101
|
Twenty years hunting for sulfur in DNA. Protein Cell 2010; 1:14-21. [PMID: 21203994 DOI: 10.1007/s13238-010-0009-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/10/2009] [Indexed: 10/19/2022] Open
Abstract
Here we tell a 20-year long story. It began with an easily overlooked DNA degradation (Dnd) phenomenon during electrophoresis and eventually led to the discovery of an unprecedented DNA sulfur modification governed by five dnd genes. This unusual DNA modification, called phosphorothioation, is the first physiological modification identified on the DNA backbone, in which the nonbridging oxygen is replaced by sulfur in a sequence selective and stereo-specific manner. Homologous dnd gene clusters have been identified in diverse and distantly related bacteria and thus have drawn immediate attention of the entire microbial scientific community. Here, we summarize the progress in chemical, genetic, enzymatic, bioinformatical and analytical aspects of this novel postreplicative DNA modification. We also discuss perspectives on the physiological functions of the DNA phosphorothioate modification in bacteria and their implications.
Collapse
|
102
|
Smuga D, Majchrzak K, Sochacka E, Nawrot B. RNA-cleaving 10–23 deoxyribozyme with a single amino acid-like functionality operates without metal ion cofactors. NEW J CHEM 2010. [DOI: 10.1039/b9nj00705a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
103
|
Liang X, Nishioka H, Mochizuki T, Asanuma H. An interstrand-wedged duplex composed of alternating DNAbase pairs and covalently attached intercalators. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b915993b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
104
|
Feng Z, Zhang Z, Yuan L, Feng W, Huang Z. Synthesis of thymidine derivatives bearing aromatic oligoamides with rigidified backbone. HETEROCYCL COMMUN 2010. [DOI: 10.1515/hc.2010.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
105
|
Affiliation(s)
- Michael Famulok
- LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
106
|
Bagby SC, Bergman NH, Shechner DM, Yen C, Bartel DP. A class I ligase ribozyme with reduced Mg2+ dependence: Selection, sequence analysis, and identification of functional tertiary interactions. RNA (NEW YORK, N.Y.) 2009; 15:2129-2146. [PMID: 19946040 PMCID: PMC2779684 DOI: 10.1261/rna.1912509] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
The class I ligase was among the first ribozymes to have been isolated from random sequences and represents the catalytic core of several RNA-directed RNA polymerase ribozymes. The ligase is also notable for its catalytic efficiency and structural complexity. Here, we report an improved version of this ribozyme, arising from selection that targeted the kinetics of the chemical step. Compared with the parent ribozyme, the improved ligase achieves a modest increase in rate enhancement under the selective conditions and shows a sharp reduction in [Mg(2+)] dependence. Analysis of the sequences and kinetics of successful clones suggests which mutations play the greatest part in these improvements. Moreover, backbone and nucleobase interference maps of the parent and improved ligase ribozymes complement the newly solved crystal structure of the improved ligase to identify the functionally significant interactions underlying the catalytic ability and structural complexity of the ligase ribozyme.
Collapse
Affiliation(s)
- Sarah C Bagby
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
107
|
Abstract
The 2'-hydroxyl group plays an integral role in RNA structure and catalysis. This ubiquitous component of the RNA backbone can participate in multiple interactions essential for RNA function, such as hydrogen bonding and metal ion coordination, but the multifunctional nature of the 2'-hydroxyl renders identification of these interactions a significant challenge. By virtue of their versatile physicochemical properties, such as distinct metal coordination preferences, hydrogen bonding properties, and ability to be protonated, 2'-amino-2'-deoxyribonucleotides can serve as tools for probing local interactions involving 2'-hydroxyl groups within RNA. The 2'-amino group can also serve as a chemoselective site for covalent modification, permitting the introduction of probes for investigation of RNA structure and dynamics. In this chapter, we describe the use of 2'-aminonucleotides for investigation of local interactions within RNA, focusing on interactions involving 2'-hydroxyl groups required for RNA structure, function, and catalysis.
Collapse
|
108
|
Wang Y, Juranek S, Li H, Sheng G, Wardle GS, Tuschl T, Patel DJ. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 2009; 461:754-61. [PMID: 19812667 PMCID: PMC2880917 DOI: 10.1038/nature08434] [Citation(s) in RCA: 415] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/18/2009] [Indexed: 11/09/2022]
Abstract
The slicer activity of the RNA-induced silencing complex resides within its Argonaute (Ago) component, in which the PIWI domain provides the catalytic residues governing guide-strand mediated site-specific cleavage of target RNA. Here we report on structures of ternary complexes of Thermus thermophilus Ago catalytic mutants with 5'-phosphorylated 21-nucleotide guide DNA and complementary target RNAs of 12, 15 and 19 nucleotides in length, which define the molecular basis for Mg(2+)-facilitated site-specific cleavage of the target. We observe pivot-like domain movements within the Ago scaffold on proceeding from nucleation to propagation steps of guide-target duplex formation, with duplex zippering beyond one turn of the helix requiring the release of the 3'-end of the guide from the PAZ pocket. Cleavage assays on targets of various lengths supported this model, and sugar-phosphate-backbone-modified target strands showed the importance of structural and catalytic divalent metal ions observed in the crystal structures.
