101
|
Jiang T, Tang XY, Mao Y, Zhou YQ, Wang JJ, Li RM, Xie XR, Zhang HM, Fang B, Ouyang NJ, Tang GH. Matrix mechanics regulate the polarization state of bone marrow-derived neutrophils through the JAK1/STAT3 signaling pathway. Acta Biomater 2023; 168:159-173. [PMID: 37467837 DOI: 10.1016/j.actbio.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Matrix mechanics regulate essential cell behaviors through mechanotransduction, and as one of its most important elements, substrate stiffness was reported to regulate cell functions such as viability, communication, migration, and differentiation. Neutrophils (Neus) predominate the early inflammatory response and initiate regeneration. The activation of Neus can be regulated by physical cues; however, the functional alterations of Neus by substrate stiffness remain unknown, which is critical in determining the outcomes of engineered tissue mimics. Herein, a three-dimensional (3D) culture system made of hydrogels was developed to explore the effects of varying stiffnesses (1.5, 2.6, and 5.7 kPa) on the states of Neus. Neus showed better cell integrity and viability in the 3D system. Moreover, it was shown that the stiffer matrix tended to induce Neus toward an anti-inflammatory phenotype (N2) with less adhesion molecule expression, less reactive oxygen species (ROS) production, and more anti-inflammatory cytokine secretion. Additionally, the aortic ring assay indicated that Neus cultured in a stiffer matrix significantly increased vascular sprouting. RNA sequencing showed that a stiffer matrix could significantly activate JAK1/STAT3 signaling in Neus and the inhibition of JAK1 ablated the stiffness-dependent increase in the expression of CD182 (an N2 marker). Taken together, these results demonstrate that a stiffer matrix promotes Neus to shift to the N2 phenotype, which was regulated by JAK1/STAT3 pathway. This study lays the groundwork for further research on fabricating engineered tissue mimics, which may provide more treatment options for ischemic diseases and bone defects. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Xin-Yue Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Yi Mao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Yu-Qi Zhou
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Jia-Jia Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Ruo-Mei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Xin-Ru Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Hong-Ming Zhang
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Ning-Juan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Guo-Hua Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| |
Collapse
|
102
|
Guo J, Wang S, Gao Q. An integrated overview of the immunosuppression features in the tumor microenvironment of pancreatic cancer. Front Immunol 2023; 14:1258538. [PMID: 37771596 PMCID: PMC10523014 DOI: 10.3389/fimmu.2023.1258538] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. It is characterized by a complex and immunosuppressive tumor microenvironment (TME), which is primarily composed of tumor cells, stromal cells, immune cells, and acellular components. The cross-interactions and -regulations among various cell types in the TME have been recognized to profoundly shape the immunosuppression features that meaningfully affect PDAC biology and treatment outcomes. In this review, we first summarize five cellular composition modules by integrating the cellular (sub)types, phenotypes, and functions in PDAC TME. Then we discuss an integrated overview of the cross-module regulations as a determinant of the immunosuppressive TME in PDAC. We also briefly highlight TME-targeted strategies that potentially improve PDAC therapy.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
103
|
Beatty GL, Delman D, Yu J, Liu M, Li JH, Zhang L, Lee JW, Chang RB, Bahary N, Kennedy EP, Wang-Gillam A, Rossi GR, Garrido-Laguna I. Treatment Response in First-Line Metastatic Pancreatic Ductal Adenocarcinoma Is Stratified By a Composite Index of Tumor Proliferation and CD8 T-Cell Infiltration. Clin Cancer Res 2023; 29:3514-3525. [PMID: 37534996 PMCID: PMC10530235 DOI: 10.1158/1078-0432.ccr-23-0535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE Determinants of treatment outcomes to chemotherapy-based regimens in metastatic pancreatic ductal adenocarcinoma (PDA) remain ill-defined. Our aim was to examine tissue-based correlates of treatment response and resistance using matched baseline and on-treatment biopsies collected from patients with PDA treated in the first-line metastatic setting. EXPERIMENTAL DESIGN Patients with treatment-naïve metastatic PDA were enrolled in a Phase II trial (NCT02077881) investigating gemcitabine plus nab-paclitaxel in combination with indoximod, an orally administered small-molecule inhibitor of the IDO pathway. Baseline and on-treatment biopsies (week 8) of metastatic lesions (88% liver) were collected from a cohort of responders (N = 8) and non-responders (N = 8) based on RECIST v1.1 and examined by multiplex IHC and mRNA sequencing. RESULTS Treatment altered the transcriptional profile of metastatic lesions with a decrease in tumor cell proliferation independent of treatment response. The antiproliferative response was seen in both basal and classical PDA subtypes. PDA subtype was not associated with survival outcomes; instead, genes involved in immune activation distinguished responders from non-responders. Tumor response was associated with an increase in CD3+ and CD8+ T-cell infiltrates into metastatic lesions. A composite of decreased tumor proliferation in response to treatment and increased CD8 T-cell infiltration in metastatic lesions identified responders and associated with a favorable survival outcome. CONCLUSIONS Our findings suggest that inhibiting cancer cell proliferation alone in PDA is insufficient to produce tumor responses and support a role for tumor-extrinsic mechanisms, such as CD8+ T cells, which combine with the cancer cell proliferation index to define treatment outcomes.
Collapse
Affiliation(s)
- Gregory L. Beatty
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Devora Delman
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Authors contributed equally
| | - Jiayi Yu
- Newlink Genetics (Now LUMOS Pharmaceuticals), 2503 S Loop Dr. #5100, Ames, IA 50010
- Authors contributed equally
| | - Mingen Liu
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joey H. Li
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Liti Zhang
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jae W. Lee
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Renee B. Chang
- Abramson Cancer Center; University of Pennsylvania, Philadelphia, PA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathan Bahary
- Department of Hematology-Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA
| | - Eugene P. Kennedy
- Newlink Genetics (Now LUMOS Pharmaceuticals), 2503 S Loop Dr. #5100, Ames, IA 50010
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO
| | - Gabriela R. Rossi
- Newlink Genetics (Now LUMOS Pharmaceuticals), 2503 S Loop Dr. #5100, Ames, IA 50010
| | | |
Collapse
|
104
|
Korbecki J, Bosiacki M, Chlubek D, Baranowska-Bosiacka I. Bioinformatic Analysis of the CXCR2 Ligands in Cancer Processes. Int J Mol Sci 2023; 24:13287. [PMID: 37686093 PMCID: PMC10487711 DOI: 10.3390/ijms241713287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Human CXCR2 has seven ligands, i.e., CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8/IL-8-chemokines with nearly identical properties. However, no available study has compared the contribution of all CXCR2 ligands to cancer progression. That is why, in this study, we conducted a bioinformatic analysis using the GEPIA, UALCAN, and TIMER2.0 databases to investigate the role of CXCR2 ligands in 31 different types of cancer, including glioblastoma, melanoma, and colon, esophageal, gastric, kidney, liver, lung, ovarian, pancreatic, and prostate cancer. We focused on the differences in the regulation of expression (using the Tfsitescan and miRDB databases) and analyzed mutation types in CXCR2 ligand genes in cancers (using the cBioPortal). The data showed that the effect of CXCR2 ligands on prognosis depends on the type of cancer. CXCR2 ligands were associated with EMT, angiogenesis, recruiting neutrophils to the tumor microenvironment, and the count of M1 macrophages. The regulation of the expression of each CXCR2 ligand was different and, thus, each analyzed chemokine may have a different function in cancer processes. Our findings suggest that each type of cancer has a unique pattern of CXCR2 ligand involvement in cancer progression, with each ligand having a unique regulation of expression.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska Str. 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
105
|
Walsh RM, Ambrose J, Jack JL, Eades AE, Bye B, Ruckert MT, Olou AA, Messaggio F, Chalise P, Pei D, VanSaun MN. Adipose-Tumor Crosstalk contributes to CXCL5 Mediated Immune Evasion in PDAC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553432. [PMID: 37645755 PMCID: PMC10461999 DOI: 10.1101/2023.08.15.553432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background CXCR1/2 inhibitors are being implemented with immunotherapies in PDAC clinical trials. Cytokines responsible for stimulating these receptors include CXCL ligands, typically secreted by activated immune cells, fibroblasts, and even adipocytes. Obesity has been linked to poor patient outcome and altered anti-tumor immunity. Adipose-derived cytokines and chemokines have been implicated as potential drivers of tumor cell immune evasion, suggesting a possibility of susceptibility to targeting specifically in the context of obesity. Methods RNA-sequencing of human PDAC cell lines was used to assess differential influences on the cancer cell transcriptome after treatment with conditioned media from peri-pancreatic adipose tissue of lean and obese PDAC patients. The adipose-induced secretome of PDAC cells was then assessed by cytokine arrays and ELISAs. Lentiviral transduction and CRISPR-Cas9 was used to knock out CXCL5 from a murine PDAC cell line for orthotopic tumor studies in diet-induced obese, syngeneic mice. Flow cytometry was used to define the immune profiles of tumors. Anti-PD-1 immune checkpoint blockade therapy was administered to alleviate T cell exhaustion and invoke an immune response, while the mice were monitored at endpoint for differences in tumor size. Results The chemokine CXCL5 was secreted in response to stimulation of PDAC cells with human adipose conditioned media (hAT-CM). PDAC CXCL5 secretion was induced by either IL-1β or TNF, but neutralization of both was required to limit secretion. Ablation of CXCL5 from tumors promoted an immune phenotype susceptible to PD-1 inhibitor therapy. While application of anti-PD-1 treatment to control tumors failed to alter tumor growth, knockout CXCL5 tumors were diminished. Conclusions In summary, our findings show that known adipokines TNF and IL-1β can stimulate CXCL5 release from PDAC cells in vitro. In vivo , CXCL5 depletion alone is sufficient to promote T cell infiltration into tumors in an obese setting, but requires checkpoint blockade inhibition to alleviate tumor burden. DATA AVAILABILITY STATEMENT Raw and processed RNAseq data will be further described in the GEO accession database ( awaiting approval from GEO for PRJ number ). Additional raw data is included in the supplemental material and available upon reasonable request. WHAT IS ALREADY KNOWN ON THIS TOPIC Obesity is linked to a worsened patient outcome and immunogenic tumor profile in PDAC. CXCR1/2 inhibitors have begun to be implemented in combination with immune checkpoint blockade therapies to promote T cell infiltration under the premise of targeting the myeloid rich TME. WHAT THIS STUDY ADDS Using in vitro/ex vivo cell and tissue culture-based assays with in vivo mouse models we have identified that adipose derived IL-1β and TNF can promote tumor secretion of CXCL5 which acts as a critical deterrent to CD8 T cell tumor infiltration, but loss of CXCL5 also leads to a more immune suppressive myeloid profile. HOW THIS STUDY MIGHT AFFECT RESEARCH PRACTICE OR POLICY This study highlights a mechanism and emphasizes the efficacy of single CXCR1/2 ligand targeting that could be beneficial to overcoming tumor immune-evasion even in the obese PDAC patient population.
