101
|
EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood 2008; 112:576-84. [DOI: 10.1182/blood-2007-07-098996] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract
Previous observations suggested that functional antagonism between FLI-1 and EKLF might be involved in the commitment toward erythrocytic or megakaryocytic differentiation. We show here, using inducible shRNA expression, that EKLF knockdown in mouse erythroleukemia (MEL) cells decreases erythrocytic and increases megakaryocytic as well as Fli-1 gene expression. Chromatin immunoprecipitation analyses revealed that the increase in megakaryocytic gene expression is associated with a marked increase in RNA pol II and FLI-1 occupancy at their promoters, albeit FLI-1 protein levels are only minimally affected. Similarly, we show that human CD34+ progenitors infected with shRNA lentivirus allowing EKLF knockdown generate an increased number of differentiated megakaryocytic cells associated with increased levels of megakaryocytic and Fli-1 gene transcripts. Single-cell progeny analysis of a cell population enriched in bipotent progenitors revealed that EKLF knockdown increases the number of megakaryocytic at the expense of erythrocytic colonies. Taken together, these data indicate that EKLF restricts megakaryocytic differentiation to the benefit of erythrocytic differentiation and suggest that this might be at least partially mediated by the inhibition of FLI-1 recruitment to megakaryocytic and Fli-1 gene promoters.
Collapse
|
102
|
Genetic evidence of PEBP2beta-independent activation of Runx1 in the murine embryo. Int J Hematol 2008; 88:134-138. [PMID: 18594778 DOI: 10.1007/s12185-008-0121-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 04/21/2008] [Accepted: 05/06/2008] [Indexed: 10/21/2022]
Abstract
The Runx1/AML1 transcription factor is required for the generation of hematopoietic stem cells and is one of the most frequently targeted genes in human leukemia. Runx1-deficient mice die around embryonic day (E)12.5 due to severe hemorrhage in the central nervous system and the complete absence of definitive hematopoietic cells. Since mice lacking the heterodimeric partner of Runx1, PEBP2beta/CBFbeta, are almost identical in phenotype to Runx1 (-/-) mice, PEBP2beta was believed to be essential for the in vivo function of Runx1. Here we show that transgenic overexpression of Runx1 partially rescues the lethal phenotype of PEBP2beta-deficient mice at E12.5. Some of the rescued mice escaped from the severe hemorrhage at E11.5-12.5, although definitive hematopoiesis was not restored. Thus, PEBP2beta-independent Runx1 activation can occur in vivo. This observation sheds new light on the mechanism(s) that regulate the activity of Runx transcription factors.
Collapse
|
103
|
Redmond LC, Dumur CI, Archer KJ, Haar JL, Lloyd JA. Identification of erythroid-enriched gene expression in the mouse embryonic yolk sac using microdissected cells. Dev Dyn 2008; 237:436-46. [PMID: 18213587 DOI: 10.1002/dvdy.21426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Little is known about the genes that control the embryonic erythroid program. Laser capture microdissection was used to isolate primitive erythroid precursors and epithelial cells from frozen sections of the embryonic day 9.5 yolk sac. The RNA samples were amplified and labeled for hybridization to Affymetrix GeneChip Mouse Genome 430A 2.0 arrays. Ninety-one genes are expressed significantly higher in erythroid than in epithelial cells. Ingenuity pathway analysis indicates that many of these erythroid-enriched genes cluster in highly significant biological networks. One of these networks contains RBTN2/LMO2, SCL/TAL1, and EKLF/KLF1, three of the very few genes required for primitive erythropoiesis. Quantitative real-time polymerase chain reaction was used to verify that platelet factor 4, reelin, thrombospondin-1, and muscleblind-like 1 mRNA is erythroid-enriched. These genes have established roles in development or differentiation in other systems, and are, therefore, good candidates for regulating primitive erythropoiesis. These results provide a catalog of genes expressed during primitive erythropoiesis.
Collapse
Affiliation(s)
- Latasha C Redmond
- Department of Human Genetics, Virginia Commonwealth University, Richmond, Virginia 23298-0035, USA
| | | | | | | | | |
Collapse
|
104
|
Abstract
Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding-independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.
Collapse
|
105
|
Abstract
Comparison of normal erythroblasts and erythroblasts from persons with the rare In(Lu) type of Lu(a-b-) blood group phenotype showed increased transcription levels for 314 genes and reduced levels for 354 genes in In(Lu) cells. Many erythroid-specific genes (including ALAS2, SLC4A1) had reduced transcript levels, suggesting the phenotype resulted from a transcription factor abnormality. A search for mutations in erythroid transcription factors showed mutations in the promoter or coding sequence of EKLF in 21 of 24 persons with the In(Lu) phenotype. In all cases the mutant EKLF allele occurred in the presence of a normal EKLF allele. Nine different loss-of-function mutations were identified. One mutation abolished a GATA1 binding site in the EKLF promoter (-124T>C). Two mutations (Leu127X; Lys292X) resulted in premature termination codons, 2 (Pro190LeufsX47; Arg319GlufsX34) in frameshifts, and 4 in amino acid substitution of conserved residues in zinc finger domain 1 (His299Tyr) or domain 2 (Arg328Leu; Arg328His; Arg331Gly). Persons with the In(Lu) phenotype have no reported pathology, indicating that one functional EKLF allele is sufficient to sustain human erythropoiesis. These data provide the first description of inactivating mutations in human EKLF and the first demonstration of a blood group phenotype resulting from mutations in a transcription factor.
