101
|
Rawlings DE. The evolution of pTF-FC2 and pTC-F14, two related plasmids of the IncQ-family. Plasmid 2005; 53:137-47. [PMID: 15737401 DOI: 10.1016/j.plasmid.2005.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 12/09/2004] [Accepted: 01/04/2005] [Indexed: 11/16/2022]
Abstract
Two plasmids, pTF-FC2 and pTC-F14, that belong to the IncQ-like plasmid family were isolated from two related bacteria, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus, respectively. The backbone regions of the two plasmids share a sufficiently high amount of homology to indicate that they must have originated from the same ancestral plasmid. Although some of their replication proteins could complement each other, the plasmids have evolved sufficiently for their replicons to have become compatible. This compatibility has occurred by changes in the iteron sequence, RepC (iteron binding protein) specificity and the regulation properties of the RepB primase. Two of the five mobilization genes have remained highly conserved, whereas the other three genes appear to have evolved such that each plasmid is mobilized most efficiently by a different self-transmissible plasmid. Plasmids pTF-FC2 and pTC-F14 do not appear to compete at the level of mobilization. The antitoxins of the toxin-antitoxin (TA) plasmid stability systems were partly able to neutralize the toxins of the other plasmid and also to partly cross-regulate the TA systems of the other plasmid with the antitoxin of pTF-FC2 being the most effective cross-regulator. Other aspects of the evolution of the two plasmids are described and the danger of making the assumption that incompatibly of IncQ-like plasmids is a reflection of the degree of relatedness of two plasmids is discussed.
Collapse
Affiliation(s)
- Douglas E Rawlings
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
102
|
Szczepanowski R, Krahn I, Linke B, Goesmann A, Pühler A, Schlüter A. Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. MICROBIOLOGY-SGM 2005; 150:3613-3630. [PMID: 15528650 DOI: 10.1099/mic.0.27317-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ten different antibiotic resistance plasmids conferring high-level erythromycin resistance were isolated from an activated sludge bacterial community of a wastewater treatment plant by applying a transformation-based approach. One of these plasmids, designated pRSB101, mediates resistance to tetracycline, erythromycin, roxythromycin, sulfonamides, cephalosporins, spectinomycin, streptomycin, trimethoprim, nalidixic acid and low concentrations of norfloxacin. Plasmid pRSB101 was completely sequenced and annotated. Its size is 47 829 bp. Conserved synteny exists between the pRSB101 replication/partition (rep/par) module and the pXAC33-replicon from the phytopathogen Xanthomonas axonopodis pv. citri. The second pRSB101 backbone module encodes a three-Mob-protein type mobilization (mob) system with homology to that of IncQ-like plasmids. Plasmid pRSB101 is mobilizable with the help of the IncP-1alpha plasmid RP4 providing transfer functions in trans. A 20 kb resistance region on pRSB101 is located within an integron-containing Tn402-like transposon. The variable region of the class 1 integron carries the genes dhfr1 for a dihydrofolate reductase, aadA2 for a spectinomycin/streptomycin adenylyltransferase and bla(TLA-2) for a so far unknown Ambler class A extended spectrum beta-lactamase. The integron-specific 3'-segment (qacEDelta1-sul1-orf5Delta) is connected to a macrolide resistance operon consisting of the genes mph(A) (macrolide 2'-phosphotransferase I), mrx (hydrophobic protein of unknown function) and mphR(A) (regulatory protein). Finally, a putative mobile element with the tetracycline resistance genes tetA (tetracycline efflux pump) and tetR was identified upstream of the Tn402-specific transposase gene tniA. The second 'genetic load' region on pRSB101 harbours four distinct mobile genetic elements, another integron belonging to a new class and footprints of two more transposable elements. A tripartite multidrug (MDR) transporter consisting of an ATP-binding-cassette (ABC)-type ATPase and permease, and an efflux membrane fusion protein (MFP) of the RND-family is encoded between the replication/partition and the mobilization module. Homologues of the macrolide resistance genes mph(A), mrx and mphR(A) were detected on eight other erythromycin resistance-plasmids isolated from activated sludge bacteria. Plasmid pRSB101-like repA amplicons were also obtained from plasmid-DNA preparations of the final effluents of the wastewater treatment plant indicating that pRSB101-like plasmids are released with the final effluents into the environment.