Collapse
|
106
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
107
|
Panni UY, Chen MY, Zhang F, Cullinan DR, Li L, James CA, Zhang X, Rogers S, Alarcon A, Baer JM, Zhang D, Gao F, Miller CA, Gong Q, Lim KH, DeNardo DG, Goedegebuure SP, Gillanders WE, Hawkins WG. Induction of cancer neoantigens facilitates development of clinically relevant models for the study of pancreatic cancer immunobiology. Cancer Immunol Immunother 2023; 72:2813-2827. [PMID: 37179276 PMCID: PMC10361914 DOI: 10.1007/s00262-023-03463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Neoantigen burden and CD8 T cell infiltrate are associated with clinical outcome in pancreatic ductal adenocarcinoma (PDAC). A shortcoming of many genetic models of PDAC is the lack of neoantigen burden and limited T cell infiltrate. The goal of the present study was to develop clinically relevant models of PDAC by inducing cancer neoantigens in KP2, a cell line derived from the KPC model of PDAC. KP2 was treated with oxaliplatin and olaparib (OXPARPi), and a resistant cell line was subsequently cloned to generate multiple genetically distinct cell lines (KP2-OXPARPi clones). Clones A and E are sensitive to immune checkpoint inhibition (ICI), exhibit relatively high T cell infiltration, and have significant upregulation of genes involved in antigen presentation, T cell differentiation, and chemokine signaling pathways. Clone B is resistant to ICI and is similar to the parental KP2 cell line in terms of relatively low T cell infiltration and no upregulation of genes involved in the pathways noted above. Tumor/normal exome sequencing and in silico neoantigen prediction confirms successful generation of cancer neoantigens in the KP2-OXPARPi clones and the relative lack of cancer neoantigens in the parental KP2 cell line. Neoantigen vaccine experiments demonstrate that a subset of candidate neoantigens are immunogenic and neoantigen synthetic long peptide vaccines can restrain Clone E tumor growth. Compared to existing models, the KP2-OXPARPi clones better capture the diverse immunobiology of human PDAC and may serve as models for future investigations in cancer immunotherapies and strategies targeting cancer neoantigens in PDAC.
Collapse
Affiliation(s)
- Usman Y Panni
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Michael Y Chen
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Darren R Cullinan
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - C Alston James
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Xiuli Zhang
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - S Rogers
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - A Alarcon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daoxiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Christopher A Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Qingqing Gong
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Kian-Huat Lim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
108
|
Tsioumpekou M, Krijgsman D, Leusen JHW, Olofsen PA. The Role of Cytokines in Neutrophil Development, Tissue Homing, Function and Plasticity in Health and Disease. Cells 2023; 12:1981. [PMID: 37566060 PMCID: PMC10417597 DOI: 10.3390/cells12151981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Neutrophils are crucial innate immune cells and comprise 50-70% of the white blood cell population under homeostatic conditions. Upon infection and in cancer, blood neutrophil numbers significantly increase because of the secretion of various chemo- and cytokines by, e.g., leukocytes, pericytes, fibroblasts and endothelial cells present in the inflamed tissue or in the tumor microenvironment (TME). The function of neutrophils in cancer has recently gained considerable attention, as they can exert both pro- and anti-tumorigenic functions, dependent on the cytokine milieu present in the TME. Here, we review the effect of cytokines on neutrophil development, tissue homing, function and plasticity in cancer and autoimmune diseases as well as under physiological conditions in the bone marrow, bloodstream and various organs like the spleen, kidney, liver, lung and lymph nodes. In addition, we address several promising therapeutic options, such as cytokine therapy, immunocytokines and immunotherapy, which aim to exploit the anti-tumorigenic potential of neutrophils in cancer treatment or block excessive neutrophil-mediated inflammation in autoimmune diseases.
Collapse
Affiliation(s)
- Maria Tsioumpekou
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Patricia A. Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| |
Collapse
|
109
|
Lin HJ, Liu Y, Caroland K, Lin J. Polarization of Cancer-Associated Macrophages Maneuver Neoplastic Attributes of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:3507. [PMID: 37444617 DOI: 10.3390/cancers15133507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mounting evidence links the phenomenon of enhanced recruitment of tumor-associated macrophages towards cancer bulks to neoplastic growth, invasion, metastasis, immune escape, matrix remodeling, and therapeutic resistance. In the context of cancer progression, naïve macrophages are polarized into M1 or M2 subtypes according to their differentiation status, gene signatures, and functional roles. While the former render proinflammatory and anticancer effects, the latter subpopulation elicits an opposite impact on pancreatic ductal adenocarcinoma. M2 macrophages have gained increasing attention as they are largely responsible for molding an immune-suppressive landscape. Through positive feedback circuits involving a paracrine manner, M2 macrophages can be amplified by and synergized with neighboring neoplastic cells, fibroblasts, endothelial cells, and non-cell autonomous constituents in the microenvironmental niche to promote an advanced disease state. This review delineates the molecular cues expanding M2 populations that subsequently convey notorious clinical outcomes. Future therapeutic regimens shall comprise protocols attempting to abolish environmental niches favoring M2 polarization; weaken cancer growth typically assisted by M2; promote the recruitment of tumoricidal CD8+ T lymphocytes and dendritic cells; and boost susceptibility towards gemcitabine as well as other chemotherapeutic agents.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA
| | - Kailey Caroland
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
110
|
Vaziri-Gohar A, Hue JJ, Abbas A, Graor HJ, Hajihassani O, Zarei M, Titomihelakis G, Feczko J, Rathore M, Chelstowska S, Loftus AW, Wang R, Zarei M, Goudarzi M, Zhang R, Willard B, Zhang L, Kresak A, Willis JE, Wang GM, Tatsuoka C, Salvino JM, Bederman I, Brunengraber H, Lyssiotis CA, Brody JR, Winter JM. Increased glucose availability sensitizes pancreatic cancer to chemotherapy. Nat Commun 2023; 14:3823. [PMID: 37380658 PMCID: PMC10307839 DOI: 10.1038/s41467-023-38921-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose.
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Ata Abbas
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - George Titomihelakis
- Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - John Feczko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Moeez Rathore
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Sylwia Chelstowska
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander W Loftus
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Rui Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Mahsa Zarei
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Maryam Goudarzi
- Proteomics and Metabolomics Core, Cleveland Clinic, Cleveland, OH, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Cleveland Clinic, Cleveland, OH, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Adam Kresak
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University and Department of Pathology Cleveland Medical Center, Cleveland, OH, USA
| | - Joseph E Willis
- Department of Pathology, Case Western Reserve University and Department of Pathology Cleveland Medical Center, Cleveland, OH, USA
| | - Gi-Ming Wang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis Tatsuoka
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Henri Brunengraber
- Department of Nutrition and Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jonathan R Brody
- Brenden Colson Center for Pancreatic Care; Departments of Surgery and Cell, Developmental & Cancer Biology; Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jordan M Winter
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
111
|
Xiao L, Wang Q, Peng H. Tumor-associated macrophages: new insights on their metabolic regulation and their influence in cancer immunotherapy. Front Immunol 2023; 14:1157291. [PMID: 37426676 PMCID: PMC10325569 DOI: 10.3389/fimmu.2023.1157291] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are a dynamic and heterogeneous cell population of the tumor microenvironment (TME) that plays an essential role in tumor formation and progression. Cancer cells have a high metabolic demand for their rapid proliferation, survival, and progression. A comprehensive interpretation of pro-tumoral and antitumoral metabolic changes in TAMs is crucial for comprehending immune evasion mechanisms in cancer. The metabolic reprogramming of TAMs is a novel method for enhancing their antitumor effects. In this review, we provide an overview of the recent research on metabolic alterations of TAMs caused by TME, focusing primarily on glucose, amino acid, and fatty acid metabolism. In addition, this review discusses antitumor immunotherapies that influence the activity of TAMs by limiting their recruitment, triggering their depletion, and re-educate them, as well as metabolic profiles leading to an antitumoral phenotype. We highlighted the metabolic modulational roles of TAMs and their potential to enhance immunotherapy for cancer.
Collapse
Affiliation(s)
- Li Xiao
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongling Peng
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
112
|
Liu X, Hogg GD, Zuo C, Borcherding NC, Baer JM, Lander VE, Kang LI, Knolhoff BL, Ahmad F, Osterhout RE, Galkin AV, Bruey JM, Carter LL, Mpoy C, Vij KR, Fields RC, Schwarz JK, Park H, Gupta V, DeNardo DG. Context-dependent activation of STING-interferon signaling by CD11b agonists enhances anti-tumor immunity. Cancer Cell 2023; 41:1073-1090.e12. [PMID: 37236195 PMCID: PMC10281762 DOI: 10.1016/j.ccell.2023.04.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Chronic activation of inflammatory pathways and suppressed interferon are hallmarks of immunosuppressive tumors. Previous studies have shown that CD11b integrin agonists could enhance anti-tumor immunity through myeloid reprograming, but the underlying mechanisms remain unclear. Herein we find that CD11b agonists alter tumor-associated macrophage (TAM) phenotypes by repressing NF-κB signaling and activating interferon gene expression simultaneously. Repression of NF-κB signaling involves degradation of p65 protein and is context independent. In contrast, CD11b agonism induces STING/STAT1 pathway-mediated interferon gene expression through FAK-mediated mitochondrial dysfunction, with the magnitude of induction dependent on the tumor microenvironment and amplified by cytotoxic therapies. Using tissues from phase I clinical studies, we demonstrate that GB1275 treatment activates STING and STAT1 signaling in TAMs in human tumors. These findings suggest potential mechanism-based therapeutic strategies for CD11b agonists and identify patient populations more likely to benefit.
Collapse
Affiliation(s)
- Xiuting Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Graham D Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chong Zuo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas C Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Varintra E Lander
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Faiz Ahmad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | - Cedric Mpoy
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kiran R Vij
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan C Fields
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julie K Schwarz
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haeseong Park
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
113
|
De Simoni O, Dal Santo L, Scarpa M, Munari G, Spolverato YC, Scapinello A, Lonardi S, Soldà C, Bergamo F, Fantin A, Bardini R, Pilati P, Fassan M, Gruppo M. Role of Immune Microenvironment in Pancreatic Ductal Adenocarcinoma: Could It Be Considered a Predictor of Prognosis? Curr Oncol 2023; 30:5515-5528. [PMID: 37366900 PMCID: PMC10296875 DOI: 10.3390/curroncol30060417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterized by a highly immunosuppressive tumor microenvironment (TME). The aim of this study is to determine the potential significant TME immune markers of long-term survival. METHODS We retrospectively included patients with a diagnosis of resectable PDAC having undergone upfront surgery. Immunohistochemical (IHC) staining using tissue microarray for PD-L1, CD3, CD4, CD8, FOXP3, CD20, iNOS and CD163 was performed in order to characterize the TME. The primary endpoint was long-term survival, defined as the Overall Survival > 24 months from surgery. RESULTS A total of 38 consecutive patients were included, and 14 (36%) of them were long-term survivors. Long-term survivors showed a higher density of CD8+ lymphocytes intra- and peri-acinar (p = 0.08), and a higher CD8/FOXP3 intra- and peri-tumoral ratio (p = 0.05). A low density of intra- and peri-tumoral FOXP3 infiltration is a good predictor of long-term survival (p = 0.04). A significant association of the low density of intra- and peri-tumoral tumor-associated macrophages (TAMs) iNOS+ with long-term survival was detected (p = 0.04). CONCLUSIONS Despite the retrospective nature and small sample size, our study showed that the high infiltration of CD8+ lymphocytes and low infiltration of FOXP3+ and TAMs iNOS+ are predictors of good prognosis. A preoperative assessment of these potential immune markers could be useful and determinant in the staging process and in PDAC management.