Collapse
|
106
|
Abstract
AbstractTargeted disruption of the Runx1/ AML1 gene in mice has demonstrated that it is required for the emergence of definitive hematopoietic cells but that it is not essential for the formation of primitive erythrocytes. These findings led to the conclusion that Runx1 is a stage-specific transcription factor acting only during definitive hematopoiesis. However, the zebrafish and Xenopus homologs of Runx1 have been shown to play roles in primitive hematopoiesis, suggesting that mouse Runx1 might also be involved in the development of primitive lineages. In this study, we show that primitive erythrocytes in Runx1−/− mice display abnormal morphology and reduced expression of Ter119, Erythroid Kruppel-like factor (EKLF, KLF1), and GATA-1. These results suggest that mouse Runx1 plays a role in the development of both primitive and definitive hematopoietic cells.
Collapse
|
107
|
Non-random subcellular distribution of variant EKLF in erythroid cells. Exp Cell Res 2008; 314:1595-604. [PMID: 18329016 DOI: 10.1016/j.yexcr.2008.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/11/2008] [Accepted: 01/29/2008] [Indexed: 11/22/2022]
Abstract
EKLF protein plays a prominent role during erythroid development as a nuclear transcription factor. Not surprisingly, exogenous EKLF quickly localizes to the nucleus. However, using two different assays we have unexpectedly found that a substantial proportion of endogenous EKLF resides in the cytoplasm at steady state in all erythroid cells examined. While EKLF localization does not appear to change during either erythroid development or terminal differentiation, we find that the protein displays subtle yet distinct biochemical and functional differences depending on which subcellular compartment it is isolated from, with PEST sequences possibly playing a role in these differences. Localization is unaffected by inhibition of CRM1 activity and the two populations are not differentiated by stability. Heterokaryon assays demonstrate that EKLF is able to shuttle out of the nucleus although its nuclear re-entry is rapid. These studies suggest there is an unexplored role for EKLF in the cytoplasm that is separate from its well-characterized nuclear function.
Collapse
|
108
|
Krüppeling megakaryopoiesis. Blood 2007. [DOI: 10.1182/blood-2007-09-110999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
109
|
Ghinassi B, Verrucci M, Jelicic K, Di Noia A, Migliaccio G, Migliaccio AR. Interleukin-3 and erythropoietin cooperate in the regulation of the expression of erythroid-specific transcription factors during erythroid differentiation. Exp Hematol 2007; 35:735-47. [PMID: 17577923 DOI: 10.1016/j.exphem.2007.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To characterize how interleukin-3 and erythropoietin regulate cell fate by modulating the expression of lineage-specific transcription factors. METHODS This study analyzed mRNA and protein levels, gene transcription rates, and mRNA and protein stabilities of erythroid-specific transcription factors in lineage-restricted cells derived from the 32D cell line cultured either in interleukin-3 or erythropoietin. RESULTS Erythroid 32D subclones expressed levels of Idl, Gata-2, and Scl comparable and levels of Eklf and Gata-1 higher than those expressed by myeloid subclones. While maintained in interleukin-3, erythroid cells remained immature despite their high expression of Gata-1, Gata-2, Scl, Eklf, and Idl. Switching the erythroid cells to erythropoietin induced cell maturation (within 48 hours) and reduced expression of Gata-2 and Idl (in 24 hours) but did not alter the expression of Gata-1. The effects of interleukin-3 were mostly mediated by increases in transcription rates (Scl and Gata-2), and that of erythropoietin was apparently due to increased mRNA and protein (Gata-1, Scl, and Eklf) stability. In particular, erythropoietin increased the stability of the processed and transcriptionally more active form of GATA-1 protein. CONCLUSIONS These results suggest that interleukin-3 and erythropoietin cooperate to establish the lineage-specific transcription factor milieu of erythroid cells: interleukin-3 regulates mainly gene transcription and erythropoietin consistently increases mRNA and protein stability.
Collapse
Affiliation(s)
- Barbara Ghinassi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
110
|
Kim SI, Bresnick EH. Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 2007; 26:6777-6794. [PMID: 17934485 DOI: 10.1038/sj.onc.1210761] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional networks orchestrate fundamental biological processes, including hematopoiesis, in which hematopoietic stem cells progressively differentiate into specific progenitors cells, which in turn give rise to the diverse blood cell types. Whereas transcription factors recruit coregulators to chromatin, leading to targeted chromatin modification and recruitment of the transcriptional machinery, many questions remain unanswered regarding the underlying molecular mechanisms. Furthermore, how diverse cell type-specific transcription factors function cooperatively or antagonistically in distinct cellular contexts is poorly understood, especially since genes in higher eukaryotes commonly encompass broad chromosomal regions (100 kb and more) and are littered with dispersed regulatory sequences. In this article, we describe an important set of transcription factors and coregulators that control erythropoiesis and highlight emerging transcriptional mechanisms and principles. It is not our intent to comprehensively survey all factors implicated in the transcriptional control of erythropoiesis, but rather to underscore specific mechanisms, which have potential to be broadly relevant to transcriptional control in diverse systems.
