101
|
Zimmer S, Kahl P, Buhl TM, Steiner S, Wardelmann E, Merkelbach-Bruse S, Buettner R, Heukamp LC. Epidermal growth factor receptor mutations in non-small cell lung cancer influence downstream Akt, MAPK and Stat3 signaling. J Cancer Res Clin Oncol 2008; 135:723-30. [PMID: 19002495 DOI: 10.1007/s00432-008-0509-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 10/20/2008] [Indexed: 01/14/2023]
Abstract
PURPOSE The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer (NSCLC) has been linked to activating mutations in the EGFR gene. So far these mutations have been extensively characterized in established cell lines. The aim of this study was to determine the effects of EGFR mutations on downstream signaling in human tumor specimens. METHODS We have looked for mutations of the EGFR gene in specimens of 67 patients with NSCLC and correlated these with EGFR phosphorylation and the activity of its three main downstream signaling cascades Akt, MAPK and Stat3 by immunohistochemistry. RESULTS We show that the phosphorylation of tyrosine residues 922 and 1173, but not 1068, are primarily affected by the activating EGFR mutations. Akt activity was significantly higher in patients with EGFR mutations but we found no difference in Stat3 or MAPK phosphorylation. Our results suggest that EGFR mutations not only increase receptor activity, but also alter responses of downstream signaling cascades in human NSCLCs and that these finding differ from results obtained in cell lines.
Collapse
Affiliation(s)
- Sebastian Zimmer
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Rabik CA, Fishel ML, Holleran JL, Kasza K, Kelley MR, Egorin MJ, Dolan ME. Enhancement of cisplatin [cis-diammine dichloroplatinum (II)] cytotoxicity by O6-benzylguanine involves endoplasmic reticulum stress. J Pharmacol Exp Ther 2008; 327:442-52. [PMID: 18664592 PMCID: PMC3785988 DOI: 10.1124/jpet.108.141291] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O6-Benzylguanine (BG) enhances cisplatin [cis-diammine dichloroplatinum (II)]-induced cytotoxicity and apoptosis in head and neck cancer cell lines by an unknown mechanism. We investigated the effect of cisplatin with and without BG on two targets of damage: DNA and the endoplasmic reticulum (ER). We chose three cancer cell lines to ascertain the mechanism of BG-enhanced cytotoxicity: SQ20b head and neck and SKOV-3x ovarian cancer cell lines, where BG enhanced cisplatin cytotoxicity, and A549 nonsmall cell lung cancer line, where BG did not enhance cisplatin cytotoxicity. All three lines had an increase in DNA damage when BG was added to cisplatin treatment, as evidenced by increased platination and phosphorylated histone H2AX formation. The increase in cisplatin-induced DNA damage after treatment with BG plus cisplatin is not sufficient to increase cytotoxicity or apoptosis in A549 cells. We evaluated the effect of cisplatin on the ER and observed increased caspase 12 cleavage in SQ20b and SKOV-3x cells, but not in A549 cells, after treatment with BG plus cisplatin versus cisplatin alone. Growth arrest and DNA damage inducible (GADD) 153, an ER stress-response gene, is up-regulated after treatment with BG plus cisplatin compared with cisplatin alone in SQ20b and SKOV-3x cells, but not in A549 cells. ER stress-induced apoptosis is an integral part of the mechanism by which BG enhances cisplatin. Inhibition of ER stress in the SQ20b cell line by salubrinal, an inhibitor of eIF2alpha dephosphorylation, or GADD153 small interfering RNA, abrogated BG-enhancement of cisplatin cytotoxicity and apoptosis through caspase 3 and 12 cleavage. These data indicate GADD153 up-regulation plays an important role in BG-enhanced cisplatin cytotoxicity and apoptosis.
Collapse
Affiliation(s)
- Cara A Rabik
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Cinti C, Vindigni C, Zamparelli A, La Sala D, Epistolato MC, Marrelli D, Cevenini G, Tosi P. Activated Akt as an indicator of prognosis in gastric cancer. Virchows Arch 2008; 453:449-55. [PMID: 18841391 DOI: 10.1007/s00428-008-0676-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 12/17/2022]
Abstract
The immunohistochemical expression of phosphorylated (activated) Akt (pAkt) in 50 advanced gastric carcinomas has been analyzed and the results correlated with age, sex, location in the stomach, histotype, stage, survival, mitotic and apoptotic index, some cell cycle regulators (cyclin D1, cyclin E, p34/cdc2, p27/kip1), and cell proliferation. There was a statistically significant direct correlation between pAkt expression (both cytoplasmatic and nuclear) and depth of infiltration of the tumor, number of infiltrated lymph nodes and p34/cdc2 expression, and between prevalently nuclear pAkt and cyclin D1 and cyclin E. Conversely, there was a significant inverse correlation between nuclear pAkt and apoptotic index and between cytoplasmatic and nuclear pAkt and patient survival. No correlation was found between pAkt and sex, age, tumor location, histotype, mitotic index, and cell proliferation. These findings suggest that pAkt may be considered an indicator of tumor progression and patient survival in gastric cancer.
Collapse
Affiliation(s)
- Caterina Cinti
- Institute of Clinical Physiology, Consiglio Nazionale delle Ricerche, Siena Unit, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Namba H, Saenko V, Yamashita S. Nuclear factor-kB in thyroid carcinogenesis and progression: a novel therapeutic target for advanced thyroid cancer. ACTA ACUST UNITED AC 2008; 51:843-51. [PMID: 17891249 DOI: 10.1590/s0004-27302007000500023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 02/25/2007] [Indexed: 12/16/2022]
Abstract
Apoptosis is an essential physiological process of elimination of destined cells during the development and differentiation or after damage from external stresses such as ionizing radiation or chemotherapeutic agents. Disruption of apoptosis is proved to cause various diseases including cancer. Among numerous molecules involved in diverse anti- or pro-apoptotic signaling pathways, NF-kappaB is one of the key factors controlling anti-apoptotic responses. Its anti-apoptotic effect is thought to be mediated through not only transcriptional activation of dependent genes but also by crosstalking with the JNK pathway. Oncogenic proteins such as Ret/PTC, Ras and BRAF can induce NF-kappaB activation making it an important change in thyroid cancer. A number of specific or non-specific NF-kappaB inhibitors have been tried to take over the cascade in in vitro and in vivo experiments. These agents can induce massive apoptosis especially in combination with radio- or chemotherapy. Current results suggest that the inhibition of the NF-kappaB may be a promising strategy for advanced thyroid cancer treatment but further investigations are warranted to develop specific and clinically effective NF-kappaB inhibitors in future.
Collapse
Affiliation(s)
- Hiroyuki Namba
- Department of Molecular Medicine, Nagasaki University, Graduate School of Biomedical Sciences, Japan.
| | | | | |
Collapse
|
105
|
Lu C, Willingham MC, Furuya F, Cheng SY. Activation of phosphatidylinositol 3-kinase signaling promotes aberrant pituitary growth in a mouse model of thyroid-stimulating hormone-secreting pituitary tumors. Endocrinology 2008; 149:3339-45. [PMID: 18356276 PMCID: PMC2453100 DOI: 10.1210/en.2007-1696] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
TSH-secreting pituitary tumors (TSHomas) are pituitary tumors that constitutively secrete TSH. Molecular mechanisms underlying this abnormality are largely undefined. We recently created a knock-in mutant mouse harboring a mutation (denoted as PV) in the thyroid hormone receptor-beta gene (TRbeta(PV/PV) mouse). As these mice age, they spontaneously develop TSHomas. Using this mouse model, we investigated the role of the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway in the pathogenesis of TSHomas. Concurrent with aberrant growth of pituitaries, AKT and its downstream effectors, mammalian target rapamycin and p70(S6K), were activated to contribute to increased cell proliferation and pituitary growth. In addition, activation of AKT led to decreased apoptosis by inhibiting proapoptotic activity of Bcl-2-associated death promoter, further contributing to the aberrant cell proliferation. These results suggest an activated PI3K-AKT pathway could underscore tumorigenesis, raising the possibility that this pathway could be a potential therapeutic target in TSHomas. Indeed, TRbeta(PV/PV) mice treated with a PI3K-specific inhibitor, LY294002, showed a significant decrease in pituitary growth. The progrowth signaling via AKT-mammalian target rapamycin-p70(S6K) and cyclin D1/cyclin-dependent kinase were inhibited, and proapoptotic activity of Bcl-2-associated death promoter was increased by LY294002 treatment. Thus, activation of the PI3K-AKT pathway mediates, at least in part, the aberrant pituitary growth, and the intervention of this signaling pathway presents a novel therapeutic opportunity for TSHomas.
Collapse
Affiliation(s)
- Changxue Lu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, 37 Convent Drive MSC 4264, Bethesda, MD 20892-4264, USA
| | | | | | | |
Collapse
|
106
|
Paes JE, Ringel MD. Dysregulation of the phosphatidylinositol 3-kinase pathway in thyroid neoplasia. Endocrinol Metab Clin North Am 2008; 37:375-87, viii-ix. [PMID: 18502332 PMCID: PMC2446602 DOI: 10.1016/j.ecl.2008.01.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is an important regulator of many cellular events, including apoptosis, proliferation, and motility. Enhanced activation of this pathway can occur through several mechanisms, such as inactivation of its negative regulator, phosphatase and tensin homolog deleted on chromosome ten (PTEN), and activating mutations and gene amplification of the gene encoding the catalytic subunit of PI3K (PIK3CA). These genetic abnormalities have been particularly associated with follicular thyroid neoplasia and anaplastic thyroid cancer, suggesting an important role for PI3K signaling in these disorders. In this article, the role of PI3K pathway activation in thyroid cancer is discussed, with a focus on recent advances.
Collapse
Affiliation(s)
- John E Paes
- Division of Endocrinology, The Ohio State University Medical Center, The Ohio State University, 1581 Dodd Drive, 4th Floor, McCampbell Hall, Columbus, OH 43210, USA
| | | |
Collapse
|
107
|
Marques YMFS, de Lima MDDM, de Melo Alves SDM, Soares FA, de Araújo VC, Pinto DDS, Mantesso A. Mdm2, p53, p21 and pAKT protein pathways in benign neoplasms of the salivary gland. Oral Oncol 2008; 44:903-8. [PMID: 18485798 DOI: 10.1016/j.oraloncology.2007.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/22/2007] [Accepted: 11/23/2007] [Indexed: 12/28/2022]
Abstract
The p53 protein can be altered virtually in all human cancers. In the absence of p53 mutations, p53 inactivation is possible via complex formation with other proteins, such as Mdm2. Previous studies have shown an overexpression of Mdm2 and lack of p53 expression in pleomorphic adenomas. The pAkt protein is closely related to Mdm2, and has not been previously reported in salivary gland tumors. The aim of this study was to analyze the expression of Mdm2, p53, p21 and pAkt proteins in pleomorphic adenomas and myoepitheliomas by immunohistochemistry, Western blotting and immunofluorescence techniques. Overexpression of Mdm2 and pAkt was present in all the cell lines and tumors studied, whereas the expression of p53 and p21 proteins was considered absent. In conclusion, the signaling pathway in benign salivary gland neoplasm showed an important participation of Mdm2 overexpression protein in tumor formation, progression through inactivation of p53 action, or both, and of pAkt overexpression through increased translocation of Mdm2 protein to cellular nuclei.
