010; 11:545-55. [PMID: 20628411 DOI: 10.1038/nrm2938] [Citation(s) in RCA: 1006] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF targets has thus expanded well beyond the heat shock genes. These unexpected observations have uncovered complex layers of post-translational regulation of HSFs that integrate the metabolic state of the cell with stress biology, and in doing so control fundamental aspects of the health of the proteome and ageing.
Collapse
Affiliation(s)
- Malin Akerfelt
- Department of Biosciences, Abo Akademi University, BioCity, 20520 Turku, Finland
| | | | | |
Collapse
|
119
|
Heikkila JJ. Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:19-33. [DOI: 10.1016/j.cbpa.2010.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 12/22/2022]
|
120
|
Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc Natl Acad Sci U S A 2010; 107:8381-6. [PMID: 20404152 DOI: 10.1073/pnas.0914768107] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leishmania is exposed to a sudden increase in environmental temperature during the infectious cycle that triggers stage differentiation and adapts the parasite phenotype to intracellular survival in the mammalian host. The absence of classical promoter-dependent mechanisms of gene regulation and constitutive expression of most of the heat-shock proteins (HSPs) in these human pathogens raise important unresolved questions as to regulation of the heat-shock response and stage-specific functions of Leishmania HSPs. Here we used a gel-based quantitative approach to assess the Leishmania donovani phosphoproteome and revealed that 38% of the proteins showed significant stage-specific differences, with a strong focus of amastigote-specific phosphoproteins on chaperone function. We identified STI1/HOP-containing chaperone complexes that interact with ribosomal client proteins in an amastigote-specific manner. Genetic analysis of STI1/HOP phosphorylation sites in conditional sti1(-/-) null mutant parasites revealed two phosphoserine residues essential for parasite viability. Phosphorylation of the major Leishmania chaperones at the pathogenic stage suggests that these proteins may be promising drug targets via inhibition of their respective protein kinases.
Collapse
|
121
|
Conde R, Belak ZR, Nair M, O'Carroll RF, Ovsenek N. Modulation of Hsf1 activity by novobiocin and geldanamycin. Biochem Cell Biol 2010; 87:845-51. [PMID: 19935870 DOI: 10.1139/o09-049] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Since Hsp90 is a known modulator of HSF1 activity, we examined the effects of two pharmacological inhibitors of Hsp90, novobiocin and geldanamycin, on HSF1 DNA-binding activity in the Xenopus oocyte model system. Novobiocin exhibits antiproliferative activity in culture cells and interacts with a C-terminal ATP-binding pocket on Hsp90, inhibiting Hsp90 autophosphorylation. Treatment of oocytes with novobiocin followed by heat shock results in a dose-dependent decrease in HSF1 DNA-binding and transcriptional activity. Immunoprecipitation experiments demonstrate novobiocin does not alter HSF1 activity through dissociation of Hsp90 from either monomeric or trimerized HSF1, suggesting that the effect of novobiocin on HSF1 is mediated through alterations in Hsp90 autophosphorylation. Geldanamycin binds the N-terminal ATPase site of Hsp90 and inhibits chaperone activity. Geldanamycin treatment of oocytes resulted in a dose-dependent increase in stability of active HSF1 trimers during submaximal heat shock and a delay in disassembly of trimers during recovery. The results suggest that Hsp90 chaperone activity is required for disassembly of HSF1 trimers. The data obtained with novobiocin suggests the C-terminal ATP-binding activity of Hsp90 is required for the initial steps of HSF1 trimerization, whereas the effects of geldanamycin suggest N-terminal ATPase and chaperone activities are required for disassembly of activated trimers. These data provide important insight into the molecular mechanisms by which pharmacological inhibitors of Hsp90 affect the heat shock response.
Collapse
Affiliation(s)
- Renaud Conde
- Department of Anatomy and Cell Biology, College of Medicine, 107 Wiggins Rd., University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | | | | | | |
Collapse
|
122
|
New Insights into the Roles of Molecular Chaperones in Chlamydomonas and Volvox. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:75-113. [DOI: 10.1016/b978-0-12-381047-2.00002-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
123
|
Knowlton AA, Srivatsa U. Heat-shock protein 60 and cardiovascular disease: a paradoxical role. Future Cardiol 2009; 4:151-61. [PMID: 19804293 DOI: 10.2217/14796678.4.2.151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Heat-shock proteins (HSPs) are members of a highly conserved group of proteins that are induced in response to stress and injury. These proteins have protective properties, and can protect the heart from injury. HSP60 is found in the mitochondria and cytosol, and has essential intracellular functions including folding key proteins after their import into the mitochondria. In the cytosol, HSP60 binds to proapoptotic proteins, sequestering them. HSPs are highly conserved and, thus, are similar to bacterial proteins. Many individuals have antibodies to HSP60, possibly from prior infections. HSP60 can be found in the plasma membrane and in the serum in disease states. Serum HSP60 may be a marker for coronary artery disease. Once extracellular, HSP60 can cause cell injury. Thus, this protein has dichotomous functions for which the role in disease remains to be fully elucidated.
Collapse
Affiliation(s)
- Anne A Knowlton
- University of California, Molecular & Cellular Cardiology, Davis One Shields Avenue, Davis, CA 95616, USA, and Department of Veterans Affairs, Northern california Health Care System, Mather, CA, USA.
| | | |
Collapse
|
124
|
Taherian A, Krone PH, Ovsenek N. A comparison of Hsp90alpha and Hsp90beta interactions with cochaperones and substrates. Biochem Cell Biol 2009; 86:37-45. [PMID: 18364744 DOI: 10.1139/o07-154] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hsp90 chaperone complexes function in assembly, folding, and activation of numerous substrates. The 2 vertebrate homologues encoded by the genes hsp90a and hsp90b are differentially expressed in embryonic and adult tissues and during stress; however, it is not known whether they possess identical functional activities in chaperone complexes. This question was addressed by examining potential differences between the Hsp90 isoforms with respect to both cochaperone and substrate interactions. Epitope-tagged proteins were expressed in mammalian cells or Xenopus oocytes and subjected to immunoprecipitation with an array of co-chaperones. Both isoforms were shown to participate equally in multichaperone complexes, and no significant differences in cochaperone distribution were observed. The substrates Raf-1, HSF1, Cdc37, and MEK1 interacted with both Hsp90alpha and Hsp90beta, and the relative patterns of these interactions were not affected by heat shock. The substrate kinases c-Src, CKIIB, A-raf, and Erk interacted with both isoforms; however, significantly more Hsp90alpha was recovered after heat shock. The data demonstrate that Hsp90alpha and Hsp90beta exhibit similar interactions with co-chaperones, but significantly different behaviors with respect to substrate interactions under stress conditions. These results reveal both functional similarities and key functional differences in the individual members of this protein family.