Collapse
Affiliation(s)
- S-I Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI 53706, USA
| | | |
Collapse
|
111
|
|
112
|
Sumoylation of EKLF promotes transcriptional repression and is involved in inhibition of megakaryopoiesis. Mol Cell Biol 2007; 27:8547-60. [PMID: 17938210 DOI: 10.1128/mcb.00589-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Erythroid Krüppel-like factor (EKLF [KLF1]) is a transcriptional regulator that plays a critical role within a specific subset of hematopoietic cells, particularly in the erythroid lineage and its immediate precursor, the megakaryocyte-erythroid progenitor (MEP). We find that EKLF is posttranslationally modified by sumoylation at a single site near its amino terminus and that PIAS1 plays a critical role in this process. Mutation of this site has little effect on EKLF's ability to function as a transcriptional activator; however, it has a dramatic effect on its repressive abilities. The mechanism of repression likely involves a novel small ubiquitin-related modifier (SUMO)-dependent EKLF interaction with the Mi-2beta component of the NuRD repression complex. Mutated EKLF is attenuated in its ability to repress megakaryocyte differentiation, implicating EKLF sumoylation status in differentiative decisions emanating from the MEP. These studies demonstrate a novel mechanism by which transcription factor sumoylation can alter protein-protein interactions and bipotential lineage decisions.
Collapse
|
113
|
Bruce SJ, Gardiner BB, Burke LJ, Gongora MM, Grimmond SM, Perkins AC. Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-freeBMP4 culture. BMC Genomics 2007; 8:365. [PMID: 17925037 PMCID: PMC2204012 DOI: 10.1186/1471-2164-8-365] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 10/10/2007] [Indexed: 12/30/2022] Open
Abstract
Background Expression profiling of embryonic stem (ES) cell differentiation in the presence of serum has been performed previously. It remains unclear if transcriptional activation is dependent on complex growth factor mixtures in serum or whether this process is intrinsic to ES cells once the stem cell program has been inactivated. The aims of this study were to determine the transcriptional programs associated with the stem cell state and to characterize mesoderm differentiation between serum and serum-free culture. Results ES cells were differentiated as embryoid bodies in 10% FBS or serum-free media containing BMP4 (2 ng/ml), and expression profiled using 47 K Illumina(R) Sentrix arrays. Statistical methods were employed to define gene sets characteristic of stem cell, epiblast and primitive streak programs. Although the initial differentiation profile was similar between the two culture conditions, cardiac gene expression was inhibited in serum whereas blood gene expression was enhanced. Also, expression of many members of the Kruppel-like factor (KLF) family of transcription factors changed dramatically during the first few days of differentiation. KLF2 and KLF4 co-localized with OCT4 in a sub-nuclear compartment of ES cells, dynamic changes in KLF-DNA binding activities occurred upon differentiation, and strong bio-informatic evidence for direct regulation of many stem cell genes by KLFs was found. Conclusion Down regulation of stem cell genes and activation of epiblast/primitive streak genes is similar in serum and defined media, but subsequent mesoderm differentiation is strongly influenced by the composition of the media. In addition, KLF family members are likely to be important regulators of many stem cell genes.
Collapse
Affiliation(s)
- Stephen J Bruce
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
114
|
Transcription factor Sp3 knockout mice display serious cardiac malformations. Mol Cell Biol 2007; 27:8571-82. [PMID: 17923686 DOI: 10.1128/mcb.01350-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice lacking the zinc finger transcription factor specificity protein 3 (Sp3) die prenatally in the C57BL/6 background. To elucidate the cause of mortality we analyzed the potential role of Sp3 in embryonic heart development. Sp3 null hearts display defective looping at embryonic day 10.5 (E10.5), and at E14.5 the Sp3 null mutants have developed a range of severe cardiac malformations. In an attempt to position Sp3 in the cardiac developmental hierarchy, we analyzed the expression patterns of >15 marker genes in Sp3 null hearts. Expression of cardiac ankyrin repeat protein (Carp) was downregulated prematurely after E12.5, while expression of the other marker genes was not affected. Chromatin immunoprecipitation analysis revealed that Sp3 is bound to the Carp promoter region in vivo. Microarray analysis indicates that small-molecule metabolism and cell-cell interactions are the most significantly affected biological processes in E12.5 Sp3 null myocardium. Since the epicardium showed distension from the myocardium, we studied expression of Wt1, a marker for epicardial cells. Wt1 expression was diminished in epicardium-derived cells in the myocardium of Sp3 null hearts. We conclude that Sp3 is required for normal cardiac development and suggest that it has a crucial role in myocardial differentiation.
Collapse
|
115
|
Gardiner MR, Gongora MM, Grimmond SM, Perkins AC. A global role for zebrafish klf4 in embryonic erythropoiesis. Mech Dev 2007; 124:762-74. [PMID: 17709232 DOI: 10.1016/j.mod.2007.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/06/2007] [Accepted: 06/18/2007] [Indexed: 01/21/2023]
Abstract
There are two waves of erythropoiesis, known as primitive and definitive waves in mammals and lower vertebrates including zebrafish. The founding member of the Kruppel-like factor (KLF) family of CACCC-box binding proteins, EKLF/Klf1, is essential for definitive erythropoiesis in mammals but only plays a minor role in primitive erythropoiesis. Morpholino knockdown experiments have shown a role for zebrafish klf4 in primitive erythropoiesis and hatching gland formation. In order to generate a global understanding of how klf4 might influence gene expression and differentiation, we have performed expression profiling of klf4 morphants, and then performed validation of many putative target genes by qRT-PCR and whole mount in situ hybridization. We found a critical role for klf4 in embryonic globin, heme synthesis and hatching gland gene expression. In contrast, there was an increase in expression of definitive hematopoietic specific genes such as larval globin genes, runx1 and c-myb from 24 hpf, suggesting a selective role for klf4 in primitive rather than definitive erythropoiesis. In addition, we show klf4 preferentially binds CACCC box elements in the primitive zebrafish beta-like globin gene promoters. These results have global implications for primitive erythroid gene regulation by KLF-CACCC box interactions.