Collapse
|
108
|
Costa AM, Herrero A, Fresno MF, Heymann J, Alvarez JA, Cameselle-Teijeiro J, García-Rostán G. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2008; 68:618-34. [PMID: 18070147 DOI: 10.1111/j.1365-2265.2007.03077.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE BRAF(V600E) mutation represents the most common oncogenic event in sporadic papillary thyroid cancer (PTC). There are, however, significant discrepancies regarding the overall frequency, its prevalence in PTC-variants, and its relationship with clinico-pathological parameters of poor outcome. Moreover, the impact of BRAF(V600E) mutants on tumour-related patient's death has not been evaluated. DESIGN We analysed, by PCR-SSCP and/or PCR-direct sequencing, exons 8, 10, 11 and 15 of BRAF in 113 tumour samples from 49 PTC-patients. Matched lymph node metastases and/or distant metastases (DMs) were screened in 35 patients. Focal changes in the growth pattern or microscopic grade within the primary tumour (Pt) or the metastases were separately genotyped. Mutations at H-, K-, N-ras and PIK3CA exons 9 and 20 were also investigated. For comparison with PTC cases, the BRAF and Ras mutational status was evaluated in 89 specimens obtained from 24 poorly differentiated thyroid carcinomas (PDCs) and 36 anaplastic thyroid carcinomas (ATCs). RESULTS BRAF(V600E) was found in 13/16 classical PTCs (CL-PTCs), 6/17 follicular variant PTCs (FV-PTCs) and 8/16 mixed (papillary/follicular) PTCs (Mx-PTCs), being significantly associated with CL-PTCs (P = 0.015). BRAF(V600E) segregated with metastatic PTC-cells in 43% of the patients, but only one DM disclosed the mutation. PTC-tumours featuring concurrent less-differentiated foci were BRAF wild-type in both components. Noteworthy, the frequency of BRAF mutations among PDCs and ATCs resulted considerably lower (16.6% and 25%, respectively) than in PTCs (55%). The prevalence of Ras mutations among PDCs and ATCs (46% and 36%, respectively) was, however, much higher than in PTCs (14%). Five (71%) of the patients who died of PTC displayed somatic mutations. Four of them had other gene alteration associated with BRAF(V600E) and the only one that did not, BRAF(V600E) was restricted to the Pt. The occurrence of BRAF(V600E) associated with other genetic events was an independent predictor of DMs during follow-up, recurrence and tumour-related death. Remarkably, two PDCs (8.3%) and five ATCs (14%) revealed concurrent BRAF and Ras mutations. CONCLUSION BRAF(V600E)'alone' does not represent a marker for poor outcome, however, when associated with alterations in other genes identifies a subset of PTCs with increased risk of recurrence and decreased survival.
Collapse
Affiliation(s)
- Angela M Costa
- Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
109
|
Shtilbans V, Wu M, Burstein DE. Current overview of the role of Akt in cancer studies via applied immunohistochemistry. Ann Diagn Pathol 2008; 12:153-60. [DOI: 10.1016/j.anndiagpath.2007.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
110
|
Robinson-White AJ, Hsiao HP, Leitner WW, Greene E, Bauer A, Krett NL, Nesterova M, Stratakis CA. Protein kinase A-independent inhibition of proliferation and induction of apoptosis in human thyroid cancer cells by 8-Cl-adenosine. J Clin Endocrinol Metab 2008; 93:1020-9. [PMID: 18073299 PMCID: PMC2266951 DOI: 10.1210/jc.2007-2331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/04/2007] [Indexed: 12/28/2022]
Abstract
PURPOSE Protein kinase A (PKA) affects cell proliferation in many cell types and is a potential target for cancer treatment. PKA activity is stimulated by cAMP and cAMP analogs. One such substance, 8-Cl-cAMP, and its metabolite 8-Cl-adenosine (8-Cl-ADO) are known inhibitors of cancer cell proliferation; however, their mechanism of action is controversial. We have investigated the antiproliferative effects of 8-Cl-cAMP and 8-CL-ADO on human thyroid cancer cells and determined PKA's involvement. EXPERIMENTAL DESIGN We employed proliferation and apoptosis assays and PKA activity and cell cycle analysis to understand the effect of 8-Cl-ADO and 8-Cl-cAMP on human thyroid cancer and HeLa cell lines. RESULTS 8-Cl-ADO inhibited proliferation of all cells, an effect that lasted for at least 4 d. Proliferation was also inhibited by 8-Cl-cAMP, but this inhibition was reduced by 3-isobutyl-1-methylxanthine; both drugs stimulated apoptosis, and 3-isobutyl-1-methylxanthine drastically reduced 8-Cl-cAMP-induced cell death. 8-Cl-ADO induced cell accumulation in G1/S or G2/M cell cycle phases and differentially altered PKA activity and subunit levels. PKA stimulation or inhibition and adenosine receptor agonists or antagonists did not significantly affect proliferation. CONCLUSIONS 8-Cl-ADO and 8-Cl-cAMP inhibit proliferation, induce cell cycle phase accumulation, and stimulate apoptosis in thyroid cancer cells. The effect of 8-Cl-cAMP is likely due to its metabolite 8-Cl-ADO, and PKA does not appear to have direct involvement in the inhibition of proliferation by 8-Cl-ADO. 8-Cl-ADO may be a useful therapeutic agent to be explored in aggressive thyroid cancer.
Collapse
Affiliation(s)
- Audrey J Robinson-White
- Section on Endocrinology and Genetics, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
Thyroid cancers stand out among solid tumours because many of the tumour-initiating genetic events have been identified. Mutations leading to constitutive activation of MAP kinase effectors -the tyrosine receptor kinase RET and the intracellular signalling effectors RAS and BRAF- are essential for the pathogenesis of papillary thyroid carcinoma (PTC). Similarly, there is increasing evidence demonstrating that mutations leading to activation of the phosphatidylinositol 3- kinase (PI3K)/AKT effectors -PTEN and PI3KCa- are essential for the pathogenesis of follicular thyroid carcinoma (FTC). Besides this strong relationship between the histological phenotype and the pathway predominantly activated, the nature of the genetic event seems to determine the biological behaviour of the tumour and the ultimate clinical outcome of the patient. In this review we will summarise and discuss the main genetic events related to thyroid cancer initiation, the contribution of genomics and the convenience of using a new molecular classification of thyroid cancer, complementary to the clinicopathological classification. This may help us to predict more faithfully the clinical outcome of patients with thyroid cancer and to select more appropriately candidates for targeted therapies.
Collapse
Affiliation(s)
- G Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas 'Alberto Sols' Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | | |
Collapse
|
112
|
Yeager N, Brewer C, Cai KQ, Xu XX, Di Cristofano A. Mammalian target of rapamycin is the key effector of phosphatidylinositol-3-OH-initiated proliferative signals in the thyroid follicular epithelium. Cancer Res 2008; 68:444-9. [PMID: 18199538 DOI: 10.1158/0008-5472.can-07-3030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the phosphatidylinositol-3-OH kinase (PI3K) signaling cascade is becoming increasingly recognized as a common feature of thyroid follicular neoplasms. We have recently shown that conditional loss of Pten in the mouse thyroid follicular cells is sufficient to stimulate continuous autonomous growth, leading to a homogeneously hyperplastic gland and to the development of follicular adenomas. Because the PI3K/AKT cascade can activate a plethora of different signaling pathways, it is still unclear which of these may represent the key mitogenic output of PI3K-initiated signaling. Here, we show that the in vivo proliferative response to chronic PI3K activation profoundly relies on the activation of the mammalian target of rapamycin (mTOR)/S6K1 axis, and that mTOR inhibition in Pten mutant mice and cells restores virtually normal proliferation rates, despite the presence of still elevated Akt activity, at least in part by down-regulating cyclins D1 and D3, and without affecting cell survival.
Collapse
Affiliation(s)
- Nicole Yeager
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
113
|
|
114
|
Grozinsky-Glasberg S, Franchi G, Teng M, Leontiou CA, Ribeiro de Oliveira A, Dalino P, Salahuddin N, Korbonits M, Grossman AB. Octreotide and the mTOR inhibitor RAD001 (everolimus) block proliferation and interact with the Akt-mTOR-p70S6K pathway in a neuro-endocrine tumour cell Line. Neuroendocrinology 2008; 87:168-81. [PMID: 18025810 DOI: 10.1159/000111501] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 10/15/2007] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM The mode of action of the somatostatin analog octreotide on neuro-endocrine tumour proliferation is largely unknown. Overexpression of the proto-oncogene Akt/PKB (protein kinase B) has been demonstrated in certain neuro-endocrine tumours: Akt activates downstream proteins including mTOR and p70S6K, which play an important role in cell proliferation. RAD001 (everolimus) is a novel agent that is being trialled in the treatment of neuro-endocrine tumours, and is known to interact with mTOR. We explored the mechanism of action of octreotide, RAD001, and their combination on cell proliferation and kinase activation in a neuro-endocrine tumour cell line (rat insulinoma cell line, INS1). METHODS Proliferation assays were used to determine the effects of octreotide, RAD001, and their combination on cell proliferation. Western blotting was used to characterize the expression of phosphorylated Akt, phosphorylated TSC2, phosphorylated mTOR, and phosphorylated 70S6K. RESULTS Treatment with octreotide and RAD001 inhibited proliferation and attenuated phosphorylation of all downstream targets of Akt: TSC2, mTOR, and p70S6K. CONCLUSIONS In this cell model, octreotide and RAD001 appear to act through a similar pathway and inhibit the Akt-mTOR-p70S6 kinase pathway downstream of Akt. There may be some overlapping effects of the two inhibitors on the mTOR pathway, although it is likely that other additional effects may differentiate the two agents.
