101
|
Hooshmandi M, Truong VT, Fields E, Thomas RE, Wong C, Sharma V, Gantois I, Soriano Roque P, Chalkiadaki K, Wu N, Chakraborty A, Tahmasebi S, Prager-Khoutorsky M, Sonenberg N, Suvrathan A, Watt AJ, Gkogkas CG, Khoutorsky A. 4E-BP2-dependent translation in cerebellar Purkinje cells controls spatial memory but not autism-like behaviors. Cell Rep 2021; 35:109036. [PMID: 33910008 DOI: 10.1016/j.celrep.2021.109036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/15/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Recent studies have demonstrated that selective activation of mammalian target of rapamycin complex 1 (mTORC1) in the cerebellum by deletion of the mTORC1 upstream repressors TSC1 or phosphatase and tensin homolog (PTEN) in Purkinje cells (PCs) causes autism-like features and cognitive deficits. However, the molecular mechanisms by which overactivated mTORC1 in the cerebellum engenders these behaviors remain unknown. The eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) is a central translational repressor downstream of mTORC1. Here, we show that mice with selective ablation of 4E-BP2 in PCs display a reduced number of PCs, increased regularity of PC action potential firing, and deficits in motor learning. Surprisingly, although spatial memory is impaired in these mice, they exhibit normal social interaction and show no deficits in repetitive behavior. Our data suggest that, downstream of mTORC1/4E-BP2, there are distinct cerebellar mechanisms independently controlling social behavior and memory formation.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vinh Tai Truong
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Eviatar Fields
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Riya Elizabeth Thomas
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Calvin Wong
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Vijendra Sharma
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ilse Gantois
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Patricia Soriano Roque
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Neil Wu
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anindyo Chakraborty
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Aparna Suvrathan
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal QC, H3G1A4, Canada; Department of Neurology and Neurosurgery, Department of Pediatrics, McGill University, Montreal QC, H3G1A4, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, QC H3A 1A3, Canada
| | - Christos G Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece.
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC H3G 1Y6, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
102
|
PTEN in prefrontal cortex is essential in regulating depression-like behaviors in mice. Transl Psychiatry 2021; 11:185. [PMID: 33771972 PMCID: PMC7998021 DOI: 10.1038/s41398-021-01312-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is an environmental risk factor for depression and causes neuronal atrophy in the prefrontal cortex (PFC) and other brain regions. It is still unclear about the molecular mechanism underlying the behavioral alterations and neuronal atrophy induced by chronic stress. We here report that phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a mediator for chronic stress-induced depression-like behaviors and neuronal atrophy in mice. One-month chronic restraint stress (CRS) up-regulated PTEN signaling pathway in the PFC of mice as indicated by increasing levels of PTEN, p-MEK, and p-ERK but decreasing levels of p-AKT. Over-expression of Pten in the PFC led to an increase of depression-like behaviors, whereas genetic inactivation or knockdown of Pten in the PFC prevented the CRS-induced depression-like behaviors. In addition, systemic administration of PTEN inhibitor was also able to prevent these behaviors. Cellular examination showed that Pten over-expression or the CRS treatment resulted in PFC neuron atrophy, and this atrophy was blocked by genetic inactivation of Pten or systemic administration of PTEN inhibitor. Furthermore, possible causal link between Pten and glucocorticoids was examined. In chronic dexamethasone (Dex, a glucocorticoid agonist) treatment-induced depression model, increased PTEN levels were observed, and depression-like behaviors and PFC neuron atrophy were attenuated by the administration of PTEN inhibitor. Our results indicate that PTEN serves as a key mediator in chronic stress-induced neuron atrophy as well as depression-like behaviors, providing molecular evidence supporting the synaptic plasticity theory of depression.
Collapse
|
103
|
Zhang Q, Liang H, Zhao X, Zheng L, Li Y, Gong J, Zhu Y, Jin Y, Yin Y. PTENε suppresses tumor metastasis through regulation of filopodia formation. EMBO J 2021; 40:e105806. [PMID: 33755220 PMCID: PMC8126949 DOI: 10.15252/embj.2020105806] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/03/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
PTEN is one of the most frequently mutated genes in malignancies and acts as a powerful tumor suppressor. Tumorigenesis is involved in multiple and complex processes including initiation, invasion, and metastasis. The complexity of PTEN function is partially attributed to PTEN family members such as PTENα and PTENβ. Here, we report the identification of PTENε (also named as PTEN5), a novel N‐terminal‐extended PTEN isoform that suppresses tumor invasion and metastasis. We show that the translation of PTENε/PTEN5 is initiated from the CUG816 codon within the 5′UTR region of PTEN mRNA. PTENε/PTEN5 mainly localizes in the cell membrane and physically associates with and dephosphorylates VASP and ACTR2, which govern filopodia formation and cell motility. We found that endogenous depletion of PTENε/PTEN5 promotes filopodia formation and enhances the metastasis capacity of tumor cells. Overall, we identify a new isoform of PTEN with distinct subcellular localization and molecular function compared to the known members of the PTEN family. These findings advance our current understanding of the importance and diversity of PTEN functions.
Collapse
Affiliation(s)
- Qiaoling Zhang
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Liang
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Xuyang Zhao
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yunqiao Li
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Jingjing Gong
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yizhang Zhu
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Jin
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Department of Pathology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing, China.,Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
104
|
Li K, Ling Z, Luo T, Zhao G, Zhou Q, Wang X, Xia K, Li J, Li B. Cross-Disorder Analysis of De Novo Variants Increases the Power of Prioritising Candidate Genes. Life (Basel) 2021; 11:life11030233. [PMID: 33809095 PMCID: PMC8001830 DOI: 10.3390/life11030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
De novo variants (DNVs) are critical to the treatment of neurodevelopmental disorders (NDDs). However, effectively identifying candidate genes in small cohorts is challenging in most NDDs because of high genetic heterogeneity. We hypothesised that integrating DNVs from multiple NDDs with genetic similarity can significantly increase the possibility of prioritising the candidate gene. We catalogued 66,186 coding DNVs in 50,028 individuals with nine types of NDDs in cohorts with sizes spanning from 118 to 31,260 from Gene4Denovo database to validate this hypothesis. Interestingly, we found that integrated DNVs can effectively increase the number of prioritised candidate genes for each disorder. We identified 654 candidate genes including 481 shared candidate genes carrying putative functional variants in at least two disorders. Notably, 13.51% (65/481) of shared candidate genes were prioritised only via integrated analysis including 44.62% (29/65) genes validated in recent large cohort studies. Moreover, we estimated that more novel candidate genes will be prioritised with the increase in cohort size, in particular for some disorders with high putative functional DNVs per individual. In conclusion, integrated DNVs may increase the power of prioritising candidate genes, which is important for NDDs with small cohort size.
Collapse
Affiliation(s)
- Kuokuo Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Zhengbao Ling
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Tengfei Luo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
| | - Xiaomeng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.L.); (B.L.); Tel.: +86-731-8975-2406 (J.L. & B.L.); Fax: +86-731-8432-7332 (J.L. & B.L.)
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
- Mobile Health Ministry of Education—China Mobile Joint Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.L.); (B.L.); Tel.: +86-731-8975-2406 (J.L. & B.L.); Fax: +86-731-8432-7332 (J.L. & B.L.)
| |
Collapse
|
105
|
Hardan AY, Jo B, Frazier TW, Klaas P, Busch RM, Dies KA, Filip-Dhima R, Snow AV, Eng C, Hanna R, Zhang B, Sahin M. A randomized double-blind controlled trial of everolimus in individuals with PTEN mutations: Study design and statistical considerations. Contemp Clin Trials Commun 2021; 21:100733. [PMID: 33644493 PMCID: PMC7887633 DOI: 10.1016/j.conctc.2021.100733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/03/2021] [Accepted: 01/16/2021] [Indexed: 11/24/2022] Open
Abstract
This randomized, double-blind controlled trial of everolimus in individuals with germline phosphatase and tensin homolog mutations (PTEN) was designed to evaluate the safety of everolimus compared with placebo and to evaluate the efficacy of everolimus on neurocognition and behavior compared to placebo as measured by standardized neurocognitive and motor measures as well as behavioral questionnaires. The safety profile of everolimus is characterized by manageable adverse events that are generally reversible and non-cumulative. The primary safety endpoint of this study was drop-out rate due to side effects, comparing everolimus versus placebo. We also sought to determine the frequency of adverse events by type and severity. The main efficacy endpoint was a neurocognitive composite computed in two ways: 1) an average for working memory, processing speed, and fine motor subtests; and 2) the same average as above except weighted 2/3, and an additional average based on all other available neurocognitive testing measures assessing the additional domains of nonverbal ability, visuomotor skills, verbal learning, and receptive and expressive language, weighted 1/3. Secondary efficacy endpoints examined the effect of everolimus on overall global clinical improvement, autism symptoms, behavioral problems, and adaptive abilities as measured by validated, standardized instruments. We predicted that the rate of adverse events would be no more than 10% higher in the everolimus group compared to placebo, and overall severity of side effects would be minimal. We also expected that individuals receiving everolimus would show more improvement, relative to those taking placebo, on the composite neurocognitive index.
Collapse
Affiliation(s)
- Antonio Y Hardan
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Science, Stanford University, Stanford, CA, USA
| | - Thomas W Frazier
- Autism Speaks, New York, NY, USA.,Department of Psychology, John Carroll University, Cleveland Heights, Ohio, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Patricia Klaas
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robyn M Busch
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Kira A Dies
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajna Filip-Dhima
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne V Snow
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.,Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Cleveland Clinic Children's Hospital, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Germline High Risk Cancer Focus Group, Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rabi Hanna
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.,Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
106
|
Rizk M, Saker Z, Harati H, Fares Y, Bahmad HF, Nabha S. Deciphering the roles of glycogen synthase kinase 3 (GSK3) in the treatment of autism spectrum disorder and related syndromes. Mol Biol Rep 2021; 48:2669-2686. [PMID: 33650079 DOI: 10.1007/s11033-021-06237-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) is a complex and multifactorial neurodevelopmental disorder characterized by the presence of restricted interests and repetitive behaviors besides deficits in social communication. Syndromic ASD is a subset of ASD caused by underlying genetic disorders, most commonly Fragile X Syndrome (FXS) and Rett Syndrome (RTT). Various mutations and consequent malfunctions in core signaling pathways have been identified in ASD, including glycogen synthase kinase 3 (GSK3). A growing body of evidence suggests a key role of GSK3 dysregulation in the pathogenesis of ASD and its related disorders. Here, we provide a synopsis of the implication of GSK3 in ASD, FXS, and RTT as a promising therapeutic target for the treatment of ASD.