Collapse
Affiliation(s)
- M R Gardiner
- Institute for Molecular Bioscience, University of Queensland, Australia
| | | | | | | |
Collapse
|
116
|
Frontelo P, Manwani D, Galdass M, Karsunky H, Lohmann F, Gallagher PG, Bieker JJ. Novel role for EKLF in megakaryocyte lineage commitment. Blood 2007; 110:3871-80. [PMID: 17715392 PMCID: PMC2190608 DOI: 10.1182/blood-2007-03-082065] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Megakaryocytes and erythroid cells are thought to derive from a common progenitor during hematopoietic differentiation. Although a number of transcriptional regulators are important for this process, they do not explain the bipotential result. We now show by gain- and loss-of-function studies that erythroid Krüppel-like factor (EKLF), a transcription factor whose role in erythroid gene regulation is well established, plays an unexpected directive role in the megakaryocyte lineage. EKLF inhibits the formation of megakaryocytes while at the same time stimulating erythroid differentiation. Quantitative examination of expression during hematopoiesis shows that, unlike genes whose presence is required for establishment of both lineages, EKLF is uniquely down-regulated in megakaryocytes after formation of the megakaryocyte-erythroid progenitor. Expression profiling and molecular analyses support these observations and suggest that megakaryocytic inhibition is achieved, at least in part, by EKLF repression of Fli-1 message levels.
Collapse
|
117
|
Basu P, Lung TK, Lemsaddek W, Sargent TG, Williams DC, Basu M, Redmond LC, Lingrel JB, Haar JL, Lloyd JA. EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis. Blood 2007; 110:3417-25. [PMID: 17675555 PMCID: PMC2200909 DOI: 10.1182/blood-2006-11-057307] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Krüppel-like C2/H2 zinc finger transcription factors (KLFs) control development and differentiation. Erythroid Krüppel-like factor (EKLF or KLF1) regulates adult beta-globin gene expression and is necessary for normal definitive erythropoiesis. KLF2 is required for normal embryonic Ey- and betah1-, but not adult betaglobin, gene expression in mice. Both EKLF and KLF2 play roles in primitive erythroid cell development. To investigate potential interactions between these genes, EKLF/KLF2 double-mutant embryos were analyzed. EKLF(-/-)KLF2(-/-) mice appear anemic at embryonic day 10.5 (E10.5) and die before E11.5, whereas single-knockout EKLF(-/-) or KLF2(-/-) embryos are grossly normal at E10.5 and die later than EKLF(-/-)KLF2(-/-) embryos. At E10.5, Ey- and betah1-globin mRNA is greatly reduced in EKLF(-/-)KLF2(-/-), compared with EKLF(-/-) or KLF2(-/-) embryos, consistent with the observed anemia. Light and electron microscopic analyses of E9.5 EKLF(-/-)KLF2(-/-) yolk sacs, and cytospins, indicate that erythroid and endothelial cells are morphologically more abnormal than in either single knockout. EKLF(-/-)KLF2(-/-) erythroid cells are markedly irregularly shaped, suggesting membrane abnormalities. EKLF and KLF2 may have coordinate roles in a common progenitor to erythroid and endothelial cells. The data indicate that EKLF and KLF2 have redundant functions in embryonic beta-like globin gene expression, primitive erythropoiesis, and endothelial development.
Collapse
Affiliation(s)
- Priyadarshi Basu
- Department of Human Genetics, and Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Tallack MR, Keys JR, Perkins AC. Erythroid Kruppel-like Factor Regulates the G1 Cyclin Dependent Kinase Inhibitor p18INK4c. J Mol Biol 2007; 369:313-21. [PMID: 17442339 DOI: 10.1016/j.jmb.2007.02.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/25/2007] [Accepted: 02/28/2007] [Indexed: 12/18/2022]
Abstract
Erythroid Kruppel-like factor (EKLF, KLF1) is an essential erythroid cell specific C(2)H(2) zinc finger transcription factor that binds CACC box elements in promoters and distant regulatory elements to activate transcription. Forced expression of EKLF arrests cell division. The cyclin dependent kinase (Cdk) inhibitor p18(INK4c) was identified as a potential novel EKLF target gene from an expression profiling study. The p18(INK4c) protein functions as an inhibitor of Cdk4 and Cdk6 activity during early G1 phase of the cell cycle, thus acting as a physiological brake on cell division. We confirmed p18(INK4c) is downregulated in EKLF null mice by real-time PCR and Western blotting, and identified three closely associated and highly conserved EKLF binding sites (CCNCNCCCN) approximately 1 kb upstream of the p18(INK4c) transcriptional start site. We showed that EKLF binds to one of these elements by gel shift assay and demonstrated this site is capable of driving EKLF dependent transcription. We also determined by chromatin immunoprecipitation (ChIP) that this region of the p18(INK4c) promoter is bound by EKLF in erythroid cells. Thus, EKLF is a direct regulator of p18(INK4c) gene expression, and much of EKLF's role in driving erythroid cell differentiation may occur via p18(INK4c).