Collapse
Affiliation(s)
- Simona Grozinsky-Glasberg
- Department of Endocrinology, William Harvey Research Institute, Barts and The London, Queen Mary's School of Medicine and Dentistry, University of London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Porchia LM, Guerra M, Wang YC, Zhang Y, Espinosa AV, Shinohara M, Kulp SK, Kirschner LS, Saji M, Chen CS, Ringel MD. 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} acetamide (OSU-03012), a celecoxib derivative, directly targets p21-activated kinase. Mol Pharmacol 2007; 72:1124-31. [PMID: 17673571 DOI: 10.1124/mol.107.037556] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
p21-Activated kinases (PAKs) are regulators of cell motility and proliferation. PAK activity is regulated in part by phosphoinositide-dependent kinase 1 (PDK1). We hypothesized that reduced PAK activity was involved in the effects of 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} acetamide (OSU-03012), a previously characterized PDK1 inhibitor derived from celecoxib. In three human thyroid cancer cell lines, OSU-03012 inhibited cell proliferation with reduced AKT phosphorylation by PDK1. OSU-03012 unexpectedly inhibited PAK phosphorylation at lower concentrations than PDK1-dependent AKT phosphorylation in two of the three lines. In cell-free kinase assays, OSU-03012 was shown to inhibit PAK activity and compete with ATP binding. In addition, computer modeling predicted a docking site for OSU-03012 in the ATP binding motif of PAK1. Finally, overexpression of constitutively activated PAK1 partially rescued the ability of motile NPA thyroid cancer cells to migrate during OSU-03012 treatment, suggesting that inhibition of PAK may be involved in the cellular effects of OSU-03012 in these cells. In summary, OSU-03012 is a direct inhibitor of PAK, and inhibition of PAK, either directly or indirectly, may be involved in its biological effects in vitro.
Collapse
Affiliation(s)
- Leonardo M Porchia
- Division of Endocrinology, Department of Medicine, the Ohio State University Colleges of Medicine and Pharmacy, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Siraj AK, Bavi P, Abubaker J, Jehan Z, Sultana M, Al-Dayel F, Al-Nuaim A, Alzahrani A, Ahmed M, Al-Sanea O, Uddin S, Al-Kuraya KS. Genome-wide expression analysis of Middle Eastern papillary thyroid cancer reveals c-MET as a novel target for cancer therapy. J Pathol 2007; 213:190-199. [PMID: 17703498 DOI: 10.1002/path.2215] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 06/05/2007] [Indexed: 01/01/2023]
Abstract
In an attempt to find genes that may be of importance in malignant progression of papillary thyroid carcinoma (PTC) in the Middle East, which therefore can be targeted in cancer therapy, we screened and validated the global gene expression in PTC using cDNA expression arrays and immunohistochemistry (IHC) on tumour tissue microarrays. Twenty-nine PTC tissue specimens were compared with seven non-cancerous thyroid specimens by use of cDNA microarray. Results for selected genes were confirmed by quantitative real-time PCR. Protein expression of selected genes was further studied using a tissue microarray consisting of 536 PTCs and compared with histologically non-cancerous tissue samples. One hundred and ninety-six genes were overexpressed in PTC tissues relative to non-cancerous thyroid tissues. The genes that were up-regulated in PTC were involved in cell cycle regulation, cell signaling, and oncogenesis. Among these genes, c-MET was identified by immunohistochemical methods as a protein that is overexpressed in 37% of PTCs and was significantly associated with more aggressive behaviour, eg higher stage, nodal involvement, and tall cell variant (p value = 0.01, 0.01 and 0.04, respectively). In this study, 55% of the PTC cases expressed activated AKT (P-AKT), which suggests that activated AKT may play an important role in PTC tumourigenesis. The fact that most of the PTC cases that had activated AKT showed overexpression of c-MET (p = 0.027) leads us to hypothesize that c-MET may be an alternative mechanism of AKT activation in Middle Eastern PTCs. Finally, our data suggest that c-MET dysregulation is associated with aggressive behaviour and may serve as a molecular biomarker and potential therapeutic target in this disease.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/secondary
- Child
- DNA, Complementary/genetics
- DNA, Neoplasm/genetics
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Middle Aged
- Oligonucleotide Array Sequence Analysis/methods
- Polymerase Chain Reaction/methods
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- Thyroid Gland/metabolism
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Up-Regulation
Collapse
Affiliation(s)
- A K Siraj
- Department of Human Cancer Genomic Research, KFNCCC&R, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Siragusa M, Zerilli M, Iovino F, Francipane MG, Lombardo Y, Ricci-Vitiani L, Di Gesù G, Todaro M, De Maria R, Stassi G. MUC1 oncoprotein promotes refractoriness to chemotherapy in thyroid cancer cells. Cancer Res 2007; 67:5522-30. [PMID: 17545635 DOI: 10.1158/0008-5472.can-06-4197] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of MUC1 oncoprotein is frequently observed in cancer and contributes to confer resistance to genotoxic agents. Papillary, follicular, and anaplastic thyroid carcinomas are the three forms of thyroid epithelial cancer. Anaplastic tumors are less differentiated and extremely aggressive, characterized by a poor prognosis. Little is known about the role of MUC1 in thyroid cancer. We recently showed that autocrine production of interleukin (IL)-4 and IL-10 controls thyroid cancer cell survival, growth, and resistance to chemotherapy through activation of Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) and phosphatidylinositide 3'-OH kinase (PI3K)/Akt pathways. In the present study, we showed that MUC1 COOH-terminal subunit (MUC1-C) is overexpressed in all the histologic variants of thyroid cancer cells and localizes to mitochondria where it interferes with the release of mitochondrial proapoptotic proteins. Moreover, IL-4 and IL-10 promote the increase of MUC1-C expression levels in normal thyroid cells, whereas blockage of both cytokines or neutralization of JAK/STAT and PI3K/Akt pathways through the exogenous expression of SOCS-1 and Akt(K179M) leads to a significant decrease of MUC1-C in primary thyroid cancer cells. Interestingly, down-regulation of MUC1 expression by direct targeting with RNA interference sensitizes anaplastic thyroid cancer cells to chemotherapy-induced apoptosis in vitro. Thus, MUC1 is a main component of the survival network acting in thyroid cancer and could be considered a key molecular target for sensitizing cancer cells to conventional or novel treatments.
Collapse
Affiliation(s)
- Mauro Siragusa
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kondo T, Zheng L, Liu W, Kurebayashi J, Asa SL, Ezzat S. Epigenetically controlled fibroblast growth factor receptor 2 signaling imposes on the RAS/BRAF/mitogen-activated protein kinase pathway to modulate thyroid cancer progression. Cancer Res 2007; 67:5461-70. [PMID: 17545628 DOI: 10.1158/0008-5472.can-06-4477] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor (FGF) signals play fundamental roles in development and tumorigenesis. Thyroid cancer is an example of a tumor with nonoverlapping genetic mutations that up-regulate mitogen-activated protein kinase (MAPK). Here, we show that FGF receptor 1 (FGFR1), which is expressed mainly in neoplastic thyroid cells, propagates MAPK activation and promotes tumor progression. In contrast, FGFR2 is down-regulated in neoplastic thyroid cells through DNA promoter methylation. Reexpression of FGFR2 competes with FGFR1 for the immediate substrate FGFR substrate 2 to impede signaling upstream of the BRAF/MAPK pathway. These data unmask an epigenetically controlled FGFR2 signal that imposes precisely on the intragenically modified BRAF/MAPK pathway to modulate thyroid cancer behavior.
Collapse
MESH Headings
- Cell Growth Processes/physiology
- Cell Line, Tumor
- DNA Methylation
- Disease Progression
- Down-Regulation
- Epigenesis, Genetic
- Humans
- MAP Kinase Signaling System/genetics
- Neoplasm Invasiveness
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/metabolism
- RNA, Small Interfering/genetics
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Thyroid Neoplasms/enzymology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Transfection
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Tetsuo Kondo
- Department of Pathology, Princess Margaret Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
119
|
Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S, Wang Y, Trink A, El-Naggar AK, Tallini G, Vasko V, Xing M. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res 2007; 13:1161-70. [PMID: 17317825 DOI: 10.1158/1078-0432.ccr-06-1125] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the overall occurrence and relationship of genetic alterations in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in thyroid tumors and explore the scope of this pathway as a therapeutic target for thyroid cancer. EXPERIMENTAL DESIGN We examined collectively the major genetic alterations and their relationship in this pathway, including PIK3CA copy number gain and mutation, Ras mutation, and PTEN mutation, in a large series of primary thyroid tumors. RESULTS Occurrence of any of these genetic alterations was found in 25 of 81 (31%) benign thyroid adenoma (BTA), 47 of 86 (55%) follicular thyroid cancer (FTC), 21 of 86 (24%) papillary thyroid cancer (PTC), and 29 of 50 (58%) anaplastic thyroid cancer (ATC), with FTC and ATC most frequently harboring these genetic alterations. PIK3CA copy gain was associated with increased PIK3CA protein expression. A mutual exclusivity among these genetic alterations was seen in BTA, FTC, and PTC, suggesting an independent role of each of them through the PI3K/Akt pathway in the tumorigenesis of the differentiated thyroid tumors. However, coexistence of these genetic alterations was increasingly seen with progression from differentiated tumor to undifferentiated ATC. Their coexistence with BRAF mutation was also frequent in PTC and ATC. CONCLUSIONS The data provide strong genetic implication that aberrant activation of PI3K/Akt pathway plays an extensive role in thyroid tumorigenesis, particularly in FTC and ATC, and promotes progression of BTA to FTC and to ATC as the genetic alterations of this pathway accumulate. Progression of PTC to ATC may be facilitated by coexistence of PI3K/Akt pathway-related genetic alterations and BRAF mutation. The PI3K/Akt pathway may thus be a major therapeutic target in thyroid cancers.
Collapse
Affiliation(s)
- Peng Hou
- Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Furuya F, Guigon CJ, Zhao L, Lu C, Hanover JA, Cheng SY. Nuclear receptor corepressor is a novel regulator of phosphatidylinositol 3-kinase signaling. Mol Cell Biol 2007; 27:6116-26. [PMID: 17606624 PMCID: PMC1952145 DOI: 10.1128/mcb.00900-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear receptor corepressor (NCoR) regulates the activities of DNA-binding transcription factors. Recent observations of its distribution in the extranuclear compartment raised the possibility that it could have other cellular functions in addition to transcription repression. We previously showed that phosphatidylinositol 3-kinase (PI3K) signaling is aberrantly activated by a mutant thyroid hormone beta receptor (TRbetaPV, hereafter referred to as PV) via physical interaction with p85alpha, thus contributing to thyroid carcinogenesis in a mouse model of follicular thyroid carcinoma (TRbetaPV/PV mouse). Since NCoR is known to modulate the actions of TRbeta mutants in vivo and in vitro, we asked whether NCoR regulates PV-activated PI3K signaling. Remarkably, we found that NCoR physically interacted with and competed with PV for binding to the C-terminal SH2 (Src homology 2) domain of p85alpha, the regulatory subunit of PI3K. Confocal fluorescence microscopy showed that both NCoR and p85alpha were localized in the nuclear as well as in the cytoplasmic compartments. Overexpression of NCoR in thyroid tumor cells of TRbetaPV/PV mouse reduced PI3K signaling, as indicated by the decrease in the phosphorylation of its immediate downstream effector, p-AKT. Conversely, lowering cellular NCoR by siRNA knockdown in tumor cells led to overactivated p-AKT and increased cell proliferation and motility. Furthermore, NCoR protein levels were significantly lower in thyroid tumor cells than in wild-type thyrocytes, allowing more effective binding of PV to p85alpha to activate PI3K signaling and thus contributing to tumor progression. Taken together, these results indicate that NCoR, via protein-protein interaction, is a novel regulator of PI3K signaling and could serve to modulate thyroid tumor progression.