Collapse
Affiliation(s)
- Aliakbar Taherian
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Rd., Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
125
|
Yu Y, Szczepek AJ, Haupt H, Mazurek B. Geldanamycin induces production of heat shock protein 70 and partially attenuates ototoxicity caused by gentamicin in the organ of Corti explants. J Biomed Sci 2009; 16:79. [PMID: 19723345 PMCID: PMC2746196 DOI: 10.1186/1423-0127-16-79] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 09/02/2009] [Indexed: 01/26/2023] Open
Abstract
Background Heat shock protein 70 (HSP70) protects inner ear cells from damage and death induced by e.g. heat or toxins. Benzoquinone ansamycin antibiotic geldanamycin (GA) was demonstrated to induce the expression of HSP70 in various animal cell types. The aim of our study was to investigate whether GA induces HSP70 in the organ of Corti (OC), which contains the auditory sensory cells, and whether GA can protect these cells from toxicity caused by a common aminoglycoside antibiotic gentamicin. Methods To address these questions, we used the OC explants isolated from p3-p5 rats. As a read-out, we used RT-PCR, ELISA and immunofluorescence. Results We found that GA at the concentration of 2 μM efficiently induced HSP70 expression on mRNA and protein level in the OC explants. Confocal microscopy revealed that HSP70 induced by GA is expressed by hair cells and interdental cells of spiral limbus. Preincubation of explants with 2 μM GA prior to adding gentamicin (500 μM) significantly reduced the loss of outer but not inner hair cells, suggesting different mechanisms of otoprotection needed for these two cell types. Conclusion GA induced HSP70 in the auditory sensory cells and partially protected them from toxicity of gentamicin. Understanding the molecular mechanisms of GA otoprotection may provide insights for preventative therapy of the hearing loss caused by aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Yang Yu
- Molecular Biology Research Laboratory and Tinnitus Center, Department of Otorhinolaryngology, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
126
|
Tulapurkar ME, Asiegbu BE, Singh IS, Hasday JD. Hyperthermia in the febrile range induces HSP72 expression proportional to exposure temperature but not to HSF-1 DNA-binding activity in human lung epithelial A549 cells. Cell Stress Chaperones 2009; 14:499-508. [PMID: 19221897 PMCID: PMC2728283 DOI: 10.1007/s12192-009-0103-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/26/2009] [Accepted: 01/29/2009] [Indexed: 10/21/2022] Open
Abstract
Expression of heat shock proteins (HSPs) is classically activated at temperatures above the physiologic range (>or=42 degrees C) via activation of the stress-activated transcription factor, heat shock factor-1 (HSF-1). Several studies suggest that less extreme hyperthermia, especially within the febrile range, as occurs during fever and exertional/environmental hyperthemia, can also activate HSF-1 and enhance HSP expression. We compared HSP72 protein and mRNA expression in human A549 lung epithelial cells continuously exposed to 38.5 degrees C, 39.5 degrees C, or 41 degrees C or exposed to a classic heat shock (42 degrees C for 2 h). We found that expression of HSP72 protein and mRNA increased linearly as incubation temperature was increased from 37 degrees C to 41 degrees C, but increased abruptly when the incubation temperature was raised to 42 degrees C. A similar response in luciferase activity was observed using A549 cells stably transfected with an HSF-1-responsive luciferase reporter plasmid. However, activation of intranuclear HSF-1 DNA-binding activity was comparable at 38.5 degrees C, 39.5 degrees C, and 41 degrees C and only modestly greater at 42 degrees C but the mobility of HSF1 protein on a denaturing gel was altered with increasing exposure temperature and was distinctly different at 42 degrees C. These findings indicate that the proportional changes in HSF-1-dependent HSP72 expression at febrile-range temperatures are dependent upon exposure time and temperature but not on the degree of HSF-1 DNA-binding activity. Instead, HSF-1-mediated HSP expression following hyperthermia and heat shock appears to be mediated, in addition to HSF-1 activation, by posttranslational modifications of HSF-1 protein.
Collapse
Affiliation(s)
- Mohan E. Tulapurkar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Benedict E. Asiegbu
- Division of Neonatology, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
| | - Ishwar S. Singh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
- Mucosal Biology Research Center, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
- Research Services, Baltimore VA Medical Center, Baltimore, MD USA
| | - Jeffrey D. Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
- Mucosal Biology Research Center, School of Medicine, University of Maryland, Baltimore, MD 21201 USA
- Research Services, Baltimore VA Medical Center, Baltimore, MD USA
- Health Science Facility-II, School of Medicine, University of Maryland, Rm. 327, 20 Penn St., Baltimore, MD 21201 USA
| |
Collapse
|
127
|
Mkaddem SB, Werts C, Goujon JM, Bens M, Pedruzzi E, Ogier-Denis E, Vandewalle A. Heat shock protein gp96 interacts with protein phosphatase 5 and controls toll-like receptor 2 (TLR2)-mediated activation of extracellular signal-regulated kinase (ERK) 1/2 in post-hypoxic kidney cells. J Biol Chem 2009; 284:12541-9. [PMID: 19265198 DOI: 10.1074/jbc.m808376200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) induces an innate immune response, leading to an inflammatory reaction and tissue damage that have been attributed to engagement of the Toll-like receptor (TLR) 2 and 4. However, the respective roles of TLR2 and/or TLR4 in mediating downstream activation of mitogen-activated protein kinase (MAPK) pathways during IRI have not been fully elucidated. Here we show that extracellular signal-regulated kinase (ERK)1/2 is activated in both intact kidneys and cultured renal tubule epithelial cells (RTECs) from wildtype and Tlr4 knockout mice, but not those from Tlr2 knockout mice subjected to transient ischemia. Geldanamycin (GA), an inhibitor of heat shock protein 90 and reticulum endoplasmic-resident gp96, and gp96 mRNA silencing (siRNA), did not affect ERK1/2 activation in either post-hypoxic wild-type or Tlr4-deficient RTECs, but did restore its activation in post-hypoxic Tlr2-deficient RTECs. Immunoprecipitation studies revealed that gp96 co-immunoprecipitates with the serine-threonine protein phosphatase 5 (PP5), identified as a negative modulator of the mitogen extracellular kinase (MEK)-ERK pathway, in unstressed wild-type and post-hypoxic Tlr2-deficient RTECs. In contrast, PP5 co-immunoprecipitation with gp96 was strikingly reduced in post-hypoxic wild-type RTECs, suggesting that the inactivation of PP5 resulting from the dissociation of PP5 from gp96 allows the activation of ERK1/2 to occur. Inhibition of PP5 by okadaic acid, and Pp5 siRNA also restored TLR2-mediated phosphorylation of ERK1/2, and apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK)-mediated apoptosis in post-hypoxic Tlr2-deficient RTECs. These findings indicate that gp96 interacts with PP5 and controls TLR2-mediated induction of ERK1/2 in post-hypoxic renal tubule cells.