Collapse
Affiliation(s)
- Mahdi Rizk
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
107
|
Abstract
Besides the ubiquitin-proteasome system, autophagy is a major degradation pathway within cells. It delivers invading pathogens, damaged organelles, aggregated proteins, and other macromolecules from the cytosol to the lysosome for bulk degradation. This so-called canonical autophagy activity contributes to the maintenance of organelle, protein, and metabolite homeostasis as well as innate immunity. Over the past years, numerous studies rapidly deepened our knowledge on the autophagy machinery and its regulation, driven by the fact that impairment of autophagy is associated with several human pathologies, including cancer, immune diseases, and neurodegenerative disorders. Unexpectedly, components of the autophagic machinery were also found to participate in various processes that do not involve lysosomal delivery of cytosolic constituents. These functions are defined as noncanonical autophagy. Regarding neurodegenerative diseases, most research was performed in neurons, while for a long time, microglia received considerably less attention. Concomitant with the notion that microglia greatly contribute to brain health, the understanding of the role of autophagy in microglia expanded. To facilitate an overview of the current knowledge, here we present the fundamentals as well as the recent advances of canonical and noncanonical autophagy functions in microglia.
Collapse
|
108
|
Jacob F, Schnoll JG, Song H, Ming GL. Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol 2021; 142:477-530. [PMID: 33706925 PMCID: PMC8363060 DOI: 10.1016/bs.ctdb.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human brain development is an intricate process that involves precisely timed coordination of cell proliferation, fate specification, neuronal differentiation, migration, and integration of diverse cell types. Understanding of these fundamental processes, however, has been largely constrained by limited access to fetal brain tissue and the inability to prospectively study neurodevelopment in humans at the molecular, cellular and system levels. Although non-human model organisms have provided important insights into mechanisms underlying brain development, these systems do not fully recapitulate many human-specific features that often relate to disease. To address these challenges, human brain organoids, self-assembled three-dimensional neural aggregates, have been engineered from human pluripotent stem cells to model the architecture and cellular diversity of the developing human brain. Recent advancements in neural induction and regional patterning using small molecules and growth factors have yielded protocols for generating brain organoids that recapitulate the structure and neuronal composition of distinct brain regions. Here, we first provide an overview of early mammalian brain development with an emphasis on molecular cues that guide region specification. We then focus on recent efforts in generating human brain organoids that model the development of specific brain regions and highlight endeavors to enhance the cellular complexity to better mimic the in vivo developing human brain. We also provide examples of how organoid models have enhanced our understanding of human neurological diseases and conclude by discussing limitations of brain organoids with our perspectives on future advancements to maximize their potential.
Collapse
Affiliation(s)
- Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jordan G Schnoll
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
109
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
110
|
Jia M, Sangwan N, Tzeng A, Eng C. Interplay Between Class II HLA Genotypes and the Microbiome and Immune Phenotypes in Individuals With PTEN Hamartoma Tumor Syndrome. JCO Precis Oncol 2021; 5:PO.20.00374. [PMID: 34250407 DOI: 10.1200/po.20.00374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
We evaluate potential contributors to the development of autoimmunity and other phenotypes consistent with immune dysregulation in individuals with germline mutations in the tumor suppressor gene PTEN in this observational report. MATERIALS AND METHODS Illumina sequencing of bacterial and fungal microbes was carried out on patient-donated fecal samples in a cohort of 67 patients with pathogenic germline PTEN mutations, including 41 individuals with autoimmunity and/or phenotypes consistent with immune dysregulation (cases) and 26 individuals without (controls). From these data, we measured differences in alpha and beta diversity between cases and controls and identified differentially abundant bacterial and fungal taxa using phyloseq and MicrobiomeSeq packages in R. We analyzed correlations between these taxa and specific HLA genotypes, along with correlations between HLA diversity and microbial diversity, by conducting high-resolution HLA genotyping at four class II loci (DRB1, DRB345, DQA1, and DQB1). RESULTS We found that alpha diversity distributions for both bacterial and fungal genera were statistically different between cases and controls. We identified differentially abundant bacterial and fungal taxa between cases and controls. Network analysis of differentially abundant bacterial taxa revealed some co-varying bacterial genera. We additionally found significant correlations between certain HLA genotypes and certain taxa and significant correlations between HLA diversity and alpha diversity. CONCLUSION PTEN-associated immune phenotypes might be influenced by the gut microbiome, and class II HLA molecules, in part, crosstalk with the gut microbiome. These preliminary observations should lay the groundwork for future studies to ultimately derive clinical measures, which could use gut microbiome and HLA molecule biomarkers to predict, and perhaps prevent, immunity and inflammation in patients predisposed to cancer because of germline PTEN mutations.
Collapse
Affiliation(s)
- Margaret Jia
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Naseer Sangwan
- Center for Microbiome in Health and Disease, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Alice Tzeng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH.,Cleveland Clinic Lerner College of Medicine, Cleveland, OH.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
111
|
Pintacuda G, Martín JM, Eggan KC. Mind the translational gap: using iPS cell models to bridge from genetic discoveries to perturbed pathways and therapeutic targets. Mol Autism 2021; 12:10. [PMID: 33557935 PMCID: PMC7869517 DOI: 10.1186/s13229-021-00417-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by impaired social interactions as well as the presentation of restrictive and repetitive behaviors. ASD is highly heritable but genetically heterogenous with both common and rare genetic variants collaborating to predispose individuals to the disorder. In this review, we synthesize recent efforts to develop human induced pluripotent stem cell (iPSC)-derived models of ASD-related phenotypes. We firstly address concerns regarding the relevance and validity of available neuronal iPSC-derived models. We then critically evaluate the robustness of various differentiation and cell culture protocols used for producing cell types of relevance to ASD. By exploring iPSC models of ASD reported thus far, we examine to what extent cellular and neuronal phenotypes with potential relevance to ASD can be linked to genetic variants found to underlie it. Lastly, we outline promising strategies by which iPSC technology can both enhance the power of genetic studies to identify ASD risk factors and nominate pathways that are disrupted across groups of ASD patients that might serve as common points for therapeutic intervention.
Collapse
Affiliation(s)
- Greta Pintacuda
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Jacqueline M Martín
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin C Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
112
|
Frazier TW, Jaini R, Busch RM, Wolf M, Sadler T, Klaas P, Hardan AY, Martinez-Agosto JA, Sahin M, Eng C. Cross-level analysis of molecular and neurobehavioral function in a prospective series of patients with germline heterozygous PTEN mutations with and without autism. Mol Autism 2021; 12:5. [PMID: 33509259 PMCID: PMC7841880 DOI: 10.1186/s13229-020-00406-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023] Open
Abstract
Background PTEN is a well-established risk gene for autism spectrum disorder (ASD). Yet, little is known about how PTEN mutations and associated molecular processes influence neurobehavioral function in mutation carriers with (PTEN-ASD) and without ASD (PTEN no-ASD). The primary aim of the present study was to examine group differences in peripheral blood-derived PTEN pathway protein levels between PTEN-ASD, PTEN no-ASD, and idiopathic macrocephalic ASD patients (macro-ASD). Secondarily, associations between protein levels and neurobehavioral functions were examined in the full cohort.
Methods Patients were recruited at four tertiary medical centers. Peripheral blood-derived protein levels from canonical PTEN pathways (PI3K/AKT and MAPK/ERK) were analyzed using Western blot analyses blinded to genotype and ASD status. Neurobehavioral measures included standardized assessments of global cognitive ability and multiple neurobehavioral domains. Analysis of variance models examined group differences in demographic, neurobehavioral, and protein measures. Bivariate correlations, structural models, and statistical learning procedures estimated associations between molecular and neurobehavioral variables. To complement patient data, Western blots for downstream proteins were generated to evaluate canonical PTEN pathways in the PTEN-m3m4 mouse model.
Results Participants included 61 patients (25 PTEN-ASD, 16 PTEN no-ASD, and 20 macro-ASD). Decreased PTEN and S6 were observed in both PTEN mutation groups. Reductions in MnSOD and increases in P-S6 were observed in ASD groups. Elevated neural P-AKT/AKT and P-S6/S6 from PTEN murine models parallel our patient observations. Patient PTEN and AKT levels were independently associated with global cognitive ability, and p27 expression was associated with frontal sub-cortical functions. As a group, molecular measures added significant predictive value to several neurobehavioral domains over and above PTEN mutation status. Limitations Sample sizes were small, precluding within-group analyses. Protein and neurobehavioral data were limited to a single evaluation. A small number of patients were excluded with invalid protein data, and cognitively impaired patients had missing data on some assessments. Conclusions Several canonical PTEN pathway molecules appear to influence the presence of ASD and modify neurobehavioral function in PTEN mutation patients. Protein assays of the PTEN pathway may be useful for predicting neurobehavioral outcomes in PTEN patients. Future longitudinal analyses are needed to replicate these findings and evaluate within-group relationships between protein and neurobehavioral measures. Trial registration ClinicalTrials.gov Identifier NCT02461446
Collapse
Affiliation(s)
- Thomas W Frazier
- Department of Psychology, John Carroll University, University Heights, OH, 44118, USA. .,Autism Speaks, Cleveland, OH, USA. .,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Robyn M Busch
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Neurology and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Matthew Wolf
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tammy Sadler
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Patricia Klaas
- Department of Neurology and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Antonio Y Hardan
- Department of Child Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Mustafa Sahin
- Translational Neurosciences Center, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH, 44195, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Cleveland Clinic Genomic Medicine Institute, 9500 Euclid Avenue, NE-50, Cleveland, OH, 44195, USA.
| | | |
Collapse
|
113
|
Perfetto M, Xu X, Lu C, Shi Y, Yousaf N, Li J, Yien YY, Wei S. The RNA helicase DDX3 induces neural crest by promoting AKT activity. Development 2021; 148:dev.184341. [PMID: 33318149 DOI: 10.1242/dev.184341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Mutations in the RNA helicase DDX3 have emerged as a frequent cause of intellectual disability in humans. Because many individuals carrying DDX3 mutations have additional defects in craniofacial structures and other tissues containing neural crest (NC)-derived cells, we hypothesized that DDX3 is also important for NC development. Using Xenopus tropicalis as a model, we show that DDX3 is required for normal NC induction and craniofacial morphogenesis by regulating AKT kinase activity. Depletion of DDX3 decreases AKT activity and AKT-dependent inhibitory phosphorylation of GSK3β, leading to reduced levels of β-catenin and Snai1: two GSK3β substrates that are crucial for NC induction. DDX3 function in regulating these downstream signaling events during NC induction is likely mediated by RAC1, a small GTPase whose translation depends on the RNA helicase activity of DDX3. These results suggest an evolutionarily conserved role of DDX3 in NC development by promoting AKT activity, and provide a potential mechanism for the NC-related birth defects displayed by individuals harboring mutations in DDX3 and its downstream effectors in this signaling cascade.
