101
|
Yang G, Li S, Yuan L, Yang Y, Pan MH. Effect of nobiletin on the MAPK/NF-κB signaling pathway in the synovial membrane of rats with arthritis induced by collagen. Food Funct 2017; 8:4668-4674. [DOI: 10.1039/c7fo01311f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone) is a natural compound in the fruit peel of citrus fruit in the Rutaceae family.
Collapse
Affiliation(s)
- Guliang Yang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Huanggang Normal University
- Hubei
- China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Huanggang Normal University
- Hubei
- China
- Department of Food Science
- Rutgers University
| | - Li Yuan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Huanggang Normal University
- Hubei
- China
| | - Yiwen Yang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Huanggang Normal University
- Hubei
- China
| | - Min-Hsiung Pan
- Institute of Food Science and Technology
- National Taiwan University
- Taipei 10617
- Taiwan
- Department of Medical Research
| |
Collapse
|
102
|
Lian JJ, Cheng BF, Gao YX, Xue H, Wang L, Wang M, Yang HJ, Feng ZW. Protective effect of kaempferol, a flavonoid widely present in varieties of edible plants, on IL-1β-induced inflammatory response via inhibiting MAPK, Akt, and NF-κB signalling in SW982 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
103
|
Svendsen AJ, Gervin K, Lyle R, Christiansen L, Kyvik K, Junker P, Nielsen C, Houen G, Tan Q. Differentially Methylated DNA Regions in Monozygotic Twin Pairs Discordant for Rheumatoid Arthritis: An Epigenome-Wide Study. Front Immunol 2016; 7:510. [PMID: 27909437 PMCID: PMC5112246 DOI: 10.3389/fimmu.2016.00510] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/02/2016] [Indexed: 12/29/2022] Open
Abstract
Objectives In an explorative epigenome-wide association study (EWAS) to search for gene independent, differentially methylated DNA positions and regions (DMRs) associated with rheumatoid arthritis (RA) by studying monozygotic (MZ) twin pairs discordant for RA. Methods Genomic DNA was isolated from whole blood samples from 28 MZ twin pairs discordant for RA. DNA methylation was measured using the HumanMethylation450 BeadChips. Smoking, anti-cyclic citrullinated peptide antibodies, and immunosuppressive treatment were included as covariates. Pathway analysis was performed using GREAT. Results Smoking was significantly associated with hypomethylation of a DMR overlapping the promoter region of the RNF5 and the AGPAT1, which are implicated in inflammation and autoimmunity, whereas DMARD treatment induced hypermethylation of the same region. Additionally, the promotor region of both S100A6 and EFCAB4B were hypomethylated, and both genes have previously been associated with RA. We replicated several candidate genes identified in a previous EWAS in treatment-naïve RA singletons. Gene-set analysis indicated the involvement of immunologic signatures and cancer-related pathways in RA. Conclusion We identified several differentially methylated regions associated with RA, which may represent environmental effects or consequences of the disease and plausible biological pathways pertinent to the pathogenesis of RA.
Collapse
Affiliation(s)
- Anders J Svendsen
- The Danish Twin Registry, Epidemiology, Institute of Public Health, University of Southern Denmark , Odense , Denmark
| | - Kristina Gervin
- Department of Medical Genetics, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital, University of Oslo , Oslo , Norway
| | - Lene Christiansen
- The Danish Twin Registry, Epidemiology, Institute of Public Health, University of Southern Denmark , Odense , Denmark
| | - Kirsten Kyvik
- Denmark and Odense Patient data Explorative Network (OPEN), Institute of Clinical Research, Odense University Hospital, University of Southern Denmark , Odense , Denmark
| | - Peter Junker
- Department of Rheumatology, Odense University Hospital, University of Southern Denmark , Odense , Denmark
| | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital , Odense , Denmark
| | - Gunnar Houen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institute , Copenhagen , Denmark
| | - Qihua Tan
- The Danish Twin Registry, Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
104
|
Yang Y, Ye Y, Qiu Q, Xiao Y, Huang M, Shi M, Liang L, Yang X, Xu H. Triptolide inhibits the migration and invasion of rheumatoid fibroblast-like synoviocytes by blocking the activation of the JNK MAPK pathway. Int Immunopharmacol 2016; 41:8-16. [PMID: 27816728 DOI: 10.1016/j.intimp.2016.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Triptolide, a primary active ingredient extracted from a traditional Chinese herb, Tripterygium wilfordii Hook F, has been demonstrated to have a positive therapeutic effect on patients with rheumatoid arthritis (RA); however, its mechanism of action against RA is not well established. Therefore, in the present study, we observed the effect of triptolide on the aggressive behavior of RA fibroblast-like synoviocytes (RA FLSs), and we explored its underlying signal mechanisms. We found that triptolide treatment significantly reduced the migratory and invasive capacities of RA FLSs in vitro. We also demonstrated that the invasion of RA FLSs into the cartilage, evaluated in the severe combined immunodeficiency (SCID) mouse co-implantation model, was attenuated by treatment with triptolide in vivo. Additionally, the immunofluorescence results showed that triptolide treatment decreased the polymerization of F-actin and the activation of matrix metalloproteinase 9 (MMP-9). To gain insight into the molecular signal mechanisms, we determined the effect of triptolide on the activation of MAPK signal pathways. Our results indicate that triptolide treatment reduced the TNF-α-induced expression of phosphorylated JNK, but did not affect the expression of phosphorylated p38 and ERK. A JNK-specific inhibitor decreased the migration of RA FLSs. We also observed that triptolide administration improved clinical arthritic conditions and joint destruction in mice with collagen-induced arthritis (CIA). Thus, our findings suggest that the therapeutic effects of triptolide on RA might be, in part, due to its contribution to the aggressive behavior of RA FLSs.
Collapse
Affiliation(s)
- Yanlong Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Department of Rheumatology, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Yujin Ye
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Qian Qiu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Youjun Xiao
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Mingcheng Huang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Maohua Shi
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Liuqin Liang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xiuyan Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Hanshi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
105
|
Aronow WS, Kaple RK. Losmapimod does not reduce cardiovascular events in patients with acute myocardial infarction. J Thorac Dis 2016; 8:2328-2330. [PMID: 27746967 DOI: 10.21037/jtd.2016.08.53] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wilbert S Aronow
- Cardiology Division, Department of Medicine, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Ryan K Kaple
- Cardiology Division, Department of Medicine, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| |
Collapse
|
106
|
Ross EA, Naylor AJ, O'Neil JD, Crowley T, Ridley ML, Crowe J, Smallie T, Tang TJ, Turner JD, Norling LV, Dominguez S, Perlman H, Verrills NM, Kollias G, Vitek MP, Filer A, Buckley CD, Dean JL, Clark AR. Treatment of inflammatory arthritis via targeting of tristetraprolin, a master regulator of pro-inflammatory gene expression. Ann Rheum Dis 2016; 76:612-619. [PMID: 27597652 PMCID: PMC5446007 DOI: 10.1136/annrheumdis-2016-209424] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Tristetraprolin (TTP), a negative regulator of many pro-inflammatory genes, is strongly expressed in rheumatoid synovial cells. The mitogen-activated protein kinase (MAPK) p38 pathway mediates the inactivation of TTP via phosphorylation of two serine residues. We wished to test the hypothesis that these phosphorylations contribute to the development of inflammatory arthritis, and that, conversely, joint inflammation may be inhibited by promoting the dephosphorylation and activation of TTP. METHODS The expression of TTP and its relationship with MAPK p38 activity were examined in non-inflamed and rheumatoid arthritis (RA) synovial tissue. Experimental arthritis was induced in a genetically modified mouse strain, in which endogenous TTP cannot be phosphorylated and inactivated. In vitro and in vivo experiments were performed to test anti-inflammatory effects of compounds that activate the protein phosphatase 2A (PP2A) and promote dephosphorylation of TTP. RESULTS TTP expression was significantly higher in RA than non-inflamed synovium, detected in macrophages, vascular endothelial cells and some fibroblasts and co-localised with MAPK p38 activation. Substitution of TTP phosphorylation sites conferred dramatic protection against inflammatory arthritis in mice. Two distinct PP2A agonists also reduced inflammation and prevented bone erosion. In vitro anti-inflammatory effects of PP2A agonism were mediated by TTP activation. CONCLUSIONS The phosphorylation state of TTP is a critical determinant of inflammatory responses, and a tractable target for novel anti-inflammatory treatments.
Collapse
Affiliation(s)
- E A Ross
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - A J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J D O'Neil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - T Crowley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - M L Ridley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J Crowe
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - T Smallie
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - T J Tang
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J D Turner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - L V Norling
- William Harvey Research Institute, QMUL, London, UK
| | - S Dominguez
- Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - H Perlman
- Division of Rheumatology, Northwestern University, Chicago, Illinois, USA
| | - N M Verrills
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - G Kollias
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece
| | - M P Vitek
- Cognosci Inc., Research Triangle Park, North Carolina, USA
| | - A Filer
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - C D Buckley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - J L Dean
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
107
|
Wahedi HM, Park YU, Moon EY, Kim SY. Juglone ameliorates skin wound healing by promoting skin cell migration through Rac1/Cdc42/PAK pathway. Wound Repair Regen 2016; 24:786-794. [PMID: 27283994 DOI: 10.1111/wrr.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/02/2016] [Indexed: 01/03/2023]
Abstract
Skin cell regeneration and wound healing are key processes in the recovery from skin injuries. Rapid cell migration and regeneration of skin cells lead to faster and better healing of wounded skin. In the present study, we aimed to investigate the wound healing potential of juglone, a naturally occurring Pin1 inhibitor found in walnuts. Cultured skin cells (NHDF and HaCaT) and hairless mice were treated with juglone after wound creation to examine its effects on cell migration and wound healing rate. The expressions of cell migration related proteins (Rac1, Cdc42, and α-PAK), collagen deposition, and angiogenesis were analyzed. Juglone treatment resulted in faster rate of growth and migration and recovered cell morphology, particularly at a concentration of 5 µM, in skin cells compared to the untreated group. In vivo experiments showed that mice treated with juglone showed faster wound healing rate with better skin morphology and collagen deposition than the vehicle group. Furthermore, juglone increased the activation and/or expression of Cdc42, Rac1, and α-pak in HaCaT cells, and resulted in enhanced angiogenesis in endothelial cells (HUVECs). Juglone also activated MAPKs signaling by activation of ERK, JNK, and p38 proteins. Taken together, these data suggest that juglone may be a potential candidate for wound healing and skin regeneration which ameliorates wound healing mainly by promoting skin cell migration through Rac1/Cdc42/PAK pathway.