Collapse
Affiliation(s)
- Sanae Ben Mkaddem
- INSERM U773, Centre de Recherche Biomédicale Bichat-Beaujon CRB3, UFR de Médecine Xavier Bichat, Université Paris 7-Denis Diderot, Site Bichat, BP 416, F-75870 Paris Cedex 18, France
| | | | | | | | | | | | | |
Collapse
|
128
|
Li F, Luan W, Zhang C, Zhang J, Wang B, Xie Y, Li S, Xiang J. Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress Chaperones 2009; 14:161-72. [PMID: 18668349 PMCID: PMC2727990 DOI: 10.1007/s12192-008-0069-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 05/28/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022] Open
Abstract
Heat shock protein 90 (HSP90) works as a multi-functional chaperone and is involved in the regulation of many essential cellular pathways. In this study, we have identified a full-length complementary DNA (cDNA) of HSP90 (FcHSP90) from Chinese shrimp Fenneropenaeus chinensis. FcHSP90 full-length cDNA comprised 2,552 bp, including a 2,181-bp open reading frame encoding 726 amino acids. Both homology analyses using alignment with previously identified HSP90 and a phylogeny tree indicated that FcHSP90 was a cytoplasmic HSP90. Real-time reverse transcription polymerase chain reaction analysis revealed that FcHSP90 was ubiquitously expressed in all the examined tissues but with highest levels in ovary of F. chinensis. FcHSP90 mRNA levels were sensitively induced by heat shock (from 25 degrees C to 35 degrees C) and reached the maximum at 6 h during heat shock treatment. Under hypoxia conditions, FcHSP90 mRNA levels, in both hemocytes and gill, were induced at 2 h and depressed at 8 h during hypoxia stress. The assessment of FcHSP90 mRNA levels under heat shock and hypoxia stresses indicated that the transcription of FcHSP90 was very sensitive to heat shock and hypoxia, so we deduced that FcHSP90 might play very important roles for shrimp to cope with environmental stress.
Collapse
Affiliation(s)
- Fuhua Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Wei Luan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Graduate School, Chinese Academy of Sciences, Beijing, 100039 China
| | - Chengsong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Graduate School, Chinese Academy of Sciences, Beijing, 100039 China
| | - Jiquan Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Bing Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Yusu Xie
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Graduate School, Chinese Academy of Sciences, Beijing, 100039 China
| | - Shihao Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Graduate School, Chinese Academy of Sciences, Beijing, 100039 China
| | - Jianhai Xiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| |
Collapse
|
129
|
Singh IS, Shah NG, Almutairy E, Hasday JD. Role of HSF1 in Infectious Disease. HEAT SHOCK PROTEINS 2009. [DOI: 10.1007/978-90-481-2976-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
130
|
Willmund F, Dorn KV, Schulz-Raffelt M, Schroda M. The chloroplast DnaJ homolog CDJ1 of Chlamydomonas reinhardtii is part of a multichaperone complex containing HSP70B, CGE1, and HSP90C. PLANT PHYSIOLOGY 2008; 148:2070-82. [PMID: 18931144 PMCID: PMC2593681 DOI: 10.1104/pp.108.127944] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 10/14/2008] [Indexed: 05/20/2023]
Abstract
We report on the molecular and biochemical characterization of CDJ1, one of three zinc-finger-containing J-domain proteins encoded by the Chlamydomonas reinhardtii genome. Fractionation experiments indicate that CDJ1 is a plastidic protein. In the chloroplast, CDJ1 was localized to the soluble stroma fraction, but also to thylakoids and to low density membranes. Although the CDJ1 gene was strongly heat shock inducible, CDJ1 protein levels increased only slightly during heat shock. Cellular CDJ1 concentrations were close to those of heat shock protein 70B (HSP70B), the major HSP70 in the Chlamydomonas chloroplast. CDJ1 complemented the temperature-sensitive phenotype of an Escherichia coli mutant lacking its dnaJ gene and interacted with E. coli DnaK, hence classifying it as a bona fide DnaJ protein. In soluble cell extracts, CDJ1 was found to organize into stable dimers and into complexes of high molecular mass. Immunoprecipitation experiments revealed that CDJ1 forms common complexes with plastidic HSP90C, HSP70B, and CGE1. In blue native-polyacrylamide gel electrophoresis, all four (co)chaperones migrated at 40% to 90% higher apparent than calculated molecular masses, indicating that greatest care must be taken when molecular masses of protein complexes are estimated from their migration relative to standard native marker proteins. Immunoprecipitation experiments from size-fractioned soluble cell extracts suggested that HSP90C and HSP70B exist as preformed complex that is joined by CDJ1. In summary, CDJ1 and CGE1 are novel cohort proteins of the chloroplast HSP90-HSP70 multichaperone complex. As HSP70B, CDJ1, and CGE1 are derived from the endosymbiont, whereas HSP90C is of eukaryotic origin, we observe in the chloroplast the interaction of two chaperone systems of distinct evolutionary origin.
Collapse
Affiliation(s)
- Felix Willmund
- Institute of Biology II, Plant Biochemistry, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
131
|
Strub GM, Depcrynski A, Elmore LW, Holt SE. Recovery from stress is a function of age and telomere length. Cell Stress Chaperones 2008; 13:475-82. [PMID: 18491040 PMCID: PMC2673929 DOI: 10.1007/s12192-008-0047-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/07/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022] Open
Abstract
Cells are constantly exposed to a wide variety of stimuli and must be able to mount appropriate physiological responses in order to maintain proper form and function. Cells from every organism have evolved highly conserved mechanisms to cope with environmental changes, including the widely studied heat shock response (HSR), which is induced by a variety of cellular stresses such as heavy metal ion exposure. It has long been known that as organisms and individual cells age, their ability to appropriately cope with environmental stress is attenuated. Here, we examine the ability of two heavy metal ions (ZnCl(2), SnCl(2)) to induce the HSR in human fibroblasts by assessing the expression of heat shock proteins (Hsp90, Hsp70, and p23) and the ability of the cells to recover over time. We demonstrate that the induction and recovery of chaperone levels is attenuated with age and that cells immortalized with the human telomerase reverse transcriptase component of the telomerase enzyme do not attenuate their HSR as their replicative age increases. Our data suggest that the recovery of normal human cells from an HSR is related in part to age and the cell's overall telomere length.