Collapse
Affiliation(s)
- Ottavia De Simoni
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy; (P.P.); (M.G.)
| | - Luca Dal Santo
- Pathology Unit, Department of Medicine, University of Padova, 35128 Padua, Italy; (L.D.S.); (M.F.)
| | - Marco Scarpa
- Chirurgia Generale 3, Azienda Ospedale Università Padova, 35128 Padua, Italy;
| | - Giada Munari
- Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy;
| | | | - Antonio Scapinello
- Anatomy and Pathological Histology Unit, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy;
| | - Sara Lonardi
- Unit of Medical Oncology 3, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy;
| | - Caterina Soldà
- Unit of Medical Oncology 1, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy; (C.S.); (F.B.)
| | - Francesca Bergamo
- Unit of Medical Oncology 1, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy; (C.S.); (F.B.)
| | - Alberto Fantin
- Gastroenterology Unit, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy;
| | - Romeo Bardini
- General Surgery Unit, Azienda Ospedaliera di Padova, 35128 Padua, Italy; (Y.C.S.); (R.B.)
| | - Pierluigi Pilati
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy; (P.P.); (M.G.)
| | - Matteo Fassan
- Pathology Unit, Department of Medicine, University of Padova, 35128 Padua, Italy; (L.D.S.); (M.F.)
- Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy;
| | - Mario Gruppo
- Surgical Oncology of Digestive Tract Unit, Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy; (P.P.); (M.G.)
| |
Collapse
|
114
|
Carpenter ES, Elhossiny AM, Kadiyala P, Li J, McGue J, Griffith BD, Zhang Y, Edwards J, Nelson S, Lima F, Donahue KL, Du W, Bischoff AC, Alomari D, Watkoske HR, Mattea M, The S, Espinoza CE, Barrett M, Sonnenday CJ, Olden N, Chen CT, Peterson N, Gunchick V, Sahai V, Rao A, Bednar F, Shi J, Frankel TL, Pasca di Magliano M. Analysis of Donor Pancreata Defines the Transcriptomic Signature and Microenvironment of Early Neoplastic Lesions. Cancer Discov 2023; 13:1324-1345. [PMID: 37021392 PMCID: PMC10236159 DOI: 10.1158/2159-8290.cd-23-0013] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
UNLABELLED The adult healthy human pancreas has been poorly studied given the lack of indication to obtain tissue from the pancreas in the absence of disease and rapid postmortem degradation. We obtained pancreata from brain dead donors, thus avoiding any warm ischemia time. The 30 donors were diverse in age and race and had no known pancreas disease. Histopathologic analysis of the samples revealed pancreatic intraepithelial neoplasia (PanIN) lesions in most individuals irrespective of age. Using a combination of multiplex IHC, single-cell RNA sequencing, and spatial transcriptomics, we provide the first-ever characterization of the unique microenvironment of the adult human pancreas and of sporadic PanIN lesions. We compared healthy pancreata to pancreatic cancer and peritumoral tissue and observed distinct transcriptomic signatures in fibroblasts and, to a lesser extent, macrophages. PanIN epithelial cells from healthy pancreata were remarkably transcriptionally similar to cancer cells, suggesting that neoplastic pathways are initiated early in tumorigenesis. SIGNIFICANCE Precursor lesions to pancreatic cancer are poorly characterized. We analyzed donor pancreata and discovered that precursor lesions are detected at a much higher rate than the incidence of pancreatic cancer, setting the stage for efforts to elucidate the microenvironmental and cell-intrinsic factors that restrain or, conversely, promote malignant progression. See related commentary by Hoffman and Dougan, p. 1288. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Eileen S. Carpenter
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Jay Li
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan
| | - Jake McGue
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Jacob Edwards
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Sarah Nelson
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Danyah Alomari
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan
| | | | - Michael Mattea
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Stephanie The
- Cancer Data Science Resource, University of Michigan, Ann Arbor, Michigan
| | | | - Meredith Barrett
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | | | - Chin-Tung Chen
- Colorectal Cancer Research Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicole Peterson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Valerie Gunchick
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Arvind Rao
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Cancer Data Science Resource, University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Filip Bednar
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Timothy L. Frankel
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
115
|
Bianchi A, De Castro Silva I, Deshpande NU, Singh S, Mehra S, Garrido VT, Guo X, Nivelo LA, Kolonias DS, Saigh SJ, Wieder E, Rafie CI, Dosch AR, Zhou Z, Umland O, Amirian H, Ogobuiro IC, Zhang J, Ban Y, Shiau C, Nagathihalli NS, Montgomery EA, Hwang WL, Brambilla R, Komanduri K, Villarino AV, Toska E, Stanger BZ, Gabrilovich DI, Merchant NB, Datta J. Cell-Autonomous Cxcl1 Sustains Tolerogenic Circuitries and Stromal Inflammation via Neutrophil-Derived TNF in Pancreatic Cancer. Cancer Discov 2023; 13:1428-1453. [PMID: 36946782 PMCID: PMC10259764 DOI: 10.1158/2159-8290.cd-22-1046] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.
Collapse
Affiliation(s)
- Anna Bianchi
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Iago De Castro Silva
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nilesh U. Deshpande
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Samara Singh
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Siddharth Mehra
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vanessa T. Garrido
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xinyu Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luis A. Nivelo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Despina S. Kolonias
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Eric Wieder
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Christine I. Rafie
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Austin R. Dosch
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhiqun Zhou
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Haleh Amirian
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ifeanyichukwu C. Ogobuiro
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Zhang
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuguang Ban
- Department of Public Health Sciences; University of Miami Miller School of Medicine, Miami, FL, USA Miami, FL, USA
| | - Carina Shiau
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nagaraj S. Nagathihalli
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Elizabeth A. Montgomery
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William L. Hwang
- Center for Systems Biology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krishna Komanduri
- Department of Medicine, University of California San Francisco Health, San Francisco, CA, USA
| | - Alejandro V. Villarino
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ben Z. Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Nipun B. Merchant
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jashodeep Datta
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
116
|
Prajapati DR, Molczyk C, Purohit A, Saxena S, Sturgeon R, Dave BJ, Kumar S, Batra SK, Singh RK. Small molecule antagonist of CXCR2 and CXCR1 inhibits tumor growth, angiogenesis, and metastasis in pancreatic cancer. Cancer Lett 2023; 563:216185. [PMID: 37062329 PMCID: PMC10218365 DOI: 10.1016/j.canlet.2023.216185] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Pancreatic cancer (PC) has a poor prognosis, and current therapeutic strategies are ineffective in advanced diseases. We and others have shown the aberrant expression of CXCR2 and its ligands in PC development and progression. Our objective for this study was to evaluate the therapeutic utility of CXCR2/1 targeting using an small molecule antagonist, SCH-479833, in different PC preclinical murine models (syngeneic or xenogeneic). Our results demonstrate that CXCR2/1 antagonist had both antitumor and anti-metastatic effects in PC. CXCR2/1 antagonist treatment inhibited tumor cell proliferation, migration, angiogenesis, and recruitment of neutrophils, while it increased apoptosis. Treatment with the antagonist enhanced fibrosis, tumor necrosis, and extramedullary hematopoiesis. Together, these findings suggest that selectively targeting CXCR2/1 with small molecule inhibitors is a promising therapeutic approach for inhibiting PC growth, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Dipakkumar R Prajapati
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Caitlin Molczyk
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Abhilasha Purohit
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Sugandha Saxena
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Reegan Sturgeon
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Bhavana J Dave
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5845, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5845, United States
| | - Rakesh K Singh
- Department of Pathology and Microbiology, 985950, Nebraska Medical Center, Omaha, NE, 68198-5900, United States.
| |
Collapse
|
117
|
Cardot-Ruffino V, Bollenrucher N, Delius L, Wang SJ, Brais LK, Remland J, Keheler CE, Sullivan KM, Abrams TA, Biller LH, Enzinger PC, McCleary NJ, Patel AK, Rubinson DA, Schlechter B, Slater S, Yurgelun MB, Cleary JM, Perez K, Dougan M, Ng K, Wolpin BM, Singh H, Dougan SK. G-CSF rescue of FOLFIRINOX-induced neutropenia leads to systemic immune suppression in mice and humans. J Immunother Cancer 2023; 11:e006589. [PMID: 37344102 PMCID: PMC10314699 DOI: 10.1136/jitc-2022-006589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Recombinant granulocyte colony-stimulating factor (G-CSF) is routinely administered for prophylaxis or treatment of chemotherapy-induced neutropenia. Chronic myelopoiesis and granulopoiesis in patients with cancer has been shown to induce immature monocytes and neutrophils that contribute to both systemic and local immunosuppression in the tumor microenvironment. The effect of recombinant G-CSF (pegfilgrastim or filgrastim) on the production of myeloid-derived suppressive cells is unknown. Here we examined patients with pancreatic cancer, a disease known to induce myeloid-derived suppressor cells (MDSCs), and for which pegfilgrastim is routinely administered concurrently with FOLFIRINOX but not with gemcitabine-based chemotherapy regimens. METHODS Serial blood was collected from patients with pancreatic ductal adenocarcinoma newly starting on FOLFIRINOX or gemcitabine/n(ab)paclitaxel combination chemotherapy regimens. Neutrophil and monocyte frequencies were determined by flow cytometry from whole blood and peripheral blood mononuclear cell fractions. Serum cytokines were evaluated pretreatment and on-treatment. Patient serum was used in vitro to differentiate healthy donor monocytes to MDSCs as measured by downregulation of major histocompatibility complex II (HLA-DR) and the ability to suppress T-cell proliferation in vitro. C57BL/6 female mice with pancreatic tumors were treated with FOLFIRINOX with or without recombinant G-CSF to directly assess the role of G-CSF on induction of immunosuppressive neutrophils. RESULTS Patients receiving FOLFIRINOX with pegfilgrastim had increased serum G-CSF that correlated with an induction of granulocytic MDSCs. This increase was not observed in patients receiving gemcitabine/n(ab)paclitaxel without pegfilgrastim. Interleukin-18 also significantly increased in serum on FOLFIRINOX treatment. Patient serum could induce MDSCs as determined by in vitro functional assays, and this suppressive effect increased with on-treatment serum. Induction of MDSCs in vitro could be recapitulated by addition of recombinant G-CSF to healthy serum, indicating that G-CSF is sufficient for MDSC differentiation. In mice, neutrophils isolated from spleen of G-CSF-treated mice were significantly more capable of suppressing T-cell proliferation. CONCLUSIONS Pegfilgrastim use contributes to immune suppression in both humans and mice with pancreatic cancer. These results suggest that use of recombinant G-CSF as supportive care, while critically important for mitigating neutropenia, may complicate efforts to induce antitumor immunity.