Collapse
Affiliation(s)
- Hussain M Wahedi
- Department of Pharmacognosy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Yong U Park
- Department of Pharmacognosy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Sun Y Kim
- Department of Pharmacognosy, College of Pharmacy, Gachon University, Incheon, Republic of Korea. .,Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Republic of Korea. .,Gachon Medical Research Institute, Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
108
|
Encapsulation of the p38 MAPK inhibitor GSK 678361A in nanoparticles for inflammatory-based disease states. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/jin2.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
109
|
Ma KG, Lv J, Hu XD, Shi LL, Chang KW, Chen XL, Qian YH, Yang WN, Qu QM. The p38 mitogen-activated protein kinase signaling pathway is involved in regulating low-density lipoprotein receptor-related protein 1-mediated β-amyloid protein internalization in mouse brain. Int J Biochem Cell Biol 2016; 76:75-86. [PMID: 27163530 DOI: 10.1016/j.biocel.2016.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo.
Collapse
Affiliation(s)
- Kai-Ge Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Jia Lv
- Department of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xiao-Dan Hu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Li-Li Shi
- Department of Human Anatomy, Xi'an Medical University, 1 Xinwang road, Xi'an, 710021, China
| | - Ke-Wei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China
| | - Xin-Lin Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China; Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center,76 Yanta West Road, Xi'an, 710061, China
| | - Yi-Hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China; Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center,76 Yanta West Road, Xi'an, 710061, China.
| | - Wei-Na Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China; Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center,76 Yanta West Road, Xi'an, 710061, China.
| | - Qiu-Min Qu
- Department of Neurology, First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
110
|
Lafont JE, Poujade FA, Pasdeloup M, Neyret P, Mallein-Gerin F. Hypoxia potentiates the BMP-2 driven COL2A1 stimulation in human articular chondrocytes via p38 MAPK. Osteoarthritis Cartilage 2016; 24:856-67. [PMID: 26708156 DOI: 10.1016/j.joca.2015.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/02/2015] [Accepted: 11/24/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Since the biological effect of cartilage mediators is generally studied in a non-physiologic environment of 21% O2, we investigated the effects of a chronic hypoxia on the capability of articular chondrocytes to respond to one anabolic stimulation. DESIGN Human Articular Chondrocytes (HACs) were cultured under hypoxia and stimulated with the chondrogenic growth factor BMP-2. The phenotype of the chondrocytes was studied by RT-PCR, and the cartilage-specific type II collagen production and deposition were also examined by western immunoblot and immunofluorescence. The Bone Morphogenetic protein (BMP) signalling pathway was also analysed. RESULTS BMP-2 is much more efficient to stimulate the expression of the cartilage-specific gene COL2A1 by HACs when cultured under hypoxia (1%O2) compared to normoxia (21%O2). Analysis of the BMP-activated signalling shows that the Smad pathway is inhibited under hypoxia, whereas p38 MAPK is activated, and is involved in a synergy between hypoxia and BMP signalling, thus contributing to the enhanced anabolic response. CONCLUSIONS Our study shows that hypoxia interplays with a chondrogenic factor and enhances the overall anabolic activity of the HACs. Alternatively to Hypoxia-Inducible Factor (HIF) signalling, and through a cross-talk with the BMP signalling which involves the p38 pathway, hypoxic stimulation markedly increases the capability of chondrocytes to produce the cartilage-specific type II collagen. Therefore our study provides new evidences of the multilayered effects of hypoxia in the anabolic functions of chondrocytes. This understanding may help promoting the anabolic function of articular chondrocytes, and thus improving their manipulation for cell therapy.
Collapse
Affiliation(s)
- J E Lafont
- Institute for Biology and Chemistry of Proteins, CNRS, UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard-Lyon 1 and University of Lyon, France.
| | - F-A Poujade
- Institute for Biology and Chemistry of Proteins, CNRS, UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard-Lyon 1 and University of Lyon, France
| | - M Pasdeloup
- Institute for Biology and Chemistry of Proteins, CNRS, UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard-Lyon 1 and University of Lyon, France
| | - P Neyret
- Orthopaedic Surgery Department, Hôpital de la Croix-Rousse, 103 grande rue de la Croix-Rousse, 69317 Lyon Cedex 04, France
| | - F Mallein-Gerin
- Institute for Biology and Chemistry of Proteins, CNRS, UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard-Lyon 1 and University of Lyon, France
| |
Collapse
|
111
|
Jiang L, Lin X, Ji P. Effect of p38 Mitogen Activated Protein Kinase Inhibitor on Temporomandibular Joint Synovitis Induced by Occlusal Alteration. J Oral Maxillofac Surg 2016; 74:1131-9. [PMID: 26850876 DOI: 10.1016/j.joms.2015.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE To investigate the alteration in rat temporomandibular joint (TMJ) synovial membrane induced by increased occlusal vertical dimension (iOVD) and to determine whether the p38 mitogen activated protein kinase (MAPK) signaling cascade is involved. MATERIALS AND METHODS Thirty-six rats were randomly divided into 3 groups: control + normal saline (NS; controls), iOVD + NS, and iOVD + SB203580 (a potent p38 MAPK inhibitor). Morphologic changes of synovial tissues were observed and scored. Activation levels of p38 MAPK and activating transcription factor-2 (ATF2) were detected by immunohistochemistry. Expression levels of interleukin-1β (IL-1β) and matrix metalloproteinase-3 (MMP-3) were measured by quantitative real-time polymerase chain reaction and immunohistochemistry. RESULTS Obvious synovitis was found in the iOVD group. P38 and ATF2 were activated, and mRNA and protein expression levels of IL-1β and MMP-3 were upregulated after iOVD. However, decreased synovial tissue inflammation and lower mRNA and protein levels of IL-1β and MMP-3 were observed in the iOVD + SB203580 group. CONCLUSION iOVD can induce temporomandibular joint synovitis, and the p38 MAPK signaling cascade might participate in and aggravate the process of articular inflammation.
Collapse
Affiliation(s)
- Linhong Jiang
- Dental student, Stomatological Hospital of Shandong University and the Shandong Province Key Laboratory of Oral Tissue Regeneration, Jinan City, Shandong Province, China
| | - Xuefen Lin
- Resident, Stomatological Hospital of Shandong University and the Shandong Province Key Laboratory of Oral Tissue Regeneration, Jinan City, Shandong Province, China
| | - Ping Ji
- Professor, Stomatological Hospital of Shandong University and the Shandong Province Key Laboratory of Oral Tissue Regeneration, Jinan City, Shandong Province, China.
| |
Collapse
|
112
|
From Enzyme to Whole Blood: Sequential Screening Procedure for Identification and Evaluation of p38 MAPK Inhibitors. Methods Mol Biol 2016; 1360:123-48. [PMID: 26501907 DOI: 10.1007/978-1-4939-3073-9_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
p38 mitogen-activated protein kinase (MAPK) is a pivotal enzyme in the biosynthesis of pro-inflammatory cytokines like IL-1 and TNF. Therefore, the success of anti-cytokine therapy for treatment of inflammatory processes qualified p38-MAPK as a solid target in drug research concerning chronic inflammatory diseases including infectious vascular, neurobiological, and autoimmune disorders. However, the discovery of new kinase inhibitors is limited by the need for a high biological activity combined with restricted activity to the target enzyme or pathway interaction. As a consequence, no p38 MAPK inhibitor has been introduced to the market so far, although several p38 inhibitors have proceeded into clinical trials. The development of novel inhibitor types and optimization of already known structural classes of MAPK inhibitors require appropriate testing systems reaching across these crucial parameters. As a new approach, we describe the sequential arrangement of three testing systems custom-tailored to the requirements of drug discovery programs with focus on p38 inhibition. Integrated analysis of the obtained results enables a concerted step-by-step selection of tested molecules in order to screen a compound library for the most suitable inhibitor. First, evaluation of the inhibitor's activity on the isolated p38 MAPK enzyme via an ELISA assay gives a first idea about the inhibitory potency of the molecule. Moreover, structure-activity relationships can be elucidated when comparing molecules within inhibitor series. Second, screening in living cells via a p38 substrate-specific MK2-EGFP translocation assay supplies further information about efficacy, but provides also a first notion concerning selectivity and toxicity. Third, efficacy is evaluated more specifically in vivo in LPS-stimulated human whole blood with regard to in vivo parameters, e.g., pharmacokinetic characteristics like plasma protein binding and cellular permeability. These three testing systems complement one another synergistically by providing a high overlap and predictability. Clear advantages of all presented systems are their realizability in an academic environment as well as their applicability for high-throughput screenings on a larger scale.