Collapse
Affiliation(s)
- Yanli Wang
- Structural Biology Program, Memorial-Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Murgia S, Lampis S, Angius R, Berti D, Monduzzi M. Orientation and specific interactions of nucleotides and nucleolipids inside monoolein-based liquid crystals. J Phys Chem B 2009; 113:9205-15. [PMID: 19569723 DOI: 10.1021/jp9035474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The entrapment of AMP, GMP, CMP, and UMP nucleotides along with two different AMP-based nucleolipids (hydrophobically functionalized nucleotides) inside the liquid crystalline phases of the monoolein/water system is investigated through optical microscopy, small-angle X-ray diffraction (SAXRD), and nuclear magnetic resonance (NMR) techniques. As ascertained mainly through (31)P NMR experiments, when included within the cubic phase, the various nucleotides undergo a slow hydrolysis of the sugar-phosphate ester bond, induced by specific interactions at the monoolein-water interface. Upon aging, the degradation of the nucleotides causes a cubic-to-hexagonal phase transition. Differently, neither hydrolysis nor alterations of the monoolein self-assembly are observed when the nucleotides are included as lipid derivatives within the cubic liquid crystalline phase. A model that explains both the hydrolysis and the consequent phase transition is presented.
Collapse
Affiliation(s)
- Sergio Murgia
- Dipartimento di Scienze Chimiche, Cagliari University and CSGI, SS 554 Bivio Sestu, 09042 Monserrato (CA), Italy.
| | | | | | | | | |
Collapse
|
110
|
Nawrot B, Sochacka E. Preparation of short interfering RNA containing the modified nucleosides 2-thiouridine, pseudouridine, or dihydrouridine. ACTA ACUST UNITED AC 2009; Chapter 16:16.2.1-16.2.16. [PMID: 19488969 DOI: 10.1002/0471142700.nc1602s37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modified uridine derivatives such as 2-thiouridine (s(2)U), pseudouridine (Psi), and dihydrouridine (D) are naturally existing nucleoside units identified in tRNA molecules. Recently, we have shown that such base-modified units introduced into functionally important sites of siRNA modulate thermodynamic stability of the duplex and its gene silencing activity. In this unit, we describe chemical synthesis of 3'-phosphoramidite derivatives of s(2)U and D units (the 3'-phosphoramidite derivative of Psi is commercially available), and their use for the synthesis of RNA oligonucleotides according to the routine phosphoramidite protocol. The only exception concerns the oxidation step with I(2)/pyridine/water which, if applied towards oligonucleotides containing s(2)U units, would lead to the loss of sulfur. Therefore, to avoid this side reaction, tert-butyl hydroperoxide is used as an oxidizing reagent. After the oligonucleotide chain assembly is completed, the resulting oligomer is deprotected under mild basic conditions (MeNH(2)/EtOH/DMSO) to avoid dihydrouracil ring opening, which is a reported side-reaction during the routine synthesis of dihydrouridine-containing RNA. Oligonucleotides modified with s(2)U, D, or Psi units are useful models for structure-function studies. Here, the procedure for preparation of siRNA duplexes is described.
Collapse
Affiliation(s)
- Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | | |
Collapse
|
111
|
Olesiak M, Okruszek A. Studies of Asymmetric Induction in the Synthesis of Dinucleoside Phosphorothioates from 2-Oxo-1,3,2-dithiaphospholane Nucleoside Derivatives. PHOSPHORUS SULFUR 2009. [DOI: 10.1080/10426500902947898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Magdalena Olesiak
- a Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Łódź, Poland
| | - Andrzej Okruszek
- a Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Łódź, Poland
- b Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences , Technical University of Łódź , Łódź, Poland
| |
Collapse
|
112
|
Olesiak M, Stec WJ, Okruszek A. The synthesis of di- and oligo-nucleotides containing a phosphorodithioate internucleotide linkage with one of the sulfur atoms in a 5'-bridging position. Org Biomol Chem 2009; 7:2162-9. [PMID: 19421455 DOI: 10.1039/b901791g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of internucleotide phosphorodithioate linkage is described, wherein one of the sulfur atoms occupies a 5'-bridging position. Representative dinucleotides possessing such a bond were synthesized by S-alkylation of nucleoside-3'-O-phosphorodithioates with 5'-halogeno-5'-deoxy-nucleosides. A fully protected dithymidylate containing internucleotide 5'-S-phosphorodithioate linkage was converted into a 3'-O-phosphoramidite derivative and employed for introduction of a modified dinucleotide into a predetermined position of the oligonucleotide sequence. The 5'-S-phosphorodithioate linkage in dinucleotide analogues was found to be resistant toward nucleolytic degradation with snake venom PDE and nuclease P1. However, P-stereoselective degradation was observed for diastereomers of 5'-S-phosphorodithioate dithymidine analogs under treatment with calf spleen PDE. The new 5'-S-phosphorodithioate linkage was readily degraded by iodine solutions in the presence of water. It was also found that oligothymidylates containing a single 5'-S-phosphorodithioate linkage form much weaker duplexes with their complementary sequences.