Collapse
Affiliation(s)
- Michael R Tallack
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
119
|
Ferreira R, Wai A, Shimizu R, Gillemans N, Rottier R, von Lindern M, Ohneda K, Grosveld F, Yamamoto M, Philipsen S. Dynamic regulation of Gata factor levels is more important than their identity. Blood 2007; 109:5481-90. [PMID: 17327407 DOI: 10.1182/blood-2006-11-060491] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Three Gata transcription factors (Gata1, -2, and -3) are essential for hematopoiesis. These factors are thought to play distinct roles because they do not functionally replace each other. For instance, Gata2 messenger RNA (mRNA) expression is highly elevated in Gata1-null erythroid cells, yet this does not rescue the defect. Here, we test whether Gata2 and -3 transgenes rescue the erythroid defect of Gata1-null mice, if expressed in the appropriate spatiotemporal pattern. Gata1, -2, and -3 transgenes driven by beta-globin regulatory elements, directing expression to late stages of differentiation, fail to rescue erythropoiesis in Gata1-null mutants. In contrast, when controlled by Gata1 regulatory elements, directing expression to the early stages of differentiation, Gata1, -2, and -3 do rescue the Gata1-null phenotype. The dramatic increase of endogenous Gata2 mRNA in Gata1-null progenitors is not reflected in Gata2 protein levels, invoking translational regulation. Our data show that the dynamic spatiotemporal regulation of Gata factor levels is more important than their identity and provide a paradigm for developmental control mechanisms that are hard-wired in cis-regulatory elements.
Collapse
Affiliation(s)
- Rita Ferreira
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Funnell APW, Maloney CA, Thompson LJ, Keys J, Tallack M, Perkins AC, Crossley M. Erythroid Krüppel-like factor directly activates the basic Krüppel-like factor gene in erythroid cells. Mol Cell Biol 2007; 27:2777-90. [PMID: 17283065 PMCID: PMC1899893 DOI: 10.1128/mcb.01658-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Sp/Krüppel-like factor (Sp/Klf) family is comprised of around 25 zinc finger transcription factors that recognize CACCC boxes and GC-rich elements. We have investigated basic Krüppel-like factor (Bklf/Klf3) and show that in erythroid tissues its expression is highly dependent on another family member, erythroid Krüppel-like factor (Eklf/Klf1). We observe that Bklf mRNA is significantly reduced in erythroid tissues from Eklf-null murine embryos. We find that Bklf is driven primarily by two promoters, a ubiquitously active GC-rich upstream promoter, 1a, and an erythroid downstream promoter, 1b. Transcripts from the two promoters encode identical proteins. Interestingly, both the ubiquitous and the erythroid promoter are dependent on Eklf in erythroid cells. Eklf also activates both promoters in transient assays. Experiments utilizing an inducible form of Eklf demonstrate activation of the endogenous Bklf gene in the presence of an inhibitor of protein synthesis. The kinetics of activation are also consistent with Bklf being a direct Eklf target. Chromatin immunoprecipitation assays confirm that Eklf associates with both Bklf promoters. Eklf is typically an activator of transcription, whereas Bklf is noted as a repressor. Our results support the hypothesis that feedback cross-regulation occurs within the Sp/Klf family in vivo.
Collapse
Affiliation(s)
- Alister P W Funnell
- School of Molecular and Microbial Biosciences, G08, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
121
|
Keys JR, Tallack MR, Hodge DJ, Cridland SO, David R, Perkins AC. Genomic organisation and regulation of murine alpha haemoglobin stabilising protein by erythroid Kruppel-like factor. Br J Haematol 2006; 136:150-7. [PMID: 17069580 DOI: 10.1111/j.1365-2141.2006.06381.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alpha haemoglobin stabilising protein (AHSP) binds free alpha-globin chains and plays an important role in the protection of red cells, particularly during beta-thalassaemia. Murine ASHP was discovered as a GATA-1 target gene and human AHSP is directly regulated by GATA-1. More recently, AHSP was rediscovered as a highly erythroid Kruppel-like factor (EKLF) -dependent transcript. We have determined the organisation of the murine AHSP gene and compared it to orthologs. There are two CACC box elements in the proximal promoter. The proximal element is absolutely conserved, but does not bind EKLF as it is not a canonical binding site. In rodents, the distal element contains a 3 bp insertion that disrupts the typical EKLF binding consensus region. Nevertheless, EKLF binds this atypical site by gel mobility shift assay, specifically occupies the AHSP promoter in vivo in a chromatin immunoprecipitation assay, and transactivates AHSP through this CACC site in promoter-reporter assays. Our results suggest EKLF can occupy CACC elements in vivo that are not predictable from the consensus binding site inferred from structural studies. We also propose that absence of AHSP in EKLF-null red cells exacerbates the toxicity of free alpha-globin chains, which exist because of the defect in beta-globin gene activation.
Collapse
Affiliation(s)
- Janelle R Keys
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Qld, Australia
| | | | | | | | | | | |
Collapse
|
122
|
Chervenak AP, Basu P, Shin M, Redmond LC, Sheng G, Lloyd JA. Identification, characterization, and expression pattern of the chicken EKLF gene. Dev Dyn 2006; 235:1933-40. [PMID: 16680725 DOI: 10.1002/dvdy.20829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
EKLF/KLF1 was the first of the Krüppel-like factors (KLFs) to be identified in mammals and plays an important role in primitive and definitive erythropoiesis. Here, we identify and characterize EKLF in the chicken (cEKLF). The predicted amino acid sequence of the zinc finger region of cEKLF is at least 87.7% similar to mammalian EKLF proteins and is 98.8% and 95% similar to the EKLF orthologues in Xenopus and zebrafish, respectively. During early embryonic development, cEKLF expression is seen in the posterior primitive streak, which gives rise to hematopoietic cells, and then in the blood islands and in circulating blood cells. cEKLF mRNA is expressed in blood cells but not in brain later in chicken embryonic development. cEKLF mRNA is increased in definitive compared with primitive erythropoiesis. The conserved sequence and expression pattern of cEKLF suggests that its function is similar to its orthologues in mammals, Xenopus, and zebrafish.