Collapse
Affiliation(s)
- Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Naima Bollenrucher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Luisa Delius
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - S Jennifer Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lauren K Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joshua Remland
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - C Elizabeth Keheler
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Keri M Sullivan
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas A Abrams
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Leah H Biller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter C Enzinger
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nadine J McCleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Anuj K Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Douglas A Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin Schlechter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Slater
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Dougan
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
118
|
Medler TR, Blair TC, Alice AF, Dowdell AK, Piening BD, Crittenden MR, Gough MJ. Myeloid MyD88 restricts CD8 + T cell response to radiation therapy in pancreatic cancer. Sci Rep 2023; 13:8634. [PMID: 37244938 PMCID: PMC10224952 DOI: 10.1038/s41598-023-35834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Radiation therapy induces immunogenic cell death in cancer cells, whereby released endogenous adjuvants are sensed by immune cells to direct adaptive immune responses. TLRs expressed on several immune subtypes recognize innate adjuvants to direct downstream inflammatory responses in part via the adapter protein MyD88. We generated Myd88 conditional knockout mice to interrogate its contribution to the immune response to radiation therapy in distinct immune populations in pancreatic cancer. Surprisingly, Myd88 deletion in Itgax (CD11c)-expressing dendritic cells had little discernable effects on response to RT in pancreatic cancer and elicited normal T cell responses using a prime/boost vaccination strategy. Myd88 deletion in Lck-expressing T cells resulted in similar or worsened responses to radiation therapy compared to wild-type mice and lacked antigen-specific CD8+ T cell responses from vaccination, similar to observations in Myd88-/- mice. Lyz2-specific loss of Myd88 in myeloid populations rendered tumors more susceptible to radiation therapy and elicited normal CD8+ T cell responses to vaccination. scRNAseq in Lyz2-Cre/Myd88fl/fl mice revealed gene signatures in macrophages and monocytes indicative of enhanced type I and II interferon responses, and improved responses to RT were dependent on CD8+ T cells and IFNAR1. Together, these data implicate MyD88 signaling in myeloid cells as a critical source of immunosuppression that hinders adaptive immune tumor control following radiation therapy.
Collapse
Affiliation(s)
- Terry R Medler
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Tiffany C Blair
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Alexa K Dowdell
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Brian D Piening
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
- The Oregon Clinic, Portland, OR, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA.
| |
Collapse
|
119
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
120
|
Chen E, Yu J. The role and metabolic adaptations of neutrophils in premetastatic niches. Biomark Res 2023; 11:50. [PMID: 37158964 PMCID: PMC10169509 DOI: 10.1186/s40364-023-00493-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
It has been found that tumor cells create microenvironments in distant organs that promote their survival and growth in advance of their arrival. These predetermined microenvironments are referred to as "pre-metastatic niches". Increasing attention is being paid to neutrophils' role in forming the pre-metastatic niche. As major components of the pre-metastatic niche, tumor-associated neutrophils (TANs) play an important role in the formation of the pre-metastatic niche through communication with multiple growth factors, chemokines, inflammatory factors, and other immune cells, which together create a pre-metastatic niche well suited for tumor cell seeding and growth. However, how TANs modulate their metabolism to survive and exert their functions in the process of metastasis remains largely to be discovered. Accordingly, the objective of this review is to assess the role that neutrophils play in the formation of pre-metastatic niche and to explore the metabolism alteration of neutrophils in cancer metastasis. A better understanding of the role of TANs in pre-metastatic niche will help us discover new mechanisms of metastasis and develop new therapies targeting TANs.
Collapse
Affiliation(s)
- Enli Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong an Road, Beijing, 100053, Xi Cheng District, China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong an Road, Beijing, 100053, Xi Cheng District, China.
| |
Collapse
|
121
|
Ye J, Gavras NW, Keeley DC, Hughson AL, Hannon G, Vrooman TG, Lesch ML, Johnston CJ, Lord EM, Belt BA, Linehan DC, Eyles J, Gerber SA. CD73 and PD-L1 dual blockade amplifies antitumor efficacy of SBRT in murine PDAC models. J Immunother Cancer 2023; 11:e006842. [PMID: 37142292 PMCID: PMC10163599 DOI: 10.1136/jitc-2023-006842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) induces immunogenic cell death, leading to subsequent antitumor immune response that is in part counterbalanced by activation of immune evasive processes, for example, upregulation of programmed cell death-ligand 1 (PD-L1) and adenosine generating enzyme, CD73. CD73 is upregulated in pancreatic ductal adenocarcinoma (PDAC) compared with normal pancreatic tissue and high expression of CD73 in PDACs is associated with increased tumor size, advanced stage, lymph node involvement, metastasis, PD-L1 expression and poor prognosis. Therefore, we hypothesized that blockade of both CD73 and PD-L1 in combination with SBRT might improve antitumor efficacy in an orthotopic murine PDAC model. METHODS We assessed the combination of systemic blockade of CD73/PD-L1 and local SBRT on tumor growth in primary pancreatic tumors, and investigated systemic antitumor immunity using a metastatic murine model bearing both orthotopic primary pancreatic tumor and distal hepatic metastases. Immune response was quantified by flow cytometric and Luminex analyses. RESULTS We demonstrated that blockade of both CD73 and PD-L1 significantly amplified the antitumor effect of SBRT, leading to superior survival. The triple therapy (SBRT+anti-CD73+anti-PD-L1) modulated tumor-infiltrating immune cells with increases of interferon-γ+CD8+ T cells. Additionally, triple therapy reprogramed the profile of cytokines/chemokines in the tumor microenvironment toward a more immunostimulatory phenotype. The beneficial effects of triple therapy are completely abrogated by depletion of CD8+ T cells, and partially reversed by depletion of CD4+ T cells. Triple therapy promoted systemic antitumor responses illustrated by: (1) potent long-term antitumor memory and (2) enhanced both primary and liver metastases control along with prolonged survival.
Collapse
Affiliation(s)
- Jian Ye
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nicholas W Gavras
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C Keeley
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Angela L Hughson
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Gary Hannon
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Tara G Vrooman
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Maggie L Lesch
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Carl J Johnston
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Edith M Lord
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian A Belt
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David C Linehan
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Jim Eyles
- Oncology R&D, Research and Early Development, AstraZeneca R&D, Cambridge, UK
| | - Scott A Gerber
- Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
122
|
Peng M, Ying Y, Zhang Z, Liu L, Wang W. Reshaping the Pancreatic Cancer Microenvironment at Different Stages with Chemotherapy. Cancers (Basel) 2023; 15:2448. [PMID: 37173915 PMCID: PMC10177210 DOI: 10.3390/cancers15092448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
The dynamic tumor microenvironment, especially the immune microenvironment, during the natural progression and/or chemotherapy treatment is a critical frontier in understanding the effects of chemotherapy on pancreatic cancer. Non-stratified pancreatic cancer patients always receive chemotherapeutic strategies, including neoadjuvant chemotherapy and adjuvant chemotherapy, predominantly according to their physical conditions and different disease stages. An increasing number of studies demonstrate that the pancreatic cancer tumor microenvironment could be reshaped by chemotherapy, an outcome caused by immunogenic cell death, selection and/or education of preponderant tumor clones, adaptive gene mutations, and induction of cytokines/chemokines. These outcomes could in turn impact the efficacy of chemotherapy, making it range from synergetic to resistant and even tumor-promoting. Under chemotherapeutic impact, the metastatic micro-structures in the primary tumor may be built to leak tumor cells into the lymph or blood vasculature, and micro-metastatic/recurrent niches rich in immunosuppressive cells may be recruited by cytokines and chemokines, which provide housing conditions for these circling tumor cells. An in-depth understanding of how chemotherapy reshapes the tumor microenvironment may lead to new therapeutic strategies to block its adverse tumor-promoting effects and prolong survival. In this review, reshaped pancreatic cancer tumor microenvironments due to chemotherapy were reflected mainly in immune cells, pancreatic cancer cells, and cancer-associated fibroblast cells, quantitatively, functionally, and spatially. Additionally, small molecule kinases and immune checkpoints participating in this remodeling process caused by chemotherapy are suggested to be blocked reasonably to synergize with chemotherapy.
Collapse
Affiliation(s)
- Maozhen Peng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (M.P.); (Y.Y.); (Z.Z.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (M.P.); (Y.Y.); (Z.Z.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (M.P.); (Y.Y.); (Z.Z.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (M.P.); (Y.Y.); (Z.Z.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (M.P.); (Y.Y.); (Z.Z.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
123
|
Barry ST, Gabrilovich DI, Sansom OJ, Campbell AD, Morton JP. Therapeutic targeting of tumour myeloid cells. Nat Rev Cancer 2023; 23:216-237. [PMID: 36747021 DOI: 10.1038/s41568-022-00546-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/08/2023]
Abstract
Myeloid cells are pivotal within the immunosuppressive tumour microenvironment. The accumulation of tumour-modified myeloid cells derived from monocytes or neutrophils - termed 'myeloid-derived suppressor cells' - and tumour-associated macrophages is associated with poor outcome and resistance to treatments such as chemotherapy and immune checkpoint inhibitors. Unfortunately, there has been little success in large-scale clinical trials of myeloid cell modulators, and only a few distinct strategies have been used to target suppressive myeloid cells clinically so far. Preclinical and translational studies have now elucidated specific functions for different myeloid cell subpopulations within the tumour microenvironment, revealing context-specific roles of different myeloid cell populations in disease progression and influencing response to therapy. To improve the success of myeloid cell-targeted therapies, it will be important to target tumour types and patient subsets in which myeloid cells represent the dominant driver of therapy resistance, as well as to determine the most efficacious treatment regimens and combination partners. This Review discusses what we can learn from work with the first generation of myeloid modulators and highlights recent developments in modelling context-specific roles for different myeloid cell subtypes, which can ultimately inform how to drive more successful clinical trials.
Collapse
Affiliation(s)
- Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
124
|
Chan YT, Tan HY, Lu Y, Zhang C, Cheng CS, Wu J, Wang N, Feng Y. Pancreatic melatonin enhances anti-tumor immunity in pancreatic adenocarcinoma through regulating tumor-associated neutrophils infiltration and NETosis. Acta Pharm Sin B 2023; 13:1554-1567. [PMID: 37139434 PMCID: PMC10150138 DOI: 10.1016/j.apsb.2023.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment contributes to poor prognosis of pancreatic adenocarcinoma (PAAD) patients. Proper regulation could improve survival. Melatonin is an endogenous hormone that delivers multiple bioactivities. Here we showed that pancreatic melatonin level is associated with patients' survival. In PAAD mice models, melatonin supplementation suppressed tumor growth, while blockade of melatonin pathway exacerbated tumor progression. This anti-tumor effect was independent of cytotoxicity but associated with tumor-associated neutrophils (TANs), and TANs depletion reversed effects of melatonin. Melatonin induced TANs infiltration and activation, therefore induced cell apoptosis of PAAD cells. Cytokine arrays revealed that melatonin had minimal impact on neutrophils but induced secretion of Cxcl2 from tumor cells. Knockdown of Cxcl2 in tumor cells abolished neutrophil migration and activation. Melatonin-induced neutrophils presented an N1-like anti-tumor phenotype, with increased neutrophil extracellular traps (NETs) causing tumor cell apoptosis through cell-to-cell contact. Proteomics analysis revealed that this reactive oxygen species (ROS)-mediated inhibition was fueled by fatty acid oxidation (FAO) in neutrophils, while FAO inhibitor abolished the anti-tumor effect. Analysis of PAAD patient specimens revealed that CXCL2 expression was associated with neutrophil infiltration. CXCL2, or TANs, combined with NET marker, can better predict patients' prognosis. Collectively, we discovered an anti-tumor mechanism of melatonin through recruiting N1-neutrophils and beneficial NET formation.