Collapse
Affiliation(s)
- Magdalena Olesiak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | | | | |
Collapse
|
113
|
Abstract
Multicomponent RNA-protein complexes are essential for eukaryotic gene expression. Some, like the spliceosome, have been studied successfully in vitro using biochemical and structural approaches, but many have not been reconstituted in cell-free systems. Nucleotide analog interference mapping (NAIM) can report detailed atomic information about requirements for ribonucleoprotein particle assembly and function in living cells, providing a method to study complexes in a cellular context at a level of detail comparable to many biochemical assays. The method relies on incorporation of phosphorothioate-tagged nucleotide analogs during in vitro transcription, followed by a selection for the active population of molecules and analysis of the selected RNA sequence composition. Xenopus oocytes provide a cellular environment for selecting active molecules based on particle assembly or function. Functional group analysis of complexes assembled in vivo provides predictive models for further investigation either in vivo or in vitro as well as benchmarks for evaluating and refining biochemical and structural models.
Collapse
|
114
|
Farand J, Beverly M. Sequence confirmation of modified oligonucleotides using chemical degradation, electrospray ionization, time-of-flight, and tandem mass spectrometry. Anal Chem 2008; 80:7414-21. [PMID: 18729471 DOI: 10.1021/ac8011158] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the sequencing of highly modified oligonucleotides containing a mixture of 2'-deoxy, 2'-fluoro, 2'-O-methyl, abasic, and ribonucleotides. The passenger and guide strands each containing 48% and 86% of modified nucleotides, respectively, are representative sequences of synthetic short interfering RNAs (siRNAs). We describe herein the sequence confirmation of both strands using a series of robust chemical reactions, followed by analysis via ESI-TOF and ion trap mass spectrometry (ITMS). The following method enables the rapid sequence confirmation of highly modified oligonucleotides.
Collapse
Affiliation(s)
- Julie Farand
- Department of Process Research, Merck Research Laboratories, 2950 Wilderness Place, Boulder, Colorado 80301, USA.
| | | |
Collapse
|
115
|
Dotson PP, Frommeyer KN, Testa SM. Ribozyme mediated trans insertion-splicing of modified oligonucleotides into RNA. Arch Biochem Biophys 2008; 478:81-4. [PMID: 18671935 DOI: 10.1016/j.abb.2008.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 11/16/2022]
Abstract
The trans insertion-splicing reaction, catalyzed by a group I intron-derived from Pneumocystis carinii, was recently developed for the site-specific insertion of a segment of RNA into a separate RNA substrate. The molecular determinants of this reaction for binding and catalysis are reasonably well understood, making them easily and highly modifiable for altering substrate specificity. To demonstrate proof-of-concept, we now report that the P. carinii ribozyme can except modified oligonucleotides as substrates for catalyzing the trans insertion-splicing reaction. Oligonucleotides that contain one or more sugar modifications (deoxy or methoxy substitution), a backbone modification (phosphorothioate substitution), or a base modification (2-aminopurine or 4-thiouridine) are effective substrates in this reaction. Apparently, trans insertion-splicing is a unique and viable reaction for the site-specific incorporation of modified oligonucleotides into RNAs. This is the first report of a group I intron-derived ribozyme being capable of catalyzing the insertion of a modified oligonucleotide into RNA.