Collapse
Affiliation(s)
- Fumihiko Furuya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Room 5128, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | |
Collapse
|
121
|
Charette ST, McCance DJ. The E7 protein from human papillomavirus type 16 enhances keratinocyte migration in an Akt-dependent manner. Oncogene 2007; 26:7386-90. [PMID: 17533372 PMCID: PMC9132232 DOI: 10.1038/sj.onc.1210541] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase inhibitor p27(kip1) (p27) has recently been implicated as a positive regulator of cellular motility and is a marker of poor prognosis in several forms of cancer when localized to the cytoplasm. Cytoplasmic p27 exerts its effect on migration by binding to and inhibiting the activation of the small GTPase and cytoskeletal organizer RhoA, consequentially loosening cell substrate grip and enhancing movement. Using DNA damage as a p27 nuclear import signal, we found that the E7 oncoprotein from human papillomavirus type 16 (HPV-16), the etiological agent of cervical cancer, enhanced both the cytoplasmic retention of p27 and the migration of human foreskin keratinocytes (HFKs) in a phosphoinositide-3 kinase (PI3K)/Akt-dependent manner using a standard wound assay. Increased migration in E7-expressing HFKs correlated with an Akt-regulated downregulation of RhoA activity through p27 binding under conditions where a p27 nuclear import signal is given (that is, DNA damage). Under these conditions, inhibition of the downstream RhoA effector ROCK enhanced control cell migration, whereas relatively unaffecting E7-expressing cells, further implicating that the inhibitory effect of E7 on RhoA positively regulates migration. We believe that the E7 protein from HPV-16 can modulate the cytoplasmic localization of p27 and may in turn regulate tumor metastasis/aggressiveness through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- ST Charette
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - DJ McCance
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
- James P Wilmot Cancer Center, University of Rochester, Rochester, NY, USA
| |
Collapse
|
122
|
Larson SD, Jackson LN, Riall TS, Uchida T, Thomas RP, Qiu S, Evers BM. Increased incidence of well-differentiated thyroid cancer associated with Hashimoto thyroiditis and the role of the PI3k/Akt pathway. J Am Coll Surg 2007; 204:764-73; discussion 773-5. [PMID: 17481480 PMCID: PMC2430882 DOI: 10.1016/j.jamcollsurg.2006.12.037] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Accepted: 12/14/2006] [Indexed: 12/21/2022]
Abstract
BACKGROUND The link between inflammation and cancer is well-established, but the link between Hashimoto thyroiditis (HT) and thyroid cancer remains controversial. The purpose of our study was to determine the incidence of patients with thyroid cancer and associated HT at our institution, to correlate our patient population demographics with the Surveillance, Epidemiology and End Results (SEER) database, and to assess the expression of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in patients with HT. STUDY DESIGN Demographic and histologic data were collected from patients undergoing thyroid resection at the University of Texas Medical Branch from 1987 to 2002 and compared with the SEER database. Immunohistochemistry for phosphorylated Akt (a marker of PI3K activity), Akt isoforms and PTEN (an inhibitor of PI3K) was performed on paraffin-embedded blocks of resected thyroid tissue. RESULTS Our patient population demographics and thyroid cancer incidence by histologic type were similar to patients in the SEER database. Ninety-eight (37.7%) resected specimens had pathologic changes consistent with HT; 43 (43.8%) had an associated well-differentiated thyroid cancer. Increased phosphorylated Akt, Akt1, and Akt2 expression was noted in regions of HT and thyroid cancer compared with regions of normal surrounding thyroid tissue. CONCLUSIONS Patients with HT were three times more likely to have thyroid cancer, suggesting a strong link between chronic inflammation and cancer development. PI3K/Akt expression was increased in both HT and well-differentiated thyroid cancer, suggesting a possible molecular mechanism for thyroid carcinogenesis.
Collapse
Affiliation(s)
- Shawn D Larson
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX 77555-0536, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Hoffmann S, Burchert A, Wunderlich A, Wang Y, Lingelbach S, Hofbauer LC, Rothmund M, Zielke A. Differential effects of cetuximab and AEE 788 on epidermal growth factor receptor (EGF-R) and vascular endothelial growth factor receptor (VEGF-R) in thyroid cancer cell lines. Endocrine 2007; 31:105-13. [PMID: 17873319 DOI: 10.1007/s12020-007-0008-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
This study evaluated the role of EGF and the effects of EGF-targeting drugs (Cetuximab, AEE 788) on growth, apoptosis, and autocrine VEGF-secretion of thyroid cancer (TC) cells. Autocrine activation of the epidermal growth factor receptor (EGF-R) is commonly regarded to contribute to the malignant phenotype of TC cells and may therefore represent a rational therapeutic target. Out of a number of TC cell lines two anaplastic (Hth74, C643), one follicular (FTC133), and one papillary thyroid cancer cell line (TPC1) were analyzed in depth for VEGF-R-and EGF-R-expression, basal and EGF-stimulated (1-100 ng/ml) VEGF protein secretion and proliferation. Subsequently the antiprolifereative and antiangiogenic effect of cetuximab (Erbitux), a monoclonal antibody that blocks the EGF-R and AEE 788, a novel dual-kinase inhibitor of EGF-R and VEGF-R were assessed, and the downstream EGF-R signal transduction was analyzed by means of detecting phosphorylated pEGF-R, pVEGF-R, pAkt, and p-MAPK. EGF stimulated VEGF-mRNA expression and protein secretion in all TC cell lines. The EGF-R antagonist Cetuximab consistently decreased VEGF secretion in all TC cell lines (min. 15%, n.s. in C643 cells and max. 90% in Hth74 cells, P < 0.05), but did not affect tumor cell proliferation in vitro. In contrast, the EGF-R- and VEGF-R-kinase inhibitor AEE 788 not only reduced VEGF secretion (min. 55%, P < 0.05 in C643 and max. 75%, P < 0.05, in FTC133), but also exhibited a dose-dependent inhibition of tumor cell proliferation (min. 75%, P < 0.05 in C643 and max. 95%, P < 0.05 in Hth74) and was a potent inductor of apoptosis in two of four TC cell lines. These effects were always accompanied by reduced levels of pEGF-R, pVEGF-R, pAkt, and pMAPK. Although inhibition of the EGF-receptor by Cetuximab potently disrupts autocrine secretion of VEGF, only the concurrent inhibition of the VEGF- and EGF receptor, e.g., by AEE 788 induces reduced proliferation and apoptosis in vitro. This suggests a particular rationale for the use of tyrosine kinase inhibitors with dual modes of action such as AEE 788 in thyroid cancer.
Collapse
Affiliation(s)
- S Hoffmann
- Department of Surgery, Philipps-University of Marburg, Baldingerstrasse, Marburg, 35043, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la Chapelle A, Saji M, Ringel MD. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci U S A 2007; 104:2803-8. [PMID: 17296934 PMCID: PMC1815262 DOI: 10.1073/pnas.0610733104] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Papillary thyroid carcinomas (PTCs) that invade into local structures are associated with a poor prognosis, but the mechanisms for PTC invasion are incompletely defined, limiting the development of new therapies. To characterize biological processes involved in PTC invasion, we analyzed the gene expression profiles of microscopically dissected intratumoral samples from central and invasive regions of seven widely invasive PTCs and normal thyroid tissue by oligonucleotide microarray and performed confirmatory expression and functional studies. In comparison with the central regions of primary PTCs, the invasive fronts overexpressed TGF beta, NFkappaB and integrin pathway members, and regulators of small G proteins and CDC42. Moreover, reduced levels of mRNAs encoding proteins involved in cell-cell adhesion and communication were identified, consistent with epithelial-to-mesenchymal transition (EMT). To confirm that aggressive PTCs were characterized by EMT, 34 additional PTCs were examined for expression of vimentin, a hallmark of EMT. Overexpression of vimentin was associated with PTC invasion and nodal metastasis. Functional, in vitro studies demonstrated that vimentin was required both for the development and maintenance of a mesenchymal morphology and invasiveness in thyroid cancer cells. We conclude that EMT is common in PTC invasion and that vimentin regulates thyroid cancer EMT in vitro.
Collapse
Affiliation(s)
- Vasily Vasko
- Departments of *Medicine and
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Allan V. Espinosa
- Departments of *Medicine and
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - William Scouten
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Huiling He
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Herbert Auer
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
- Columbus Children's Research Institute, Columbus Children's Hospital, Columbus, OH 43205
| | - Sandya Liyanarachchi
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | | | | | - Gary L. Francis
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
- Pediatric Endocrinology and Metabolism, Medical College of Virginia, Richmond, VA 23298-0565
| | - Albert de la Chapelle
- Departments of *Medicine and
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
- **To whom correspondence may be addressed at:
Division of Endocrinology, 445D McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210. E-mail: or
| | - Motoyasu Saji
- Departments of *Medicine and
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Matthew D. Ringel
- Departments of *Medicine and
- Molecular Virology, Immunology, and Genetics, Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
- **To whom correspondence may be addressed at:
Division of Endocrinology, 445D McCampbell Hall, 1581 Dodd Drive, Columbus, OH 43210. E-mail: or
| |
Collapse
|
125
|
Yeager N, Klein-Szanto A, Kimura S, Di Cristofano A. Pten Loss in the Mouse Thyroid Causes Goiter and Follicular Adenomas: Insights into Thyroid Function and Cowden Disease Pathogenesis. Cancer Res 2007; 67:959-66. [PMID: 17283127 DOI: 10.1158/0008-5472.can-06-3524] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inactivation and silencing of the tumor suppressor PTEN are found in many different epithelial tumors, including thyroid neoplasia. Cowden Disease patients, who harbor germ-line PTEN mutations, often display thyroid abnormalities, including multinodular goiter and follicular adenomas, and are at increased risk of thyroid cancer. To gain insights into the role PTEN plays in thyroid function and disease, we have generated a mouse strain, in which Cre-mediated recombination is used to specifically delete Pten in the thyrocytes. We found that Pten mutant mice develop diffuse goiter characterized by extremely enlarged follicles, in the presence of normal thyroid-stimulating hormone and T4 hormone levels. Loss of Pten resulted in a significant increase in the thyrocyte proliferative index, which was more prominent in the female mice, and in increased cell density in the female thyroid glands. Surprisingly, goitrogen treatment did not cause a substantial increase of the mutant thyroid size and increased only to some extent the proliferation index of the female thyrocytes, suggesting that a relevant part of the thyroid-stimulating hormone-induced proliferation signals are funneled through the phosphatidylinositol-3-kinase (PI3K)/Akt cascade. Although complete loss of Pten was not sufficient to cause invasive tumors, over two thirds of the mutant females developed follicular adenomas by 10 months of age, showing that loss of Pten renders the thyroid highly susceptible to neoplastic transformation through mechanisms that include increased thyrocyte proliferation. Our findings show that constitutive activation of the PI3K/Akt cascade is sufficient to stimulate continuous autonomous growth and provide novel clues to the pathogenesis of Cowden Disease and sporadic nontoxic goiter.