Collapse
Affiliation(s)
- Andrew P Chervenak
- Department of Human Genetics, Virginia Commonwealth University, Richmond, Virginia 23298-0033, USA
| | | | | | | | | | | |
Collapse
|
123
|
Hosoya-Ohmura S, Mochizuki N, Suzuki M, Ohneda O, Ohneda K, Yamamoto M. GATA-4 Incompletely Substitutes for GATA-1 in Promoting Both Primitive and Definitive Erythropoiesis in Vivo. J Biol Chem 2006; 281:32820-30. [PMID: 16945928 DOI: 10.1074/jbc.m605735200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vertebrate GATA transcription factors have been classified into two subgroups; GATA-1, GATA-2, and GATA-3 are expressed in hematopoietic cells, whereas GATA-4, GATA-5, and GATA-6 are expressed in mesoendoderm-derived tissues. We previously discovered that expression of GATA-2 or GATA-3 under the transcriptional control for the Gata1 gene eliminates lethal anemia in Gata1 germ line mutant mice (Gata1.05/Y). Here, we show that the GATA-4 expression by the same regulatory cassette prolongs the life span of Gata1.05/Y embryos from embryonic day 12.5 to 15.5 but fails to abrogate its embryonic lethality. Gata1.05/Y mice bearing the GATA-4 transgene showed impaired maturation of both primitive and definitive erythroid cells and defective erythroid cell expansion in fetal liver. Moreover, the incidence of apoptosis was observed prominently in primitive erythroid cells. In contrast, a GATA-4-GATA-1 chimeric protein prepared by linking the N-terminal region of GATA-4 to the C-terminal region of GATA-1 significantly promoted the differentiation and survival of primitive erythroid cells, although this protein is still insufficient for rescuing Gata1.05/Y embryos from lethal anemia. These data thus show a functional incompatibility between hematopoietic and endodermal GATA factors in vivo and provide evidence indicating specific roles of the C-terminal region of GATA-1 in primitive erythropoiesis.
Collapse
Affiliation(s)
- Sakie Hosoya-Ohmura
- Graduate School of Comprehensive Human Sciences, Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | | | | | | | | |
Collapse
|
124
|
Abstract
PURPOSE OF REVIEW Expression profiling is a powerful technique to sample cell state. This review shows how expression profiling is being applied to the study of erythroid differentiation. RECENT FINDINGS Expression-based studies of multipotential hematopoietic progenitor cells has shown that these cells express lineage-restricted genes from multiple lineages at low levels, and that they are in effect 'primed' to develop into all hematopoietic cell types. Expression profiling of oligopotent and committed progenitor cells has further shown that commitment to the erythroid lineage is associated with a progressive decline in the number of expressed genes. Lineage commitment is regulated by lineage-restricted transcription factors, and studies show that the erythroid transcription factor GATA1, in addition to activating a subset of genes, has global repressive effects on gene expression. Terminal erythroid differentiation is associated with further reduction in the number of expressed genes. The erythroid program is defined by those genes that are still expressed, and their high-level expression depends on specific epigenetic modifications, recruitment of transcription factors, and posttranscriptional effects. SUMMARY Expression profiling provides the means to identify novel targets for the therapy of erythrocytes disorders, and to obtain insights into the mechanisms of cellular differentiation.
Collapse
Affiliation(s)
- Paul A Ney
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
125
|
Keller MA, Addya S, Vadigepalli R, Banini B, Delgrosso K, Huang H, Surrey S. Transcriptional regulatory network analysis of developing human erythroid progenitors reveals patterns of coregulation and potential transcriptional regulators. Physiol Genomics 2006; 28:114-28. [PMID: 16940433 DOI: 10.1152/physiolgenomics.00055.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Deciphering the molecular basis for human erythropoiesis should yield information benefiting studies of the hemoglobinopathies and other erythroid disorders. We used an in vitro erythroid differentiation system to study the developing red blood cell transcriptome derived from adult CD34+ hematopoietic progenitor cells. mRNA expression profiling was used to characterize developing erythroid cells at six time points during differentiation (days 1, 3, 5, 7, 9, and 11). Eleven thousand seven hundred sixty-three genes (20,963 Affymetrix probe sets) were expressed on day 1, and 1,504 genes, represented by 1,953 probe sets, were differentially expressed (DE) with 537 upregulated and 969 downregulated. A subset of the DE genes was validated using real-time RT-PCR. The DE probe sets were subjected to a cluster metric and could be divided into two, three, four, five, or six clusters of genes with different expression patterns in each cluster. Genes in these clusters were examined for shared transcription factor binding sites (TFBS) in their promoters by comparing enrichment of each TFBS relative to a reference set using transcriptional regulatory network analysis. The sets of TFBS enriched in genes up- and downregulated during erythropoiesis were distinct. This analysis identified transcriptional regulators critical to erythroid development, factors recently found to play a role, as well as a new list of potential candidates, including Evi-1, a potential silencer of genes upregulated during erythropoiesis. Thus this transcriptional regulatory network analysis has yielded a focused set of factors and their target genes whose role in differentiation of the hematopoietic stem cell into distinct blood cell lineages can be elucidated.