Collapse
Affiliation(s)
- Yau-tuen Chan
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| | - Hor-yue Tan
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
- Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanjun Lu
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| | - Cheng Zhang
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| | - Chien-shan Cheng
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
- Department of Traditional Chinese Medicine, Shanghai Jiaotong University, School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
125
|
Cheruku S, Rao V, Pandey R, Rao Chamallamudi M, Velayutham R, Kumar N. Tumor-associated macrophages employ immunoediting mechanisms in colorectal tumor progression: Current research in Macrophage repolarization immunotherapy. Int Immunopharmacol 2023; 116:109569. [PMID: 36773572 DOI: 10.1016/j.intimp.2022.109569] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 02/11/2023]
Abstract
Tumor-associated macrophages (TAMs) constitute the most prolific resident of the tumor microenvironment (TME) that regulate its TME into tumor suppressive or progressive milieu by utilizing immunoediting machinery. Here, the tumor cells construct an immunosuppressive microenvironment that educates TAMs to polarize from anti-tumor TAM-M1 to pro-tumor TAM-M2 phenotype consequently contributing to tumor progression. In colorectal cancer (CRC), the TME displays a prominent pro-tumorigenic immune profile with elevated expression of immune-checkpoint molecules notably PD-1, CTLA4, etc., in both MSI and ultra-mutated MSS tumors. This authenticated immune-checkpoint inhibition (ICI) immunotherapy as a pre-requisite for clinical benefit in CRC. However, in response to ICI, specifically, the MSIhi tumors evolved to produce novel immune escape variants thus undermining ICI. Lately, TAM-directed therapies extending from macrophage depletion to repolarization have enabled TME alteration. While TAM accrual implicates clinical benefit in CRC, sustained inflammatory insult may program TAMs to shift from M1 to M2 phenotype. Their ability to oscillate on both facets of the spectrum represents macrophage repolarization immunotherapy as an effective approach to treating CRC. In this review, we briefly discuss the differentiation heterogeneity of colonic macrophages that partake in macrophage-directed immunoediting mechanisms in CRC progression and its employment in macrophage re-polarization immunotherapy.
Collapse
Affiliation(s)
- SriPragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ruchi Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal- 576104, Karnataka, India
| | - Ravichandiran Velayutham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, and Research, Hajipur, Export Promotions Industrial Park (EPIP), Industrial area, Hajipur, Vaishali, 844102, Bihar, India.
| |
Collapse
|
126
|
Huang Y, Wang Z, Gong J, Zhu D, Chen W, Li F, Liang XJ, Liu X. Macrophages as potential targets in gene therapy for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:89-101. [PMID: 36937317 PMCID: PMC10017190 DOI: 10.37349/etat.2023.00124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/30/2022] [Indexed: 03/04/2023] Open
Abstract
Macrophages, as ubiquitous and functionally diverse immune cells, play a central role in innate immunity and initiate adaptive immunity. Especially, tumor-associated macrophages (TAMs) are crucial contributors to the tumorigenesis and development of cancer. Thus, macrophages are emerging potential targets for cancer treatment. Among the numerous targeted therapeutic options, gene therapy is one of the most potential therapeutic strategies via directly and specifically regulating biological functions of macrophages at the gene level for cancer treatment. This short review briefly introduces the characteristics of macrophage populations, the functions of TAM in the occurrence, and the progress of cancer. It also summarized some representative examples to highlight the current progress in TAM-targeted gene therapy. The review hopes to provide new insights into macrophage-targeted gene therapy for precision cancer therapy.
Collapse
Affiliation(s)
- Yuanzheng Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Zhihui Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Junni Gong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Dandan Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Wang Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Fangzhou Li
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Nano Science and Technology Institute, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
127
|
Wu Z, Thierry K, Bachy S, Zhang X, Gamradt P, Hernandez-Vargas H, Mikaelian I, Tonon L, Pommier R, Zhao Y, Bertolino P, Hennino A. Pericyte stem cells induce Ly6G + cell accumulation and immunotherapy resistance in pancreatic cancer. EMBO Rep 2023; 24:e56524. [PMID: 36802267 PMCID: PMC10074138 DOI: 10.15252/embr.202256524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
We report the identification of a cell population that shares pericyte, stromal and stemness features, does not harbor the KrasG12D mutation and drives tumoral growth in vitro and in vivo. We term these cells pericyte stem cells (PeSCs) and define them as CD45- EPCAM- CD29+ CD106+ CD24+ CD44+ cells. We perform studies with p48-Cre;KrasG12D (KC), pdx1-Cre;KrasG12D ;Ink4a/Arffl/fl (KIC) and pdx1-Cre;KrasG12D ;p53R172H (KPC) and tumor tissues from PDAC and chronic pancreatitis patients. We also perform single-cell RNAseq analysis and reveal a unique signature of PeSC. Under steady-state conditions, PeSCs are barely detectable in the pancreas but present in the neoplastic microenvironment both in humans and mice. The coinjection of PeSCs and tumor epithelial cells leads to increased tumor growth, differentiation of Ly6G+ myeloid-derived suppressor cells, and a decreased amount of F4/80+ macrophages and CD11c+ dendritic cells. This population induces resistance to anti-PD-1 immunotherapy when coinjected with epithelial tumor cells. Our data reveal the existence of a cell population that instructs immunosuppressive myeloid cell responses to bypass PD-1 targeting and thus suggest potential new approaches for overcoming resistance to immunotherapy in clinical settings.
Collapse
Affiliation(s)
- Zhichong Wu
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France.,Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kevin Thierry
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Sophie Bachy
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Xinyi Zhang
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Pia Gamradt
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Ivan Mikaelian
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Laurie Tonon
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Roxanne Pommier
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Yajie Zhao
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France.,Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Philippe Bertolino
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| | - Ana Hennino
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon, France.,Université Lyon 1, Lyon, France.,Centre Léon Bérard, Lyon, France
| |
Collapse
|
128
|
Interplay between tumor-derived factors and tumor-associated neutrophils: opportunities for therapeutic interventions in cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03100-0. [PMID: 36745341 DOI: 10.1007/s12094-023-03100-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Neutrophils have emerged as important players in the tumor microenvironment, largely attributed to their plasticity and heterogeneity. Evidence accumulated thus far indicates that neutrophils signaled by external cues can promote tumor progression via several mechanisms. Hence, in our quest to target tumor-associated neutrophils to improve treatment, understanding the mechanisms by which tumor-derived factors regulate neutrophils to gain pro-tumor functions and the feedback loop by which these neutrophils promote tumor progression is very crucial. Herein, we review the published data on how tumor-derived factors alter neutrophils phenotype to promote tumor progression with particular emphasis on immunosuppression, autophagy, angiogenesis, tumor proliferation, metastasis, and therapeutic resistance. These deeper insights could provide a wider view and novel therapeutic approach to neutrophil-targeted therapy in cancer.
Collapse
|
129
|
Abstract
Pancreatic ductal adenocarcinomas are distinguished by their robust desmoplasia, or fibroinflammatory response. Dominated by non-malignant cells, the mutated epithelium must therefore combat, cooperate with or co-opt the surrounding cells and signalling processes in its microenvironment. It is proposed that an invasive pancreatic ductal adenocarcinoma represents the coordinated evolution of malignant and non-malignant cells and mechanisms that subvert and repurpose normal tissue composition, architecture and physiology to foster tumorigenesis. The complex kinetics and stepwise development of pancreatic cancer suggests that it is governed by a discrete set of organizing rules and principles, and repeated attempts to target specific components within the microenvironment reveal self-regulating mechanisms of resistance. The histopathological and genetic progression models of the transforming ductal epithelium must therefore be considered together with a programme of stromal progression to create a comprehensive picture of pancreatic cancer evolution. Understanding the underlying organizational logic of the tumour to anticipate and pre-empt the almost inevitable compensatory mechanisms will be essential to eradicate the disease.
Collapse
Affiliation(s)
- Sunil R Hingorani
- Division of Hematology and Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
130
|
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J, Larionova I. Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 2023; 62:32. [PMID: 36660926 PMCID: PMC9851132 DOI: 10.3892/ijo.2023.5480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are crucial cells of the tumor microenvironment (TME), which belong to the innate immune system and regulate primary tumor growth, immunosuppression, angiogenesis, extracellular matrix remodeling and metastasis. The review discusses current knowledge of essential cell‑cell interactions of TAMs within the TME of solid tumors. It summarizes the mechanisms of stromal cell (including cancer‑associated fibroblasts and endothelial cells)‑mediated monocyte recruitment and regulation of differentiation, as well as pro‑tumor and antitumor polarization of TAMs. Additionally, it focuses on the perivascular TAM subpopulations that regulate angiogenesis and lymphangiogenesis. It describes the possible mechanisms of reciprocal interactions of TAMs with other immune cells responsible for immunosuppression. Finally, it highlights the perspectives for novel therapeutic approaches to use combined cellular targets that include TAMs and other stromal and immune cells in the TME. The collected data demonstrated the importance of understanding cell‑cell interactions in the TME to prevent distant metastasis and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Anna Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Tatiana Sudarskikh
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Oleg Kovalev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| |
Collapse
|
131
|
Velasco RM, García AG, Sánchez PJ, Sellart IM, Sánchez-Arévalo Lobo VJ. Tumour microenvironment and heterotypic interactions in pancreatic cancer. J Physiol Biochem 2023; 79:179-192. [PMID: 35102531 DOI: 10.1007/s13105-022-00875-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a disease with a survival rate of 9%; this is due to its chemoresistance and the large tumour stroma that occupies most of the tumour mass. It is composed of a large number of cells of the immune system, such as Treg cells, tumour-associated macrophages (TAMs), myeloid suppressor cells (MDCs) and tumour-associated neutrophiles (TANs) that generate an immunosuppressive environment by the release of inflammatory cytokines. Moreover, cancer-associated fibroblast (CAFs) provide a protective coverage that would difficult the access of chemotherapy to the tumour. According to this, new therapies that could remodel this heterogeneous tumour microenvironment, such as adoptive T cell therapies (ACT), immune checkpoint inhibitors (ICI), and CD40 agonists, should be developed for targeting PDA. This review organizes the different cell populations found in the tumour stroma involved in tumour progression in addition to the different therapies that are being studied to counteract the tumour.