Collapse
Affiliation(s)
- Graham M. Strub
- Department of Biochemistry, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
| | - Amy Depcrynski
- Department of Human and Molecular Genetics, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
| | - Lynne W. Elmore
- Department of Pathology, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
- Massey Cancer Center, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298–0662 USA
| | - Shawn E. Holt
- Department of Human and Molecular Genetics, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
- Department of Pathology, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298-0662 USA
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298–0662 USA
- Massey Cancer Center, Medical College of Virginia Campus at Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298–0662 USA
| |
Collapse
|
132
|
Bolhassani A, Rafati S. Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines 2008; 7:1185-99. [PMID: 18844593 DOI: 10.1586/14760584.7.8.1185] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Heat-shock proteins (HSPs) have been known as multifunctional proteins. They facilitate the folding and unfolding of proteins, participate in vesicular transport processes, prevent protein aggregation in the densely packed cytosol and are involved in signaling processes. HSPs have been involved in different fields, including autoimmunity, immunity to infections and tumor immunology. Although there are many different kinds of HSPs, only some HSPs, including HSP70 and Gp96, have immunological properties. HSP molecules have been applied into DNA- or protein (peptide)-based vaccines as antigens, chaperones or adjuvants. HSP-based vaccines have been shown to immunize against cancer and infectious diseases in both prophylactic and therapeutic protocols. The immunogenicity of HSPs results from two different properties: a peptide-dependent capacity to chaperone and elicit adaptive cytotoxic T-lymphocyte responses against antigenic peptides and a peptide-independent immunomodulatory capacity. Furthermore, HSPs could be immunoregulatory agents with potent and widely applicable therapeutic uses. Accordingly, certain HSPs, such as HSP70 and Gp96, are highly effective carrier molecules for cross-presentation. Their ability in eliciting immune responses against different pathogens (parasite and virus) and their role in cancer immunity will be discussed in this review.
Collapse
Affiliation(s)
- Azam Bolhassani
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
133
|
Harrison EM, Sharpe E, Bellamy CO, McNally SJ, Devey L, Garden OJ, Ross JA, Wigmore SJ. Heat shock protein 90-binding agents protect renal cells from oxidative stress and reduce kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 2008; 295:F397-405. [PMID: 18562631 DOI: 10.1152/ajprenal.00361.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat shock proteins (Hsps) are protective in models of transplantation, yet practical strategies to upregulate them remain elusive. The heat shock protein 90-binding agent (HBA) geldanamycin and its analogs (17-AAG and 17-DMAG) are known to upregulate Hsps and confer cellular protection but have not been investigated in a model relevant to transplantation. We examined the ability of HBAs to upregulate Hsp expression and confer protection in renal adenocarcinoma (ACHN) cells in vitro and in a mouse model of kidney ischemia-reperfusion (I/R) injury. Hsp70 gene expression was increased 30-40 times in ACHN cells treated with HBAs, and trimerization and DNA binding of heat shock transcription factor-1 (HSF1) were demonstrated. A three- and twofold increase in Hsp70 and Hsp27 protein expression, respectively, was found in ACHN cells treated with HBAs. HBAs protected ACHN cells from an H2O2-mediated oxidative stress, and HSF1 short interfering RNA was found to abrogate HBA-mediated Hsp induction and protection. In vivo, Hsp70 was upregulated in the kidneys, liver, lungs, and heart of HBA-treated mice. This was associated with a functional and morphological renal protection from I/R injury. Therefore, HBAs mediate upregulation of protective Hsps in mouse kidneys which are associated with reduced I/R injury and may be useful in reducing transplant-associated kidney injury.
Collapse
Affiliation(s)
- Ewen M Harrison
- Tissue Injury and Repair Group, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Lu M, Kim HE, Li CR, Kim S, Kwak IJ, Lee YJ, Kim SS, Moon JY, Kim CH, Kim DK, Kang HS, Park JS. Two Distinct Disulfide Bonds Formed in Human Heat Shock Transcription Factor 1 Act in Opposition To Regulate Its DNA Binding Activity. Biochemistry 2008; 47:6007-15. [DOI: 10.1021/bi702185u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ming Lu
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| | - Hee-Eun Kim
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| | - Chun-Ri Li
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| | - Sol Kim
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| | - Im-Jung Kwak
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| | - Yun-Ju Lee
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| | - So-Sun Kim
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| | - Ji-Young Moon
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| | - Cho Hee Kim
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| | - Dong-Kyoo Kim
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| | - Ho Sung Kang
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| | - Jang-Su Park
- Department of Chemistry and Center for Innovative Bio·Physio Sensor Technology and Department of Molecular Biology, Pusan National University, 609-735 Busan, South Korea, and Department of Biomedicinal Chemistry and Institute of Functional Materials, Inje University, 621-749 Kimhae, South Korea
| |
Collapse
|
135
|
Jimenez JJ, Roberts SM, Mejia J, Mauro LM, Munson JW, Elgart GW, Connelly EA, Chen Q, Zou J, Goldenberg C, Voellmy R. Prevention of chemotherapy-induced alopecia in rodent models. Cell Stress Chaperones 2008; 13:31-8. [PMID: 18347939 PMCID: PMC2666212 DOI: 10.1007/s12192-007-0005-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 11/30/2022] Open
Abstract
Alopecia (hair loss) is experienced by thousands of cancer patients every year. Substantial-to-severe alopecia is induced by anthracyclines (e.g., adriamycin), taxanes (e.g., taxol), alkylating compounds (e.g., cyclophosphamide), and the topisomerase inhibitor etoposide, agents that are widely used in the treatment of leukemias and breast, lung, ovarian, and bladder cancers. Currently, no treatment appears to be generally effective in reliably preventing this secondary effect of chemotherapy. We observed in experiments using different rodent models that localized administration of heat or subcutaneous/intradermal injection of geldanamycin or 17-(allylamino)-17-demethoxygeldanamycin induced a stress protein response in hair follicles and effectively prevented alopecia from adriamycin, cyclophosphamide, taxol, and etoposide. Model tumor therapy experiments support the presumption that such localized hair-saving treatment does not negatively affect chemotherapy efficacy.