Collapse
Affiliation(s)
- Mark Perfetto
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.,Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaolu Xu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Congyu Lu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yu Shi
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Natasha Yousaf
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Jiejing Li
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.,Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Yvette Y Yien
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
114
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
115
|
Sarn N, Jaini R, Thacker S, Lee H, Dutta R, Eng C. Cytoplasmic-predominant Pten increases microglial activation and synaptic pruning in a murine model with autism-like phenotype. Mol Psychiatry 2021; 26:1458-1471. [PMID: 32055008 PMCID: PMC8159731 DOI: 10.1038/s41380-020-0681-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/04/2020] [Accepted: 02/03/2020] [Indexed: 01/04/2023]
Abstract
Germline mutations in PTEN account for ~10% of cases of autism spectrum disorder (ASD) with coincident macrocephaly. To explore the importance of nuclear PTEN in the development of ASD and macrocephaly, we previously generated a mouse model with predominantly cytoplasmic localization of Pten (Ptenm3m4/m3m4).Cytoplasmic predominant Pten localization results in a phenotype of extreme macrocephaly and autistic-like traits. Transcriptomic analysis of the Ptenm3m4/m3m4 cortex found upregulated gene pathways related to myeloid cell activation, myeloid cell migration, and phagocytosis. These transcriptomic findings were used to direct in vitro assays on Pten wild-type and Ptenm3m4/m3m4 microglia. We found increased Iba1 and C1q expression with enhanced phagocytic capacity in Ptenm3m4/m3m4 microglia, indicating microglial activation. Moreover, through a series of neuron-microglia co-culture experiments, we found Ptenm3m4/m3m4 microglia are more efficient at synaptic pruning compared with wild-type controls. In addition, we found evidence for neuron-microglia cross-talk, where Ptenm3m4/m3m4 neurons elicit enhanced pruning from innately activated microglia. Subsequent in vivo studies validated our in vitro findings. We observed a concurrent decline in the expression of Pten and synaptic markers in the Ptenm3m4/m3m4 cortex. At ~3 weeks of age, with a 50% drop in Pten expression compared with wild-type levels, we observed enhanced activation of microglia in the Ptenm3m4/m3m4 brain. Collectively, our data provide evidence that dysregulated Pten in microglia has an etiological role in microglial activation, phagocytosis, and synaptic pruning, creating avenues for future studies on the importance of PTEN in maintaining microglia homeostasis.
Collapse
Affiliation(s)
- Nicholas Sarn
- grid.239578.20000 0001 0675 4725Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA ,Department of Genetics and Genome Sciences, Cleveland, OH USA
| | - Ritika Jaini
- grid.239578.20000 0001 0675 4725Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA ,grid.67105.350000 0001 2164 3847Germline High Risk Cancer Focus Group, Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH USA ,grid.254293.b0000 0004 0435 0569Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA
| | - Stetson Thacker
- grid.239578.20000 0001 0675 4725Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA ,grid.254293.b0000 0004 0435 0569Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA
| | - Hyunpil Lee
- grid.239578.20000 0001 0675 4725Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| | - Ranjan Dutta
- grid.254293.b0000 0004 0435 0569Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195 USA ,grid.239578.20000 0001 0675 4725Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department of Genetics and Genome Sciences, Cleveland, OH, USA. .,Germline High Risk Cancer Focus Group, Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA.
| |
Collapse
|
116
|
Sidhaye J, Knoblich JA. Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death Differ 2021; 28:52-67. [PMID: 32483384 PMCID: PMC7853143 DOI: 10.1038/s41418-020-0566-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding etiology of human neurological and psychiatric diseases is challenging. Genomic changes, protracted development, and histological features unique to human brain development limit the disease aspects that can be investigated using model organisms. Hence, in order to study phenotypes associated with human brain development, function, and disease, it is necessary to use alternative experimental systems that are accessible, ethically justified, and replicate human context. Human pluripotent stem cell (hPSC)-derived brain organoids offer such a system, which recapitulates features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation of neural progenitors into neurons and glial cells and the complex interactions among the diverse, emergent cell types of the developing brain in three-dimensions (3-D). In recent years, numerous brain organoid protocols and related techniques have been developed to recapitulate aspects of embryonic and fetal brain development in a reproducible and predictable manner. Altogether, these different organoid technologies provide distinct bioassays to unravel novel, disease-associated phenotypes and mechanisms. In this review, we summarize how the diverse brain organoid methods can be utilized to enhance our understanding of brain disorders. FACTS: Brain organoids offer an in vitro approach to study aspects of human brain development and disease. Diverse brain organoid techniques offer bioassays to investigate new phenotypes associated with human brain disorders that are difficult to study in monolayer cultures. Brain organoids have been particularly useful to study phenomena and diseases associated with neural progenitor morphology, survival, proliferation, and differentiation. OPEN QUESTION: Future brain organoid research needs to aim at later stages of neurodevelopment, linked with neuronal activity and connections, to unravel further disease-associated phenotypes. Continued improvement of existing organoid protocols is required to generate standardized methods that recapitulate in vivo-like spatial diversity and complexity.
Collapse
Affiliation(s)
- Jaydeep Sidhaye
- Institute of Molecular Biotechnology of Austrian academy of sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of Austrian academy of sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
117
|
Steele M, Uljarević M, Rached G, Frazier TW, Phillips JM, Libove RA, Busch RM, Klaas P, Martinez-Agosto JA, Srivastava S, Eng C, Sahin M, Hardan AY. Psychiatric Characteristics Across Individuals With PTEN Mutations. Front Psychiatry 2021; 12:672070. [PMID: 34489750 PMCID: PMC8418135 DOI: 10.3389/fpsyt.2021.672070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Germline heterozygous PTEN mutations have been associated with high prevalence of autism spectrum disorder (ASD) and elevated rates and severity of broadly defined behavioral problems. However, limited progress has been made toward understanding whether PTEN mutation is associated with specific psychiatric co-morbidity profiles when compared to idiopathic ASD. The current study aimed to utilize a cross-measure approach to compare concurrent psychiatric characteristics across children and adolescents with PTEN mutation with (PTEN-ASD; n = 38) and without ASD (PTEN-No ASD; n = 23), and ASD with macrocephaly but no PTEN mutation (macro-ASD; n = 25) using the Child Behavior Checklist (CBCL) and the Aberrant Behavior Checklist (ABC). There were significant group effects for the CBCL Internalizing and Externalizing broad symptom score, the majority of specific CBCL syndrome scores, and all ABC subscale scores. Post-hoc comparisons revealed greater behavioral symptoms in the ASD groups (PTEN-ASD and macro-ASD) compared to the PTEN-no ASD group on nearly all subtest scores examined. There were no statistically significant differences between the PTEN-ASD and macro-ASD groups; however, there was a trend for the macro-ASD group showing higher levels of aggressive behaviors. Our findings provide evidence of specific behavior profiles across PTEN-No ASD, PTEN-ASD, and macro-ASD groups and highlight the importance of early identification of behavioral vulnerabilities in individuals with PTEN mutations in order to provide access to appropriate evidence-based interventions.
Collapse
Affiliation(s)
- Morgan Steele
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Mirko Uljarević
- The School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia.,La Trobe University, Melbourne, VIC, Australia
| | - Gaëlle Rached
- Saint Joseph University, Faculty of Medicine, Beirut, Lebanon
| | - Thomas W Frazier
- Autism Speaks, New York, NY, United States.,Department of Psychology, John Carroll University, University Heights, OH, United States
| | - Jennifer M Phillips
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Robin A Libove
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Robyn M Busch
- Genomic Medicine Institute, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Patricia Klaas
- Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Julian A Martinez-Agosto
- Departments of Human Genetics, Pediatrics and Psychiatry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Siddharth Srivastava
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Charis Eng
- Genomic Medicine Institute, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, Case Western University School of Medicine, Cleveland, OH, United States
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
118
|
Šimić G, Vukić V, Kopić J, Krsnik Ž, Hof PR. Molecules, Mechanisms, and Disorders of Self-Domestication: Keys for Understanding Emotional and Social Communication from an Evolutionary Perspective. Biomolecules 2020; 11:E2. [PMID: 33375093 PMCID: PMC7822183 DOI: 10.3390/biom11010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
The neural crest hypothesis states that the phenotypic features of the domestication syndrome are due to a reduced number or disruption of neural crest cells (NCCs) migration, as these cells differentiate at their final destinations and proliferate into different tissues whose activity is reduced by domestication. Comparing the phenotypic characteristics of modern and prehistoric man, it is clear that during their recent evolutionary past, humans also went through a process of self-domestication with a simultaneous prolongation of the period of socialization. This has led to the development of social abilities and skills, especially language, as well as neoteny. Disorders of neural crest cell development and migration lead to many different conditions such as Waardenburg syndrome, Hirschsprung disease, fetal alcohol syndrome, DiGeorge and Treacher-Collins syndrome, for which the mechanisms are already relatively well-known. However, for others, such as Williams-Beuren syndrome and schizophrenia that have the characteristics of hyperdomestication, and autism spectrum disorders, and 7dupASD syndrome that have the characteristics of hypodomestication, much less is known. Thus, deciphering the biological determinants of disordered self-domestication has great potential for elucidating the normal and disturbed ontogenesis of humans, as well as for the understanding of evolution of mammals in general.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Vana Vukić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Janja Kopić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Željka Krsnik
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
119
|
Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10120951. [PMID: 33302549 PMCID: PMC7764453 DOI: 10.3390/brainsci10120951] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is an early neurodevelopmental disorder that involves deficits in interpersonal communication, social interaction, and repetitive behaviors. Although ASD pathophysiology is still uncertain, alterations in the abnormal development of the frontal lobe, limbic areas, and putamen generate an imbalance between inhibition and excitation of neuronal activity. Interestingly, recent findings suggest that a disruption in neuronal connectivity is associated with neural alterations in white matter production and myelination in diverse brain regions of patients with ASD. This review is aimed to summarize the most recent evidence that supports the notion that abnormalities in the oligodendrocyte generation and axonal myelination in specific brain regions are involved in the pathophysiology of ASD. Fundamental molecular mediators of these pathological processes are also examined. Determining the role of alterations in oligodendrogenesis and myelination is a fundamental step to understand the pathophysiology of ASD and identify possible therapeutic targets.