Collapse
Affiliation(s)
- Raúl Muñoz Velasco
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Ana García García
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Paula Jiménez Sánchez
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Inmaculada Montanuy Sellart
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
| | - Víctor Javier Sánchez-Arévalo Lobo
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain.
| |
Collapse
|
132
|
Liu X, Iovanna J, Santofimia-Castaño P. Stroma-targeting strategies in pancreatic cancer: a double-edged sword. J Physiol Biochem 2023; 79:213-222. [PMID: 36580230 DOI: 10.1007/s13105-022-00941-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of cancer with limited treatment options and terrible long-term survival, and it is expected to become the second leading cause of cancer-related death by 2030. One reason why this cancer is so aggressive and resistant is the formation of dense stroma that surrounds the neoplastic epithelium, which promotes tumor progression, invasion, metastasis, and resistance. The three major components of PDAC stroma are extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), and vasculature. The dense ECM acts as a natural physical barrier, impeding drug penetration to PDAC tumor cells. Consequently, the method that combines stroma-targeting with anticancer therapy may be a viable alternative for increasing drug penetration. Additionally, blood vessels are key entities of the tumor stroma, serving as a pathway for nutrition as well as the only way for chemical medicines and immune cells to act. Finally, PDAC CAFs and tumor cells have crosstalk effects in the tumor microenvironment, where they are responsible for enhanced matrix deposition. In this review, we aim to provide an overview of our current comprehension of the three key components of PDAC stroma and the new promising therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Xi Liu
- Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258, INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique Et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258, INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique Et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), UMR 7258, INSERM U1068, CNRS, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique Et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France.
| |
Collapse
|
133
|
Ju C, Yuan F, Wang L, Zang C, Ning J, Shang M, Ma J, Li G, Yang Y, Chen Q, Jiang Y, Li F, Bao X, Zhang D. Inhibition of CXCR2 enhances CNS remyelination via modulating PDE10A/cAMP signaling pathway. Neurobiol Dis 2023; 177:105988. [PMID: 36603746 DOI: 10.1016/j.nbd.2023.105988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023] Open
Abstract
CXC chemokine receptor 2 (CXCR2) plays an important role in demyelinating diseases, but the detailed mechanisms were not yet clarified. In the present study, we mainly investigated the critical function and the potential molecular mechanisms of CXCR2 on oligodendrocyte precursor cell (OPC) differentiation and remyelination. The present study demonstrated that inhibiting CXCR2 significantly enhanced OPC differentiation and remyelination in primary cultured OPCs and ethidium bromide (EB)-intoxicated rats by facilitating the formation of myelin proteins, including PDGFRα, MBP, MAG, MOG, and Caspr. Further investigation identified phosphodiesterase 10A (PDE10A) as a main downstream protein of CXCR2, interacting with the receptor to regulate OPC differentiation, in that inhibition of CXCR2 reduced PDE10A expression while suppression of PDE10A did not affect CXCR2. Furthermore, inhibition of PDE10A promoted OPC differentiation, whereas overexpression of PDE10A down-regulated OPC differentiation. Our data also revealed that inhibition of CXCR2/PDE10A activated the cAMP/ERK1/2 signaling pathway, and up-regulated the expression of key transcription factors, including SOX10, OLIG2, MYRF, and ZFP24, that ultimately promoted remyelination and myelin protein biosynthesis. In conclusion, our findings suggested that inhibition of CXCR2 promoted OPC differentiation and enhanced remyelination by regulating PDE10A/cAMP/ERK1/2 signaling pathway. The present data also highlighted that CXCR2 may serve as a potential target for the treatment of demyelination diseases.
Collapse
Affiliation(s)
- Cheng Ju
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Gen Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yang Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Qiuzhu Chen
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yueqi Jiang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Fangfang Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
134
|
Sherman MH, Beatty GL. Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. ANNUAL REVIEW OF PATHOLOGY 2023; 18:123-148. [PMID: 36130070 PMCID: PMC9877114 DOI: 10.1146/annurev-pathmechdis-031621-024600] [Citation(s) in RCA: 190] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a prominent stromal microenvironment with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. Recent advances in tissue imaging capabilities, single-cell analytics, and disease modeling have shed light on organizing principles that shape the stromal complexity of PDAC tumors. These insights into the functional and spatial dependencies that coordinate cancer cell biology and the relationships that exist between cells and extracellular matrix components present in tumors are expected to unveil therapeutic vulnerabilities. We review recent advances in the field and discuss current understandings of mechanisms by which the tumor microenvironment shapes PDAC pathogenesis and therapy resistance.
Collapse
Affiliation(s)
- Mara H Sherman
- Department of Cell, Developmental and Cancer Biology; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
| | - Gregory L Beatty
- Abramson Cancer Center; and Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
135
|
Carpenter ES, Elhossiny AM, Kadiyala P, Li J, McGue J, Griffith B, Zhang Y, Edwards J, Nelson S, Lima F, Donahue KL, Du W, Bischoff AC, Alomari D, Watkoske H, Mattea M, The S, Espinoza C, Barrett M, Sonnenday CJ, Olden N, Peterson N, Gunchick V, Sahai V, Rao A, Bednar F, Shi J, Frankel TL, Di Magliano MP. Analysis of donor pancreata defines the transcriptomic signature and microenvironment of early pre-neoplastic pancreatic lesions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523300. [PMID: 36712058 PMCID: PMC9882230 DOI: 10.1101/2023.01.13.523300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The adult healthy human pancreas has been poorly studied given lack of indication to obtain tissue from the pancreas in the absence of disease and rapid postmortem degradation. We obtained pancreata from brain dead donors thus avoiding any warm ischemia time. The 30 donors were diverse in age and race and had no known pancreas disease. Histopathological analysis of the samples revealed PanIN lesions in most individuals irrespective of age. Using a combination of multiplex immunohistochemistry, single cell RNA sequencing, and spatial transcriptomics, we provide the first ever characterization of the unique microenvironment of the adult human pancreas and of sporadic PanIN lesions. We compared healthy pancreata to pancreatic cancer and peritumoral tissue and observed distinct transcriptomic signatures in fibroblasts, and, to a lesser extent, macrophages. PanIN epithelial cells from healthy pancreata were remarkably transcriptionally similar to cancer cells, suggesting that neoplastic pathways are initiated early in tumorigenesis. Statement of significance The causes underlying the onset of pancreatic cancer remain largely unknown, hampering early detection and prevention strategies. Here, we show that PanIN are abundant in healthy individuals and present at a much higher rate than the incidence of pancreatic cancer, setting the stage for efforts to elucidate the microenvironmental and cell intrinsic factors that restrain, or, conversely, promote, malignant progression.
Collapse
Affiliation(s)
- Eileen S Carpenter
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Ahmed M Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, MI
| | - Jay Li
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI
| | - Jake McGue
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Brian Griffith
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Jacob Edwards
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Sarah Nelson
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Fatima Lima
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | - Danyah Alomari
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI
| | - Hannah Watkoske
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Michael Mattea
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Stephanie The
- Cancer Data Science Resource, University of Michigan, Ann Arbor, MI
| | - Carlos Espinoza
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | | | | | | | - Nicole Peterson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Valerie Gunchick
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Arvind Rao
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
- Cancer Data Science Resource, University of Michigan, Ann Arbor, MI
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Timothy L Frankel
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Immunology Graduate Program, University of Michigan, Ann Arbor, MI
| | - Marina Pasca Di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
136
|
Liu C, Li C, Liu Y. The role of metabolic reprogramming in pancreatic cancer chemoresistance. Front Pharmacol 2023; 13:1108776. [PMID: 36699061 PMCID: PMC9868425 DOI: 10.3389/fphar.2022.1108776] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Pancreatic cancer is characterized by hidden onset, high malignancy, and early metastasis. Although a few cases meet the surgical indications, chemotherapy remains the primary treatment, and the resulting chemoresistance has become an urgent clinical problem that needs to be solved. In recent years, the importance of metabolic reprogramming as one of the hallmarks of cancers in tumorigenesis has been validated. Metabolic reprogramming involves glucose, lipid, and amino acid metabolism and interacts with oncogenes to affect the expression of key enzymes and signaling pathways, modifying the tumor microenvironment and contributing to the occurrence of drug tolerance. Meanwhile, the mitochondria are hubs of the three major nutrients and energy metabolisms, which are also involved in the development of drug resistance. In this review, we summarized the characteristic changes in metabolism during the progression of pancreatic cancer and their impact on chemoresistance, outlined the role of the mitochondria, and summarized current studies on metabolic inhibitors.
Collapse
|
137
|
Gulhati P, Schalck A, Jiang S, Shang X, Wu CJ, Hou P, Ruiz SH, Soto LS, Parra E, Ying H, Han J, Dey P, Li J, Deng P, Sei E, Maeda DY, Zebala JA, Spring DJ, Kim M, Wang H, Maitra A, Moore D, Clise-Dwyer K, Wang YA, Navin NE, DePinho RA. Targeting T cell checkpoints 41BB and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response in pancreatic cancer. NATURE CANCER 2023; 4:62-80. [PMID: 36585453 PMCID: PMC9925045 DOI: 10.1038/s43018-022-00500-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/18/2022] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered non-immunogenic, with trials showing its recalcitrance to PD1 and CTLA4 immune checkpoint therapies (ICTs). Here, we sought to systematically characterize the mechanisms underlying de novo ICT resistance and to identify effective therapeutic options for PDAC. We report that agonist 41BB and antagonist LAG3 ICT alone and in combination, increased survival and antitumor immunity, characterized by modulating T cell subsets with antitumor activity, increased T cell clonality and diversification, decreased immunosuppressive myeloid cells and increased antigen presentation/decreased immunosuppressive capability of myeloid cells. Translational analyses confirmed the expression of 41BB and LAG3 in human PDAC. Since single and dual ICTs were not curative, T cell-activating ICTs were combined with a CXCR1/2 inhibitor targeting immunosuppressive myeloid cells. Triple therapy resulted in durable complete responses. Given similar profiles in human PDAC and the availability of these agents for clinical testing, our findings provide a testable hypothesis for this lethal disease.
Collapse
Affiliation(s)
- Pat Gulhati
- Department of Medical Oncology, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aislyn Schalck
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingping Hou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharia Hernandez Ruiz
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jincheng Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prasenjit Dey
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emi Sei
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Kim
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dirk Moore
- Department of Biostatistics, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
138
|
Chaintreuil P, Kerreneur E, Bourgoin M, Savy C, Favreau C, Robert G, Jacquel A, Auberger P. The generation, activation, and polarization of monocyte-derived macrophages in human malignancies. Front Immunol 2023; 14:1178337. [PMID: 37143666 PMCID: PMC10151765 DOI: 10.3389/fimmu.2023.1178337] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Macrophages are immune cells that originate from embryogenesis or from the differentiation of monocytes. They can adopt numerous phenotypes depending on their origin, tissue distribution and in response to different stimuli and tissue environment. Thus, in vivo, macrophages are endowed with a continuum of phenotypes that are rarely strictly pro-inflammatory or anti-inflammatory and exhibit a broad expression profile that sweeps over the whole polarization spectrum. Schematically, three main macrophage subpopulations coexist in human tissues: naïve macrophages also called M0, pro-inflammatory macrophages referred as M1 macrophages, and anti-inflammatory macrophages also known as M2 macrophages. Naïve macrophages display phagocytic functions, recognize pathogenic agents, and rapidly undergo polarization towards pro or anti-inflammatory macrophages to acquire their full panel of functions. Pro-inflammatory macrophages are widely involved in inflammatory response, during which they exert anti-microbial and anti-tumoral functions. By contrast, anti-inflammatory macrophages are implicated in the resolution of inflammation, the phagocytosis of cell debris and tissue reparation following injuries. Macrophages also play important deleterious or beneficial roles in the initiation and progression of different pathophysiological settings including solid and hematopoietic cancers. A better understanding of the molecular mechanisms involved in the generation, activation and polarization of macrophages is a prerequisite for the development of new therapeutic strategies to modulate macrophages functions in pathological situations.