Collapse
|
113
|
Lü S, Wang Q, Li G, Sun S, Guo Y, Kuang H. The treatment of rheumatoid arthritis using Chinese medicinal plants: From pharmacology to potential molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:177-206. [PMID: 26471289 DOI: 10.1016/j.jep.2015.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a common worldwide public health problem. Traditional Chinese Medicine (TCM) achieved some results to some extent in the treatment of rheumatoid arthritis (RA). Especially in China, TCM formulas are used in the clinic because of their advantages. Some of these TCM formulas have been used for thousands of years in ancient China, they pays much attention to strengthening healthy qi, cleaning heat, and wet, activating blood, etc. So TCM in anti-RA drug is considered as a simple and effective method. In addition, TCM are also traditionally used as extracts and many Chinese herbs which are considered to be effective for RA. With the advancement of technologies and research methods, researchers have devoted themselves to exploring new therapeutic materials from troves of TCM. The components of TCM are identified and purified, which include alkaloids, coumarins, flavonoids, saponins and so on. However, little or no review works are found in the research literature on the anti-RA drugs from TCM. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of TCM used traditionally against RA. The information recorded in this review will provide new directions for researchers in the future. MATERIALS AND METHODS Relevant scientific literatures were collected from Chinese traditional books and Chinese Pharmacopoeia. Several important pharmacology data, clinical observations, animal experiments on effects of anti-RA drugs from TCM and their mechanisms were extracted from a library and electric search (Pubmed, PubChem Compound, Science Direct, Spring Link, Elsevier, Web of Science, CNKI, Wan Fang, Bai du, The Plant List, etc.). We collected information published between 2002 and 2015 on Chinese medicine in the treatment of RA. Information was also acquired from local classic herbal literature, conference papers, government reports, and PhD and MSc dissertations. RESULTS This review mainly introduces the current research on anti-RA TCM formulas, extracts and compounds from TCM, pharmacological data and potential mechanisms (inhibit osteoclast proliferation, suppress fibroblast-like synoviocytes (FLSs) growth, decrease the expression of inflammatory cytokines, blocking signal pathways, etc.). CONCLUSIONS TCM, as a multi-component and multi-target approach, which is a perfect match with the holistic concept of systems biology, is applicable in the treatment of RA. The synergistic connections of Chinese herbs and mechanisms of related active compounds on RA increase the trust for TCM. TCM as alternative remedies for RA not only has an important position in the world market, but also has an irreplaceable role in the treatment of RA in future.
Collapse
Affiliation(s)
- Shaowa Lü
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Qiushi Wang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Guoyu Li
- College of Pharmacy, Harbin Medical University, Harbin 150040, China
| | - Shuang Sun
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yuyan Guo
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Ministry of Education, Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
114
|
Wang H, Li SH, Zhang Y, Guan J, Wu YM, Wang Q, Luo XQ. Therapeutic efficacy and mechanism of Zhenrenyangzang decoction in rats with experimental ulcerative colitis. Int J Clin Exp Med 2015; 8:15254-15261. [PMID: 26629011 PMCID: PMC4658900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
Zhenrenyangzang Decoction (ZD) has been used as a classic formula in China for the treatment of gastrointestinal dysfunction such as chronic gastritis. However, there is less study on its application in ulcerative colitis (UC) and the effects are not yet clearly defined. To explore the effectiveness of ZD in trinitrobenzene sulfonic acid (TNBS)-induced UC rats, ZD was administered orally for 8 days at a dosage of 2, 4 or 8 g/kg/day. Following drug administration, the disease activity index (DAI) and tissue damage scores were recorded. In addition, mRNA and protein expression of nuclear factor kappa B (NF-κB), p38 mitogen activated protein kinase (p38MAPK) and Toll-like receptor 2 (TLR2) in colon tissues were examined by real time PCR and western blotting assay. As compared with the UC model group, ZD promoted the recovery of colitis and inhibited the colonic inflammation damage in UC rats by reducing the mRNA or protein expression of NF-κB and p38MAPK, as well as activating the production of TLR2 in colon tissues. And ZD significantly reduced the DAI and tissue damage scores. The therapeutic effect of ZD was found to be comparable to that of SASP. Our results suggested that ZD could improve colonic mucosa impairment and possesses favorable therapeutic action in TNBS-induced colitis, which provides direct pharmacological evidence for its clinical application.
Collapse
Affiliation(s)
- Hui Wang
- Department of Immunology, Qiqihar Medical UniversityQiqihar 161006, Heilongjiang Province, China
| | - Shu-Hua Li
- Department of Nephrology, Heilongjiang Academy of Traditional Chinese MedicineHarbin 150006, Heilongjiang Province, China
| | - Yan Zhang
- Department of Nephrology, No. 2 Affiliated Hospital of Qiqihar Medical UniversityQiqihar 161006, Heilongjiang Province, China
| | - Jie Guan
- Department of Immunology, Qiqihar Medical UniversityQiqihar 161006, Heilongjiang Province, China
| | - Yan-Min Wu
- Department of Immunology, Qiqihar Medical UniversityQiqihar 161006, Heilongjiang Province, China
| | - Qi Wang
- Department of Immunology, Qiqihar Medical UniversityQiqihar 161006, Heilongjiang Province, China
| | - Xiao-Qing Luo
- Department of Immunology, Qiqihar Medical UniversityQiqihar 161006, Heilongjiang Province, China
| |
Collapse
|
115
|
Orosa B, García S, Conde C. The autotaxin-lysophosphatidic acid pathway in pathogenesis of rheumatoid arthritis. Eur J Pharmacol 2015; 765:228-33. [PMID: 26297977 DOI: 10.1016/j.ejphar.2015.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/06/2015] [Accepted: 08/17/2015] [Indexed: 01/28/2023]
Abstract
Lysophosphatidic acid (LPA) is a phospholipid that is mainly produced by the hydrolysis of lysophosphatidylcholine (LPC) by lysophospholipase D, which is also called autotaxin (ATX). LPA interacts with specific G-protein coupled receptors and is involved in the regulation of cellular survival, proliferation, differentiation and motility. LPA also has roles in several pathological disorders, such as cancer and pulmonary, dermal and renal fibrosis. The involvement of the ATX-LPA pathway has recently been demonstrated in inflammatory responses and apoptosis of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis and during the development of experimental arthritis. This review summarises the current literature of the ATX-LPA pathway in rheumatoid arthritis.
Collapse
Affiliation(s)
- Beatriz Orosa
- Laboratorio de Reumatología Experimental (n°8), Instituto de Investigación Sanitaria de Santiago (IDIS) , Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Travesia da Choupana s/n, Santiago de Compostela 15706, Spain
| | - Samuel García
- Laboratorio de Reumatología Experimental (n°8), Instituto de Investigación Sanitaria de Santiago (IDIS) , Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Travesia da Choupana s/n, Santiago de Compostela 15706, Spain
| | - Carmen Conde
- Laboratorio de Reumatología Experimental (n°8), Instituto de Investigación Sanitaria de Santiago (IDIS) , Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Travesia da Choupana s/n, Santiago de Compostela 15706, Spain.
| |
Collapse
|
116
|
Niu X, Lu C, Xiao C, Ge N, Jiang M, Li L, Bian Y, Xu G, Bian Z, Zhang G, Lu A. The Crosstalk of Pathways Involved in Immune Response Maybe the Shared Molecular Basis of Rheumatoid Arthritis and Type 2 Diabetes. PLoS One 2015; 10:e0134990. [PMID: 26252209 PMCID: PMC4529222 DOI: 10.1371/journal.pone.0134990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/15/2015] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) and Type 2 diabetes (T2D) are both systemic diseases linked with altered immune response, moderate mortality when present together. The treatment for both RA and T2D are not satisfied, partly because of the linkage between them has not yet been appreciated. A comprehensive study for the potential associations between the two disorders is needed. In this study, we used RNA sequencing to explore the differently expressed genes (DEGs) in peripheral blood mononuclear cells (PBMC) of 10 RA and 10 T2D patients comparing with 10 healthy volunteers (control). We used bioinformatics analysis and the Ingenuity Pathways Analysis (IPA) to predict the commonalities on signaling pathways and molecular networks between those two diseases. 212 DEGs in RA and 114 DEGs in T2D patients were identified compared with healthy controls, respectively. 32 DEGs were shared between the two comparisons. The top 10 shared pathways interacted in cross-talking networks, regulated by 5 shared predicted upstream regulators, leading to the activated immune response were explored, which was considered as partly of the association mechanism of this two disorders. These discoveries would be considered as new understanding on the associations between RA and T2D, and provide novel treatment or prevention strategy.
Collapse
Affiliation(s)
- Xuyan Niu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Cheng Xiao
- China-Japan Friendship Hospital, Beijing, China
| | - Na Ge
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqin Bian
- E-Institute of Chinese Traditional Internal Medicine, Shanghai Municipal Education Commission, Shanghai, China
| | - Gang Xu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhaoxiang Bian
- Institute for Advancing Translational Medicine in Bone & Joint Diseases,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases,School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- E-Institute of Chinese Traditional Internal Medicine, Shanghai Municipal Education Commission, Shanghai, China
- * E-mail:
| |
Collapse
|
117
|
Rationale and design of the LosmApimod To Inhibit p38 MAP kinase as a TherapeUtic target and moDify outcomes after an acute coronary syndromE trial. Am Heart J 2015; 169:622-630.e6. [PMID: 25965709 DOI: 10.1016/j.ahj.2015.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/14/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND p38 mitogen-activated protein kinase (MAPK) mediates cytokine production and amplification of the inflammatory cascade. Through inhibition of p38 MAPK, losmapimod appears to attenuate the inflammatory response in the vascular wall and thus may help stabilize plaques. STUDY DESIGN The LATITUDE-TIMI 60 trial is a randomized, double-blind, placebo-controlled, parallel-group, multicenter study planned to be conducted in a 3-stage design. Overall, the trial is designed to include 25,500 patients hospitalized with non-ST-elevation or ST-elevation myocardial infarction (MI) randomized to oral losmapimod (7.5 mg twice daily) versus matching placebo. Part A consists of a leading cohort (n = 3,500) that will provide an initial assessment of safety and exploratory efficacy before progressing to part B. Part B (n = ~22,000) of the study is event driven and will provide the primary assessment of efficacy. An independent safety review will be conducted after 3,500 patients in part B1 to determine whether a more focused schedule of clinic visits and laboratory assessments can be implemented (part B2). All patients are to be treated with study drug until week 12 and followed up until week 24. The primary end point is the composite of cardiovascular death, MI, or severe recurrent ischemia requiring urgent coronary revascularization. The key secondary end point is the composite of cardiovascular death or MI. The trial is designed to provide ≥90% power for the primary end point. CONCLUSIONS The LATITUDE-TIMI 60 trial will determine the efficacy and safety of short-term p38 MAPK inhibition with losmapimod in acute MI. The trial design adopts a stepwise approach to decision making and collection of data.