Collapse
|
120
|
Li B, Li K, Tian D, Zhou Q, Xie Y, Fang Z, Wang X, Luo T, Wang Z, Zhang Y, Wang Y, Chen Q, Meng Q, Zhao G, Li J. De novo mutation of cancer-related genes associates with particular neurodevelopmental disorders. J Mol Med (Berl) 2020; 98:1701-1712. [PMID: 33047154 DOI: 10.1007/s00109-020-01991-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022]
Abstract
Epidemiological studies have shown an increased prevalence of cancer in some patients with neurodevelopmental disorder (NDD); however, the genetic mechanisms regarding how cancer-related genes (CRGs) contribute to NDD remain unclear. We performed bioinformatic analyses on 219 CRGs from OMIM and de novo mutations (DNMs) from 16,498 patients with different NDDs and 3391 controls. Our results showed that autism spectrum disorder, undiagnosed neurodevelopmental disorder, congenital heart disease and intellectual disability, but not epileptic encephalopathy and schizophrenia, harboured significantly more putative functional DNMs in CRGs, compared with controls, providing genetic evidence supporting previous epidemiological surveys. We further detected 26 CRGs with recurrent putative functional DNMs that showed high expression in the human brain during the prenatal stage and in non-brain organs in adults. The proteins coded by the 26 CRGs and known NDD candidate genes formed a functional network that is involved in brain development and tumorigenesis. Overall, we proposed 39 cancer-targeting drugs that could be investigated for treating patients with NDD, which would be potentially cost-effective. In conclusion, DNMs contribute to specific NDDs and there may be a shared genetic basis between NDDs and cancer, highlighting the importance of considering cancer-targeting drugs with potential curative effects in patients with NDDs. KEY MESSAGES: • The contribution of DNMs in NDD is consistent with epidemiological surveys. • We highlighted 26 CRGs, including nine genes with more than five functional DNMs. • Specific expression patterns underlie the genetic mechanism of CRGs in NDD. • Specific functional networks underlie the genetic mechanism of CRGs in NDD. • The shared genetic aetiology suggests potential mutual treatment strategies.
Collapse
Affiliation(s)
- Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, 87 #, Xiangya Road, Changsha, 410008, Hunan, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Kuokuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Di Tian
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, 87 #, Xiangya Road, Changsha, 410008, Hunan, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yali Xie
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, 87 #, Xiangya Road, Changsha, 410008, Hunan, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhenghuan Fang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Xiaomeng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Tengfei Luo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, 87 #, Xiangya Road, Changsha, 410008, Hunan, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, 87 #, Xiangya Road, Changsha, 410008, Hunan, China
| | - Yijing Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Qian Chen
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, 87 #, Xiangya Road, Changsha, 410008, Hunan, China
| | - Qingtuan Meng
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, 87 #, Xiangya Road, Changsha, 410008, Hunan, China. .,Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, 87 #, Xiangya Road, Changsha, 410008, Hunan, China. .,Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
121
|
Shao DD, Achkar CM, Lai A, Srivastava S, Doan RN, Rodan LH, Chen AY, Poduri A, Yang E, Walsh CA. Polymicrogyria is Associated With Pathogenic Variants in PTEN. Ann Neurol 2020; 88:1153-1164. [PMID: 32959437 DOI: 10.1002/ana.25904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Congenital structural brain malformations have been described in patients with pathogenic phosphatase and tensin homologue (PTEN) variants, but the frequency of cortical malformations in patients with PTEN variants and their impact on clinical phenotype are not well understood. Our goal was to systematically characterize brain malformations in patients with PTEN variants and assess the relevance of their brain malformations to clinical presentation. METHODS We systematically searched a local radiology database for patients with PTEN variants who had available brain magnetic resonance imaging (MRI). The MRI scans were reviewed systematically for cortical abnormalities. We reviewed electroencephalogram (EEG) data and evaluated the electronic medical record for evidence of epilepsy and developmental delay. RESULTS In total, we identified 22 patients with PTEN pathogenic variants for which brain MRIs were available (age range 0.4-17 years). Twelve among these 22 patients (54%) had polymicrogyria (PMG). Variants associated with PMG or atypical gyration encoded regions of the phosphatase or C2 domains of PTEN. Interestingly, epilepsy was present in only 2 of the 12 patients with PMG. We found a trend toward higher rates of global developmental delay (GDD), intellectual disability (ID), and motor delay in individuals with cortical abnormalities, although cohort size limited statistical significance. INTERPRETATION Malformations of cortical development, PMG in particular, represent an under-recognized phenotype associated with PTEN pathogenic variants and may have an association with cognitive and motor delays. Epilepsy was infrequent compared to the previously reported high risk of epilepsy in patients with PMG. ANN NEUROL 2020;88:1153-1164.
Collapse
Affiliation(s)
- Diane D Shao
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christelle M Achkar
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Abbe Lai
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Lance H Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Allen Y Chen
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Department of Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Medicine, Hospital for Special Surgery, New York, NY, USA
| | | | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.,Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Departments of Neurology and Pediatrics, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
122
|
Lourenço J, Koukouli F, Bacci A. Synaptic inhibition in the neocortex: Orchestration and computation through canonical circuits and variations on the theme. Cortex 2020; 132:258-280. [PMID: 33007640 DOI: 10.1016/j.cortex.2020.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022]
Abstract
The neocortex plays a crucial role in all basic and abstract cognitive functions. Conscious mental processes are achieved through a correct flow of information within and across neocortical networks, whose particular activity state results from a tight balance between excitation and inhibition. The proper equilibrium between these indissoluble forces is operated with multiscale organization: along the dendro-somatic axis of single neurons and at the network level. Fast synaptic inhibition is assured by a multitude of inhibitory interneurons. During cortical activities, these cells operate a finely tuned division of labor that is epitomized by their detailed connectivity scheme. Recent results combining the use of mouse genetics, cutting-edge optical and neurophysiological approaches have highlighted the role of fast synaptic inhibition in driving cognition-related activity through a canonical cortical circuit, involving several major interneuron subtypes and principal neurons. Here we detail the organization of this cortical blueprint and we highlight the crucial role played by different neuron types in fundamental cortical computations. In addition, we argue that this canonical circuit is prone to many variations on the theme, depending on the resolution of the classification of neuronal types, and the cortical area investigated. Finally, we discuss how specific alterations of distinct inhibitory circuits can underlie several devastating brain diseases.
Collapse
Affiliation(s)
- Joana Lourenço
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| | - Fani Koukouli
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France
| | - Alberto Bacci
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de L'Hôpital, 75013, Paris, France.
| |
Collapse
|
123
|
An N, Bassil K, Al Jowf GI, Steinbusch HWM, Rothermel M, de Nijs L, Rutten BPF. Dual-specificity phosphatases in mental and neurological disorders. Prog Neurobiol 2020; 198:101906. [PMID: 32905807 DOI: 10.1016/j.pneurobio.2020.101906] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023]
Abstract
The dual-specificity phosphatase (DUSP) family includes a heterogeneous group of protein phosphatases that dephosphorylate both phospho-tyrosine and phospho-serine/phospho-threonine residues within a single substrate. These protein phosphatases have many substrates and modulate diverse neural functions, such as neurogenesis, differentiation, and apoptosis. DUSP genes have furthermore been associated with mental disorders such as depression and neurological disorders such as Alzheimer's disease. Herein, we review the current literature on the DUSP family of genes concerning mental and neurological disorders. This review i) outlines the structure and general functions of DUSP genes, and ii) overviews the literature on DUSP genes concerning mental and neurological disorders, including model systems, while furthermore providing perspectives for future research.
Collapse
Affiliation(s)
- Ning An
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ghazi I Al Jowf
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; College of Applied Medical Sciences, Department of Public Health, King Faisal University, Al-Ahsa, Saudi Arabia; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Markus Rothermel
- European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Chemosensation - AG Neuromodulation, RWTH Aachen University, Aachen, Germany
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
124
|
Clipperton-Allen AE, Page DT. Connecting Genotype with Behavioral Phenotype in Mouse Models of Autism Associated with PTEN Mutations. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037010. [PMID: 31871231 DOI: 10.1101/cshperspect.a037010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A subset of individuals with autism spectrum disorder (ASD) and macrocephaly carry mutations in the gene PTEN. Animal models, particularly mice, have been helpful in establishing a causal role for Pten mutations in autism-relevant behavioral deficits. These models are a useful tool for investigating neurobiological mechanisms of these behavioral phenotypes and developing potential therapeutic interventions. Here we provide an overview of various genetic mouse models that have been used to characterize behavioral phenotypes caused by perturbation of Pten We discuss convergent and divergent phenotypes across models with the aim of highlighting a set of behavioral domains that are sensitive to the effects of Pten mutation and that may provide useful readouts for translational and basic neuroscience research.