Collapse
Affiliation(s)
| | - Stephen M. Roberts
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL USA
| | - Jessica Mejia
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL USA
| | - Lucia M. Mauro
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL USA
| | - John W. Munson
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL USA
| | - George W. Elgart
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, FL USA
| | - Elizabeth Alvarez Connelly
- Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, FL USA
- Department of Pediatrics, University of Miami, Miami, FL USA
| | - Qingbin Chen
- School of Pharmaceutical Science, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jiangying Zou
- Guangzhou Institute of Biomedicine and Health, Guangzhou, People’s Republic of China
| | | | - Richard Voellmy
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL USA
- HSF Pharmaceuticals S.A., Av. des Cerisiers 39B, 1009 Pully, Switzerland
| |
Collapse
|
136
|
Rutherford S, Hirate Y, Swalla BJ. The Hsp90 capacitor, developmental remodeling, and evolution: the robustness of gene networks and the curious evolvability of metamorphosis. Crit Rev Biochem Mol Biol 2008; 42:355-72. [PMID: 17917872 DOI: 10.1080/10409230701597782] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Genetic capacitors moderate expression of heritable variation and provide a novel mechanism for rapid evolution. The prototypic genetic capacitor, Hsp90, interfaces stress responses, developmental networks, trait thresholds and expression of wide-ranging morphological changes in Drosophila and other organisms. The Hsp90 capacitor hypothesis, that stress-sensitive storage and release of genetic variation through Hsp90 facilitates adaptive evolution in unpredictable environments, has been challenged by the belief that Hsp90-buffered variation is unconditionally deleterious. Here we review recent results supporting the Hsp90 capacitor hypothesis, highlighting the heritability, selectability, and potential evolvability of Hsp90-buffered traits. Despite a surprising bias toward morphological novelty and typically invariable quantitative traits, Hsp90-buffered changes are remarkably modular, and can be selected to high frequency independent of the expected negative side-effects or obvious correlated changes in other, unselected traits. Recent dissection of cryptic signal transduction variation involved in one Hsp90-buffered trait reveals potentially dozens of normally silent polymorphisms embedded in cell cycle, differentiation and growth control networks. Reduced function of Hsp90 substrates during environmental stress would destabilize robust developmental processes, relieve developmental constraints and plausibly enables genetic network remodeling by abundant cryptic alleles. We speculate that morphological transitions controlled by Hsp90 may fuel the incredible evolutionary lability of metazoan life-cycles.
Collapse
Affiliation(s)
- Suzannah Rutherford
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | |
Collapse
|
137
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of a number of conditionally activated and/or expressed signalling proteins, as well as multiple mutated, chimeric, and/or over-expressed signalling proteins, that promote cancer cell growth and/or survival. Hsp90 inhibitors are unique in that, although they are directed towards a specific molecular target, they simultaneously inhibit multiple cellular signalling pathways. By inhibiting nodal points in multiple overlapping survival pathways utilized by cancer cells, combination of an Hsp90 inhibitor with standard chemotherapeutic agents may dramatically increase the in vivo efficacy of the standard agent. Hsp90 inhibitors may circumvent the characteristic genetic plasticity that has allowed cancer cells to eventually evade the toxic effects of most molecularly targeted agents. The mechanism-based use of Hsp90 inhibitors, both alone and in combination with other drugs, should be effective toward multiple forms of cancer. Further, because Hsp90 inhibitors also induce Hsf-1-dependent expression of Hsp70, and because certain mutated Hsp90 client proteins are neurotoxic, these drugs display ameliorative properties in several neurodegenerative disease models, suggesting a novel role for Hsp90 inhibitors in treating multiple pathologies involving neurodegeneration.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
138
|
Jacobs AT, Marnett LJ. Heat Shock Factor 1 Attenuates 4-Hydroxynonenal-mediated Apoptosis. J Biol Chem 2007; 282:33412-33420. [PMID: 17873279 DOI: 10.1074/jbc.m706799200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lipid peroxidation is a consequence of both normal physiology and oxidative stress that generates various reactive metabolites, a principal end product being 4-hydroxynonenal (HNE). As a diffusible electrophile, HNE reacts extensively with cellular nucleophiles. Consequently, HNE alters cellular signaling and activates the intrinsic apoptotic cascade. We have previously demonstrated that in addition to promoting apoptosis, HNE activates stress response pathways, including the antioxidant, endoplasmic reticulum stress, DNA damage, and heat shock responses. Here we demonstrate that activation of the heat shock response by HNE is dependent on the expression and nuclear translocation of heat shock factor 1 (HSF1), which promotes the expression of heat shock protein 40 (Hsp40) and Hsp70-1. Ectopic expression and immunoprecipitation of c-Myc-tagged Hsp70-1 indicates that HNE disrupts the inhibitory interaction between Hsp70-1 and HSF1, leading to the activation heat shock gene expression. Using siRNA to silence HSF1 expression, we observe that HSF1 is necessary for the induction of Hsp40 and Hsp70-1 by HNE, and the lack of Hsp expression is correlated with an increase in apoptosis. Nrf2, the transcription factor that mediates the antioxidant response, was also silenced using siRNA. Silencing Nrf2 also enhanced the cytotoxicity of HNE, but not as effectively as HSF1. Silencing HSF1 expression facilitates the activation of JNK pro-apoptotic signaling and selectively decreases expression of the anti-apoptotic Bcl-2 family member Bcl-X(L). Overexpression of Bcl-X(L) attenuates HNE-mediated apoptosis in HSF1-silenced cells. Overall, activation of HSF1 and stabilization of Bcl-X(L) mediate a protective response that may contribute significantly to the cellular biology of lipid peroxidation.