Collapse
|
118
|
Khorasani N, Baker J, Johnson M, Chung KF, Bhavsar PK. Reversal of corticosteroid insensitivity by p38 MAPK inhibition in peripheral blood mononuclear cells from COPD. Int J Chron Obstruct Pulmon Dis 2015; 10:283-91. [PMID: 25678784 PMCID: PMC4322842 DOI: 10.2147/copd.s72403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Corticosteroids (CS) have limited efficacy in the treatment of chronic obstructive pulmonary disease (COPD). p38 mitogen-activated protein kinase (MAPK) activation is increased in lung macrophages of COPD. We investigated whether p38 MAPK inhibition can modulate CS insensitivity of peripheral blood mononuclear cells (PBMCs) from patients with COPD. METHODS PBMCs from patients with COPD (n=8) or healthy smokers (n=8) were exposed to lipopolysaccharide (LPS) with a selective p38 MAPK inhibitor (GW856553; 10(-10)-10(-6) M), with dexamethasone (10(-10)-10(-6) M), or with both. Phosphorylated glucocorticoid receptor (GR) was measured by Western blot. RESULTS Baseline (P<0.01) and LPS-induced (P<0.05) CXCL8 release was greater in PBMCs from COPD compared to healthy smokers. Inhibition of LPS-induced CXCL8 release by dexamethasone (10(-6) M) was reduced, and baseline and LPS-induced p38 MAPK activation increased in PBMCs of COPD. GW856553 (10(-9) and 10(-10) M) synergistically increased the inhibitory effect of dexamethasone (10(-8) and 10(-6) M) on LPS-induced CXCL8 release in COPD. Similar results were obtained for IL-6 release. GW856553 inhibited dexamethasone- and LPS-activated phosphorylation of serine 211 on GR. CS insensitivity in COPD PBMCs is reversed by inhibition of p38 MAPK activity, partly by preventing phosphorylation of GR at serine 211. CONCLUSION p38 MAPK inhibition may be beneficial in COPD by restoring CS sensitivity.
Collapse
Affiliation(s)
- Nadia Khorasani
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | - Josephine Baker
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | | | - Kian Fan Chung
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| | - Pankaj K Bhavsar
- Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust Hospital, London, UK
| |
Collapse
|
119
|
Pristane primed rat T cells enhance TLR3 expression of fibroblast-like synoviocytes via TNF-α initiated p38 MAPK and NF-κB pathways. Clin Immunol 2015; 156:141-53. [DOI: 10.1016/j.clim.2014.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 01/23/2023]
|
120
|
Norman P. Investigational p38 inhibitors for the treatment of chronic obstructive pulmonary disease. Expert Opin Investig Drugs 2015; 24:383-92. [DOI: 10.1517/13543784.2015.1006358] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
121
|
Chen JY, Wu H, Li H, Hu SL, Dai MM, Chen J. Anti-inflammatory effects and pharmacokinetics study of geniposide on rats with adjuvant arthritis. Int Immunopharmacol 2015; 24:102-9. [DOI: 10.1016/j.intimp.2014.11.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/15/2014] [Accepted: 11/18/2014] [Indexed: 01/18/2023]
|
122
|
Tissue destruction and repair. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
123
|
Niu X, Lu C, Xiao C, Zhang Z, Jiang M, He D, Bian Y, Zhang G, Bian Z, Lu A. The shared crosstalk of multiple pathways involved in the inflammation between rheumatoid arthritis and coronary artery disease based on a digital gene expression profile. PLoS One 2014; 9:e113659. [PMID: 25514790 PMCID: PMC4267808 DOI: 10.1371/journal.pone.0113659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/26/2014] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) and coronary artery disease (CAD) are both complex inflammatory diseases, and an increased prevalence of CAD and a high rate of mortality have been observed in RA patients. But the molecular mechanism of inflammation that is shared between the two disorders is unclear. High-throughput techniques, such as transcriptome analysis, are becoming important tools for genetic biomarker discovery in highly complex biological samples, which is critical for the diagnosis, prognosis, and treatment of disease. In the present study, we reported one type of transcriptome analysis method: digital gene expression profiling of peripheral blood mononuclear cells of 10 RA patients, 10 CAD patients and 10 healthy people. In all, 213 and 152 differently expressed genes (DEGs) were identified in RA patients compared with normal controls (RA vs. normal) and CAD patients compared with normal controls (CAD vs. normal), respectively, with 73 shared DEGs between them. Using this technique in combination with Ingenuity Pathways Analysis software, the effects on inflammation of four shared canonical pathways, three shared activated predicted upstream regulators and three shared molecular interaction networks were identified and explored. These shared molecular mechanisms may provide the genetic basis and potential targets for optimizing the application of current drugs to more effectively treat these diseases simultaneously and for preventing one when the other is diagnosed.
Collapse
Affiliation(s)
- Xuyan Niu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng Xiao
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dan He
- E-Institute of Chinese Traditional Internal Medicine, Shanghai Municipal Education Commission, Shanghai, 201203, China
| | - Yanqin Bian
- E-Institute of Chinese Traditional Internal Medicine, Shanghai Municipal Education Commission, Shanghai, 201203, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhaoxiang Bian
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- E-Institute of Chinese Traditional Internal Medicine, Shanghai Municipal Education Commission, Shanghai, 201203, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- * E-mail:
| |
Collapse
|
124
|
Mu L, Tang J, Liu H, Shen C, Rong M, Zhang Z, Lai R. A potential wound-healing-promoting peptide from salamander skin. FASEB J 2014; 28:3919-29. [PMID: 24868009 DOI: 10.1096/fj.13-248476] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/12/2014] [Indexed: 11/11/2022]
Abstract
Although it is well known that wound healing proceeds incredibly quickly in urodele amphibians, such as newts and salamanders, little is known about skin-wound healing, and no bioactive/effector substance that contributes to wound healing has been identified from these animals. As a step toward understanding salamander wound healing and skin regeneration, a potential wound-healing-promoting peptide (tylotoin; KCVRQNNKRVCK) was identified from salamander skin of Tylototriton verrucosus. It shows comparable wound-healing-promoting ability (EC50=11.14 μg/ml) with epidermal growth factor (EGF; NSDSECPLSHDGYCLHDGVCMYIEALDKYACNCVVGYIGERCQYRDLKWWELR) in a murine model of full-thickness dermal wound. Tylotoin directly enhances the motility and proliferation of keratinocytes, vascular endothelial cells, and fibroblasts, resulting in accelerated reepithelialization and granulation tissue formation in the wound site. Tylotoin also promotes the release of transforming growth factor β1 (TGF-β1) and interleukin 6 (IL-6), which are essential in the wound healing response. Gene-encoded tylotoin secreted in salamander skin is possibly an effector molecule for skin wound healing. This study may facilitate understanding of the cellular and molecular events that underlie quick wound healing in salamanders.
Collapse
Affiliation(s)
- Lixian Mu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; and Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; and Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Han Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; and Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanbin Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; and Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mingqiang Rong
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; and
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; and Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; and
| |
Collapse
|
125
|
Abstract
INTRODUCTION The JAK kinases are a family of four tyrosine receptor kinases that play a pivotal role in cytokine receptor signalling pathways via their interaction with signal transducers and activators of transcription proteins. Selective inhibitors of JAK kinases are viewed as of considerable potential as disease-modifying anti-inflammatory drugs for the treatment of rheumatoid arthritis. AREAS COVERED This article provides a review of the clinical development and available clinical results for those JAK inhibitors currently under investigation. Phase II data for four JAK inhibitors (baricitinib, decernotinib, filgotinib and INCB-039110) are contrasted with that reported for the recently approved JAK inhibitor tofacitinib. The preclinical data on these, in addition to peficitinib, ABT-494, INCB-047986 and AC-410 are also discussed, as are some of the inhibitors in preclinical development. EXPERT OPINION JAK inhibitors are effective in the treatment of rheumatoid arthritis as evidenced by several inhibitors enabling the majority of treated patients to achieve ACR20 responses, with baricitinib and INCB-039110 both effective when administered once daily. JAK inhibitors differ in isoform specificity profiles, with good efficacy achievable by selective inhibition of either JAK1 (filgotinib or INCB-039110) or JAK3 (decernotinib). It remains to be seen what selectivity provides the optimal side-effect profile and to what extent inhibition of JAK2 should be avoided.