Collapse
Affiliation(s)
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
125
|
Kim JE, Park H, Lee JE, Kim TH, Kang TC. PTEN Is Required for The Anti-Epileptic Effects of AMPA Receptor Antagonists in Chronic Epileptic Rats. Int J Mol Sci 2020; 21:ijms21165643. [PMID: 32781725 PMCID: PMC7460838 DOI: 10.3390/ijms21165643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/13/2023] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is one of the ligand-gated ion channels for glutamate, which is an important player in the generation and spread of seizures. The efficacy of AMPAR functionality is regulated by the trafficking, synaptic targeting, and phosphorylation. Paradoxically, AMPAR expression and its phosphorylation level are decreased in the epileptic hippocampus. Therefore, the roles of AMPAR in seizure onset and neuronal hyperexcitability in ictogenesis remain to be elucidated. In the present study, we found that AMPAR antagonists (perampanel and GYKI 52466) decreased glutamate ionotropic receptor AMPA type subunit 1 (GRIA1) surface expression in the epileptic rat hippocampus. They also upregulated phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression and restored to basal levels the upregulated phosphoinositide 3-kinase (PI3K)/AKT1 phosphorylations. Dipotassium bisperoxovanadium(pic) dihydrate (BpV(pic), a PTEN inhibitor) co-treatment abolished the anti-epileptic effects of perampanel and GYKI 52466. Therefore, our findings suggest that PTEN may be required for the anti-epileptic effects of AMPAR antagonists.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ji-Eun Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
126
|
Krefft O, Koch P, Ladewig J. Cerebral organoids to unravel the mechanisms underlying malformations of human cortical development. Semin Cell Dev Biol 2020; 111:15-22. [PMID: 32741653 DOI: 10.1016/j.semcdb.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Genetic studies identified multiple mutations associated with malformations of cortical development (MCD) in humans. When analyzing the underlying mechanisms in non-human experimental models it became increasingly evident, that these mutations accumulate in genes, which functions evolutionary progressed from rodents to humans resulting in an incomplete reflection of the molecular and cellular alterations in these models. Human brain organoids derived from human pluripotent stem cells resemble early aspects of human brain development to a remarkable extent making them an attractive model to investigate MCD. Here we review how human brain organoids enable the generation of fundamental new insight about the underlying pathomechanisms of MCD. We show how phenotypic features of these diseases are reflected in human brain organoids and discuss challenges and future considerations but also limitations for the use of human brain organoids to model human brain development and associated disorders.
Collapse
Affiliation(s)
- Olivia Krefft
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp Koch
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Julia Ladewig
- Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany; Hector Institute for Translational Brain Research (HITBR gGmbH), Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
127
|
White AR, Tiwari D, MacLeod MC, Danzer SC, Gross C. PI3K isoform-selective inhibition in neuron-specific PTEN-deficient mice rescues molecular defects and reduces epilepsy-associated phenotypes. Neurobiol Dis 2020; 144:105026. [PMID: 32712265 DOI: 10.1016/j.nbd.2020.105026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023] Open
Abstract
Epilepsy affects all ages, races, genders, and socioeconomic groups. In about one third of patients, epilepsy is uncontrolled with current medications, leaving a vast need for improved therapies. The causes of epilepsy are diverse and not always known but one gene mutated in a small subpopulation of patients is phosphatase and tensin homolog (PTEN). Moreover, focal cortical dysplasia, which constitutes a large fraction of refractory epilepsies, has been associated with signaling defects downstream of PTEN. So far, most preclinical attempts to reverse PTEN deficiency-associated neurological deficits have focused on mTOR, a signaling hub several steps downstream of PTEN. Phosphoinositide 3-kinases (PI3Ks), by contrast, are the direct enzymatic counteractors of PTEN, and thus may be alternative treatment targets. PI3K activity is mediated by four different PI3K catalytic isoforms. Studies in cancer, where PTEN is commonly mutated, have demonstrated that inhibition of only one isoform, p110β, reduces progression of PTEN-deficient tumors. Importantly, inhibition of a single PI3K isoform leaves critical functions of general PI3K signaling throughout the body intact. Here, we show that this disease mechanism-targeted strategy borrowed from cancer research rescues or ameliorates neuronal phenotypes in male and female mice with neuron-specific PTEN deficiency. These phenotypes include cell signaling defects, protein synthesis aberrations, seizures, and cortical dysplasia. Of note, p110β is also dysregulated and a promising treatment target in the intellectual disability Fragile X syndrome, pointing towards a shared biological mechanism that is therapeutically targetable in neurodevelopmental disorders of different etiologies. Overall, this work advocates for further assessment of p110β inhibition not only in PTEN deficiency-associated neurodevelopmental diseases but also other brain disorders characterized by defects in the PI3K/mTOR pathway.
Collapse
Affiliation(s)
- Angela R White
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Durgesh Tiwari
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, OH 45229, USA
| | - Molly C MacLeod
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Anesthesiology, University of Cincinnati College of Medicine, OH 45229, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, OH 45229, USA.
| |
Collapse
|
128
|
Chan WK, Griffiths R, Price DJ, Mason JO. Cerebral organoids as tools to identify the developmental roots of autism. Mol Autism 2020; 11:58. [PMID: 32660622 PMCID: PMC7359249 DOI: 10.1186/s13229-020-00360-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Some autism spectrum disorders (ASD) likely arise as a result of abnormalities during early embryonic development of the brain. Studying human embryonic brain development directly is challenging, mainly due to ethical and practical constraints. However, the recent development of cerebral organoids provides a powerful tool for studying both normal human embryonic brain development and, potentially, the origins of neurodevelopmental disorders including ASD. Substantial evidence now indicates that cerebral organoids can mimic normal embryonic brain development and neural cells found in organoids closely resemble their in vivo counterparts. However, with prolonged culture, significant differences begin to arise. We suggest that cerebral organoids, in their current form, are most suitable to model earlier neurodevelopmental events and processes such as neurogenesis and cortical lamination. Processes implicated in ASDs which occur at later stages of development, such as synaptogenesis and neural circuit formation, may also be modeled using organoids. The accuracy of such models will benefit from continuous improvements to protocols for organoid differentiation.
Collapse
Affiliation(s)
- Wai Kit Chan
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Rosie Griffiths
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - John O Mason
- Centre for Discovery Brain Sciences and Simons Initiative for the Developing Brain, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
129
|
Hashem S, Nisar S, Bhat AA, Yadav SK, Azeem MW, Bagga P, Fakhro K, Reddy R, Frenneaux MP, Haris M. Genetics of structural and functional brain changes in autism spectrum disorder. Transl Psychiatry 2020; 10:229. [PMID: 32661244 PMCID: PMC7359361 DOI: 10.1038/s41398-020-00921-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder characterized by social impairment and restricted interactive and communicative behaviors. It may occur as an isolated disorder or in the context of other neurological, psychiatric, developmental, and genetic disorders. Due to rapid developments in genomics and imaging technologies, imaging genetics studies of ASD have evolved in the last few years. Increased risk for ASD diagnosis is found to be related to many specific single-nucleotide polymorphisms, and the study of genetic mechanisms and noninvasive imaging has opened various approaches that can help diagnose ASD at the nascent level. Identifying risk genes related to structural and functional changes in the brain of ASD patients provide a better understanding of the disease's neuropsychiatry and can help identify targets for therapeutic intervention that could be useful for the clinical management of ASD patients.
Collapse
Affiliation(s)
- Sheema Hashem
- Functional and Molecular Imaging Laboratory, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Functional and Molecular Imaging Laboratory, Sidra Medicine, Doha, Qatar
| | - Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Sidra Medicine, Doha, Qatar
| | | | | | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Sidra Medicine, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
130
|
Genovese A, Butler MG. Clinical Assessment, Genetics, and Treatment Approaches in Autism Spectrum Disorder (ASD). Int J Mol Sci 2020; 21:E4726. [PMID: 32630718 PMCID: PMC7369758 DOI: 10.3390/ijms21134726] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) consists of a genetically heterogenous group of neurobehavioral disorders characterized by impairment in three behavioral domains including communication, social interaction, and stereotypic repetitive behaviors. ASD affects more than 1% of children in Western societies, with diagnoses on the rise due to improved recognition, screening, clinical assessment, and diagnostic testing. We reviewed the role of genetic and metabolic factors which contribute to the causation of ASD with the use of new genetic technology. Up to 40 percent of individuals with ASD are now diagnosed with genetic syndromes or have chromosomal abnormalities including small DNA deletions or duplications, single gene conditions, or gene variants and metabolic disturbances with mitochondrial dysfunction. Although the heritability estimate for ASD is between 70 and 90%, there is a lower molecular diagnostic yield than anticipated. A likely explanation may relate to multifactorial causation with etiological heterogeneity and hundreds of genes involved with a complex interplay between inheritance and environmental factors influenced by epigenetics and capabilities to identify causative genes and their variants for ASD. Behavioral and psychiatric correlates, diagnosis and genetic evaluation with testing are discussed along with psychiatric treatment approaches and pharmacogenetics for selection of medication to treat challenging behaviors or comorbidities commonly seen in ASD. We emphasize prioritizing treatment based on targeted symptoms for individuals with ASD, as treatment will vary from patient to patient based on diagnosis, comorbidities, causation, and symptom severity.
Collapse
Affiliation(s)
| | - Merlin G. Butler
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
131
|
Barnett BR, Casey CP, Torres-Velázquez M, Rowley PA, Yu JPJ. Convergent brain microstructure across multiple genetic models of schizophrenia and autism spectrum disorder: A feasibility study. Magn Reson Imaging 2020; 70:36-42. [PMID: 32298718 PMCID: PMC7685399 DOI: 10.1016/j.mri.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies of psychiatric illness have revealed a broad spectrum of structural and functional perturbations that have been attributed in part to the complex genetic heterogeneity underpinning these disorders. These perturbations have been identified in both preclinical genetic models and in patients when compared to control populations, but recent work has also demonstrated strong evidence for genetic, molecular, and structural convergence of several psychiatric diseases. We explored potential similarities in neural microstructure in preclinical genetic models of ASD (Fmr1, Nrxn1, Pten) and schizophrenia (Disc1 svΔ2) and in age- and sex-matched control animals with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Our findings demonstrate a convergence in brain microstructure across these four genetic models with both tract-based and region-of-interest based analyses, which continues to buttress an emerging understanding of converging neural microstructure in psychiatric disease.
Collapse
Affiliation(s)
- Brian R Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cameron P Casey
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul A Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - John-Paul J Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
132
|
Fusco N, Sajjadi E, Venetis K, Gaudioso G, Lopez G, Corti C, Rocco EG, Criscitiello C, Malapelle U, Invernizzi M. PTEN Alterations and Their Role in Cancer Management: Are We Making Headway on Precision Medicine? Genes (Basel) 2020; 11:E719. [PMID: 32605290 PMCID: PMC7397204 DOI: 10.3390/genes11070719] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/27/2020] [Accepted: 06/27/2020] [Indexed: 12/15/2022] Open
Abstract
Alterations in the tumor suppressor phosphatase and tensin homolog (PTEN) occur in a substantial proportion of solid tumors. These events drive tumorigenesis and tumor progression. Given its central role as a downregulator of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, PTEN is deeply involved in cell growth, proliferation, and survival. This gene is also implicated in the modulation of the DNA damage response and in tumor immune microenvironment modeling. Despite the actionability of PTEN alterations, their role as biomarkers remains controversial in clinical practice. To date, there is still a substantial lack of validated guidelines and/or recommendations for PTEN testing. Here, we provide an update on the current state of knowledge on biologic and genetic alterations of PTEN across the most frequent solid tumors, as well as on their actual and/or possible clinical applications. We focus on possible tailored schemes for cancer patients' clinical management, including risk assessment, diagnosis, prognostication, and treatment.