Collapse
Affiliation(s)
- Aaron T Jacobs
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, and Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Lawrence J Marnett
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, and Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
139
|
Schulz-Raffelt M, Lodha M, Schroda M. Heat shock factor 1 is a key regulator of the stress response in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:286-95. [PMID: 17711413 DOI: 10.1111/j.1365-313x.2007.03228.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report here on the characterization of heat shock factor 1 (HSF1), encoded by one of two HSF genes identified in the genome of Chlamydomonas reinhardtii. Chlamydomonas HSF1 shares features characteristic of class A HSFs of higher plants. HSF1 is weakly expressed under non-stress conditions and rapidly induced by heat shock. Heat shock also resulted in hyperphosphorylation of HSF1, and the extent of phosphorylation correlated with the degree of induction of heat shock genes, suggesting a role for phosphorylation in HSF1 activation. HSF1, like HSFs in yeasts, forms high-molecular-weight complexes, presumably trimers, under non-stress, stress and recovery conditions. Immunoprecipitation of HSF1 under these conditions led to the identification of cytosolic HSP70A as a protein constitutively interacting with HSF1. Strains in which HSF1 was strongly under-expressed by RNAi were highly sensitive to heat stress. 14C-labelling of nuclear-encoded proteins under heat stress revealed that synthesis of members of the HSP100, HSP90, HSP70, HSP60 and small HSP families in the HSF1-RNAi strains was dramatically reduced or completely abolished. This correlated with a complete loss of HSP gene induction at the RNA level. These data suggest that HSF1 is a key regulator of the stress response in Chlamydomonas.
Collapse
Affiliation(s)
- Miriam Schulz-Raffelt
- Institute of Biology II, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
140
|
Voellmy R, Boellmann F. Chaperone regulation of the heat shock protein response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:89-99. [PMID: 17205678 DOI: 10.1007/978-0-387-39975-1_9] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The heat shock protein response appears to be triggered primarily by nonnative proteins accumulating in a stressed cell and results in increased expression of heat shock proteins (HSPs). Many heat shock proteins prevent protein aggregation and participate in refolding or elimination of misfolded proteins in their capacity as chaperones. Even though several mechanisms exist to regulate the abundance of cytosolic and nuclear chaperones, activation of heat shock transcription factor 1 (HSF1) is an essential aspect of the heat shock protein response. HSPs and co-chaperones that are assembled into multichaperone complexes regulate HSF1 activity at different levels. HSP90-containing multichaperone complexes appear to be the most relevant repressors of HSF1 activity. Because HSP90-containing multichaperone complexes interact not only specifically with client proteins including HSF1 but also generically with nonnative proteins, the concentration of nonnative proteins influences assembly on HSF1 of HSP90-containing complexes that repress activation, and may play a role in inactivation, of the transcription factor. Proteins that are unable to achieve stable tertiary structures and remain chaperone substrates are targeted for proteasomal degradation through polyubiquitination by co-chaperone CHIP. CHIP can activate HSF1 to regulate the protein quality control system that balances protection and degradation of chaperone substrates.
Collapse
Affiliation(s)
- Richard Voellmy
- HSF Pharmaceuticals SA, Avenue des Cerisiers 39B, 1009 Pully, Switzerland.
| | | |
Collapse
|
141
|
Heikkila JJ, Kaldis A, Morrow G, Tanguay RM. The use of the Xenopus oocyte as a model system to analyze the expression and function of eukaryotic heat shock proteins. Biotechnol Adv 2007; 25:385-95. [PMID: 17459646 DOI: 10.1016/j.biotechadv.2007.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 11/26/2022]
Abstract
The analysis of the expression and function of heat shock protein (hsp) genes, a class of molecular chaperones, has been greatly aided by studies carried out with Xenopus oocytes. The large size of the oocyte facilitates microinjection of DNA, mRNA or protein, permits manual dissection of nuclei, and allows certain assays to be performed with single oocytes. These and other characteristics were useful in identifying the cis- and trans-acting factors involved in hsp gene transcription as well as the role of chaperones and co-chaperones in the repression and activation of heat shock factor. Xenopus oocytes were used to examine heat shock protein (HSP) molecular chaperone function as well as their involvement in intracellular trafficking, maturation, and secretion of protein. Possible new areas of research with this system include the role of membranes in the heat shock response, involvement of HSPs in viral replication and maturation, and in vivo NMR spectroscopy of microinjected HSPs.
Collapse
Affiliation(s)
- John J Heikkila
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | | | | | | |
Collapse
|
142
|
Koizumi S, Gong P, Suzuki K, Murata M. Cadmium-responsive Element of the Human Heme Oxygenase-1 Gene Mediates Heat Shock Factor 1-dependent Transcriptional Activation. J Biol Chem 2007; 282:8715-23. [PMID: 17244614 DOI: 10.1074/jbc.m609427200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of a number of mammalian genes is activated by heavy metals, but mechanisms of signaling and transcriptional regulation are not well understood. From a comparison of heavy metal responses of several human genes, it was noted that the heme oxygenase-1 (HO-1) gene is quite similar in the spectrum of metal response and induction kinetics to the heat shock protein 70 (HSP70) gene, suggesting a common regulatory mechanism shared by these genes. The cadmium-responsive element (CdRE) known to be responsible for the metal regulation of ho-1 formed complexes with proteins from heavy metal-treated HeLa cells in an electrophoretic mobility shift assay (EMSA). These complexes were indistinguishable in mobility from those formed by the heat shock factor 1 (HSF1) and the heat shock element involved in hsp70 regulation, suggesting the involvement of HSF1 also in the CdRE complexes. Competitive EMSA and supershift analysis with an anti-HSF1 antibody revealed that HSF1 was in fact a component of the CdRE complexes. A fine analysis on the affinity of HSF1 to a series of mutant CdRE sequences showed that HSF1 recognizes a sequence motif TnCTAGA. Transient transfection analysis with overexpressed recombinant HSF1 demonstrated that CdRE has HSF1-dependent enhancer-like activity that requires direct binding of HSF1. In the absence of overexpressed HSF1, however, CdRE by itself was insufficient to mediate heavy metal-induced transcription, suggesting requirement of additional regulatory sequences. The finding that HSF1 is directly involved in the regulation of ho-1 with an anti-oxidative role revealed a new aspect of the biological defense mechanism.
Collapse
Affiliation(s)
- Shinji Koizumi
- Mechanism of Health Effect Research Group, National Institute of Occupational Safety and Health, Kawasaki 214-8585, Japan.
| | | | | | | |
Collapse
|
143
|
Batulan Z, Taylor DM, Aarons RJ, Minotti S, Doroudchi MM, Nalbantoglu J, Durham HD. Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. Neurobiol Dis 2006; 24:213-25. [PMID: 16950627 DOI: 10.1016/j.nbd.2006.06.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 05/29/2006] [Accepted: 06/28/2006] [Indexed: 11/24/2022] Open
Abstract
High threshold for stress-induced activation of the heat shock transcription factor, Hsf1, may contribute to vulnerability of motor neurons to disease and limit efficacy of agents promoting expression of neuroprotective heat shock proteins (Hsps) through this transcription factor. Plasmid encoding a constitutively active form of Hsf1, Hsf1act, and chemicals shown to activate Hsf1 in other cells were investigated in a primary culture model of familial amyotrophic lateral sclerosis. Hsf1act and the Hsp90 inhibitor, geldanamycin, induced high expression of multiple Hsps in cultured motor neurons and conferred dramatic neuroprotection against SOD1G93A in comparison to Hsp70 or Hsp25 alone. Two other Hsp90 inhibitors, 17-allylamino-17-demethoxygeldanamycin (17-AAG) and radicicol, and pyrrolidine dithiocarbamate induced robust expression of Hsp70 and Hsp40 in motor neurons, but at cytotoxic concentrations. 17-AAG, which penetrates the blood-brain barrier, has exhibited a higher therapeutic index than geldanamycin, but this may not be the case when activation of Hsf1 in neurons is targeted.