Collapse
Affiliation(s)
- Peter Norman
- Norman Consulting , 18 Pink Lane, Burnham, Bucks, SL1 8JW , UK
| |
Collapse
|
126
|
Korean red ginseng saponin fraction rich in ginsenoside-Rb1, Rc and Rb2 attenuates the severity of mouse collagen-induced arthritis. Mediators Inflamm 2014; 2014:748964. [PMID: 24833816 PMCID: PMC4009181 DOI: 10.1155/2014/748964] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/05/2014] [Indexed: 11/17/2022] Open
Abstract
Despite a multitude of reports on anti-inflammatory properties of ginseng extracts or individual ginsenosides, data on antiarthritic effect of ginseng saponin preparation with mixed ginsenosides is limited. On the other hand, a combined therapy of safe and inexpensive plant-derived natural products such as ginsenosides can be considered as an alternative to treat arthritis. Our previous in vitro data displayed a strong anti-inflammatory action of red ginseng saponin fraction-A (RGSF-A). We, herein, report a marked antiarthritic property of RGSF-A rich in ginsenoside Rb1, Rc, and Rb2. Collagen-induced arthritic (CIA) mice were treated with RGSF-A or methotrexate (MTX) for 5 weeks. Joint pathology, serum antibody production and leukocye activation, cytokine production in the circulation, lymph nodes, and joints were examined. RGSF-A markedly reduced severity of arthritis, cellular infiltration, and cartilage damage. It suppressed CD3(+)/CD69(+), CD4(+)/CD25(+), CD8(+) T-cell, CD19(+), B220/CD23(+) B-cell, MHCII(+)/CD11c(+), and Gr-1(+)/CD11b(+) cell activations. It further suppressed anti-CII- or anti-RF-IgG/IgM, TNF-α, IL-1β, IL-17, and IL-6 secretions but stimulated IL-10 levels in the serum, joint, or splenocyte. RGSF-A attenuated arthritis severity, modified leukocyte activations, and restored cytokine imbalances, suggesting that it can be considered as an antiarthritic agent with the capacity to ameliorate the immune and inflammatory responses in CIA mice.
Collapse
|
127
|
Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2014; 2014:352371. [PMID: 24771982 PMCID: PMC3977509 DOI: 10.1155/2014/352371] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/27/2013] [Accepted: 02/11/2014] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.
Collapse
|
128
|
Abstract
New treatments for rheumatoid arthritis (RA) continue to emerge to meet unsatisfied needs of a significant number of patients. The development of new, oral biologic therapy is a significant step forward, although these drugs will require further evaluation in clinical settings before their true potential is appreciated. This new, oral biologic therapy has mostly focused on inhibition of intracellular signaling. These mechanisms and the available studies regarding the efficacy and safety of specific drugs which interfere with these mechanisms are the subject of this article.
Collapse
Affiliation(s)
- Edward Keystone
- The Rebecca MacDonald Centre for Arthritis and Autoimmune Diseases, Mount Sinai Hospital, 60 Murrray St., Room 2-006, Box 4, Toronto, Ontario, M5T 379, Canada.
| | | |
Collapse
|
129
|
|
130
|
Zhuanggu Jianxi Decoction () limits interleukin-1 β-induced degeneration chondrocytes via the caveolin-p38 MAPK signal pathway. Chin J Integr Med 2014; 20:353-9. [PMID: 24481743 DOI: 10.1007/s11655-014-1801-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To evaluate the effect of Zhuanggu Jianxi Decoction (, ZGJXD) on interleukin-1 β (IL-1 β)-induced degeneration of chondrocytes (CDs) as well as the activation of caveolin-p38 mitogen-activated protein kinase (MAPK) signal pathway, investigating the possible molecular mechanism that ZGJXD treats osteoarthritis. METHODS Serum pharmacology was applied in the present study, where ZGJXD was orally administrated to New Zealand rabbits and then ZGJXD containing serum (ZGJXD-S) was collected for following in vitro experiments. CDs were isolated aseptically from New Zealand rabbits and then cultured in vitro. Upon IL-1 β stimulation, the degeneration of CDs was verified by inverted microscope, toluidine blue stain and type II collagen immunocytochemistry. After IL-1 β-stimulated CDs were intervened with blank control serum, ZGJXD-S, together with or without SB203580 (a specific inhibitor of p38 MAPK) for 48 h, caveolin-1 protein expression and the phosphorylation level of p38 were determined by Western blotting, and the mRNA expression of IL-1 β, tumor necrosis factor α (TNF-α), matrix metalloproteinase 3 (MMP-3) and MMP-13 were examined by real-time polymerase chain reaction. RESULTS IL-1 β stimulation induced degeneration of CDs, increased caveolin-1 expression and p38 phosphorylation, up-regulated the mRNA level of IL-1 β, TNF-α, MMP-3 and MMP-13. However, the IL-1 β-induced activation of caveolin-p38 signaling and alteration in the expression of p38 downstream target genes were suppressed by ZGJXD-S and/or SB203580 in CDs. CONCLUSION ZGJXD can prevent CDs degeneration via inhibition of caveolin-p38 MAPK signal pathway, which might be one of the mechanisms that ZGJXD treats osteoarthritis.
Collapse
|
131
|
Thwaites R, Chamberlain G, Sacre S. Emerging role of endosomal toll-like receptors in rheumatoid arthritis. Front Immunol 2014; 5:1. [PMID: 24474949 PMCID: PMC3893714 DOI: 10.3389/fimmu.2014.00001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/02/2014] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) and their downstream signaling pathways have been comprehensively characterized in innate immunity. In addition to this function, these receptors have also been suggested to be involved in the pathogenesis of many autoimmune diseases, including rheumatoid arthritis (RA). Murine in vivo models and human in vitro tissue models of RA have provided a wealth of information on the potential activity of TLRs and components of the downstream signaling pathways. Whilst most early work investigated the cell surface TLRs, more recently the focus has moved to the endosomal TLRs 3, 7, 8, and 9. These receptors recognize self and foreign double-stranded RNA and single-stranded RNA and DNA. The development of therapeutics to inhibit the endosomal TLRs or components of their signaling cascades may represent a way to target inflammation upstream of cytokine production. This may allow for greater specificity than existing therapies including cytokine blockade. Here, we review the current information suggesting a role for the endosomal TLRs in RA pathogenesis and the efforts to target these receptors therapeutically.
Collapse
Affiliation(s)
- Ryan Thwaites
- Brighton and Sussex Medical School, Trafford Centre, University of Sussex , Brighton , UK
| | - Giselle Chamberlain
- Brighton and Sussex Medical School, Trafford Centre, University of Sussex , Brighton , UK
| | - Sandra Sacre
- Brighton and Sussex Medical School, Trafford Centre, University of Sussex , Brighton , UK
| |
Collapse
|
132
|
Kristiansen M, Frisch M, Madsen HO, Garred P, Jacobsen S. Smoking and polymorphisms of genes encoding mannose-binding lectin and surfactant protein-D in patients with rheumatoid arthritis. Rheumatol Int 2013; 34:373-80. [DOI: 10.1007/s00296-013-2904-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 11/12/2013] [Indexed: 10/26/2022]
|
133
|
Choo QY, Ho PC, Tanaka Y, Lin HS. The histone deacetylase inhibitors MS-275 and SAHA suppress the p38 mitogen-activated protein kinase signaling pathway and chemotaxis in rheumatoid arthritic synovial fibroblastic E11 cells. Molecules 2013; 18:14085-95. [PMID: 24241152 PMCID: PMC6270078 DOI: 10.3390/molecules181114085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 11/16/2022] Open
Abstract
MS-275 (entinostat) and SAHA (vorinostat), two histone deacetylase (HDAC) inhibitors currently in oncological trials, have displayed potent anti-rheumatic activities in rodent models of rheumatoid arthritis (RA). To further elucidate their anti-inflammatory mechanisms, the impact of MS-275 and SAHA on the p38 mitogen-activated protein kinase (MAPK) signaling pathway and chemotaxis was assessed in human rheumatoid arthritic synovial fibroblastic E11 cells. MS-275 and SAHA significantly suppressed the expression of p38α MAPK, but induced the expression of MAPK phosphatase-1 (MKP-1), an endogenous suppressor of p38α in E11 cells. At the same time, the association between p38α and MKP-1 was up-regulated and consequently, the activation (phosphorylation) of p38α was inhibited. Moreover, MS-275 and SAHA suppressed granulocyte chemotactic protein-2 (GCP-2), monocyte chemotactic protein-2 (MCP-2) and macrophage migration inhibitory factor (MIF) in E11 cells in a concentration-dependent manner. Subsequently, E11-driven migration of THP-1 and U937 monocytes was inhibited. In summary, suppression of the p38 MAPK signaling pathway and chemotaxis appear to be important anti-rheumatic mechanisms of action of these HDAC inhibitors.
Collapse
Affiliation(s)
- Qiu-Yi Choo
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore; E-Mails: (Q.-Y.C.); (P.C.H.)
| | - Paul C Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore; E-Mails: (Q.-Y.C.); (P.C.H.)
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; E-Mail:
| | - Hai-Shu Lin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore; E-Mails: (Q.-Y.C.); (P.C.H.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +65-6516-6537; Fax: +65-6779-1554
| |
Collapse
|
134
|
Baur B, Storch K, Martz KE, Goettert MI, Richters A, Rauh D, Laufer SA. Metabolically stable dibenzo[b,e]oxepin-11(6H)-ones as highly selective p38 MAP kinase inhibitors: optimizing anti-cytokine activity in human whole blood. J Med Chem 2013; 56:8561-78. [PMID: 24131218 DOI: 10.1021/jm401276h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Five series of metabolically stable disubstituted dibenzo[b,e]oxepin-11(6H)-ones were synthesized and tested in a p38α enzyme assay for their inhibition of tumor necrosis factor-α (TNF-α) release in human whole blood. Compared to the monosubstituted dibenzo[b,e]oxepin-11(6H)-one derivatives, it has been shown that the additional introduction of hydrophilic residues at position 9 leads to a substantial improvement of the inhibitory potency and metabolic stability. Using protein X-ray crystallography, the binding mode of the disubstituted dibenzoxepinones and the induction of a glyince flip in the hinge region were confirmed. The most potent compound of this series, 32e, shows an outstanding biological activity on isolated p38α, with an IC50 value of 1.6 nM, extraordinary selectivity (by a factor >1000, Kinase WholePanelProfiler), and low ATP competitiveness. The ability to inhibit the release of TNF-α from human whole blood was optimized down to an IC50 value of 125 nM. With the promising dibenzoxepinone inhibitor 3i, a pharmacokinetic study in mice was conducted.