Collapse
Affiliation(s)
- M A Keller
- Cardeza Foundation of Hematologic Research, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
126
|
Nilson DG, Sabatino DE, Bodine DM, Gallagher PG. Major erythrocyte membrane protein genes in EKLF-deficient mice. Exp Hematol 2006; 34:705-12. [PMID: 16728274 DOI: 10.1016/j.exphem.2006.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/16/2006] [Accepted: 02/21/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Mice deficient in the transcription factor erythroid Krüppel-like factor, KLF1 (EKLF) die approximately 14.5 days postcoitum of anemia, attributed to decreased expression of the beta-globin gene. The objectives of this study were to rescue EKLF-deficient embryos with mice expressing gamma-globin from beta-spectrin or ankyrin promoters and to characterize expression of the major erythrocyte membrane genes in EKLF-deficient cells. METHODS Transgenic beta-spectrin/gamma-globin or ankyrin/gamma-globin mice were bred onto EKLF-deficient and wild-type backgrounds. Animals were genotyped, gamma-globin mRNA levels measured, and hemoglobin electrophoresis performed. Steady-state mRNA levels and transcriptional rates of the major erythrocyte membrane protein genes were assayed. RESULTS beta-spectrin/gamma-globin or ankyrin/gamma-globin mice on EKLF-deficient and wild-type backgrounds had identical levels of gamma-globin mRNA, indicating EKLF-independence of these promoters. gamma-Globin expression improved globin chain imbalance, but hemolysis was not improved and no live-born EKLF-deficient/(A)gamma-globin mice were obtained. Circulating erythroid cells from EKLF-deficient/(A)gamma-globin embryos exhibited hemolysis reminiscent of that seen in patients with severe erythrocyte membrane defects. Levels of beta-spectrin, ankyrin, and band 3 mRNA, but not alpha-spectrin, were decreased in EKLF-deficient fetal liver RNA. In a run-on assay, levels of transcription of the ankyrin and band 3 genes were decreased in EKLF-deficient fetal liver nuclei. CONCLUSIONS These results indicate that the EKLF-responsive regions of the ankyrin and beta-spectrin genes are outside their promoters and that EKLF is necessary for full transcriptional activity of the ankyrin and band 3 genes; the results also provide additional evidence that defects in addition to beta-globin deficiency, including an abnormal erythrocyte membrane, contribute to the anemia and embryonic lethality in EKLF-deficient mice.
Collapse
Affiliation(s)
- Douglas G Nilson
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
127
|
Bottardi S, Ross J, Pierre-Charles N, Blank V, Milot E. Lineage-specific activators affect beta-globin locus chromatin in multipotent hematopoietic progenitors. EMBO J 2006; 25:3586-95. [PMID: 16858401 PMCID: PMC1538551 DOI: 10.1038/sj.emboj.7601232] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 06/20/2006] [Indexed: 01/29/2023] Open
Abstract
During development, the regulated expression of tissue-specific genes can be preceded by their potentiation, that is, by chromatin activation in progenitor cells. For example, the human beta-like globin genes are potentiated in a gene- and developmental-specific manner in hematopoietic progenitors. Developmental regulation of human beta-gene expression in erythroid cells is mostly determined by transcriptional activators; however, it is not clear how gene-specific potentiation is set in hematopoietic progenitors. Using human and transgenic multipotent hematopoietic progenitors, we demonstrate that human beta-globin locus activation is characterized by TBP, NF-E2, CBP and BRG1 recruitment at both the Locus Control Region and human beta-gene promoter. Our results further indicate that in hematopoietic progenitors, EKLF influences chromatin organization at the human beta-globin locus and is instrumental for human beta-gene potentiation. Thus, we show that lineage-specific transcriptional activators expressed at basal levels in progenitor cells can participate in gene potentiation.
Collapse
Affiliation(s)
- Stefania Bottardi
- Guy-Bernier Research Centre, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Julie Ross
- Guy-Bernier Research Centre, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Natacha Pierre-Charles
- Guy-Bernier Research Centre, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Volker Blank
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Milot
- Guy-Bernier Research Centre, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, CP Succursale Centre-ville, Montreal, Quebec, Canada
- Guy-Bernier Research Centre, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, Quebec, Canada H1T 2M4. Tel.: +1 514 252 3551; Fax: +1 514 252 3430; E-mail:
| |
Collapse
|
128
|
Pilon AM, Nilson DG, Zhou D, Sangerman J, Townes TM, Bodine DM, Gallagher PG. Alterations in expression and chromatin configuration of the alpha hemoglobin-stabilizing protein gene in erythroid Kruppel-like factor-deficient mice. Mol Cell Biol 2006; 26:4368-77. [PMID: 16705186 PMCID: PMC1489081 DOI: 10.1128/mcb.02216-05] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF) is an erythroid zinc finger protein identified by its interaction with a CACCC sequence in the beta-globin promoter, where it establishes local chromatin structure permitting beta-globin gene transcription. We sought to identify other EKLF target genes and determine the chromatin status of these genes in the presence and absence of EKLF. We identified alpha hemoglobin-stabilizing protein (AHSP) by subtractive hybridization and demonstrated a 95 to 99.9% reduction in AHSP mRNA and the absence of AHSP in EKLF-deficient cells. Chromatin at the AHSP promoter from EKLF-deficient cells lacked a DNase I hypersensitive site and exhibited histone hypoacetylation across the locus compared to hyperacetylation of wild-type chromatin. Wild-type chromatin demonstrated a peak of EKLF binding over a promoter region CACCC box that differs from the EKLF consensus by a nucleotide. In mobility shift assays, the AHSP promoter CACCC site bound EKLF in a manner comparable to the beta-globin promoter CACCC site, indicating a broader recognition sequence for the EKLF consensus binding site. The AHSP promoter was transactivated by EKLF in K562 cells, which lack EKLF. These results support the hypothesis that EKLF acts as a transcription factor and a chromatin modulator for the AHSP and beta-globin genes and indicate that EKLF may play similar roles for other erythroid genes.