Collapse
Affiliation(s)
- Zarah Batulan
- Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | | | | | |
Collapse
|
144
|
Mimnaugh EG, Xu W, Vos M, Yuan X, Neckers L. Endoplasmic Reticulum Vacuolization and Valosin-Containing Protein Relocalization Result from Simultaneous Hsp90 Inhibition by Geldanamycin and Proteasome Inhibition by Velcade. Mol Cancer Res 2006; 4:667-81. [PMID: 16966435 DOI: 10.1158/1541-7786.mcr-06-0019] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Geldanamycin and Velcade, new anticancer drugs with novel mechanisms of action, are currently undergoing extensive clinical trials. Geldanamycin interrupts Hsp90 chaperone activity and causes down-regulation of its many client proteins by the ubiquitin-proteasome pathway; Velcade is a specific proteasome inhibitor. Misfolded Hsp90 clients within the endoplasmic reticulum (ER) lumen are cleared by ER--associated protein degradation, a sequential process requiring valosin-containing protein (VCP)-dependent retrotranslocation followed by ubiquitination and proteasomal proteolysis. Cotreatment of cells with geldanamycin and Velcade prevents destruction of destabilized, ubiquitinated Hsp90 client proteins, causing them to accumulate. Here, we report that misfolded protein accumulation within the ER resulting from geldanamycin and Velcade exposure overwhelms the ability of the VCP--centered machine to maintain the ER secretory pathway, causing the ER to distend into conspicuous vacuoles. Overexpression of dominant-negative VCP or the "small VCP--interacting protein" exactly recapitulated the vacuolated phenotype provoked by the drugs, associating loss of VCP function with ER vacuolization. In cells transfected with a VCP--enhanced yellow fluorescent protein fluorescent construct, geldanamycin plus Velcade treatment redistributed VCP--enhanced yellow fluorescent protein from the cytoplasm and ER into perinuclear aggresomes. In further support of the view that compromise of VCP function is responsible for ER vacuolization, small interfering RNA interference of VCP expression induced ER vacuolization that was markedly increased by Velcade. VCP knockdown by small interfering RNA eventually deconstructed both the ER and Golgi and interdicted protein trafficking through the secretory pathway to the plasma membrane. Thus, simultaneous geldanamycin and Velcade treatment has far-reaching secondary cytotoxic consequences that likely contribute to the cytotoxic activity of this anticancer drug combination.
Collapse
Affiliation(s)
- Edward G Mimnaugh
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Room 1-5940, Bethesda, MD 20892-1107, USA
| | | | | | | | | |
Collapse
|
145
|
Santos-Marques MJ, Carvalho F, Sousa C, Remião F, Vitorino R, Amado F, Ferreira R, Duarte JA, de Lourdes Bastos M. Cytotoxicity and cell signalling induced by continuous mild hyperthermia in freshly isolated mouse hepatocytes. Toxicology 2006; 224:210-8. [PMID: 16781810 DOI: 10.1016/j.tox.2006.04.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 03/20/2006] [Accepted: 04/13/2006] [Indexed: 11/26/2022]
Abstract
An increasing body of data has been demonstrating that mammalian cells have elaborate networks of molecular signalling in counteracting heat shock and in developing adaptation to oxidative stress to avoid cell death. However, the precise mechanisms linking heat shock, oxidative stress and cell survival/cell death mechanisms are not yet clearly understood. The purpose of this study was thus to study the time course of hyperthermia-induced oxidative stress and cellular signalling through the activation of heat shock factor 1 (HSF1) and heat shock protein 70 (HSP70), using freshly isolated mouse hepatocytes. The results accomplished in this work demonstrated that mild continuous hyperthermia (41 degrees ) leads to oxidative stress and loss of cellular viability in a time-dependent manner, with significant effects already observed at the first hour of incubation. These toxic effects developed concomitantly with activation of HSF1 and emerged before the formation of HSP70 levels. Thus, although cell signalling was triggered through the transcriptional activation of HSP70 via HSF1, this putative protective process did not modify the trend of hepatotoxic effects mediated by this type of hyperthermic challenging.
Collapse
Affiliation(s)
- Maria João Santos-Marques
- REQUIMTE, Toxicology Department, Faculty of Pharmacy, University of Porto, Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Chen B, Zhong D, Monteiro A. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 2006; 7:156. [PMID: 16780600 PMCID: PMC1525184 DOI: 10.1186/1471-2164-7-156] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 06/17/2006] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND HSP90 proteins are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, and folding, degradation, and transport of proteins. HSP90 proteins have been found in a variety of organisms suggesting that they are ancient and conserved. In this study we investigate the nuclear genomes of 32 species across all kingdoms of organisms, and all sequences available in GenBank, and address the diversity, evolution, gene structure, conservation and nomenclature of the HSP90 family of genes across all organisms. RESULTS Twelve new genes and a new type HSP90C2 were identified. The chromosomal location, exon splicing, and prediction of whether they are functional copies were documented, as well as the amino acid length and molecular mass of their polypeptides. The conserved regions across all protein sequences, and signature sequences in each subfamily were determined, and a standardized nomenclature system for this gene family is presented. The proeukaryote HSP90 homologue, HTPG, exists in most Bacteria species but not in Archaea, and it evolved into three lineages (Groups A, B and C) via two gene duplication events. None of the organellar-localized HSP90s were derived from endosymbionts of early eukaryotes. Mitochondrial TRAP and endoplasmic reticulum HSP90B separately originated from the ancestors of HTPG Group A in Firmicutes-like organisms very early in the formation of the eukaryotic cell. TRAP is monophyletic and present in all Animalia and some Protista species, while HSP90B is paraphyletic and present in all eukaryotes with the exception of some Fungi species, which appear to have lost it. Both HSP90C (chloroplast HSP90C1 and location-undetermined SP90C2) and cytosolic HSP90A are monophyletic, and originated from HSP90B by independent gene duplications. HSP90C exists only in Plantae, and was duplicated into HSP90C1 and HSP90C2 isoforms in higher plants. HSP90A occurs across all eukaryotes, and duplicated into HSP90AA and HSP90AB in vertebrates. Diplomonadida was identified as the most basal organism in the eukaryote lineage. CONCLUSION The present study presents the first comparative genomic study and evolutionary analysis of the HSP90 family of genes across all kingdoms of organisms. HSP90 family members underwent multiple duplications and also subsequent losses during their evolution. This study established an overall framework of information for the family of genes, which may facilitate and stimulate the study of this gene family across all organisms.