Collapse
Affiliation(s)
- Rafael Szczepanowski
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Irene Krahn
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Burkhard Linke
- Center for Biotechnology (CeBiTec), Bioinformatics Resource Facility, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Alexander Goesmann
- Center for Biotechnology (CeBiTec), Bioinformatics Resource Facility, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Andreas Schlüter
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
103
|
|
104
|
Gardner MN, Rawlings DE. Evolution of compatible replicons of the related IncQ-like plasmids, pTC-F14 and pTF-FC2. MICROBIOLOGY-SGM 2004; 150:1797-1808. [PMID: 15184566 DOI: 10.1099/mic.0.26951-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two closely related but compatible plasmids of the IncQ-2alpha and IncQ-2beta groups, pTF-FC2 and pTC-F14, were discovered in two acidiphilic chemolithotrophic bacteria. Cross-complementation and cross-regulation experiments by the replication proteins were carried out to discover what changes were necessary when the plasmids evolved to produce two incompatibility groups. The requirement of a pTC-F14 oriV for a RepC DNA-binding protein was plasmid specific, whereas the requirement for the RepA helicase and RepB primase was less specific and could be complemented by the IncQ-2alpha plasmid pTC-FC2, and the IncQ-1beta plasmid pIE1108. None of the IncQ-1alpha plasmid replication proteins could complement the pTC-F14 oriV, and pTC-F14 and RSF1010 were incompatible. This incompatibility was associated with the RepC replication protein and was not due to iteron incompatibility. Replication of pTC-F14 took place from a 5.7 kb transcript that originated upstream of the mobB gene located within the region required for mobilization. A pTC-F14 mobB-lacZ fusion was regulated by the pTC-F14 repB gene product and was plasmid specific, as it was not regulated by the RepB proteins of pTF-FC2 or the IncQ-1alpha and IncQ-1beta plasmids. Plasmid pTC-F14 appears to have evolved independently functioning iterons and a plasmid-specific RepC-binding protein; it also has a major replication transcript that is independently regulated from that of pTF-FC2. However, the RepA and RepB proteins have the ability to function with either replicon.
Collapse
Affiliation(s)
- Murray N Gardner
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Douglas E Rawlings
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
105
|
Dube T, Kovalchuk I, Hohn B, Thomson JA. Agrobacterium tumefaciens-mediated transformation of plants by the pTF-FC2 plasmid is efficient and strictly dependent on the MobA protein. PLANT MOLECULAR BIOLOGY 2004; 55:531-539. [PMID: 15604698 DOI: 10.1007/s11103-004-1159-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the transformation of plants by Agrobacterium tumefaciens the VirD2 protein has been shown to pilot T-DNA during its transfer to the plant cell nucleus. Other studies have shown that the MobA protein of plasmid RSF1010 is capable of mediating its transfer from Agrobacterium cells to plant cells by a similar process. We have demonstrated previously that plasmid pTF-FC2, which has some similarity to RSF1010, is also able to transfer DNA efficiently. In this study, we performed a mutational analysis of the roles played by A . tumefaciens VirD2 and pTF-FC2 MobA in DNA transfer-mediated by A. tumefaciens carrying pTF-FC2. We show that MobA+/VirD2+ and MobA+/VirD2- strains were equally proficient in their ability to transfer a pTF-FC2-derived plasmid DNA to plants and to transform them. However, the MobA-/VirD2+ strain showed a DNA transfer efficiency of 0.03% compared with that of the other two strains. This sharply contrasts with our results that VirD2 can rather efficiently cleave the oriT sequence of pFT-FC2 in vitro . We therefore conclude that MobA plays a major VirD2-independent role in plant transformation by pTF-FC2.