Collapse
Affiliation(s)
- Nicole Yeager
- Human Genetics Program and Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
126
|
Ramdass B, Maliekal TT, Lakshmi S, Rehman M, Rema P, Nair P, Mukherjee G, Reddy BKM, Krishna S, Radhakrishna Pillai M. Coexpression of Notch1 and NF-κB signaling pathway components in human cervical cancer progression. Gynecol Oncol 2007; 104:352-61. [PMID: 17098279 DOI: 10.1016/j.ygyno.2006.08.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/17/2006] [Accepted: 08/24/2006] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Features of deregulated Notch1 signaling and NF-kappaB activation have independently been reported in cervical cancers. Here, we have extended these observations and examined both these pathways simultaneously in human cervical cancer tissue. Further, we have investigated the potential cross-talk between these pathways in a human cervical cancer derived cell line CaSki, which mirrors features of Notch activation as in the majority of human cervical cancers. METHODS Cervical tissue samples were analyzed for the expression of Notch1, Jagged 1, Hes1, pAKT, NF-kappaB p50, NF-kappaB p65, IkappaB-alpha, Bcl-2, CyclinD1, Cdk9, c-Fos, and p53 by immunohistochemistry. A total of 352 samples were analyzed which included 69 normal cervical tissue, 132 preinvasive lesions and 151 squamous cell carcinomas of the uterine cervix. Dual immunofluorescent analysis was performed to evaluate the coexpression of Notch1 and NF-kappaB. Transcriptional reporter assays and xenografts were undertaken with CaSki cells. RESULTS Features of Notch1 activation as measured by intracellular Notch1, high levels of Jagged1, Hes1 and Cdk9 were paralleled by nuclear translocation of both NF-kappaB p50 and p65 with target gene expression (IkappaB-alpha, Bcl-2, and CyclinD1) in human cervical cancer sections. Reporter assays in CaSki cells are consistent with Notch being an upstream regulator of NF-kappaB. Further, the xenografts recreate key aspects of human cancer tissue. CONCLUSIONS Results from this study suggest that there is a co-activation of Notch1 and NF-kappaB signaling pathways at the cellular level in the majority of human cervical cancers, with Notch as an upstream regulator.
Collapse
Affiliation(s)
- Bharathi Ramdass
- National Centre For Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore-560 065, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Noske A, Kaszubiak A, Weichert W, Sers C, Niesporek S, Koch I, Schaefer B, Sehouli J, Dietel M, Lage H, Denkert C. Specific inhibition of AKT2 by RNA interference results in reduction of ovarian cancer cell proliferation: Increased expression of AKT in advanced ovarian cancer. Cancer Lett 2007; 246:190-200. [PMID: 16584837 DOI: 10.1016/j.canlet.2006.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 02/13/2006] [Accepted: 02/20/2006] [Indexed: 11/17/2022]
Abstract
The protein kinase AKT is involved in several signaling pathways that are important for tumor development and progression, suggesting that AKT might be an interesting target for a molecular tumor therapy. In this study, we investigated the AKT expression in ovarian carcinomas and the role of the AKT isoforms to ovarian cancer cell proliferation. We observed an increased AKT expression in 58% of the primary ovarian carcinomas as compared to normal ovaries by immunohistochemistry. AKT expression was significantly associated with positive lymph node status (P=0.002) and advanced FIGO stage (P=0.009). In western blot analysis, total AKT was expressed in all ovarian cancer cell lines and HOSE cells, while phosphorylated AKT was only observed in OVCAR-3 and SKOV-3 cells. The isoforms AKT1 and AKT2 were expressed at the mRNA level in all cell lines, while no relevant AKT3 mRNA levels were detected by conventional and quantitative RT-PCR. To determine the effects on cell proliferation, we used the unselective PI3K-inhibitor LY294002 as well as RNA interference to selectively inhibit the AKT isoforms. Treatment with LY294002 and the AKT2 siRNA reduced proliferation of OVCAR-3 cells. Our results show that AKT is expressed in a subpopulation of advanced ovarian carcinomas suggesting a role for this protein in the progression of this entity. Deactivation of AKT, especially AKT2 can result in reduction of cell growth. Accordingly, AKT is an interesting target for therapeutic intervention in ovarian cancer.
Collapse
Affiliation(s)
- Aurelia Noske
- Institute of Pathology, Charité University Hospital Berlin, Campus Mitte, Schumannstr 20/21, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Cheng SY. Thyroid hormone receptor mutations and disease: insights from knock-in mouse models. Expert Rev Endocrinol Metab 2007; 2:47-57. [PMID: 30743748 DOI: 10.1586/17446651.2.1.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid hormone nuclear receptors (TRs) mediate thyroid hormone's activities in growth, differentiation, and development. Two TR genes (α and β ) encode four thyroid hormone-binding receptors that regulate target gene expression. Mutations of the TRβ gene cause the genetic syndrome of resistance to thyroid hormone. Studies indicate a close association between TRβ mutations and several human cancers, suggesting their oncogenic role. A TRβ gene knock-in mutant mouse (TRβPV/PV mouse) that spontaneously develops thyroid cancer allows elucidation of the oncogenic functions in vivo. TRβPV is a potent dominant negative mutant identified in a resistance to thyroid hormone patient. Molecular studies indicate that the PV mutant mediates its oncogenic activities via nucleus-initiated transcription and novel extranuclear actions. Thus, the deleterious effects of the gene mutations go beyond resistance to thyroid hormone and are more severe and extensive than previously envisioned. This newly identified oncogene exerts its tumorigenic effects via multiple signaling mechanisms.
Collapse
Affiliation(s)
- Sheue-Yann Cheng
- a National Cancer Institute, Laboratory of Molecular Biology, 37 Convent Dr., Room 5128, Bethesda, MD 20892-4264, USA.
| |
Collapse
|
129
|
Wang R, Brattain MG. AKT can be activated in the nucleus. Cell Signal 2006; 18:1722-31. [PMID: 16616456 DOI: 10.1016/j.cellsig.2006.01.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 01/18/2006] [Accepted: 01/20/2006] [Indexed: 11/30/2022]
Abstract
To investigate issues about AKT/PKB nuclear localization in cells, we examined endogenous or transiently transfected AKT localization in cancer cell lines by immunofluorescence. We found that AKT can be detected in both the nucleus and cytoplasm of HEK 293, HeLa and MCF7E cells. It was found that an active process mediates AKT nuclear translocation as shown by fusing AKT with GFP3 protein. The cellular distribution pattern of serial deletion mutants from GFP3-HA-AKT revealed that more than one segment of AKT is required for AKT nuclear translocation, while the individual segment does not have any apparent nuclear transport activity. These results implied that the signal mediating AKT nuclear translocation is conformation dependent, or more likely, is dependent upon association with other proteins. It was also found that AKT does not contain any apparent nuclear export signal. Furthermore, we found that nuclear AKT was activated in MCF7E cells upon stimulation. The possibility that nuclear activated AKT was translocated from the cytoplasm was excluded through the generation of a chimeric AKT protein, in which a strong nuclear localization signal was fused to the C-terminal of AKT.
Collapse
Affiliation(s)
- Ruiwen Wang
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | |
Collapse
|
130
|
Mesa C, Mirza M, Mitsutake N, Sartor M, Medvedovic M, Tomlinson C, Knauf JA, Weber GF, Fagin JA. Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res 2006; 66:6521-9. [PMID: 16818623 DOI: 10.1158/0008-5472.can-06-0739] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Papillary thyroid cancers (PTC) are associated with nonoverlapping mutations of genes coding for mitogen-activated protein kinase signaling effectors (i.e., the TK receptors RET or NTRK and the signaling proteins RAS and BRAF). We examined the pattern of gene expression after activation of these oncoproteins in thyroid PCCL3 cells, with the goal of identifying pathways or gene subsets that may account for the phenotypic differences observed in human cancers. We hybridized cDNA from cells treated with or without doxycycline to induce expression of BRAF(V600E), RET/PTC3, or RET/PTC3 with small interfering RNA-mediated knockdown of BRAF, respectively, to slides arrayed with a rat 70-mer oligonucleotide library consisting of 27,342 oligos. Among the RET/PTC3-induced genes, 2,552 did not require BRAF as they were similarly regulated by RET/PTC3 with or without BRAF knockdown and not by expression of BRAF(V600E). Immune response and IFN-related genes were highly represented in this group. About 24% of RET/PTC3-regulated genes were BRAF dependent, as they were similarly modified by RET/PTC3 and BRAF(V600E) but not in cells expressing RET/PTC3 with knockdown of BRAF. A gene cluster coding for components of the mitochondrial electron transport chain pathway was down-regulated in this group, potentially altering regulation of cell viability. Metalloproteinases were also preferentially induced by BRAF, particularly matrix metalloproteinase 3 (MMP3), MMP9, and MMP13. Accordingly, conditional expression of BRAF was associated with markedly increased invasion into Matrigel compared with cells expressing RET/PTC3. The preferential induction of MMPs by BRAF could explain in part the more invasive behavior of thyroid cancers with BRAF mutations.
Collapse
Affiliation(s)
- Cleo Mesa
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
de Groot JWB, Links TP, Plukker JTM, Lips CJM, Hofstra RMW. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev 2006; 27:535-60. [PMID: 16849421 DOI: 10.1210/er.2006-0017] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RET gene encodes a receptor tyrosine kinase that is expressed in neural crest-derived cell lineages. The RET receptor plays a crucial role in regulating cell proliferation, migration, differentiation, and survival through embryogenesis. Activating mutations in RET lead to the development of several inherited and noninherited diseases. Germline point mutations are found in the cancer syndromes multiple endocrine neoplasia (MEN) type 2, including MEN 2A and 2B, and familial medullary thyroid carcinoma. These syndromes are autosomal dominantly inherited. The identification of mutations associated with these syndromes has led to genetic testing to identify patients at risk for MEN 2 and familial medullary thyroid carcinoma and subsequent implementation of prophylactic thyroidectomy in mutation carriers. In addition, more than 10 somatic rearrangements of RET have been identified from papillary thyroid carcinomas. These mutations, as those found in MEN 2, induce oncogenic activation of the RET tyrosine kinase domain via different mechanisms, making RET an excellent candidate for the design of molecular targeted therapy. Recently, various kinds of therapeutic approaches, such as tyrosine kinase inhibition, gene therapy with dominant negative RET mutants, monoclonal antibodies against oncogene products, and nuclease-resistant aptamers that recognize and inhibit RET have been developed. The use of these strategies in preclinical models has provided evidence that RET is indeed a potential target for selective cancer therapy. However, a clinically useful therapeutic option for treating patients with RET-associated cancer is still not available.