Collapse
Affiliation(s)
- Paul Chaintreuil
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Emeline Kerreneur
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Maxence Bourgoin
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Coline Savy
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Cécile Favreau
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Guillaume Robert
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Arnaud Jacquel
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- *Correspondence: Arnaud Jacquel, ; Patrick Auberger,
| | - Patrick Auberger
- Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- *Correspondence: Arnaud Jacquel, ; Patrick Auberger,
| |
Collapse
|
139
|
Wan Z, Huang H, West RE, Zhang M, Zhang B, Cai X, Zhang Z, Luo Z, Chen Y, Zhang Y, Xie W, Yang D, Nolin TD, Wang J, Li S, Sun J. Overcoming pancreatic cancer immune resistance by codelivery of CCR2 antagonist using a STING-activating gemcitabine-based nanocarrier. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:33-50. [PMID: 38239407 PMCID: PMC10795849 DOI: 10.1016/j.mattod.2022.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
STING agonist has recently gained much attention for cancer treatment, but the therapeutic potential of STING agonist is hampered by STING-associated tumor immune resistance. In this work, guided by both bioinformatics and computer modeling, we rationally designed a "one stone hits two birds" nanoparticle-based strategy to simultaneously activate STING innate immune response while eliminating STING-associated immune resistance for the treatment of pancreatic ductal adenocarcinoma (PDAC). We discovered that the ultra-small sized micellar system based on gemcitabine-conjugated polymer (PGEM), which showed superior capacity of penetration in pancreatic tumor spheroid model and orthotopic tumor model, could serve as a novel "STING agonist". The activation of STING signaling in dendritic cells (DCs) by PGEM increased both innate nature killer (NK) and adaptive anti-tumor T cell response. However, activation of STING signaling by PGEM in tumor cells also drove the induction of chemokines CCL2 and CCL7, resulting in immune resistance by recruiting tumor associated macrophage (TAM) and myeloid-derived suppressor cells (MDSCs). Through the combination of computer modeling and experimental screening, we developed a dual delivery modality by incorporating a CCR2 (the receptor shared by both CCL2 and CCL7) antagonist PF-6309 (PF) into PGEM micellar system. Our studies demonstrated that PGEM/PF formulation significantly reduced pancreatic tumor burden and induced potent anti-tumor immunity through reversing the CCL2/CCL7-mediated immunosuppression. Moreover, PGEM/PF sensitized PDAC tumors to anti-PD-1 therapy, leading to complete suppression/eradication of the tumors. Our work has shed light to the multi-faceted role of STING activation and provided a novel immunotherapy regimen to maximize the benefit of STING activation for PDAC treatment. In addition, this work paved a new way for bioinformatics and computer modeling-guided rational design of nanomedicine.
Collapse
Affiliation(s)
- Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Raymond E West
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Xinran Cai
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Yue Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
140
|
Sieow JL, Penny HL, Gun SY, Tan LQ, Duan K, Yeong JPS, Pang A, Lim D, Toh HC, Lim TKH, Engleman E, Rotzschke O, Ng LG, Chen J, Tan SM, Wong SC. Conditional Knockout of Hypoxia-Inducible Factor 1-Alpha in Tumor-Infiltrating Neutrophils Protects against Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:ijms24010753. [PMID: 36614196 PMCID: PMC9821271 DOI: 10.3390/ijms24010753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023] Open
Abstract
Large numbers of neutrophils infiltrate tumors and comprise a notable component of the inflammatory tumor microenvironment. While it is established that tumor cells exhibit the Warburg effect for energy production, the contribution of the neutrophil metabolic state to tumorigenesis is unknown. Here, we investigated whether neutrophil infiltration and metabolic status promotes tumor progression in an orthotopic mouse model of pancreatic ductal adenocarcinoma (PDAC). We observed a large increase in the proportion of neutrophils in the blood and tumor upon orthotopic transplantation. Intriguingly, these tumor-infiltrating neutrophils up-regulated glycolytic factors and hypoxia-inducible factor 1-alpha (HIF-1α) expression compared to neutrophils from the bone marrow and blood of the same mouse. This enhanced glycolytic signature was also observed in human PDAC tissue samples. Strikingly, neutrophil-specific deletion of HIF-1α (HIF-1αΔNφ) significantly reduced tumor burden and improved overall survival in orthotopic transplanted mice, by converting the pro-tumorigenic neutrophil phenotype to an anti-tumorigenic phenotype. This outcome was associated with elevated reactive oxygen species production and activated natural killer cells and CD8+ cytotoxic T cells compared to littermate control mice. These data suggest a role for HIF-1α in neutrophil metabolism, which could be exploited as a target for metabolic modulation in cancer.
Collapse
Affiliation(s)
- Je Lin Sieow
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hweixian Leong Penny
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Ling Qiao Tan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Joe Poh Sheng Yeong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Angela Pang
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| | - Diana Lim
- Department of Pathology, National University Health System, Singapore 119074, Singapore
| | - Han Chong Toh
- Department of Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169856, Singapore
| | - Edgar Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olaf Rotzschke
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Suet Mien Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Siew Cheng Wong
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: ; Tel.: +65-64070030
| |
Collapse
|
141
|
Antuamwine BB, Bosnjakovic R, Hofmann-Vega F, Wang X, Theodosiou T, Iliopoulos I, Brandau S. N1 versus N2 and PMN-MDSC: A critical appraisal of current concepts on tumor-associated neutrophils and new directions for human oncology. Immunol Rev 2022; 314:250-279. [PMID: 36504274 DOI: 10.1111/imr.13176] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Research on tumor-associated neutrophils (TAN) currently surges because of the well-documented strong clinical relevance of tumor-infiltrating neutrophils. This relevance is illustrated by strong correlations between high frequencies of intratumoral neutrophils and poor outcome in the majority of human cancers. Recent high-dimensional analysis of murine neutrophils provides evidence for unexpected plasticity of neutrophils in murine models of cancer and other inflammatory non-malignant diseases. New analysis tools enable deeper insight into the process of neutrophil differentiation and maturation. These technological and scientific developments led to the description of an ever-increasing number of distinct transcriptional states and associated phenotypes in murine models of disease and more recently also in humans. At present, functional validation of these different transcriptional states and potential phenotypes in cancer is lacking. Current functional concepts on neutrophils in cancer rely mainly on the myeloid-derived suppressor cell (MDSC) concept and the dichotomous and simple N1-N2 paradigm. In this manuscript, we review the historic development of those concepts, critically evaluate these concepts against the background of our own work and provide suggestions for a refinement of current concepts in order to facilitate the transition of TAN research from experimental insight to clinical translation.
Collapse
Affiliation(s)
- Benedict Boateng Antuamwine
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Rebeka Bosnjakovic
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Francisca Hofmann-Vega
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Xi Wang
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Theodosios Theodosiou
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioannis Iliopoulos
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
| |
Collapse
|
142
|
Chen Q, Yin H, Liu S, Shoucair S, Ding N, Ji Y, Zhang J, Wang D, Kuang T, Xu X, Yu J, Wu W, Pu N, Lou W. Prognostic value of tumor-associated N1/N2 neutrophil plasticity in patients following radical resection of pancreas ductal adenocarcinoma. J Immunother Cancer 2022; 10:jitc-2022-005798. [PMID: 36600557 PMCID: PMC9730407 DOI: 10.1136/jitc-2022-005798] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As an integral part of the tumor microenvironment (TME), tumor-associated neutrophils play a crucial role in tumor development. The objective of this study was to investigate the plasticity of tumor-associated N1 and N2 neutrophils in the TME of pancreatic ductal adenocarcinoma (PDAC), along with its impact on survival and association with immune infiltrations. METHODS The primary and validation cohorts including 90 radical resection patients from September 2012 to May 2016 and 29 radical resection patients from September 2018 to October 2019, respectively, with complete survival data, were enrolled. Immunofluorescence staining was used to identify tumor-associated N1 and N2 neutrophils, and the N1/N2 ratio was used to evaluate N1 and N2 plasticity. Thereafter, the association between tumor-associated N1/N2 neutrophil plasticity, clinical features, and immune infiltrations was investigated. RESULTS There was a significant increase in tumor-associated N2 neutrophils compared with tumor-associated N1 neutrophils. Low N1/N2 ratios were associated with the poorer differentiation of tumors, easier lymph node metastases, and a higher TNM stage. The median overall survival (OS) and recurrence-free survival (RFS) of the high tumor-associated N1 neutrophil group were significantly longer than those of the low group, while the tumor-associated N2 neutrophils played an opposite role. The multivariable analysis revealed that a high N1/N2 ratio was a significant prognostic indicator for OS and RFS. In addition, tumor-associated N1/N2 neutrophils showed an opposite correlation with tumor-infiltrating CD8+ T cells and Tregs. CONCLUSION The plasticity of tumor-associated N1/N2 neutrophils was identified as a crucial prognostic indicator that might reflect the TME and immune escape in patients with PDAC. On further investigation and validation, our findings may be used to further stratify patients with varying prognoses to optimize treatment.
Collapse
Affiliation(s)
- Qiangda Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sami Shoucair
- Department of Surgery, MedStar Health, Baltimore, Maryland, USA,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ni Ding
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China,Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jicheng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Yu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Departments of Medicine and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
143
|
Costa AD, Väyrynen SA, Chawla A, Zhang J, Väyrynen JP, Lau MC, Williams HL, Yuan C, Morales-Oyarvide V, Elganainy D, Singh H, Cleary JM, Perez K, Ng K, Freed-Pastor W, Mancias JD, Dougan SK, Wang J, Rubinson DA, Dunne RF, Kozak MM, Brais L, Reilly E, Clancy T, Linehan DC, Chang DT, Hezel AF, Koong AC, Aguirre A, Wolpin BM, Nowak JA. Neoadjuvant Chemotherapy Is Associated with Altered Immune Cell Infiltration and an Anti-Tumorigenic Microenvironment in Resected Pancreatic Cancer. Clin Cancer Res 2022; 28:5167-5179. [PMID: 36129461 PMCID: PMC9999119 DOI: 10.1158/1078-0432.ccr-22-1125] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 09/16/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE Neoadjuvant chemotherapy is increasingly administered to patients with resectable or borderline resectable pancreatic ductal adenocarcinoma (PDAC), yet its impact on the tumor immune microenvironment is incompletely understood. EXPERIMENTAL DESIGN We employed quantitative, spatially resolved multiplex immunofluorescence and digital image analysis to identify T-cell subpopulations, macrophage polarization states, and myeloid cell subpopulations in a multi-institution cohort of up-front resected primary tumors (n = 299) and in a comparative set of resected tumors after FOLFIRINOX-based neoadjuvant therapy (n = 36) or up-front surgery (n = 30). Multivariable-adjusted Cox proportional hazards models were used to evaluate associations between the immune microenvironment and patient outcomes. RESULTS In the multi-institutional resection cohort, immune cells exhibited substantial heterogeneity across patient tumors and were located predominantly in stromal regions. Unsupervised clustering using immune cell densities identified four main patterns of immune cell infiltration. One pattern, seen in 20% of tumors and characterized by abundant T cells (T cell-rich) and a paucity of immunosuppressive granulocytes and macrophages, was associated with improved patient survival. Neoadjuvant chemotherapy was associated with a higher CD8:CD4 ratio, greater M1:M2-polarized macrophage ratio, and reduced CD15+ARG1+ immunosuppressive granulocyte density. Within neoadjuvant-treated tumors, 72% showed a T cell-rich pattern with low immunosuppressive granulocytes and macrophages. M1-polarized macrophages were located closer to tumor cells after neoadjuvant chemotherapy, and colocalization of M1-polarized macrophages and tumor cells was associated with greater tumor pathologic response and improved patient survival. CONCLUSIONS Neoadjuvant chemotherapy with FOLFIRINOX shifts the PDAC immune microenvironment toward an anti-tumorigenic state associated with improved patient survival.