Collapse
Affiliation(s)
- Thabani Dube
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag Rondebosch, South Africa
| | | | | | | |
Collapse
|
106
|
Smith MCA, Thomas CD. An accessory protein is required for relaxosome formation by small staphylococcal plasmids. J Bacteriol 2004; 186:3363-73. [PMID: 15150221 PMCID: PMC415746 DOI: 10.1128/jb.186.11.3363-3373.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobilization of the staphylococcal plasmid pC221 requires at least one plasmid-encoded protein, MobA, in order to form a relaxosome. pC221 and closely related plasmids also possess an overlapping reading frame encoding a protein of 15 kDa, termed MobC. By completing the nucleotide sequence of plasmid pC223, we have found a further example of this small protein, and gene knockouts have shown that MobC is essential for relaxosome formation and plasmid mobilization in both pC221 and pC223. Primer extension analysis has been used to identify the nic site in both of these plasmids, located upstream of the mobC gene in the sense strand. Although the sequence surrounding the nic site is highly conserved between pC221 and pC223, exchange of the oriT sequence between plasmids significantly reduces the extent of relaxation complex formation, suggesting that the Mob proteins are selective for their cognate plasmids in vivo.
Collapse
Affiliation(s)
- Matthew C A Smith
- Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
107
|
Francia MV, Varsaki A, Garcillán-Barcia MP, Latorre A, Drainas C, de la Cruz F. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 2004; 28:79-100. [PMID: 14975531 DOI: 10.1016/j.femsre.2003.09.001] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 08/28/2003] [Accepted: 09/01/2003] [Indexed: 10/27/2022] Open
Abstract
Transmissible plasmids can be classified according to their mobilization ability, as being conjugative (self-transmissible) or mobilizable (transmissible only in the presence of additional conjugative functions). Naturally occurring mobilizable plasmids carry the genetic information necessary for relaxosome formation and processing, but lack the functions required for mating pair formation. Mobilizable plasmids have a tremendous impact in horizontal gene transfer in nature, including the spread of antibiotic resistance. However, analysis of their promiscuity and diversity has attracted less attention than that of conjugative plasmids. This review will focus on the analysis of the diversity of mobilizable plasmids. For this purpose, we primarily compared the amino acid sequences of their relaxases and, when pertinent, we compared these enzymes with conjugative plasmid relaxases. In this way, we established phylogenetic relationships among the members of each superfamily. We conducted a database and literature analysis that led us to propose a classification system for small mobilizable plasmids in families and superfamilies according to their mobilization regions. This review outlines the genetic organization of each family of mobilization regions, as well as the most relevant properties and relationships among their constituent encoded proteins. In this respect, the present review constitutes a first approach to the characterization of the global gene pool of mobilization regions of small mobilizable plasmids.
Collapse
Affiliation(s)
- M Victoria Francia
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Dourouti 45110, Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
108
|
van Zyl LJ, Deane SM, Rawlings DE. Analysis of the mobilization region of the broad-host-range IncQ-like plasmid pTC-F14 and its ability to interact with a related plasmid, pTF-FC2. J Bacteriol 2003; 185:6104-11. [PMID: 14526022 PMCID: PMC225039 DOI: 10.1128/jb.185.20.6104-6111.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Accepted: 08/01/2003] [Indexed: 11/20/2022] Open
Abstract
Plasmid pTC-F14 is a 14.2-kb plasmid isolated from Acidithiobacillus caldus that has a replicon that is closely related to the promiscuous, broad-host-range IncQ family of plasmids. The region containing the mobilization genes was sequenced and encoded five Mob proteins that were related to those of the DNA processing (Dtr or Tra1) region of IncP plasmids rather than to the three-Mob-protein system of the IncQ group 1 plasmids (e.g., plasmid RSF1010 or R1162). Plasmid pTC-F14 is the second example of an IncQ family plasmid that has five mob genes, the other being pTF-FC2. The minimal region that was essential for mobilization included the mobA, mobB, and mobC genes, as well as the oriT gene. The mobD and mobE genes were nonessential, but together, they enhanced the mobilization frequency by approximately 300-fold. Mobilization of pTC-F14 between Escherichia coli strains by a chromosomally integrated RP4 plasmid was more than 3,500-fold less efficient than the mobilization of pTF-FC2. When both plasmids were coresident in the same E. coli host, pTC-F14 was mobilized at almost the same frequency as pTF-FC2. This enhanced pTC-F14 mobilization frequency was due to the presence of a combination of the pTF-FC2 mobD and mobE gene products, the functions of which are still unknown. Mob protein interaction at the oriT regions was unidirectionally plasmid specific in that a plasmid with the oriT region of pTC-F14 could be mobilized by pTF-FC2 but not vice versa. No evidence for any negative effect on the transfer of one plasmid by the related, potentially competitive plasmid was obtained.