Collapse
Affiliation(s)
- Benjamin Baur
- Institute of Pharmacy , Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
135
|
Mavropoulos A, Rigopoulou EI, Liaskos C, Bogdanos DP, Sakkas LI. The role of p38 MAPK in the aetiopathogenesis of psoriasis and psoriatic arthritis. Clin Dev Immunol 2013; 2013:569751. [PMID: 24151518 PMCID: PMC3787653 DOI: 10.1155/2013/569751] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/14/2013] [Indexed: 02/08/2023]
Abstract
The pathogenetic mechanisms responsible for the induction of immune-mediated disorders, such as psoriasis, remain not well characterized. Molecular signaling pathways are not well described in psoriasis, as well as psoriatic arthritis, which is seen in up to 40% of patients with psoriasis. Signaling pathway defects have long been hypothesized to participate in the pathology of psoriasis, yet their implication in the altered psoriatic gene expression still remains unclear. Emerging data suggest a potential pathogenic role for mitogen activated protein kinases p38 (p38 MAPK) extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK) in the development of psoriasis. The data are still limited, though, for psoriatic arthritis. This review discusses the current data suggesting a crucial role for p38 MAPK in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Athanasios Mavropoulos
- Cellular Immunotherapy and Molecular Immunodiagnostics, Institute of Research and Technology Thessaly, 41222 Larissa, Greece
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London SE5 9RS, UK
| | - Eirini I. Rigopoulou
- Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Christos Liaskos
- Cellular Immunotherapy and Molecular Immunodiagnostics, Institute of Research and Technology Thessaly, 41222 Larissa, Greece
| | - Dimitrios P. Bogdanos
- Cellular Immunotherapy and Molecular Immunodiagnostics, Institute of Research and Technology Thessaly, 41222 Larissa, Greece
- Division of Transplantation Immunology and Mucosal Biology, Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London SE5 9RS, UK
- Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Lazaros I. Sakkas
- Department of Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Center of Molecular Medicine, Old Dominion University, 23529 Monarch Way, Norfolk, VA, USA
- Department of Rheumatology, Faculty of Medicine School of Health Sciences, University of Thessaly, Biopolis, 41110 Larissa, Greece
| |
Collapse
|
136
|
Shi X, Wang L, Clark JD, Kingery WS. Keratinocytes express cytokines and nerve growth factor in response to neuropeptide activation of the ERK1/2 and JNK MAPK transcription pathways. ACTA ACUST UNITED AC 2013; 186:92-103. [PMID: 23958840 DOI: 10.1016/j.regpep.2013.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 12/14/2022]
Abstract
Sensory neurons innervating the skin can release neuropeptides that are believed to modulate cellular proliferation, wound healing, pigmentation, and keratinocyte innate immune responses. While the ability of neuropeptides to stimulate keratinocyte production of inflammatory mediators has been demonstrated, there is no information concerning the mechanisms by which neuropeptide activation of keratinocyte cell surface receptors ultimately leads to the up-regulation of mediator production. In this study we used a keratinocyte cell line to identify the presence of substance P (SP) and calcitonin gene-related peptide (CGRP) receptors on keratinocytes and examined the effects of SP and CGRP stimulation on keratinocyte neuropeptide signaling, cell proliferation, and interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and nerve growth factor (NGF) expression. Neuropeptide stimulation caused an up-regulation of neuropeptide receptor expression in keratinocytes and a dramatic increase in keratinocyte secretion of SP and CGRP, suggesting possible autocrine or paracrine stimulatory effects and amplification of neuropeptide signaling. Both SP and CGRP concentration-dependently stimulated cellular proliferation and the expression and secretion of inflammatory cytokines and NGF in keratinocytes. SP also activated all 3 families of mitogen activated protein kinase (MAPK) and nuclear factor κB (NFκB) in keratinocytes, while CGRP only activated p38 and extracellular signal related kinase1/2 (ERK1/2) MAPKs. Neuropeptide stimulated inflammatory mediatory production in keratinocytes was reversed by ERK1/2 and JNK inhibitors. The current study is the first to observe; 1) that CGRP stimulates keratinocyte expression of CGRP and its receptor complex, 2) that SP and CGRP stimulate IL-6 and TNF-α secretion in keratinocytes, 3) that SP activated all three MAPK families and the NFκB transcriptional signaling pathway in keratinocytes, and 4) that SP and CGRP stimulated inflammatory mediator production in keratinocytes is dependent on ERK1/2 and JNK activation. These studies provide evidence suggesting that disruption of ERK1/2 and JNK signaling may potentially be an effective therapy for inflammatory skin diseases and pain syndromes mediated by exaggerated sensory neuron-keratinocyte signaling.
Collapse
Affiliation(s)
- Xiaoyou Shi
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA.,Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA.,Department of Anesthesiolgy, Stanford University School of Medicine, Stanford, CA
| | - Liping Wang
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - J David Clark
- Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA.,Department of Anesthesiolgy, Stanford University School of Medicine, Stanford, CA
| | - Wade S Kingery
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
137
|
p38 MAPK Signaling in Pemphigus: Implications for Skin Autoimmunity. Autoimmune Dis 2013; 2013:728529. [PMID: 23936634 PMCID: PMC3722958 DOI: 10.1155/2013/728529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 02/08/2023] Open
Abstract
p38 mitogen activated protein kinase (p38 MAPK) signaling plays a major role in the modulation of immune-mediated inflammatory responses and therefore has been linked with several autoimmune diseases. The extent of the involvement of p38 MAPK in the pathogenesis of autoimmune blistering diseases has started to emerge, but whether it pays a critical role is a matter of debate. The activity of p38 MAPK has been studied in great detail during the loss of keratinocyte cell-cell adhesions and the development of pemphigus vulgaris (PV) and pemphigus foliaceus (PF). These diseases are characterised by autoantibodies targeting desmogleins (Dsg). Whether autoantibody-antigen interactions can trigger signaling pathways (such as p38 MAPK) that are tightly linked to the secretion of inflammatory mediators which may perpetuate inflammation and tissue damage in pemphigus remains unclear. Yet, the ability of p38 MAPK inhibitors to block activation of the proapoptotic proteinase caspase-3 suggests that the induction of apoptosis may be a consequence of p38 MAPK activation during acantholysis in PV. This review discusses the current evidence for the role of p38 MAPK in the pathogenesis of pemphigus. We will also present data relating to the targeting of these cascades as a means of therapeutic intervention.
Collapse
|
138
|
Epidermal adrenergic signaling contributes to inflammation and pain sensitization in a rat model of complex regional pain syndrome. Pain 2013; 154:1224-36. [PMID: 23718987 DOI: 10.1016/j.pain.2013.03.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/07/2013] [Accepted: 03/26/2013] [Indexed: 02/08/2023]
Abstract
In many patients, the sympathetic nervous system supports pain and other features of complex regional pain syndrome (CRPS). Accumulating evidence suggests that interleukin (IL)-6 also plays a role in CRPS, and that catecholamines stimulate production of IL-6 in several tissues. We hypothesized that norepinephrine acting through specific adrenergic receptors expressed on keratinocytes stimulates the production of IL-6 and leads to nociceptive sensitization in a rat tibial fracture/cast model of CRPS. Our approach involved catecholamine depletion using 6-hydroxydopamine or, alternatively, guanethidine, to explore sympathetic contributions. Both agents substantially reduced nociceptive sensitization and selectively reduced the production of IL-6 in skin. Antagonism of IL-6 signaling using TB-2-081 also reduced sensitization in this model. Experiments using a rat keratinocyte cell line demonstrated relatively high levels of β2-adrenergic receptor (β2-AR) expression. Stimulation of this receptor greatly enhanced IL-6 expression when compared to the expression of IL-1β, tumor necrosis factor (TNF)-α, or nerve growth factor. Stimulation of the cells also promoted phosphorylation of the mitogen-activated protein kinases P38, extracellular signal-regulated kinase, and c-Jun amino-terminal kinase. Based on these in vitro results, we returned to animal testing and observed that the selective β2-AR antagonist butoxamine reduced nociceptive sensitization in the CRPS model, and that local injection of the selective β2-AR agonist terbutaline resulted in mechanical allodynia and the production of IL-6 in the cells of the skin. No increases in IL-1β, TNF-α, or nerve growth factor levels were seen, however. These data suggest that in CRPS, norepinephrine released from sympathetic nerve terminals stimulates β2-ARs expressed on epidermal keratinocytes, resulting in local IL-6 production, and ultimately, pain sensitization.
Collapse
|
139
|
Xiao D, Palani A, Huang X, Sofolarides M, Zhou W, Chen X, Aslanian R, Guo Z, Fossetta J, Tian F, Trivedi P, Spacciapoli P, Whitehurst CE, Lundell D. Conformation constraint of anilides enabling the discovery of tricyclic lactams as potent MK2 non-ATP competitive inhibitors. Bioorg Med Chem Lett 2013; 23:3262-6. [PMID: 23602398 DOI: 10.1016/j.bmcl.2013.03.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/25/2022]
Abstract
Conformation restriction of linear N-alkylanilide MK2 inhibitors to their E-conformer was developed. This strategy enabled rapid advance in identifying a series of potent non-ATP competitive inhibitors that exhibited cell based activity in anti-TNFα assay.