Collapse
Affiliation(s)
- Jan Willem B de Groot
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
132
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to examine the contribution of the PI3K signaling pathway to the development of human tumors and to propose further studies to elucidate how to develop therapeutics for patients with mutations in this pathway. RECENT FINDINGS More than 30% of various solid tumor types were recently found to contain mutations in PIK3CA, the catalytic subunit of PI3K. Further analysis of key genes in this pathway identified an additional eight genes altered in tumors. These were generally found to be mutated in a mutually exclusive manner, thus increasing the mutation frequency of the pathway to 40% in colorectal cancers and emphasizing the importance of the PI3K pathway in tumorigenesis. Functional analyses of PIK3CA mutations revealed that they increase its enzymatic activity, stimulate AKT signaling, allow growth factor-independent growth as well as increasing cell invasion and metastasis. SUMMARY The PI3K signaling pathway is dysregulated by a variety of mechanisms in a large fraction of human tumors. Both mutational and functional analyses have shown that PIK3CA is an oncogene that plays an important role in tumor progression. Mutant members of the PI3K pathway, including PIK3CA, are good targets for therapeutic intervention because most of them are kinases, making them attractive for drug development. Gaining further insights into PIK3CA oncogenic mechanisms may produce new biomarkers and help the development of targeted therapeutics.
Collapse
Affiliation(s)
- Yardena Samuels
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
133
|
Le Page C, Koumakpayi IH, Alam-Fahmy M, Mes-Masson AM, Saad F. Expression and localisation of Akt-1, Akt-2 and Akt-3 correlate with clinical outcome of prostate cancer patients. Br J Cancer 2006; 94:1906-12. [PMID: 16721361 PMCID: PMC2361354 DOI: 10.1038/sj.bjc.6603184] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We investigated the correlation between the expression and localisation of Akt-1, Akt-2, Akt-3, phospho-Akt proteins and the clinicopathological parameters in 63 prostate cancer specimens. More than 60% of cancerous tissues overexpressed Akt-1, Akt-2 or Akt-3. Cytoplasmic Akt-1 expression was correlated with a higher risk of postoperative prostate-specific antigen (PSA) recurrence and shorter PSA recurrence interval. Cytoplasmic Akt-2 did not show any significant correlation with clinicopathological parameters predicting outcomes. Cytoplasmic Akt-3 was associated with hormone-refractory disease progression and extracapsular invasion. Nuclear Akt-1 and Akt-2 expression were correlated with favourable outcome parameters such as absence of lymph node and perineural invasion. Kaplan–Meier analysis and Cox regression model also showed that Akt-1 and Akt-2, but not Akt-3 or phospho-Akt was associated with a significantly higher risk of PSA recurrence. In contrast, nuclear Akt-1 was significantly associated with a lower risk of PSA recurrence. Multivariate analysis revealed that clinical stage, Gleason score and the combined cytoplasmic nuclear Akt-1 marker in cancerous tissues were significant independent prognostic factors of PSA recurrence. This is the first report demonstrating in patients with prostate cancer and the particular role of Akt-1 isoform expression as a prognostic marker depending of its localisation.
Collapse
Affiliation(s)
- C Le Page
- Département d’urologie, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM) and Institut du cancer de Montréal, Hôpital Notre-Dame, 1560 rue Sherbrooke Est, Montreal, Quebec, Canada H2L4M1
| | - I H Koumakpayi
- Département d’urologie, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM) and Institut du cancer de Montréal, Hôpital Notre-Dame, 1560 rue Sherbrooke Est, Montreal, Quebec, Canada H2L4M1
| | - M Alam-Fahmy
- Département d’urologie, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM) and Institut du cancer de Montréal, Hôpital Notre-Dame, 1560 rue Sherbrooke Est, Montreal, Quebec, Canada H2L4M1
| | - A-M Mes-Masson
- Département d’urologie, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM) and Institut du cancer de Montréal, Hôpital Notre-Dame, 1560 rue Sherbrooke Est, Montreal, Quebec, Canada H2L4M1
- Département de médecine, Université de Montréal, Montreal, Quebec, Canada H3C3J7
| | - F Saad
- Département d’urologie, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM) and Institut du cancer de Montréal, Hôpital Notre-Dame, 1560 rue Sherbrooke Est, Montreal, Quebec, Canada H2L4M1
- Département d’urologie, Université de Montréal, Montreal, Quebec, Canada H3C3J7
- E-mail:
| |
Collapse
|
134
|
Saraiva VS, Caissie AL, Segal L, Edelstein C, Burnier MN. Immunohistochemical expression of phospho-Akt in uveal melanoma. Melanoma Res 2006; 15:245-50. [PMID: 16034301 DOI: 10.1097/00008390-200508000-00003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate the immunohistochemical expression of phospho-Akt and its possible association with clinicopathological features in uveal melanoma. Thirty-four enucleated eyes from 34 patients with choroidal melanoma were included in the study. Patients were divided into two groups based on the treatment received: (1) primary enucleation (n=18); (2) radiotherapy, either external beam or brachytherapy, and enucleation (n=16). Clinicopathological data were obtained. The minimum follow-up time was 72 months. Immunohistochemistry for phospho-Akt was performed using an anti-phospho-Akt (Ser 473) rabbit antibody. The association of phospho-Akt with clinicopathological parameters was investigated in each patient group separately. Phospho-Akt immunostaining was cytoplasmic in both groups. In the primary enucleation group, 10 tumours were phospho-Akt positive (55.5%). Patients with phospho-Akt-positive tumours were older (average 70.8 years versus 59 years, P=0.01) and phospho-Akt immunoreactivity was significantly associated with a higher risk of metastatic disease (Kaplan-Meier analysis, P=0.02). In the radiotherapy and enucleation group, nine tumours were phospho-Akt positive (56.2%). The absence of phospho-Akt expression was correlated with male gender (P=0.02). The following conclusions can be drawn from this study: (1) phospho-Akt immunoexpression was detected in 55.5% of uveal melanomas treated with primary enucleation and in 56.2% of uveal melanomas treated with radiotherapy and enucleation; (2) the association of phospho-Akt immunoexpression with clinicopathological features, including prognosis, merits further study.
Collapse
Affiliation(s)
- Vinicius S Saraiva
- The Henry C. Witelson Ocular Pathology Laboratory and Registry, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
135
|
Nadra K, Anghel SI, Joye E, Tan NS, Basu-Modak S, Trono D, Wahli W, Desvergne B. Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor beta/delta. Mol Cell Biol 2006; 26:3266-81. [PMID: 16581799 PMCID: PMC1446964 DOI: 10.1128/mcb.26.8.3266-3281.2006] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutation of the nuclear receptor peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) severely affects placenta development, leading to embryonic death at embryonic day 9.5 (E9.5) to E10.5 of most, but not all, PPARbeta/delta-null mutant embryos. While very little is known at present about the pathway governed by PPARbeta/delta in the developing placenta, this paper demonstrates that the main alteration of the placenta of PPARbeta/delta-null embryos is found in the giant cell layer. PPARbeta/delta activity is in fact essential for the differentiation of the Rcho-1 cells in giant cells, as shown by the severe inhibition of differentiation once PPARbeta/delta is silenced. Conversely, exposure of Rcho-1 cells to a PPARbeta/delta agonist triggers a massive differentiation via increased expression of 3-phosphoinositide-dependent kinase 1 and integrin-linked kinase and subsequent phosphorylation of Akt. The links between PPARbeta/delta activity in giant cells and its role on Akt activity are further strengthened by the remarkable pattern of phospho-Akt expression in vivo at E9.5, specifically in the nucleus of the giant cells. In addition to this phosphatidylinositol 3-kinase/Akt main pathway, PPARbeta/delta also induced giant cell differentiation via increased expression of I-mfa, an inhibitor of Mash-2 activity. Finally, giant cell differentiation at E9.5 is accompanied by a PPARbeta/delta-dependent accumulation of lipid droplets and an increased expression of the adipose differentiation-related protein (also called adipophilin), which may participate to lipid metabolism and/or steroidogenesis. Altogether, this important role of PPARbeta/delta in placenta development and giant cell differentiation should be considered when contemplating the potency of PPARbeta/delta agonist as therapeutic agents of broad application.
Collapse
Affiliation(s)
- Karim Nadra
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Martelli AM, Faenza I, Billi AM, Manzoli L, Evangelisti C, Falà F, Cocco L. Intranuclear 3'-phosphoinositide metabolism and Akt signaling: new mechanisms for tumorigenesis and protection against apoptosis? Cell Signal 2006; 18:1101-7. [PMID: 16516442 DOI: 10.1016/j.cellsig.2006.01.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 01/17/2006] [Accepted: 01/17/2006] [Indexed: 11/17/2022]
Abstract
Lipid second messengers, particularly those derived from the polyphosphoinositide metabolism, play a pivotal role in multiple cell signaling networks. Phosphoinositide 3-kinase (PI3K) generate 3'-phosphorylated inositol lipids that are key players in a multitude of cell functions. One of the best characterized targets of PI3K lipid products is the serine/threonine protein kinase Akt (protein kinase B, PKB). Recent findings have implicated the PI3K/Akt pathway in tumorigenesis because it stimulates cell proliferation and suppresses apoptosis. However, it was thought that this signal transduction network would exert its carcinogenetic effects mainly by operating in the cytoplasm. Evidence accumulated over the past 15 years has highlighted the presence of an autonomous nuclear inositol lipid cycle, and strongly suggests that lipid molecules are important components of signaling pathways operating at the nuclear level. PI3K, its lipid product phosphatidylinositol (3,4,5) trisphosphate (PtdIns(3,4,5)P3), and Akt have been identified within the nucleus and recent data suggest that they counteract apoptosis also by operating in this cell compartment through a block of caspase-activated DNase and inhibition of chromatin condensation. In this review, we shall summarize the most updated and intriguing findings about nuclear PI3K/PtdIns(3,4,5)P3/Akt in relationship with tumorigenesis and suppression of apoptotic stimuli.