Collapse
Affiliation(s)
- Andre M Pilon
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-4442, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Uddin RK, Singh SM. Ethanol-responsive genes: identification of transcription factors and their role in metabolomics. THE PHARMACOGENOMICS JOURNAL 2006; 7:38-47. [PMID: 16652119 DOI: 10.1038/sj.tpj.6500394] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription factors (TFs) and their combinatorial control on cis-regulatory elements play critical role in the co-expression of genes. This affects the interaction of genes in the transcriptome and thus may affect signals that cascade through cellular pathways. Using a combination of bioinformatic approaches, we sought to identify such common combinations of TFs in a set of ethanol-responsive (ER) genes and assess the role of ethanol in affecting multiple pathways through their co-regulation. Our results show that the metallothionein genes are regulated by TF motifs cAMP responsive element binding protein (CREB) and metal-activated transcription factor 1 and primarily involved in zinc ion homeostasis. We have also identified new target genes, Synaptojanin 1 and tryptophan hydroxylase 1, potentially regulated by this module. Altered arrangement of TF-binding sites in the module may direct the action of these and other target genes in intracellular signaling cascades, cell growth and/or maintenance. In addition to CREB, other key TFs identified are ecotropic viral integration site-1 and SP1. These modulate the contribution of the target ER genes in cell cycle regulation and apoptosis or programmed cell death. Multiple lines of evidence confirm the above findings and indicate that different groups of ER genes are involved in different biological processes and their co-regulation most likely results from different sets of regulatory modules. These findings associate the role of the ER genes studied and their potential TF modules with alcohol response pathways and phenotypes.
Collapse
Affiliation(s)
- R K Uddin
- Department of Biology and Division of Medical Genetics, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
130
|
Bresnick EH, Johnson KD, Kim SI, Im H. Establishment and regulation of chromatin domains: mechanistic insights from studies of hemoglobin synthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:435-71. [PMID: 16891178 DOI: 10.1016/s0079-6603(06)81011-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Emery H Bresnick
- Department of Pharmacology, University of Wisconsin Medical School, 383 Medical Sciences Center, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
131
|
Hodge D, Coghill E, Keys J, Maguire T, Hartmann B, McDowall A, Weiss M, Grimmond S, Perkins A. A global role for EKLF in definitive and primitive erythropoiesis. Blood 2005; 107:3359-70. [PMID: 16380451 PMCID: PMC1895762 DOI: 10.1182/blood-2005-07-2888] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythroid Kruppel-like factor (EKLF, KLF1) plays an important role in definitive erythropoiesis and beta-globin gene regulation but failure to rectify lethal fetal anemia upon correction of globin chain imbalance suggested additional critical EKLF target genes. We employed expression profiling of EKLF-null fetal liver and EKLF-null erythroid cell lines containing an inducible EKLF-estrogen receptor (EKLF-ER) fusion construct to search for such targets. An overlapping list of EKLF-regulated genes from the 2 systems included alpha-hemoglobin stabilizing protein (AHSP), cytoskeletal proteins, hemesynthesis enzymes, transcription factors, and blood group antigens. One EKLF target gene, dematin, which encodes an erythrocyte cytoskeletal protein (band 4.9), contains several phylogenetically conserved consensus CACC motifs predicted to bind EKLF. Chromatin immunoprecipitation demonstrated in vivo EKLF occupancy at these sites and promoter reporter assays showed that EKLF activates gene transcription through these DNA elements. Furthermore, investigation of EKLF target genes in the yolk sac led to the discovery of unexpected additional defects in the embryonic red cell membrane and cytoskeleton. In short, EKLF regulates global erythroid gene expression that is critical for the development of primitive and definitive red cells.
Collapse
Affiliation(s)
- Denise Hodge
- Institute for Molecular Biosciences, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Bultman SJ, Gebuhr TC, Magnuson T. A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development. Genes Dev 2005; 19:2849-61. [PMID: 16287714 PMCID: PMC1315392 DOI: 10.1101/gad.1364105] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 09/29/2005] [Indexed: 11/25/2022]
Abstract
The Brg1 catalytic subunit of SWI/SNF-related complexes has been implicated in many developmental and physiological processes, but null homozygotes die as blastocysts prior to implantation. To circumvent this early embryonic lethality, we performed an ENU mutagenesis screen and generated a Brg1 hypomorph mutation in the ATPase domain. The mutant Brg1 protein is stable, assembles into SWI/SNF-related complexes, and exhibits normal ATPase activity but is unable to establish DNase I hypersensitivity sites characteristic of open chromatin. Mutant embryos develop normally until midgestation but then exhibit a distinct block in the development of the erythroid lineage, leading to anemia and death. The mutant Brg1 protein is recruited to the beta-globin locus, but chromatin remodeling and transcription are perturbed. Histone acetylation and DNA methylation are also affected. To our knowledge, Brg1 is the first chromatin-modifying factor shown to be required for beta-globin regulation and erythropoiesis in vivo. Not only does this mutation establish a role for Brg1 during organogenesis, it also demonstrates that ATPase activity can be uncoupled from chromatin remodeling.
Collapse
Affiliation(s)
- Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599-7264, USA.
| | | | | |
Collapse
|