Collapse
Affiliation(s)
- Dong Xiao
- Medicinal Chemistry, Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Katholnig K, Kaltenecker CC, Hayakawa H, Rosner M, Lassnig C, Zlabinger GJ, Gaestel M, Müller M, Hengstschläger M, Hörl WH, Park JM, Säemann MD, Weichhart T. p38α senses environmental stress to control innate immune responses via mechanistic target of rapamycin. THE JOURNAL OF IMMUNOLOGY 2013; 190:1519-27. [PMID: 23315073 DOI: 10.4049/jimmunol.1202683] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The MAPK p38α senses environmental stressors and orchestrates inflammatory and immunomodulatory reactions. However, the molecular mechanism how p38α controls immunomodulatory responses in myeloid cells remains elusive. We found that in monocytes and macrophages, p38α activated the mechanistic target of rapamycin (mTOR) pathway in vitro and in vivo. p38α signaling in myeloid immune cells promoted IL-10 but inhibited IL-12 expression via mTOR and blocked the differentiation of proinflammatory CD4(+) Th1 cells. Cellular stress induced p38α-mediated mTOR activation that was independent of PI3K but dependent on the MAPK-activated protein kinase 2 and on the inhibition of tuberous sclerosis 1 and 2, a negative regulatory complex of mTOR signaling. Remarkably, p38α and PI3K concurrently modulated mTOR to balance IL-12 and IL-10 expression. Our data link p38α to mTOR signaling in myeloid immune cells that is decisive for tuning the immune response in dependence on the environmental milieu.
Collapse
Affiliation(s)
- Karl Katholnig
- Clinical Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Galligan CL, Fish EN. Circulating fibrocytes contribute to the pathogenesis of collagen antibody-induced arthritis. ACTA ACUST UNITED AC 2013; 64:3583-93. [PMID: 22729466 DOI: 10.1002/art.34589] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a systemic autoimmune disease resulting in joint inflammation. Fibroblast-like synoviocytes in affected joints are responsible for pannus formation and cytokine/chemokine production, resulting in leukocyte recruitment and bone/cartilage destruction. Previously, we identified a multipotent stem cell population of activated fibrocytes in the blood of patients with RA that may have a role in disease pathogenesis, perhaps as fibroblast-like synoviocyte precursors. The aim of this study was to further characterize the contribution of circulating fibrocytes to the pathogenesis of RA. METHODS Circulating fibrocytes were isolated from mice with collagen-induced arthritis and transferred intravenously into recipient mice with collagen antibody-induced arthritis (CAIA). The activation status of circulating fibrocytes was determined using multidimensional phosphoflow cytometric analysis of the signaling effectors STAT-5, STAT-1, AKT, and JNK. Circulating fibrocyte trafficking and matrix metalloproteinase (MMP) activity were assessed in real time using fluorescence molecular tomography, specifically labeling circulating fibrocytes with CellVue Maroon and measuring MMP activity using MMPSense 680. RESULTS The numbers of circulating fibrocytes were increased early during the onset of CAIA, concomitant with their activation, as measured by phosphorylation of STAT-5. Adoptive transfer of circulating fibrocytes augmented disease scores and increased class II major histocompatibility complex expression and peripheral blood phosphoactivation profiles in recipient mice with CAIA. Notably, adoptively transferred fluorescence-labeled circulating fibrocytes rapidly migrated into the affected joints of recipient mice with CAIA, and this was associated with augmented neutrophil recruitment into affected joints and MMP activation. CONCLUSION Circulating fibrocytes migrate to joints and influence the onset of disease processes in arthritis.
Collapse
Affiliation(s)
- Carole L Galligan
- Toronto General Research Institute, University Health Network, Ontario, Canada
| | | |
Collapse
|
142
|
Kanaji N, Nelson A, Wang X, Sato T, Nakanishi M, Gunji Y, Basma H, Michalski J, Farid M, Rennard SI, Liu X. Differential roles of JNK, ERK1/2, and p38 mitogen-activated protein kinases on endothelial cell tissue repair functions in response to tumor necrosis factor-α. J Vasc Res 2012; 50:145-56. [PMID: 23258237 DOI: 10.1159/000345525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Tumor necrosis factor (TNF)-α can alter tissue repair functions in a variety of cells including endothelial cells. However, the mechanism by which TNF-α mediates these functional changes has not fully been studied. We investigated the role of mitogen-activated protein kinases (MAPKs) on mediating the regulatory effect of TNF-α on the tissue repair functions of human pulmonary artery endothelial cells (HPAECs). TNF-α protected HPAECs from undergoing apoptosis induced by serum and growth factor deprivation, augmented collagen gel contraction, and stimulated wound closure. TNF-α activated c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and p38. Inhibitors of JNK (SP600125, 5 µM) or ERK1/2 (PD98059, 5 µM) significantly inhibited TNF-α-stimulated cell survival, contraction of collagen gels, and wound closure. In contrast, the p38 inhibitor SB203580 (5 µM) further amplified all of the TNF-α effects on HPAECs. TNF-α specifically activated p38α but not other p38 isoforms and suppression of p38α by an siRNA resulted in further amplification of the TNF-α effect. These results suggest that TNF-α stimulates tissue repair functions of HPAECs, and this may be mediated, at least in part, positively via JNK and ERK1/2, and negatively through p38α. MAPKs may play a role in endothelial cell-mediated tissue repair, especially in an inflammatory milieu where TNF-α is present.
Collapse
Affiliation(s)
- Nobuhiro Kanaji
- Division of Endocrinology and Metabolism, Kagawa University, Kagawa, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Guma M, Hammaker D, Topolewski K, Corr M, Boyle DL, Karin M, Firestein GS. Antiinflammatory functions of p38 in mouse models of rheumatoid arthritis: advantages of targeting upstream kinases MKK-3 or MKK-6. ACTA ACUST UNITED AC 2012; 64:2887-95. [PMID: 22488549 DOI: 10.1002/art.34489] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Inhibitors of p38 demonstrate limited benefit in rheumatoid arthritis (RA), perhaps due to the antiinflammatory functions of p38α. This study was performed to determine if selective deletion of p38α in macrophages affects the severity of arthritis and whether blocking upstream kinases in the p38 pathway, such as MKK-3 or MKK-6, avoids some of the limitations of p38 blockade. METHODS Wild-type (WT) mice and mice with selective deletion of p38α in macrophages (p38α(ΔLysM) ) were injected with K/BxN sera. Antigen-induced arthritis was also induced in p38α(ΔLysM) mice. Mouse joint extracts were evaluated by enzyme-linked immunosorbent assay, quantitative polymerase chain reaction (qPCR), and Western blot analysis. Bone marrow-derived macrophages (BMMs) were stimulated with lipopolysaccharide (LPS) and were evaluated by qPCR and Western blotting. Bone marrow chimeras were generated using MKK-3(-/-) and MKK-6(-/-) mice, and K/BxN serum was administered to induce arthritis. RESULTS Compared to WT mice, p38α(ΔLysM) mice had increased disease severity and delayed resolution of arthritis, which correlated with higher synovial inflammatory mediator expression and ERK phosphorylation. In contrast to WT BMMs cultured in the presence of a p38α/β inhibitor, LPS-stimulated MKK-6- and MKK-3-deficient BMMs had suppressed LPS-mediated interleukin-6 (IL-6) expression but had normal IL-10 production, dual-specificity phosphatase 1 expression, and MAPK phosphorylation. WT chimeric mice with MKK-6- and MKK-3-deficient bone marrow had markedly decreased passive K/BxN arthritis severity. CONCLUSION Inhibiting p38α in a disease that is dominated by macrophage cytokines, such as RA, could paradoxically suppress antiinflammatory functions and interfere with clinical efficacy. Targeting an upstream kinase that regulates p38 could be more effective by suppressing proinflammatory cytokines while preventing decreased IL-10 expression and increased MAPK activation.
Collapse
Affiliation(s)
- Monica Guma
- University of California at San Diego, La Jolla CA 92093-0656, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Mavropoulos A, Orfanidou T, Liaskos C, Smyk DS, Billinis C, Blank M, Rigopoulou EI, Bogdanos DP. p38 mitogen-activated protein kinase (p38 MAPK)-mediated autoimmunity: lessons to learn from ANCA vasculitis and pemphigus vulgaris. Autoimmun Rev 2012. [PMID: 23207287 DOI: 10.1016/j.autrev.2012.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Evidence is beginning to accumulate that p38 mitogen activated protein kinase (p38 MAPK) signaling pathway plays an important role in the regulation of cellular and humoral autoimmune responses. The exact mechanisms and the degree by which the p38 MAPK pathway participates in the immune-mediated induction of diseases have started to emerge. This review discusses the recent advances in the molecular dissection of the p38 MAPK pathway and the findings generated by reports investigating its role in the pathogenesis of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and autoimmune hepatitis. Application of newly-developed protocols based on sensitive flow cytometric detection has proven to be a useful tool in the investigation of the phosphorylation of p38 MAPK within different peripheral blood mononuclear cell populations and may help us to better understand the enigmatic role of this signaling cascade in the induction of autoimmunity as well as its role in immunosuppressive-induced remission. Special attention is paid to reported data proposing a specific role for autoantibody-induced activation of p38 MAPK-mediated immunopathology in the pathogenesis of autoimmune blistering diseases and anti-neutrophilic antibody-mediated vasculitides.