Collapse
Affiliation(s)
- Alberto M Martelli
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia Umana, Cell Signalling Laboratory, Università di Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
137
|
Furuya F, Hanover JA, Cheng SY. Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone beta receptor. Proc Natl Acad Sci U S A 2006; 103:1780-5. [PMID: 16446424 PMCID: PMC1413672 DOI: 10.1073/pnas.0510849103] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Activation of the phosphatidylinositol 3-kinase (PI3K)-AKT/protein kinase B signaling pathway has been associated with multiple human cancers. Recently we showed that AKT is activated in both the thyroid and metastatic lesions of a mouse model of follicular thyroid carcinoma [thyroid hormone beta receptor (TRbeta)(PV/PV) mice]. This TRbeta(PV/PV) mouse harbors a knock-in mutant TRbeta gene (TRbetaPV mutant) that spontaneously develops thyroid cancer and distant metastasis similar to human follicular thyroid cancer. Here we show that in thyroid tumors, PV mutant bound significantly more to the PI3K-regulatory subunit p85alpha, resulting in a greater increase in the kinase activity than did TRbeta1 in wild-type mice. By GST pull-down assays, the ligand-binding domain of TR was identified as the interaction site with p85alpha. By confocal fluorescence microscopy, p85alpha was shown to colocalize with TRbeta1 or PV mainly in the nuclear compartment of cultured tumor cells from TRbeta(PV/PV) mice, but cytoplasmic p85alpha/PV or p85alpha/TRbeta1 complexes were also detectable. Further biochemical analysis revealed that the activation of the PI3K-AKT-mammalian target of the rapamycin-p70(S6K) pathway was observed in both the cytoplasmic and nuclear compartments, whereas the activation of the PI3K-integrin-linked kinase-matrix metalloproteinase 2 pathway was detected mainly in the extranuclear compartments. These results suggest that PV, via the activation of p85alpha, could act to affect PI3K downstream signaling in both the nuclear and extranuclear compartments, thereby contributing to thyroid carcinogenesis. Importantly, the present study unveils a mechanism by which a mutant TR acts to activate PI3K activity via protein-protein interactions.
Collapse
Affiliation(s)
- Fumihiko Furuya
- *Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, and
| | - John A. Hanover
- Laboratory of Cellular Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sheue-yann Cheng
- *Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, and
- To whom correspondence should be addressed at:
Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Drive, Room 5128, Bethesda, MD 20892-4264. E-mail:
| |
Collapse
|
138
|
García-Rostán G, Costa AM, Pereira-Castro I, Salvatore G, Hernandez R, Hermsem MJA, Herrero A, Fusco A, Cameselle-Teijeiro J, Santoro M. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res 2006; 65:10199-207. [PMID: 16288007 DOI: 10.1158/0008-5472.can-04-4259] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The phosphatidylinositol 3'-kinase (PI3K) pathway is frequently activated in thyroid carcinomas through the constitutive activation of stimulatory molecules (e.g., Ras) and/or the loss of expression and/or function of the inhibitory PTEN protein that results in Akt activation. Recently, it has been reported that somatic mutations within the PI3K catalytic subunit, PIK3CA, are common (25-40%) among colorectal, gastric, breast, ovarian cancers, and high-grade brain tumors. Moreover, PIK3CA mutations have a tendency to cluster within the helical (exon 9) and the kinase (exon 20) domains. In this study, 13 thyroid cancer cell lines, 80 well-differentiated thyroid carcinomas of follicular (WDFC) and papillary (WDPC) type, and 70 anaplastic thyroid carcinomas (ATC) were investigated, by PCR-direct sequencing, for activating PIK3CA mutations at exons 9 and 20. Nonsynonymous somatic mutations were found in 16 ATC (23%), two WDFC (8%), and one WDPC (2%). In 18 of the 20 ATC cases showing coexisting differentiated carcinoma, mutations, when present, were restricted to the ATC component and located primarily within the kinase domain. Three cell lines of papillary and follicular lineage (K1, K2, and K5) were also found mutated. In addition, activation of Akt was observed in most of the ATC harboring PIK3CA mutations. These findings indicate that mutant PIK3CA is likely to function as an oncogene among ATC and less frequently well-differentiated thyroid carcinomas. The data also argue for a role of PIK3CA targeting in the treatment of ATC patients.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/enzymology
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/pathology
- Amino Acid Substitution
- Carcinoma/enzymology
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma, Papillary/enzymology
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/pathology
- Cell Growth Processes/genetics
- Cell Line, Tumor
- Class I Phosphatidylinositol 3-Kinases
- Enzyme Activation
- Genes, p53/genetics
- Genes, ras/genetics
- Humans
- Mutation, Missense
- Oncogene Protein v-akt/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Proto-Oncogene Proteins B-raf/genetics
- Thyroid Neoplasms/enzymology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Ginesa García-Rostán
- Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
Several recent reports have brought conclusive evidence that the tumor suppressor PTEN, once considered a strictly cytoplasmic protein, shuttles to the nuclear compartment, where it joins a variety of components of the same pathway it regulates in the cytoplasm, among which PI3K, PDK1 and AKT. In this review, we focus on the growing supporting evidence for an important physiological role of this nuclear pathway and on the role that alteration of this novel regulatory circuit may play during cell transformation.
Collapse
Affiliation(s)
- Zenglin Lian
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|
140
|
Kirkegaard T, Witton CJ, McGlynn LM, Tovey SM, Dunne B, Lyon A, Bartlett JMS. AKT activation predicts outcome in breast cancer patients treated with tamoxifen. J Pathol 2005; 207:139-46. [PMID: 16088978 DOI: 10.1002/path.1829] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oestrogen receptor (ERalpha) expression is a strong predictor of response to endocrine therapy. The PI3K/AKT/mTOR signal transduction pathway has been implicated in endocrine resistance in vitro. The present study was carried out to test the hypothesis that AKT activation mediates tamoxifen resistance in clinical breast cancer. Immunohistochemistry (IHC) using AKT1-3, pan-AKT, pAKT (Thr-308), pAKT (Ser-473), pER (Ser-167), and pHER2 antibodies was performed on 402 ERalpha-positive breast carcinomas from patients treated with tamoxifen. High pAKT (Ser-473) activity (p = 0.0406) and low AKT2 expression (p = 0.0115) alone, or in combination [high pAKT (Ser-473)/low AKT2; 'high-risk' patient group] (p = 0.0014), predicted decreased overall survival in tamoxifen-treated patients with ERalpha-positive breast cancers. There was no significant association between tumour levels of AKT expression or activity and disease-free survival (DFS); however, the 'high-risk' patient group was significantly more likely to relapse (p = 0.0491). During tamoxifen treatment, neither AKT2 nor pAKT predicted DFS. Finally, activation of AKT, via phosphorylation, was linked to activation of both HER2 and ERalpha in this patient cohort. The data presented here show that the PI3K/AKT/mTOR pathway is associated with relapse and death in ERalpha-positive breast cancer patients treated with tamoxifen, supporting in vitro evidence that AKT mediates tamoxifen resistance. Patients with a 'high-risk' expression profile were at increased risk of death (hazard ratio 3.22, p = 0.002) relative to 'low-risk' patients, highlighting the potential that tumour profiling, with multiple IHC markers predictive of therapeutic response, may improve patient selection for endocrine therapies, eg tamoxifen or aromatase inhibitor-based treatments.
Collapse
Affiliation(s)
- Tove Kirkegaard
- Endocrine Cancer Group, Division of Cancer Sciences and Molecular Pathology, Department of Surgery, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | | | | | | | | | | | | |
Collapse
|
141
|
Kim CS, Vasko VV, Kato Y, Kruhlak M, Saji M, Cheng SY, Ringel MD. AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma. Endocrinology 2005; 146:4456-63. [PMID: 16002527 DOI: 10.1210/en.2005-0172] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The phosphatidylinositol 3-kinase/AKT pathway is crucial to many cell functions, and its dysregulation in tumors is a common finding. The molecular basis of follicular thyroid cancer metastasis is not well understood but may also be influenced by AKT activation. We previously created a knockin mutant mouse that expresses a mutant thyroid hormone receptor-beta gene (TRbetaPV mouse) that spontaneously develops thyroid cancer and distant metastasis similar to human follicular thyroid cancer. In this study, we investigated whether our mouse model exhibits similar AKT activation as human follicular thyroid cancer. Western blot analysis on thyroids from both wild-type and TRbeta(PV/PV) mice revealed elevation of activated AKT in TRbeta(PV/PV) mice. Immunohistochemistry and confocal microscopy reveal activated AKT in both the thyroid and metastatic lesions of TRbeta(PV/PV) mice. Whereas all three AKT isoforms were overexpressed in primary tumors from TRbeta(PV/PV) mice in the cytoplasm of thyroid cancer cells, only AKT1 was also found in the nucleus, matching the localization of activated AKT in a pattern similar to human follicular thyroid cancer. In the metastases, all AKT isoforms correlated with phosphorylated AKT nuclear localization. We created primary thyroid cell lines derived from TRbeta(PV/PV) mice and found reduction of phosphorylated AKT levels or AKT downstream targets diminishes cell motility. Activated AKT is common to both human and mouse follicular thyroid cancer and is correlated with increased cell motility in vitro and metastasis in vivo. Thus, TRbeta(PV/PV) mice could be used to further dissect the detailed pathways underlying the progression and metastasis of follicular thyroid carcinoma.
Collapse
Affiliation(s)
- Caroline S Kim
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 5128, Bethesda, Maryland 20892-4264, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
The ras genes give rise to a family of related GTP-binding proteins that exhibit potent transforming potential. Mutational activation of Ras proteins promotes oncogenesis by disturbing a multitude of cellular processes, such as gene expression, cell cycle progression and cell proliferation, as well as cell survival, and cell migration. Ras signalling pathways are well known for their involvement in tumour initiation, but less is known about their contribution to invasion and metastasis. This review summarises the role and mechanisms of Ras signalling, especially the role of the Ras effector cascade Raf/MEK/ERK, as well as the phosphatidylinositol 3-kinase/Akt pathway in Ras-mediated transformation and tumour progression. In addition, it discusses the impact of Rho GTPases on Ras-mediated transformation and metastasis.
Collapse
Affiliation(s)
- Klaudia Giehl
- Department of Pharmacology and Toxicology, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
143
|
Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 2005; 94:29-86. [PMID: 16095999 DOI: 10.1016/s0065-230x(05)94002-5] [Citation(s) in RCA: 629] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The AKT1, AKT2, and AKT3 kinases have emerged as critical mediators of signal transduction pathways downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase. An ever-increasing list of AKT substrates has precisely defined the multiple functions of this kinase family in normal physiology and disease states. Cellular processes regulated by AKT include cell proliferation and survival, cell size and response to nutrient availability, intermediary metabolism, angiogenesis, and tissue invasion. All these processes represent hallmarks of cancer, and a burgeoning literature has defined the importance of AKT alterations in human cancer and experimental models of tumorigenesis, continuing the legacy represented by the original identification of v-Akt as the transforming oncogene of a murine retrovirus. Many oncoproteins and tumor suppressors intersect in the AKT pathway, finely regulating cellular functions at the interface of signal transduction and classical metabolic regulation. This careful balance is altered in human cancer by a variety of activating and inactivating mechanisms that target both AKT and interrelated proteins. Reprogramming of this altered circuitry by pharmacologic modulation of the AKT pathway represents a powerful strategy for rational cancer therapy. In this review, we summarize a large body of data, from many types of cancer, indicating that AKT activation is one of the most common molecular alterations in human malignancy. We also review mechanisms of activation of AKT kinases, examples of therapeutic modulation of the AKT pathway in animal models, and the current status of efforts to target molecular components of the AKT pathway for cancer therapy and, possibly, cancer prevention.