Collapse
Affiliation(s)
- Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Sara A. Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Akhil Chawla
- Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Jinming Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Juha P. Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Hannah L. Williams
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Vicente Morales-Oyarvide
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Dalia Elganainy
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - William Freed-Pastor
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Joseph D. Mancias
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA
| | - Stephanie K. Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Jiping Wang
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Richard F. Dunne
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Margaret M. Kozak
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, CA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Emma Reilly
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Thomas Clancy
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - David C. Linehan
- Department of General Surgery, University of Rochester Medical Center, Rochester, NY
| | - Daniel T. Chang
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, CA
| | - Aram F. Hezel
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR
| | - Albert C. Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrew Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Jonathan A. Nowak
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
144
|
Hughes R, Snook AE, Mueller AC. The poorly immunogenic tumor microenvironment of pancreatic cancer: the impact of radiation therapy, and strategies targeting resistance. Immunotherapy 2022; 14:1393-1405. [PMID: 36468417 DOI: 10.2217/imt-2022-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the most lethal cancers, due to its uniquely aggressive behavior and resistance to therapy. The tumor microenvironment of pancreatic cancer is immunosuppressive, and attempts at utilizing immunotherapies have been unsuccessful. Radiation therapy (RT) results in immune activation and antigen presentation in other cancers, but in pancreatic cancer has had limited success in stimulating immune responses. RT activates common pathways of fibrosis and chronic inflammation seen in pancreatic cancer, resulting in immune suppression. Here we describe the pancreatic tumor microenvironment with regard to fibrosis, myeloid and lymphoid cells, and the impact of RT. We also describe strategies of targeting these pathways that have promise to improve outcomes by harnessing the cytotoxic and immune-activating aspects of RT.
Collapse
Affiliation(s)
- Robert Hughes
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA.,Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam C Mueller
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
145
|
Xia Y, Zhou L, Yang HC, Yu CW. Chemokine CCL5 immune subtypes of human liver cancer with prognostic significance. Int Immunopharmacol 2022; 113:109372. [DOI: 10.1016/j.intimp.2022.109372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
146
|
Zhao J, Dong Y, Zhang Y, Wang J, Wang Z. Biophysical heterogeneity of myeloid-derived microenvironment to regulate resistance to cancer immunotherapy. Adv Drug Deliv Rev 2022; 191:114585. [PMID: 36273512 DOI: 10.1016/j.addr.2022.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023]
Abstract
Despite the advances in immunotherapy for cancer treatment, patients still obtain limited benefits, mostly owing to unrestrained tumour self-expansion and immune evasion that exploits immunoregulatory mechanisms. Traditionally, myeloid cells have a dominantly immunosuppressive role. However, the complicated populations of the myeloid cells and their multilateral interactions with tumour/stromal/lymphoid cells and physical abnormalities in the tumour microenvironment (TME) determine their heterogeneous functions in tumour development and immune response. Tumour-associated myeloid cells (TAMCs) include monocytes, tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and granulocytes. Single-cell profiling revealed heterogeneous TAMCs composition, sub-types, and transcriptomic signatures across 15 human cancer types. We systematically reviewed the biophysical heterogeneity of TAMC composition and pro/anti-tumoral and immuno-suppressive/stimulating properties of myeloid-derived microenvironments. We also summarised comprehensive clinical strategies to overcome resistance to immunotherapy from three dimensions: targeting TAMCs, reversing physical abnormalities, utilising nanomedicines, and finally, put forward futuristic perspectives for scientific and clinical research.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yiting Dong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yundi Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
147
|
Espinet E, Klein L, Puré E, Singh SK. Mechanisms of PDAC subtype heterogeneity and therapy response. Trends Cancer 2022; 8:1060-1071. [PMID: 36117109 DOI: 10.1016/j.trecan.2022.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is clinically challenging due to late diagnosis and resistance to therapy. Two major PDAC subtypes have been defined based on malignant epithelial cell gene expression profiles; the basal-like/squamous subtype is associated with a worse prognosis and therapeutic resistance as opposed to the classical subtype. Subtype specification is not binary, consistent with plasticity of malignant cell phenotype. PDAC heterogeneity and plasticity reflect partly malignant cell-intrinsic transcriptional and epigenetic regulation. However, the stromal and immune compartments of the tumor microenvironment (TME) also determine disease progression and therapy response. It is evident that integration of intrinsic and extrinsic factors can dictate subtype heterogeneity, and thus, delineating the pathways involved can help to reprogram PDAC towards a classical/druggable subtype.
Collapse
Affiliation(s)
- Elisa Espinet
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain; Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Germany
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Germany; Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
148
|
Dixit A, Sarver A, Zettervall J, Huang H, Zheng K, Brekken RA, Provenzano PP. Targeting TNF-α-producing macrophages activates antitumor immunity in pancreatic cancer via IL-33 signaling. JCI Insight 2022; 7:e153242. [PMID: 36256464 PMCID: PMC9746819 DOI: 10.1172/jci.insight.153242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) remains resistant to immune therapies, largely owing to robustly fibrotic and immunosuppressive tumor microenvironments. It has been postulated that excessive accumulation of immunosuppressive myeloid cells influences immunotherapy resistance, and recent studies targeting macrophages in combination with checkpoint blockade have demonstrated promising preclinical results. Yet our understanding of tumor-associated macrophage (TAM) function, complexity, and diversity in PDA remains limited. Our analysis reveals significant macrophage heterogeneity, with bone marrow-derived monocytes serving as the primary source for immunosuppressive TAMs. These cells also serve as a primary source of TNF-α, which suppresses expression of the alarmin IL-33 in carcinoma cells. Deletion of Ccr2 in genetically engineered mice decreased monocyte recruitment, resulting in profoundly decreased TNF-α and increased IL-33 expression, decreased metastasis, and increased survival. Moreover, intervention studies targeting CCR2 with a new orthosteric inhibitor (CCX598) rendered PDA susceptible to checkpoint blockade, resulting in reduced metastatic burden and increased survival. Our data indicate that this shift in antitumor immunity is influenced by increased levels of IL-33, which increases dendritic cell and cytotoxic T cell activity. These data demonstrate that interventions to disrupt infiltration of immunosuppressive macrophages, or their signaling, have the potential to overcome barriers to effective immunotherapeutics for PDA.
Collapse
Affiliation(s)
- Ajay Dixit
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aaron Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jon Zettervall
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota, USA
| | - Huocong Huang
- Hamon Center for Therapeutic Oncology Research and Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kexin Zheng
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research and Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Hematology, Oncology, and Transplantation
- Institute for Engineering in Medicine
- Stem Cell Institute; and
- Center for Multiparametric Imaging of Tumor Immune Microenvironments, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
149
|
Targeted blocking of CCR2 and CXCR2 improves the efficacy of transarterial chemoembolization of hepatocarcinoma. Cancer Cell Int 2022; 22:362. [PMID: 36403057 PMCID: PMC9675208 DOI: 10.1186/s12935-022-02771-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Transarterial chemoembolization (TACE) has been shown to prolong survival in patients with unresectable hepatocellular carcinoma (HCC); however, the long-term survival remains dismal. Targeting macrophage and neutrophil infiltration is a promising strategy. The CCL2/CCR2 and CXCLs/CXCR2 axes are required for recruitment of macrophages and neutrophils, respectively, in HCC. We investigated the feasibility of CCL2/CCR2 and CXCLs/CXCR2 as therapeutic targets in combination with TACE for treating HCC. Methods Expression of CCL2/CCR2 and CXCLs/CXCR2 was analyzed in the primary rat HCC model and one HCC cohort. The relationship between expression levels, neutrophil and macrophage infiltration, hepatocarcinogenesis progression in the rat model, and survival of HCC patients was assessed. The anti-tumor effects of blocking the CCL2/CCR2 and CXCLs/CXCR2 axes by CCR2 and CXCR2 antagonists in combination with TACE were evaluated in HCC rats. The numbers of macrophages, neutrophils, and hepatic progenitor cells were further determined to explore the underlying mechanisms. Results High macrophage and neutrophil infiltration and CXCL8 expression were associated with poor prognosis in the TCGA liver cancer dataset. High expression of CCL2/CCR2 and CXCL8/CXCR2 in clinical HCC specimens was associated with reduced survival. Expression of CCL2/CCR2 and CXCL1/CXCR2 was correlated with hepatocarcinogenesis progression in the primary rat HCC model. Blockade of CCL2/CCR2 and CXCLs/CXCR2 enhanced the anti-tumor effect of TACE treatment in this model. Blocking the CCL2/CCR2 and CXCLs/CXCR2 axes with CCR2 and CXCR2 antagonists in TACE-treated rats reduced macrophage and neutrophil infiltration and hepatic progenitor cell activation and thus overcame TACE resistance in HCC. Conclusions The results demonstrate the translational potential of immunotherapy targeting the CCL2/CCR2 and CXCLs/CXCR2 axes in combination with TACE therapy for the treatment of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02771-z.
Collapse
|
150
|
Chen Y, Hu H, Tan S, Dong Q, Fan X, Wang Y, Zhang H, He J. The role of neutrophil extracellular traps in cancer progression, metastasis and therapy. Exp Hematol Oncol 2022; 11:99. [PMCID: PMC9667637 DOI: 10.1186/s40164-022-00345-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractNeutrophil extracellular traps (NETs) released by activated neutrophils typically consist of DNA-histone complexes and granule proteins. NETs were originally identified as a host defense system against foreign pathogens and are strongly associated with autoimmune diseases. However, a novel and predominant role of NETs in cancer is emerging. Increasing evidence has confirmed that many stimuli can facilitate NET formation in an NADPH oxidase (NOX)-dependent/NOX-independent manner. In cancer, NETs have been linked to cancer progression, metastasis, and cancer-associated thrombosis. In this review, we aimed to summarize the current available knowledge regarding NET formation and focused on the role of NETs in cancer biological behaviors. The potential target for cancer therapy will be further discussed.
Collapse
|