Collapse
Affiliation(s)
- Bin Chen
- School of Life Sciences, Southwest University, Chongqing 400715, P.R. China
- Department of Biological Sciences, The State University of New York at Buffalo, NY 14260, USA
| | - Daibin Zhong
- Department of Biological Sciences, The State University of New York at Buffalo, NY 14260, USA
| | - Antónia Monteiro
- Department of Biological Sciences, The State University of New York at Buffalo, NY 14260, USA
| |
Collapse
|
147
|
Georgakis GV, Younes A. Heat-shock protein 90 inhibitors in cancer therapy: 17AAG and beyond. Future Oncol 2006; 1:273-81. [PMID: 16555999 DOI: 10.1517/14796694.1.2.273] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Heat-shock protein 90 (HSP90) has diverse functions in mammalian cells. It acts as molecular chaperone, together with several co-chaperone molecules (such as Hop, Hip, p23, cdc37, Aha, and immunophilins). HSP90 binds to its client proteins (such as steroid receptors, AKT, Bcr-Abl, Apaf-1, survivin, cyclin dependent kinases which are involved in signal transduction that regulate cell cycle, survival, and death, and promote their proper protein folding, assembly, and transportation across different cellular compartments. Failure of Hsp90 chaperone activity leads to misfolding of client proteins, which leads to ubiquitination and proteasome degradation, and this deregulating cellular homeostasis. Since tumor cells frequently overexpress the active form of HSP90, which is more susceptible to inhibition by small molecules such as geldanamycin and its analogs, HSP90 became an attractive target for cancer therapy. This paper will review the recent advances in HSP90-biology and will discuss the emerging role of the HSP90 inhibitors such as 17-allylamino-17 demethoxy-geldanamycin and other HSP-90-directed small molecules in cancer therapy.
Collapse
Affiliation(s)
- Georgios V Georgakis
- The University of Texas, Department of Lymphoma and Myeloma, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | |
Collapse
|
148
|
Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E. RNA-mediated response to heat shock in mammalian cells. Nature 2006; 440:556-60. [PMID: 16554823 DOI: 10.1038/nature04518] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 12/15/2005] [Indexed: 12/16/2022]
Abstract
The heat-shock transcription factor 1 (HSF1) has an important role in the heat-shock response in vertebrates by inducing the expression of heat-shock proteins (HSPs) and other cytoprotective proteins. HSF1 is present in unstressed cells in an inactive monomeric form and becomes activated by heat and other stress stimuli. HSF1 activation involves trimerization and acquisition of a site-specific DNA-binding activity, which is negatively regulated by interaction with certain HSPs. Here we show that HSF1 activation by heat shock is an active process that is mediated by a ribonucleoprotein complex containing translation elongation factor eEF1A and a previously unknown non-coding RNA that we term HSR1 (heat shock RNA-1). HSR1 is constitutively expressed in human and rodent cells and its homologues are functionally interchangeable. Both HSR1 and eEF1A are required for HSF1 activation in vitro; antisense oligonucleotides or short interfering (si)RNA against HSR1 impair the heat-shock response in vivo, rendering cells thermosensitive. The central role of HSR1 during heat shock implies that targeting this RNA could serve as a new therapeutic model for cancer, inflammation and other conditions associated with HSF1 deregulation.
Collapse
Affiliation(s)
- Ilya Shamovsky
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
149
|
Abstract
Many cellular signaling molecules exist in different conformations corresponding to active and inactive states. Transition between these states is regulated by reversible modifications, such as phosphorylation, or by binding of nucleotide triphosphates, their regulated hydrolysis to diphosphates, and their exchange against fresh triphosphates. Specificity and efficiency of cellular signaling is further maintained by regulated subcellular localization of signaling molecules as well as regulated protein-protein interaction. Hence, it is not surprising that molecular chaperones--proteins that are able to specifically interact with distinct conformations of other proteins--could per se interfere with cellular signaling. Hence, it is not surprising that chaperones have co-evolved as integral components of signaling networks where they can function in the maturation as well as in regulating the transition between active and inactive state of signaling molecules, such as receptors, transcriptional regulators and protein kinases. Furthermore, new classes of specific chaperones are emerging and their role in histone-mediated chromatin remodeling and RNA folding are under investigation.
Collapse
Affiliation(s)
- M Gaestel
- Institute of Biochemistry, Medical School Hannover, Germany.
| |
Collapse
|
150
|
Buszczak M, Spradling AC. The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes Dev 2006; 20:977-89. [PMID: 16598038 PMCID: PMC1472305 DOI: 10.1101/gad.1396306] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/07/2006] [Indexed: 11/25/2022]
Abstract
Terminating a gene's activity requires that pre-existing transcripts be matured or destroyed and that the local chromatin structure be returned to an inactive configuration. Here we show that the Drosophila homolog of the mammalian P68 RNA helicase plays a novel role in RNA export and gene deactivation. p68 mutations phenotypically resemble mutations in small bristles (sbr), the Drosophila homolog of the human mRNA export factor NXF1. Full-length hsp70 mRNA accumulates in the nucleus near its sites of transcription following heat shock of p68 homozygotes, and hsp70 gene shutdown is delayed. Unstressed mutant larvae show similar defects in transcript accumulation and gene repression at diverse loci, and we find that p68 mutations are allelic to Lighten-up, a known suppressor of position effect variegation. Our observations reveal a strong connection between transcript clearance and gene repression. P68 may be needed to rapidly remove transcripts from a gene before its activity can be shut down and its chromatin reset to an inactive state.
Collapse
Affiliation(s)
- Michael Buszczak
- Howard Hughes Laboratories/Embryology Department, Carnegie Institution of Washington, Baltimore, Maryland 21218, USA
| | | |
Collapse
|