Collapse
Affiliation(s)
- Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Elham Sajjadi
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Konstantinos Venetis
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
- Doctoral Program in Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Gianluca Lopez
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Chiara Corti
- Division of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20131 Milan, Italy; (G.G.); (G.L.); (C.C.)
| | - Elena Guerini Rocco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.G.R.)
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Carmen Criscitiello
- New Drugs and Early Drug Development for Innovative Therapies Division, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Umberto Malapelle
- Department of Public Health, University Federico II, 80138 Naples, Italy;
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy;
| |
Collapse
|
133
|
Nunes-Santos CJ, Uzel G, Rosenzweig SD. PI3K pathway defects leading to immunodeficiency and immune dysregulation. J Allergy Clin Immunol 2020; 143:1676-1687. [PMID: 31060715 DOI: 10.1016/j.jaci.2019.03.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a broad range of cellular processes, including growth, metabolism, differentiation, proliferation, motility, and survival. The PI3Kδ enzyme complex is primarily present in the immune system and comprises a catalytic (p110δ) and regulatory (p85α) subunit. Dynamic regulation of PI3Kδ activity is required to ensure normal function and differentiation of immune cells. In the last decade, discovery of germline mutations in genes involved in the PI3Kδ pathway (PIK3CD, PIK3R1, or phosphatase and tensin homolog [PTEN]) proved that both overactivation and underactivation (gain of function and loss of function, respectively) of PI3Kδ lead to impaired and dysregulated immunity. Although a small group of patients reported to underactivate PI3Kδ show predominantly humoral defects and autoimmune features, more than 200 patients have been described with overactivation of PI3Kδ, presenting with a much more complex phenotype of combined immunodeficiency and immune dysregulation. The clinical and immunologic characterization, as well as current pathophysiologic understanding and specific therapies for PI3K pathway defects leading to immunodeficiency and immune dysregulation, are reviewed here.
Collapse
Affiliation(s)
- Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md; Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md.
| |
Collapse
|
134
|
An Integrated Deep-Mutational-Scanning Approach Provides Clinical Insights on PTEN Genotype-Phenotype Relationships. Am J Hum Genet 2020; 106:818-829. [PMID: 32442409 DOI: 10.1016/j.ajhg.2020.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/21/2020] [Indexed: 01/03/2023] Open
Abstract
Germline variation in PTEN results in variable clinical presentations, including benign and malignant neoplasia and neurodevelopmental disorders. Despite decades of research, it remains unclear how the PTEN genotype is related to clinical outcomes. In this study, we combined two recent deep mutational scanning (DMS) datasets probing the effects of single amino acid variation on enzyme activity and steady-state cellular abundance with a large, well-curated clinical cohort of PTEN-variant carriers. We sought to connect variant-specific molecular phenotypes to the clinical outcomes of individuals with PTEN variants. We found that DMS data partially explain quantitative clinical traits, including head circumference and Cleveland Clinic (CC) score, which is a semiquantitative surrogate of disease burden. We built logistic regression models that use DMS and CADD scores to separate clinical PTEN variation from gnomAD control-only variation with high accuracy. By using a survival-like analysis, we identified molecular phenotype groups with differential risk of early cancer onset as well as lifetime risk of cancer. Finally, we identified classes of DMS-defined variants with significantly different risk levels for classical hamartoma-related features (odds ratio [OR] range of 4.1-102.9). In stark contrast, the risk for developing autism or developmental delay does not significantly change across variant classes (OR range of 5.4-12.4). Together, these findings highlight the potential impact of combining DMS datasets with rich clinical data and provide new insights that might guide personalized clinical decisions for PTEN-variant carriers.
Collapse
|
135
|
Crucitti J, Hyde C, Enticott PG, Stokes MA. Head circumference trends in autism between 0 and 100 months. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2020; 24:1726-1739. [PMID: 32476434 DOI: 10.1177/1362361320921037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
LAY ABSTRACT Summaries of studies that have measured head size in those with autism, known as meta-analyses, currently exist. However, this approach does not adequately explain extreme cases (such as those with extremely small, or extremely large, head size). Because of this, we obtained all available published data measuring head size (12 studies). The data from each study were then combined to make a larger dataset. We found that females with autism aged 12-17 months had, on average, smaller head sizes. Otherwise, average head size was not atypical in autism. However, we found that males with autism were more likely to have extreme head sizes at birth and between 60 and 100 months, a small head between 6 and 11 months, and a large head between 12 and 17 months. Females with autism were more likely to have extreme head sizes between 36 and 59 months and were less likely at birth. Our approach was able to measure the influence of age and biological sex on head size in autism, as well as the frequency of extreme cases of head size in autism. These results add to what we already know about head size in autism.
Collapse
Affiliation(s)
- Joel Crucitti
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Christian Hyde
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Peter G Enticott
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Mark A Stokes
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
136
|
Kang SC, Jaini R, Hitomi M, Lee H, Sarn N, Thacker S, Eng C. Decreased nuclear Pten in neural stem cells contributes to deficits in neuronal maturation. Mol Autism 2020; 11:43. [PMID: 32487265 PMCID: PMC7268763 DOI: 10.1186/s13229-020-00337-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND PTEN, a syndromic autism spectrum disorder (ASD) risk gene, is mutated in approximately 10% of macrocephalic ASD cases. Despite the described genetic association between PTEN and ASD and ensuing studies, we continue to have a limited understanding of how PTEN disruption drives ASD pathogenesis and maintenance. METHODS We derived neural stem cells (NSCs) from the dentate gyrus (DG) of Ptenm3m4 mice, a model that recapitulates PTEN-ASD phenotypes. We subsequently characterized the expression of stemness factors, proliferation, and differentiation of neurons and glia in Ptenm3m4 NSCs using immunofluorescent and immunoblotting approaches. We also measured Creb phosphorylation by Western blot analysis and expression of Creb-regulated genes with qRT-PCR. RESULTS The m3m4 mutation decreases Pten localization to the nucleus and its global expression over time. Ptenm3m4 NSCs exhibit persistent stemness characteristics associated with increased proliferation and a resistance to neuronal maturation during differentiation. Given the increased proliferation of Ptenm3m4 NSCs, a significant increase in the population of immature neurons relative to mature neurons occurs, an approximately tenfold decrease in the ratio between the homozygous mutant and wildtype. There is an opposite pattern of differentiation in some Ptenm3m4 glia, specifically an increase in astrocytes. These aberrant differentiation patterns associate with changes in Creb activation in Ptenm3m4/m3m4 NSCs. We specifically observed loss of Creb phosphorylation at S133 in Ptenm3m4/m3m4 NSCs and a subsequent decrease in expression of Creb-regulated genes important to neuronal function (i.e., Bdnf). Interestingly, Bdnf treatment is able to partially rescue the stunted neuronal maturation phenotype in Ptenm3m4/m3m4 NSCs. CONCLUSIONS Constitutional disruption of Pten nuclear localization with subsequent global decrease in Pten expression generates abnormal patterns of differentiation, a stunting of neuronal maturation. The propensity of Pten disruption to restrain neurons to a more progenitor-like state may be an important feature contributing to PTEN-ASD pathogenesis.
Collapse
Affiliation(s)
- Shin Chung Kang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Masahiro Hitomi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Hyunpil Lee
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Nick Sarn
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH, 44195, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
137
|
Skelton PD, Stan RV, Luikart BW. The Role of PTEN in Neurodevelopment. MOLECULAR NEUROPSYCHIATRY 2020; 5:60-71. [PMID: 32399470 PMCID: PMC7206585 DOI: 10.1159/000504782] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
PTEN is a lipid and protein phosphatase that regulates cell growth and survival. Mutations to PTEN are highly penetrant for autism spectrum disorder (ASD). Here, we briefly review the evidence linking PTEN mutations to ASD and the mouse models that have been used to study the role of PTEN in neurodevelopment. We then focus on the cellular phenotypes associated with PTEN loss in neurons, highlighting the role PTEN plays in neuronal proliferation, migration, survival, morphology, and plasticity.
Collapse
Affiliation(s)
- Patrick D. Skelton
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Radu V. Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
138
|
Capal JK, Macklin EA, Lu F, Barnes G. Factors Associated With Seizure Onset in Children With Autism Spectrum Disorder. Pediatrics 2020; 145:S117-S125. [PMID: 32238538 DOI: 10.1542/peds.2019-1895o] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Children with autism spectrum disorder (ASD) have a higher prevalence of epilepsy compared with general populations. In this pilot study, we prospectively identified baseline risk factors for the development of seizures in individuals with ASD and also identified characteristics sensitive to seizure onset up to 6 years after enrollment in the Autism Speaks Autism Treatment Network. METHODS Children with ASD and no history of seizures at baseline who either experienced onset of seizures after enrollment in the Autism Treatment Network or remained seizure free were included in the analysis. RESULTS Among 472 qualifying children, 22 (4.7%) experienced onset of seizures after enrollment. Individuals who developed seizures after enrollment exhibited lower scores at baseline on all domains of the Vineland Adaptive Behavior Scales, greater hyperactivity on the Aberrant Behavior Checklist (25.4 ± 11.8 vs 19.2 ± 11.1; P = .018), and lower physical quality of life scores on the Pediatric Quality of Life Inventory (60.1 ± 24.2 vs 76.0 ± 18.2; P < .001). Comparing change in scores from entry to call-back, adjusting for age, sex, length of follow-up, and baseline Vineland II composite score, individuals who developed seizures experienced declines in daily living skills (-8.38; 95% confidence interval -14.50 to -2.50; P = .005). Adjusting for baseline age, sex, and length of follow-up, baseline Vineland II composite score was predictive of seizure development (risk ratio = 0.95 per unit Vineland II composite score, 95% confidence interval 0.92 to 0.99; P = .007). CONCLUSIONS Individuals with ASD at risk for seizures exhibited changes in adaptive functioning and behavior.