Collapse
Affiliation(s)
- Leonardo J van Zyl
- Department of Microbiology, University of Stellenbosch, Matieland 7600, South Africa
| | | | | |
Collapse
|
109
|
Becker EC, Meyer RJ. Relaxed specificity of the R1162 nickase: a model for evolution of a system for conjugative mobilization of plasmids. J Bacteriol 2003; 185:3538-46. [PMID: 12775691 PMCID: PMC156234 DOI: 10.1128/jb.185.12.3538-3546.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The primary DNA processing protein for conjugative mobilization of the plasmid R1162 is the transesterase MobA, which acts at a unique site on the plasmid, the origin of transfer (oriT). Both MobA and oriT are members of a large family of related elements that are widely distributed among bacteria. Each oriT consists of a highly conserved core and an adjacent region that is required for binding by its cognate MobA. The sequence of the adjacent region is important in determining the specificity of the interaction between the Mob protein and the oriT DNA. However, the R1162 MobA is active on the oriT of pSC101, another naturally occurring plasmid. We show here that MobA can recognize oriTs having different sequences in the adjacent region and, with varying frequencies, can cleave these oriTs at the correct position within the core. Along with the structure of the oriTs themselves, these characteristics suggest a model for the evolution of this group of transfer systems.
Collapse
Affiliation(s)
- Eric C Becker
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, School of Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
110
|
Wilson JW, Figurski DH. Host-specific incompatibility by 9-bp direct repeats indicates a role in the maintenance of broad-host-range plasmid RK2. Plasmid 2002; 47:216-23. [PMID: 12151237 DOI: 10.1016/s0147-619x(02)00015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Broad-host-range incompatibility group P (IncP) plasmids RK2 and R751 have 9-bp direct repeats (DR) of unknown function located between their kilC and kilE loci. The nucleotide sequences of the 9-bp repeats are different for RK2 (an IncPalpha group plasmid) and R751 (IncPbeta group), but both DR regions are organized similarly, including an 11-bp spacer with identical 5'-CGCCA-3' cores and an adjacent binding site for KorB, a known partition protein and transcriptional repressor. The occurrence of similarly arranged DR elements with different repeat sequences is suggestive of an important plasmid-specific function for the DR regions. Here we show that the cloned RK2 DR region in trans to RK2 exhibits a host-specific incompatibility phenotype, in which RK2 is destabilized in Pseudomonas aeruginosa but not in Escherichia coli. Incompatibility was not dependent on the adjacent KorB-binding site. Deletion of the kilE locus, which is required for stable maintenance in P. aeruginosa, did not abolish DR-mediated incompatibility. Precise deletion of DR from RK2 had no effect on maintenance but eliminated sensitivity to DR in trans, showing that incompatibility requires DR to be present on both plasmids. These results raise the possibility that the DR region may be involved in a plasmid maintenance system for P. aeruginosa that is independent of the known stability functions on RK2.
Collapse
Affiliation(s)
- James W Wilson
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 West 168th St., New York, NY 10032, USA
| | | |
Collapse
|
111
|
Abstract
Two 11.8 kb non-conjugative, but mobilizable R plasmids designated pRAS3.1 and pRAS3.2 were isolated from Aeromonas salmonicida subspecies salmonicida and atypical A. salmonicida, respectively. Differences between the plasmids were of minor extent and they are considered as being variants of the same plasmid, pRAS3. The genes repA, repB, mobA, mobC, mobD, and mobE were organized similar to corresponding genes in the small, mobilizable plasmid pTF-FC2 isolated from Acidithiobacillus ferrooxidans (previously Thiobacillus ferrooxidans). The nucleotide identity between these genes from pRAS3.1 and pTF-FC2 ranged from 89.5 to 98.2%. The tetA(C), tetR(C), and approximately 960 base pairs adjacent to tetR(C) were highly similar to the nucleotide sequence in pSC101. Plasmid pRAS3 was also found in a Scottish A. salmonicida strain, and appears to be identical to the R plasmid pJA8102-2 isolated from A. salmonicida in Japan.
Collapse
Affiliation(s)
- Trine M L'Abée-Lund
- Department of Pharmacology, Microbiology, and Food Hygiene, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | | |
Collapse
|