Collapse
Affiliation(s)
- Alfonso Bellacosa
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
144
|
Guida T, Salvatore G, Faviana P, Giannini R, Garcia-Rostan G, Provitera L, Basolo F, Fusco A, Carlomagno F, Santoro M. Mitogenic effects of the up-regulation of minichromosome maintenance proteins in anaplastic thyroid carcinoma. J Clin Endocrinol Metab 2005; 90:4703-9. [PMID: 15899946 DOI: 10.1210/jc.2004-2459] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CONTEXT Anaplastic thyroid carcinomas (ATC) are among the most aggressive human malignancies and are characterized by high mitotic activity. Minichromosome maintenance proteins (MCM) 2-7 are required to initiate eukaryotic DNA replication, and their overexpression has been associated with dysplasia and malignancy. OBJECTIVE In an attempt to cast light on the mechanisms governing ATC, we evaluated MCM5 and MCM7 expression in human normal, papillary (PTC), and anaplastic thyroid samples, as well as in primary culture cells and transgenic mouse models. RESULTS MCM5 and MCM7 expression was high in 65% of ATC and negligible in normal thyroid tissue and papillary thyroid carcinomas. In ATC, high MCM5 and MCM7 expression was paralleled by high levels of MCM2 and MCM6. An analysis of human ATC primary cell cultures and of a transgenic mouse model of ATC confirmed these findings. An increased transcription rate accounted for MCM7 up-regulation, because the activity of the MCM7 promoter was more than 10-fold higher in ATC cells compared with normal thyroid cells. Adoptive overexpression of wild-type p53, but not of its inactive (R248W and R273H) mutants, strongly down-regulated transcription from the MCM7 promoter, suggesting that p53 knock-out contributes to MCM7 up-regulation in ATC. Treatment with small inhibitory duplex RNAs, which decrease MCM7 protein levels, reduced the rate of DNA synthesis in ATC cells. CONCLUSION MCM proteins are overexpressed in ATC and sustain the high proliferative capacity of ATC cells.
Collapse
Affiliation(s)
- Teresa Guida
- Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Mandal M, Kim S, Younes MN, Jasser SA, El-Naggar AK, Mills GB, Myers JN. The Akt inhibitor KP372-1 suppresses Akt activity and cell proliferation and induces apoptosis in thyroid cancer cells. Br J Cancer 2005; 92:1899-905. [PMID: 15870708 PMCID: PMC2361761 DOI: 10.1038/sj.bjc.6602595] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The phosphatidylinositol 3′ kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome ten/Akt pathway, which is a critical regulator of cell proliferation and survival, is mutated or activated in a wide variety of cancers. Akt appears to be a key central node in this pathway and thus is an attractive target for targeted molecular therapy. We demonstrated that Akt is highly phosphorylated in thyroid cancer cell lines and human thyroid cancer specimens, and hypothesised that KP372-1, an Akt inhibitor, would block signalling through the PI3K pathway and inhibit cell proliferation while inducing apoptosis of thyroid cancer cells. KP372-1 blocked signalling downstream of Akt in thyroid tumour cells, leading to inhibition of cell proliferation and increased apoptosis. As thyroid cancer consistently expresses phosphorylated Akt and KP372-1 effectively blocks Akt signalling, further preclinical evaluation of this compound for treatment of thyroid cancer is warranted.
Collapse
Affiliation(s)
- M Mandal
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Kim
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M N Younes
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S A Jasser
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G B Mills
- Department of Molecular Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Head and Neck Surgery, Unit 441, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA. E-mail:
| |
Collapse
|
146
|
Samuels Y, Diaz LA, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 2005; 7:561-73. [PMID: 15950905 DOI: 10.1016/j.ccr.2005.05.014] [Citation(s) in RCA: 736] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/06/2005] [Accepted: 05/20/2005] [Indexed: 02/07/2023]
Abstract
PIK3CA is mutated in diverse human cancers, but the functional effects of these mutations have not been defined. To evaluate the consequences of PIK3CA alterations, the two most common mutations were inactivated by gene targeting in colorectal cancer (CRC) cells. Biochemical analyses of these cells showed that mutant PIK3CA selectively regulated the phosphorylation of AKT and the forkhead transcription factors FKHR and FKHRL1. PIK3CA mutations had little effect on growth under standard conditions, but reduced cellular dependence on growth factors. PIK3CA mutations resulted in attenuation of apoptosis and facilitated tumor invasion. Treatment with the PI3K inhibitor LY294002 abrogated PIK3CA signaling and preferentially inhibited growth of PIK3CA mutant cells. These data have important implications for therapy of cancers harboring PIK3CA alterations.
Collapse
Affiliation(s)
- Yardena Samuels
- The Sidney Kimmel Comprehensive Cancer Center and The Howard Hughes Medical Institute, The Johns Hopkins University Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
The beta-catenin pathway has been conclusively demonstrated to regulate differentiation and patterning in multiple model systems. In thyroid cancer, alterations are often seen in proteins that regulate beta-catenin, including those of the RAS, PI3K/AKT, and peroxisome proliferation activated receptor-gamma (PPARgamma) pathways, and evidence from the literature suggests that beta-catenin may play a direct role in the dedifferentiation commonly observed in late-stage disease. RET/PTC rearrangements are frequent in thyroid cancer and appear to be exclusive from mutational events in RAS and BRAF. Activation of AKT by phosphatidylinositide-3 kinase (PI3K), a RAS effector, results in GSK3beta phosphorylation and deactivation and subsequent beta-catenin upregulation in thyroid cancer. Activating mutations in beta-catenin, which have been demonstrated in late-stage thyroid tumors, correlate with beta-catenin nuclear localization and poor prognosis. We hypothesize that activation of the RAS, PI3K/AKT, and PPARgamma pathways ultimately impinges upon beta-catenin. We further propose that if mutations in BRAF, RAS, and RET/PTC rearrangements are mutually exclusive in certain thyroid tumors or tumor types, as has already been shown for papillary thyroid cancer, then these interconnected pathways may cooperate in the initiation and promotion of the disease. We believe that clinical benefit for thyroid cancer patients could be derived from disrupting the middle or distal pathway effectors of these pathways, such as AKT or beta-catenin.
Collapse
Affiliation(s)
- Phillip H Abbosh
- Indiana University School of Medicine, Medical Sciences, Bloomington, Indiana, USA.
| | | |
Collapse
|
148
|
Younes MN, Yigitbasi OG, Park YW, Kim SJ, Jasser SA, Hawthorne VS, Yazici YD, Mandal M, Bekele BN, Bucana CD, Fidler IJ, Myers JN. Antivascular Therapy of Human Follicular Thyroid Cancer Experimental Bone Metastasis by Blockade of Epidermal Growth Factor Receptor and Vascular Growth Factor Receptor Phosphorylation. Cancer Res 2005; 65:4716-27. [PMID: 15930290 DOI: 10.1158/0008-5472.can-04-4196] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients suffering from bone metastases of follicular thyroid carcinoma (FTC) have a poor prognosis because of the lack of effective treatment strategies. The overexpression of epidermal growth factor receptor (EGFR) associated with increased vascularity has been implicated in the pathogenesis of FTC and subsequent bone metastases. We hypothesized that inhibiting the phosphorylation of the EGFR and vascular endothelial growth factor receptor (VEGFR) by AEE788, a dual tyrosine kinase inhibitor of EGFR and VEGFR, in combination with paclitaxel would inhibit experimental FTC bone lesions and preserve bone structure. We tested this hypothesis using the human WRO FTC cell line. In culture, AEE788 inhibited the EGF-mediated phosphorylation of EGFR, VEGFR2, mitogen-activated protein kinase, and Akt in culture. AEE788, alone and in combination with paclitaxel, inhibited cell growth and induced apoptosis. When WRO cells were injected into the tibia of nude mice, tumor and endothelial cells within the lesions expressed phosphorylated EGFR, VEGFR, Akt, and mitogen-activated protein kinase that were inhibited by the oral administration of AEE788. Therapy consisting of orally given AEE788 and i.p. injected paclitaxel induced a high level of apoptosis in tumor-associated endothelial cells and tumor cells with the inhibition of tumor growth in the bone and the preservation of bone structure. Collectively, these data show that blocking the phosphorylation of EGFR and VEGFR with AEE788 combined with paclitaxel can significantly inhibit experimental human FTC in the bone of nude mice.
Collapse
Affiliation(s)
- Maher Nabil Younes
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Motti ML, Califano D, Troncone G, De Marco C, Migliaccio I, Palmieri E, Pezzullo L, Palombini L, Fusco A, Viglietto G. Complex regulation of the cyclin-dependent kinase inhibitor p27kip1 in thyroid cancer cells by the PI3K/AKT pathway: regulation of p27kip1 expression and localization. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:737-49. [PMID: 15743786 PMCID: PMC1602368 DOI: 10.1016/s0002-9440(10)62295-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2004] [Indexed: 01/03/2023]
Abstract
Functional inactivation of the tumor suppressor p27(kip1) in human cancer occurs either through loss of expression or through phosphorylation-dependent cytoplasmic sequestration. Here we demonstrate that dysregulation of the PI3K/AKT pathway is important in thyroid carcinogenesis and that p27(kip1) is a key target of the growth-regulatory activity exerted by this pathway in thyroid cancer cells. Using specific PI3K inhibitors (LY294002, wortmannin, and PTEN) and a dominant active AKT construct (myrAKT), we demonstrated that the PI3K/AKT pathway controlled thyroid cell proliferation by regulating the expression and subcellular localization of p27. Results obtained with phospho-specific antibodies and with transfection of nonphosphorylable p27(kip1) mutant constructs demonstrated that PI3K/AKT-dependent regulation of p27(kip1) mislocalization in thyroid cancer cells occurred via phosphorylation of p27(kip1) at T157 and T198 (but not at S10 or T187). Finally, we evaluated whether these results were applicable to human tumors. Analysis of 100 thyroid carcinomas indicated that p27(kip1) phosphorylation at T157/T198 and cytoplasmic mislocalization were preferentially associated with activation of the PI3K/AKT pathway. Thus the PI3/AKT pathway and its effector p27(kip1) play major roles in thyroid carcinogenesis.
Collapse
Affiliation(s)
- Maria Letizia Motti
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università di Napoli Federico II, via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Mackintosh C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 2004; 381:329-42. [PMID: 15167810 PMCID: PMC1133837 DOI: 10.1042/bj20031332] [Citation(s) in RCA: 424] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 04/14/2004] [Accepted: 05/28/2004] [Indexed: 12/17/2022]
Abstract
14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s 'finish the job' when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival--in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses.
Collapse
Affiliation(s)
- Carol Mackintosh
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|