Collapse
Affiliation(s)
- Jamie K Capal
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; .,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Eric A Macklin
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Harvard University, Boston, Massachusetts; and
| | - Frances Lu
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Gregory Barnes
- Departments of Neurology and Pediatrics, University of Louisville Autism Center, Louisville, Kentucky
| |
Collapse
|
139
|
Yotsumoto Y, Harada A, Tsugawa J, Ikura Y, Utsunomiya H, Miyatake S, Matsumoto N, Kanemura Y, Hashimoto-Tamaoki T. Infantile macrocephaly and multiple subcutaneous lipomas diagnosed with PTEN hamartoma tumor syndrome: A case report. Mol Clin Oncol 2020; 12:329-335. [PMID: 32190315 PMCID: PMC7058917 DOI: 10.3892/mco.2020.1988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/18/2019] [Indexed: 11/06/2022] Open
Abstract
A heterozygous loss-of-function mutation of the PTEN gene, one of the tumor suppressor genes, causes a wide variety of disorders, ranging from macrocephaly/autism syndrome to PTEN hamartoma tumor syndrome, including Cowden disease that causes thyroid and breast cancer mainly in the adolescence and young adult generation. An 8-month-old male infant with simple macrocephaly developed a café-au-lait spot and two subcutaneous tumors at the age of 1 year. One of the tumors developed rapidly was resected at the age of 1 year and 9 months and identified as benign lipoma. From the age of 2 years, the patient often threw a tantrum. At the age of 2 years and 9 months, a pathogenic germline mutation was identified in the PTEN gene (NM_000314.7), c.195C>A, p.Y65* in the form of a heterozygous germline variant. Developmental delay was noted but no tumors were found in the thyroid gland and breasts. Immunohistochemistry for PTEN in the resected lipoma demonstrated that the PTEN expression pattern was similar to that in a subcutaneous adipose tissue from a normal subject, suggesting that two-hit was not likely involved in the rapid growth of this lipoma. At the age of 5 years, the patient was diagnosed with autism spectrum disorders with moderate developmental delay. A long-term follow-up is underway to examine developmental changes in psychomotor disorders and possible tumor formation.
Collapse
Affiliation(s)
- Yuka Yotsumoto
- Department of Pediatrics, Takatsuki General Hospital, Takatsuki, Osaka 569-1192, Japan
- Department of Genetic Medicine, Takatsuki General Hospital, Takatsuki, Osaka 569-1192, Japan
| | - Atsuko Harada
- Department of Genetic Medicine, Takatsuki General Hospital, Takatsuki, Osaka 569-1192, Japan
- Department of Pediatric Neurosurgery, Takatsuki General Hospital, Osaka 569-1192, Japan
| | - Jiro Tsugawa
- Department of Pediatric Surgery, Takatsuki General Hospital, Takatsuki, Osaka 569-1192, Japan
| | - Yoshihiro Ikura
- Department of Pathology, Takatsuki General Hospital, Takatsuki, Osaka 569-1192, Japan
| | - Hidetsuna Utsunomiya
- Department of Pediatric Neuroradiology, Takatsuki General Hospital, Takatsuki, Osaka 569-1192, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Clinical Genetics Department, Yokohama City University Hospital, Yokohama 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yonehiro Kanemura
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan
| | | |
Collapse
|
140
|
Wong CW, Wang Y, Liu T, Li L, Cheung SKK, Or PMY, Cheng ASL, Choy KW, Burbach JPH, Feng B, Chang RCC, Chan AM. Autism-associated PTEN missense mutation leads to enhanced nuclear localization and neurite outgrowth in an induced pluripotent stem cell line. FEBS J 2020; 287:4848-4861. [PMID: 32150788 PMCID: PMC7754348 DOI: 10.1111/febs.15287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/24/2019] [Accepted: 03/06/2020] [Indexed: 11/29/2022]
Abstract
Germline mutation in the PTEN gene is the genetic basis of PTEN hamartoma tumor syndrome with the affected individuals harboring features of autism spectrum disorders. Characterizing a panel of 14 autism‐associated PTEN missense mutations revealed reduced protein stability, catalytic activity, and subcellular distribution. Nine out of 14 (64%) PTEN missense mutants had reduced protein expression with most mutations confined to the C2 domain. Selected mutants displayed enhanced polyubiquitination and shortened protein half‐life, but that did not appear to involve the polyubiquitination sites at lysine residues at codon 13 or 289. Analyzing their intrinsic lipid phosphatase activities revealed that 78% (11 out of 14) of these mutants had twofold to 10‐fold reduction in catalytic activity toward phosphatidylinositol phosphate substrates. Analyzing the subcellular localization of the PTEN missense mutants showed that 64% (nine out of 14) had altered nuclear‐to‐cytosol ratios with four mutants (G44D, H123Q, E157G, and D326N) showing greater nuclear localization. The E157G mutant was knocked‐in to an induced pluripotent stem cell line and recapitulated a similar nuclear targeting preference. Furthermore, iPSCs expressing the E157G mutant were more proliferative at the neural progenitor cell stage but exhibited more extensive dendritic outgrowth. In summary, the combination of biological changes in PTEN is expected to contribute to the behavioral and cellular features of this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Chi Wai Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yubing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tian Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lisha Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Penelope Mei-Yu Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Johannes Peter Henri Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
141
|
Tai C, Chang CW, Yu GQ, Lopez I, Yu X, Wang X, Guo W, Mucke L. Tau Reduction Prevents Key Features of Autism in Mouse Models. Neuron 2020; 106:421-437.e11. [PMID: 32126198 DOI: 10.1016/j.neuron.2020.01.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/21/2019] [Accepted: 01/27/2020] [Indexed: 01/06/2023]
Abstract
Autism is characterized by repetitive behaviors, impaired social interactions, and communication deficits. It is a prevalent neurodevelopmental disorder, and available treatments offer little benefit. Here, we show that genetically reducing the protein tau prevents behavioral signs of autism in two mouse models simulating distinct causes of this condition. Similar to a proportion of people with autism, both models have epilepsy, abnormally enlarged brains, and overactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt (protein kinase B)/ mammalian target of rapamycin (mTOR) signaling pathway. All of these abnormalities were prevented or markedly diminished by partial or complete genetic removal of tau. We identify disinhibition of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a negative PI3K regulator that tau controls, as a plausible mechanism and demonstrate that tau interacts with PTEN via tau's proline-rich domain. Our findings suggest an enabling role of tau in the pathogenesis of autism and identify tau reduction as a potential therapeutic strategy for some of the disorders that cause this condition.
Collapse
Affiliation(s)
- Chao Tai
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Isabel Lopez
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xin Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Weikun Guo
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
142
|
Smerdel MP, Skytte AB, Jelsig AM, Ebbehøj E, Stochholm K. Revised Danish guidelines for the cancer surveillance of patients with Cowden Syndrome. Eur J Med Genet 2020; 63:103873. [PMID: 32058060 DOI: 10.1016/j.ejmg.2020.103873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/05/2019] [Accepted: 02/01/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cowden syndrome is a cancer predisposition syndrome caused by pathogenic variants in PTEN. The affected patients possess an increased risk of breast, thyroid, renal, colorectal, endometrial cancers as well as malignant melanoma. Thus prophylactic surveillance and follow up is crucial for these patients. METHODS A review of the literature including existing guidelines from the years 1996 until 2017 was carried out. In total, 2078 scientific papers were identified through database searches on Cowden syndrome. Among these, 11 manuscripts were included based on scientific relevance and quality. Expert consensus was reached to define management guidelines. RESULTS The literature revealed a high risk of cancer in specific organs for patients diagnosed with Cowden Syndrome. Alternative management guidelines were proposed and discussed. CONCLUSIONS Here we propose a revised set of management guidelines for patients with Cowden syndrome in Denmark to address the increased risk of various cancer types.
Collapse
Affiliation(s)
- Maja Patricia Smerdel
- Department of Clinical Genetics, Lillebaelt Hospital - University Hospital of Southern Denmark, Vejle, Denmark.
| | - Anne-Bine Skytte
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark.
| | - Anne Marie Jelsig
- Clinical Genetic Clinic, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Eva Ebbehøj
- Department of Internal Medicine and Diabetes, Aarhus University Hospital, Aarhus, Denmark.
| | - Kirstine Stochholm
- Department of Pediatrics, Center of Rare Diseases, Aarhus University Hospital and Department of Internal Medicine and Diabetes, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
143
|
A myelin-related transcriptomic profile is shared by Pitt-Hopkins syndrome models and human autism spectrum disorder. Nat Neurosci 2020; 23:375-385. [PMID: 32015540 PMCID: PMC7065955 DOI: 10.1038/s41593-019-0578-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is genetically heterogeneous with convergent symptomatology, suggesting common dysregulated pathways. We analyzed brain transcriptional changes in five mouse models of Pitt-Hopkins Syndrome (PTHS), a syndromic form of ASD caused by mutations in TCF4 (transcription factor 4, not TCF7L2 / T-Cell Factor 4). Analyses of differentially expressed genes (DEGs) highlighted oligodendrocyte (OL) dysregulation, which we confirmed in two additional mouse models of syndromic ASD (Ptenm3m4/m3m4 and Mecp2tm1.1Bird). The PTHS mouse models showed cell-autonomous reductions in OL numbers and myelination, functionally confirming OL transcriptional signatures. Next, we integrated PTHS mouse model DEGs with human idiopathic ASD postmortem brain RNA-seq data, and found significant enrichment of overlapping DEGs and common myelination-associated pathways. Importantly, DEGs from syndromic ASD mouse models, and reduced deconvoluted OL numbers, distinguished human idiopathic ASD cases from controls across three postmortem brain datasets. These results implicate disruptions in OL biology as a cellular mechanism in ASD pathology.