Collapse
Affiliation(s)
- Athanasios Mavropoulos
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London SE5 9RS, UK
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Balagué C, Pont M, Prats N, Godessart N. Profiling of dihydroorotate dehydrogenase, p38 and JAK inhibitors in the rat adjuvant-induced arthritis model: a translational study. Br J Pharmacol 2012; 166:1320-32. [PMID: 22229697 DOI: 10.1111/j.1476-5381.2012.01836.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Translational animal models are essential in the prediction of the efficacy and side effects of new chemical entities. We have carried out a thorough study of three distinct disease-modifying antirheumatic drugs (DMARDs) in an adjuvant-induced arthritis (AIA) model in the rat and critically appraised the results in the context of the reported clinical experience in rheumatoid arthritis (RA) patients. EXPERIMENTAL APPROACH Teriflunomide - a dihydroorotate dehydrogenase (DHODH) inhibitor; AL8697 - a selective p38 MAPK inhibitor; and tofacitinib - a Janus kinase (JAK) inhibitor; were selected as representatives of their class and dose-response studies carried out using a therapeutic 10-day administration scheme in arthritic rats. Paw swelling and body weight were periodically monitored, and joint radiology and histology, lymph organ weight and haematological and biochemical parameters evaluated at study completion. KEY RESULTS All three drugs demonstrated beneficial effects on paw swelling, bone lesions and splenomegalia, with p38 inhibition providing the best anti-inflammatory effect and JAK inhibition the best DMARD effect. Leukopenia, body weight loss and gastrointestinal toxicity were dose-dependently observed with teriflunomide treatment. p38 MAPK inhibition induced leukocytosis and increased total plasma cholesterol. JAK inhibition, normalized platelet, reticulocyte and neutrophil counts, and alanine aminotransferase (ALT) levels while inducing lymphopenia and cholesterolemia. CONCLUSIONS AND IMPLICATIONS This multiparametric approach can reveal specific drug properties and provide translational information. Whereas the complex profile for p38 inhibition in AIA is not observed in human RA, immunosuppressants such as DHODH and JAK inhibitors show DMARD properties and side effects seen in both AIA and RA.
Collapse
Affiliation(s)
- C Balagué
- Drug Discovery, Almirall, Sant Feliu de Llobregat, Barcelona, Spain.
| | | | | | | |
Collapse
|
146
|
Clark AR, Dean JLE. The p38 MAPK Pathway in Rheumatoid Arthritis: A Sideways Look. Open Rheumatol J 2012; 6:209-19. [PMID: 23028406 PMCID: PMC3460412 DOI: 10.2174/1874312901206010209] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 01/02/2023] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) signaling pathway has been strongly implicated in many of
the processes that underlie the pathology of rheumatoid arthritis (RA). For many years it has been considered a promising
target for development of new anti-inflammatory drugs with which to treat RA and other chronic immune-mediated
inflammatory diseases. However, several recent clinical trials have concluded in a disappointing manner. Why is this so, if
p38 MAPK clearly contributes to the excessive production of inflammatory mediators, the destruction of bone and
cartilage? We argue that, to explain the apparent failure of p38 inhibitors in the rheumatology clinic, we need to
understand better the complexities of the p38 pathway and its many levels of communication with other cellular signaling
pathways. In this review we look at the p38 MAPK pathway from a slightly different perspective, emphasising its role in
post-transcriptional rather than transcriptional control of gene expression, and its contribution to the off-phase rather than
the on-phase of the inflammatory response.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, 65 Aspenlea Road, Hammersmith, London W6 8LH, UK
| | | |
Collapse
|
147
|
Olsnes C, Bredholt T, Olofsson J, Aarstad HJ. OK-432-stimulated chemokine secretion from human monocytes depends on MEK1/2, and involves p38 MAPK and NF-κB phosphorylation, in vitro. APMIS 2012; 121:299-310. [PMID: 23030595 DOI: 10.1111/j.1600-0463.2012.02969.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 07/25/2012] [Indexed: 12/27/2022]
Abstract
Interaction between the immune system and cancer cells allows for the use of biological response modifiers, like OK-432, in cancer therapy. We have studied the involvement of monocytes (MOs) in the immune response to OK-432 by examining MCP-1, MIP-1α and MIP-1β secretion, in vitro. OK-432-induced IL-6/TNF-α secretion has previously been shown to depend on mitogen-activated protein kinases (MAPKs) ERK1/2 and p38, and we therefore investigated the role of these MAPKs in OK-432-induced chemokine secretion. Here we demonstrate that pharmacological MEK1/2 kinase inhibition generally impaired chemokine secretion from MOs, whereas p38 MAPK inhibition in particular reduced MIP-1α production. Furthermore, simultaneous inhibition of MEK1/2 and Syk kinase was seen to have an additive impact on reduced MCP-1, MIP-1α and MIP-1β secretion. Based on single cell flow cytometry analyses, OK-432, lipoteichoic acid (LTA) and lipopolysaccharide (LPS) were seen to induce p38 MAPK and NF-κB phosphorylation in MOs with different time kinetics. LTA and LPS have been shown to induce ERK1/2 phosphorylation, whereas the levels of phosphorylated ERK1/2 remained constant following OK-432 treatment at the time points tested. Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns, and we demonstrate increased TLR2 cell surface levels on the MO population, most profoundly following stimulation with LTA and OK-432. Together these results indicate that modulation of MEK1/2 and p38 MAPK signalling could affect the response to OK-432 treatment, having the potential to improve its therapeutic potential within cancer and lymphangioma treatment.
Collapse
Affiliation(s)
- Carla Olsnes
- Department of Surgical Sciences, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
148
|
EDMUNDS JEREMYJ, TALANIAN ROBERTV. MAPKAP Kinase 2 (MK2) as a Target for Anti-inflammatory Drug Discovery. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite the success of anti-TNFα biologicals, there remains a significant unmet need for novel oral anti-inflammatory drugs for the treatment of rheumatoid arthritis and related diseases. Vigorous exploration of many potential targets for inhibition of, for example, pro-inflammatory cytokine production has led to efforts to find inhibitor leads targeting many enzymes including the p38α substrate kinase MK2. MK2 has a key role in the production of several pro-inflammatory cytokines, and studies with knockout animals and inhibitor leads support the promise of MK2 as an anti-inflammatory target. However, MK2 has additional biological roles such as in cell cycle checkpoint control, suggesting caution in the use of MK2 inhibitors for chronic non-life-threatening clinical indications such as inflammation. MK2 inhibitor lead identification and optimization efforts in several labs have resulted in a variety of potent and specific lead molecules, some of which display in-vivo activity. However, potency loss from enzyme to cell, and cell to in vivo, is commonly significant. Further, poor enzyme to cell potency correlations are also common for MK2 lead chemical series, suggesting uncontrolled confounding factors in lead inhibitor properties, or that the biological roles of MK2 and related enzymes may still be poorly understood. While further efforts in identification of MK2 inhibitors may yet yield viable drug leads, efforts to date suggest caution with this target.
Collapse
|
149
|
Hammaker D, Topolewski K, Edgar M, Yoshizawa T, Fukushima A, Boyle DL, Burak EC, Sah RL, Firestein GS. Decreased collagen-induced arthritis severity and adaptive immunity in MKK-6-deficient mice. ACTA ACUST UNITED AC 2012; 64:678-87. [PMID: 21953132 DOI: 10.1002/art.33359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The MAPK kinases MKK-3 and MKK-6 regulate p38 MAPK activation in inflammatory diseases such as rheumatoid arthritis (RA). Previous studies demonstrated that MKK-3 or MKK-6 deficiency inhibits K/BxN serum-induced arthritis. However, the role of these kinases in adaptive immunity-dependent models of chronic arthritis is not known. The goal of this study was to evaluate MKK-3 and MKK-6 deficiency in the collagen-induced arthritis (CIA) model. METHODS Wild-type (WT), MKK-3(-/-) , and MKK-6(-/-) mice were immunized with bovine type II collagen. Disease activity was evaluated by semiquantitative scoring, histologic assessment, and micro-computed tomography. Serum anticollagen antibody levels were quantified by enzyme-linked immunosorbent assay. In vitro T cell cytokine response was measured by flow cytometry and multiplex analysis. Expression of joint cytokines and matrix metalloproteinases (MMPs) was determined by quantitative polymerase chain reaction. RESULTS MKK-6 deficiency markedly reduced arthritis severity compared with that in WT mice, while the absence of MKK-3 had an intermediate effect. Joint damage was minimal in arthritic MKK-6(-/-) mice and intermediate in MKK-3(-/-) mice compared with WT mice. MKK-6(-/-) mice had modestly lower levels of pathogenic anticollagen antibodies than did WT or MKK-3(-/-) mice. In vitro T cell assays showed reduced proliferation and interleukin-17 (IL-17) production by lymph node cells from MKK-6(-/-) mice in response to type II collagen. Gene expression of synovial IL-6, MMP-3, and MMP-13 was significantly inhibited in MKK-6-deficient mice. CONCLUSION Reduced disease severity in MKK-6(-/-) mice correlated with decreased anticollagen antibody responses, indicating that MKK-6 is a crucial regulator of inflammatory joint destruction in CIA. MKK-6 is a potential therapeutic target in complex diseases involving adaptive immune responses, such as RA.
Collapse
Affiliation(s)
- Deepa Hammaker
- University of California San Diego at La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Goettert M, Shaalan N, Graeser R, Laufer SA. Development of a p38δ mitogen activated protein kinase ELISA assay for the quantitative determination of inhibitor activity. J Pharm Biomed Anal 2012; 66:349-51. [DOI: 10.1016/j.jpba.2012.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
|