Collapse
|
144
|
Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S. What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 2020; 109:29-53. [DOI: 10.1016/j.neubiorev.2019.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
145
|
The Ubiquitin System: a Regulatory Hub for Intellectual Disability and Autism Spectrum Disorder. Mol Neurobiol 2020; 57:2179-2193. [DOI: 10.1007/s12035-020-01881-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
|
146
|
Yehia L, Seyfi M, Niestroj LM, Padmanabhan R, Ni Y, Frazier TW, Lal D, Eng C. Copy Number Variation and Clinical Outcomes in Patients With Germline PTEN Mutations. JAMA Netw Open 2020; 3:e1920415. [PMID: 32003824 PMCID: PMC7042875 DOI: 10.1001/jamanetworkopen.2019.20415] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE PTEN is among the most common autism spectrum disorder (ASD)-predisposition genes. Germline PTEN mutation carriers can develop malignant neoplasms and/or neurodevelopmental disorders such as ASD and developmental delay. Why a single gene contributes to disparate clinical outcomes, even in patients with identical PTEN mutations, remains unclear. OBJECTIVE To investigate the association of copy number variations (CNVs), altered numbers of copies of DNA sequences within the genome, with specific phenotypes in patients with germline PTEN mutations. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study examined genome-wide microarrays performed on blood-derived DNA to detect germline CNVs from September 1, 2005, through January 3, 2018. Multicenter accrual occurred from community and academic medical centers throughout North America, South America, Europe, Australia, and Asia. Participants included patients with PTEN hamartoma tumor syndrome (PHTS) (n = 481), molecularly defined as carrying germline pathogenic PTEN mutations. Data were analyzed from November 14, 2018, to August 1, 2019. EXPOSURES Detection of CNVs from patient-derived germline DNA. MAIN OUTCOMES AND MEASURES Prevalence of pathogenic and/or likely pathogenic CNVs in patients with PHTS and association with ASD/developmental delay and/or cancer, ascertained through medical records and pathology reports. RESULTS The study included 481 patients with PHTS (mean [SD] age, 33.2 [21.6] years; 268 female [55.7%]). The analytic series consisted of 309 patients with PHTS and genetically determined European ancestry. Patients were divided into 3 phenotypic groups, excluding family members within each group. These include 110 patients with ASD/developmental delay, 194 without ASD/developmental delay, and 121 with cancer (of whom 116 were in the no ASD/developmental delay group). Genome-wide evaluation of autosomal CNVs indicated an increased CNV burden, particularly duplications in genic regions, in patients with ASD/developmental delay compared with those without ASD/developmental delay (odds ratio [OR], 1.9; 95% CI, 1.1-3.4; P = .03) and those with cancer (OR, 2.5; 95% CI, 1.3-4.6; P = .003). Eleven of the 110 patients (10.0%) with ASD/developmental delay carried pathogenic and/or likely pathogenic CNVs associated with neurodevelopmental disorders, compared with 5 of 194 (2.6%) without ASD/developmental delay (OR, 4.2; 95% CI, 1.4-13.7; P = .008) and 2 of 121 (1.7%) with cancer (OR, 6.6; 95% CI, 1.6-44.5; P = .007). Evidence of an association between pathogenic and/or likely pathogenic CNVs and PHTS with ASD/developmental delay was further supported in a validation series of 69 patients with PHTS of genetically determined non-European ancestry. CONCLUSIONS AND RELEVANCE These findings suggest that copy number variations are associated with the ASD/developmental delay clinical phenotype in PHTS, providing proof of principle for similarly heterogeneous disorders lacking outcome-specific associations.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Marilyn Seyfi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Roshan Padmanabhan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ying Ni
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Thomas W. Frazier
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Autism Speaks, Cleveland, Ohio
- Department of Psychology, John Carroll University, University Heights, Ohio
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
- Stanley Center for Psychiatric Research, Broad Institute of MIT (Massachusetts Institute of Technology) and Harvard, Cambridge, Massachusetts
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
147
|
Tsaridou S, Skamnelou M, Iliadou M, Lokka G, Parlapani E, Mougkogianni M, Danalatos RI, Kanellou A, Chlorogiannis DD, Kyrousi C, Taraviras S. Three-Dimensional Models for Studying Neurodegenerative and Neurodevelopmental Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:35-41. [PMID: 32468456 DOI: 10.1007/978-3-030-32633-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human brain possesses a unique anatomy and physiology. For centuries, methodological barriers and ethical challenges in accessing human brain tissues have restricted researchers into using 2-D cell culture systems and model organisms as a tool for investigating the mechanisms underlying neurological disorders in humans. However, our understanding regarding the human brain development and diseases has been recently extended due to the generation of 3D brain organoids, grown from human stem cells or induced pluripotent stem cells (iPSCs). This system evolved into an attractive model of brain diseases as it recapitulates to a great extend the cellular organization and the microenvironment of a human brain. This chapter focuses on the application of brain organoids in modelling several neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Stavroula Tsaridou
- Biomedical Postgraduate Programme, Stem Cells and Regenerative Medicine, Medical School, University of Patras, Patras, Greece
| | - Margarita Skamnelou
- Biomedical Postgraduate Programme, Stem Cells and Regenerative Medicine, Medical School, University of Patras, Patras, Greece
| | - Marianna Iliadou
- Biomedical Postgraduate Programme, Stem Cells and Regenerative Medicine, Medical School, University of Patras, Patras, Greece.,Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Lokka
- Biomedical Postgraduate Programme, Stem Cells and Regenerative Medicine, Medical School, University of Patras, Patras, Greece.,Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Evangelia Parlapani
- Biomedical Postgraduate Programme, Stem Cells and Regenerative Medicine, Medical School, University of Patras, Patras, Greece.,Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Maria Mougkogianni
- Biomedical Postgraduate Programme, Stem Cells and Regenerative Medicine, Medical School, University of Patras, Patras, Greece.,Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Rodolfos-Iosif Danalatos
- Biomedical Postgraduate Programme, Stem Cells and Regenerative Medicine, Medical School, University of Patras, Patras, Greece.,Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Anastasia Kanellou
- Biomedical Postgraduate Programme, Stem Cells and Regenerative Medicine, Medical School, University of Patras, Patras, Greece
| | | | - Christina Kyrousi
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece.,Max Planck Institute of Psychiatry, Munich, Germany
| | - Stavros Taraviras
- Biomedical Postgraduate Programme, Stem Cells and Regenerative Medicine, Medical School, University of Patras, Patras, Greece. .,Department of Physiology, School of Medicine, University of Patras, Patras, Greece.
| |
Collapse
|
148
|
Missig G, McDougle CJ, Carlezon WA. Sleep as a translationally-relevant endpoint in studies of autism spectrum disorder (ASD). Neuropsychopharmacology 2020; 45:90-103. [PMID: 31060044 PMCID: PMC6879602 DOI: 10.1038/s41386-019-0409-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
Sleep has numerous advantages for aligning clinical and preclinical (basic neuroscience) studies of neuropsychiatric illness. Sleep has high translational relevance, because the same endpoints can be studied in humans and laboratory animals. In addition, sleep experiments are conducive to continuous data collection over long periods (hours/days/weeks) and can be based on highly objective neurophysiological measures. Here, we provide a translationally-oriented review on what is currently known about sleep in the context of autism spectrum disorder (ASD), including ASD-related conditions, thought to have genetic, environmental, or mixed etiologies. In humans, ASD is frequently associated with comorbid medical conditions including sleep disorders. Animal models used in the study of ASD frequently recapitulate dysregulation of sleep and biological (diurnal, circadian) rhythms, suggesting common pathophysiologies across species. As our understanding of the neurobiology of ASD and sleep each become more refined, it is conceivable that sleep-derived metrics may offer more powerful biomarkers of altered neurophysiology in ASD than the behavioral tests currently used in humans or lab animals. As such, the study of sleep in animal models for ASD may enable fundamentally new insights on the condition and represent a basis for strategies that enable the development of more effective therapeutics.
Collapse
Affiliation(s)
- Galen Missig
- 0000 0000 8795 072Xgrid.240206.2Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA USA
| | - Christopher J. McDougle
- 0000 0004 0386 9924grid.32224.35Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA USA ,000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - William A. Carlezon
- 0000 0000 8795 072Xgrid.240206.2Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA USA
| |
Collapse
|
149
|
Dhamija R, Hoxworth JM. Imaging of PTEN-related abnormalities in the central nervous system. Clin Imaging 2019; 60:180-185. [PMID: 31927175 DOI: 10.1016/j.clinimag.2019.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022]
Abstract
The phosphatase and tensin homolog (PTEN) located at 10q23.31 is a tumor suppressor gene expressed ubiquitously, and loss of function mutations lead to aberrant growth, angiogenesis, and an increased risk for a variety of tumors. PTEN mutations have been associated with multiple abnormalities in the central nervous system, and a number of clinical phenotypes are now attributed to germline PTEN mutations, collectively referred to as PTEN hamartoma tumor syndrome (PHTS). Most notably, these include Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome (BRRS), and autism spectrum disorders with macrocephaly. It is important to recognize the neuroimaging features associated with PTEN mutations to not only avoid misdiagnosis in cases of known PHTS but also to guide genetic testing in patients who do not yet have an established diagnosis. In this review, the central nervous system imaging features of PTEN-related disorders are discussed.
Collapse
Affiliation(s)
- Radhika Dhamija
- Departments of Clinical Genomics and Neurology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Joseph M Hoxworth
- Divison of Neuroradiology, Department of Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
150
|
Pten haploinsufficiency disrupts scaling across brain areas during development in mice. Transl Psychiatry 2019; 9:329. [PMID: 31804455 PMCID: PMC6895202 DOI: 10.1038/s41398-019-0656-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/29/2019] [Indexed: 01/08/2023] Open
Abstract
Haploinsufficiency for PTEN is a cause of autism spectrum disorder and brain overgrowth; however, it is not known if PTEN mutations disrupt scaling across brain areas during development. To address this question, we used magnetic resonance imaging to analyze brains of male Pten haploinsufficient (Pten+/-) mice and wild-type littermates during early postnatal development and adulthood. Adult Pten+/- mice display a consistent pattern of abnormal scaling across brain areas, with white matter (WM) areas being particularly affected. This regional and WM enlargement recapitulates structural abnormalities found in individuals with PTEN haploinsufficiency and autism. Early postnatal Pten+/- mice do not display the same pattern, instead exhibiting greater variability across mice and brain regions than controls. This suggests that Pten haploinsufficiency may desynchronize growth across brain regions during early development before stabilizing by maturity. Pten+/- cortical cultures display increased proliferation of glial cell populations, indicating a potential substrate of WM enlargement, and provide a platform for testing candidate therapeutics. Pten haploinsufficiency dysregulates coordinated growth across brain regions during development. This results in abnormally scaled brain areas and associated behavioral deficits, potentially explaining the relationship between PTEN mutations and neurodevelopmental disorders.
Collapse
|