Collapse
Affiliation(s)
- P Patrick Dotson
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | |
Collapse
|
116
|
Liu Y, Sen D. A contact photo-cross-linking investigation of the active site of the 8-17 deoxyribozyme. J Mol Biol 2008; 381:845-59. [PMID: 18586041 DOI: 10.1016/j.jmb.2008.06.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/30/2008] [Accepted: 06/08/2008] [Indexed: 11/19/2022]
Abstract
The small RNA-cleaving 8-17 deoxyribozyme (DNAzyme) has been the subject of extensive mechanistic and structural investigation, including a number of recent single-molecule studies of its global folding. Little detailed insight exists, however, into this DNAzyme's active site; for instance, the identity of specific nucleotides that are proximal to or in contact with the scissile site in the substrate. Here, we report a systematic replacement of a number of bases within the magnesium-folded DNAzyme-substrate complex with thio- and halogen-substituted base analogues, which were then photochemically activated to generate contact cross-links within the complex. Mapping of the cross-links revealed a striking pattern of DNAzyme-substrate cross-links but an absence of significant intra-DNAzyme cross-links. Notably, the two nucleotides directly flanking the scissile phosphodiester cross-linked strongly with functionally important elements within the DNAzyme, the thymine of a G.T wobble base pair, a WCGR bulge loop, and a terminal AGC loop. Mutation of the wobble base pair to a G-C pair led to a significant folding instability of the DNAzyme-substrate complex. The cross-linking patterns obtained were used to generate a model for the DNAzyme's active site that had the substrate's scissile phosphodiester sandwiched between the DNAzyme's wobble thymine and its AGC and WCGR loops.
Collapse
Affiliation(s)
- Yong Liu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | |
Collapse
|
117
|
Veedu RN, Vester B, Wengel J. Polymerase chain reaction and transcription using locked nucleic acid nucleotide triphosphates. J Am Chem Soc 2008; 130:8124-5. [PMID: 18533656 DOI: 10.1021/ja801389n] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymerase chain reaction amplification of a locked nucleic acid (LNA)-modified DNA strand and transcription reactions using LNA-A nucleoside 5'-triphosphate were successfully accomplished with DNA and RNA polymerases.
Collapse
Affiliation(s)
- Rakesh N Veedu
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, Odense M, 5230, Denmark
| | | | | |
Collapse
|
118
|
Ozlem Tastan Bishop A, Stelzl U, Pech M, Nierhaus KH. Characterization of RNA-protein interactions by phosphorothioate footprinting and its applications to the ribosome. Methods Mol Biol 2008; 488:129-151. [PMID: 18982288 DOI: 10.1007/978-1-60327-475-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Analogs of naturally occurring substances obtained by chemical modifications are powerful tools to study intra- and intermolecular interactions. We have used the phosphorothioate technique to analyze RNA-protein interactions, here the interactions of transfer RNAs (tRNAs) with the three ribosomal binding sites. We describe preparation and purification of thioated tRNAs, formation of functional complexes of programmed ribosomes with tRNAs, and the evaluation of the observed phosphorothioate footprints on the tRNAs.
Collapse
|
119
|
Pačes O, Točík Z, Rosenberg I. A New Linker for Solid-Phase Synthesis of Oligonucleotides with Terminal Phosphate Group. ACTA ACUST UNITED AC 2008. [DOI: 10.1135/cccc20080032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Synthesis of a novel cyanoethyl-type linker suitable for the solid-phase synthesis of oligodeoxynucleotides possessing terminal 3'-phosphate group is described. Since the linker is a 2-substituted 2-cyanoethanol, the release of the synthesized oligonucleotide from the solid support is accomplished by β-elimination in the ammonia deprotection step.
Collapse
|
120
|
Abstract
Despite tremendous progress in our understanding of fibrogenesis, injury stimuli process, inflammation, and hepatic stellate cell (HSC) activation, there is still no standard treatment for liver fibrosis. Delivery of small molecular weight drugs, proteins, and nucleic acids to specific liver cell types remains a challenge due to the overexpression of extracellular matrix (ECM) and consequent closure of sinusoidal gaps. In addition, activation of HSCs and subsequent release of inflammatory cytokines and infiltration of immune cells are other major obstacles to the treatment of liver fibrosis. To overcome these barriers, different therapeutic approaches are being investigated. Among them, the modulation of certain aberrant protein production is quite promising for treating liver fibrosis. In this review, we describe the mechanism of antisense, antigene, and RNA interference (RNAi) therapies and discuss how the backbone modification of oligonucleotides affects their in vivo stability, biodistribution, and bioactivity. Strategies for delivering these nucleic acids to specific cell types are discussed. This review critically addresses various insights developed with each individual strategy and for multipronged approaches, which will be helpful in achieving more effective outcomes.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
121
|
|
122
|
Li P, Sergueeva ZA, Dobrikov M, Shaw BR. Nucleoside and Oligonucleoside Boranophosphates: Chemistry and Properties. Chem Rev 2007; 107:4746-96. [DOI: 10.1021/cr050009p] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ping Li
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Zinaida A. Sergueeva
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Mikhail Dobrikov
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Barbara Ramsay Shaw
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| |
Collapse
|
123
|
Singh S, Kumar P, Gupta KC, Singh RK. Synthesis and biophysical studies on fluorescently labeled oligodeoxyribonucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 26:521-31. [PMID: 17578747 DOI: 10.1080/15257770701426294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Two highly fluorescent compounds, viz. 6-(6-isobutyrylamino-1,3-dioxo-1 H,3H-benzo[de]isoquinolin-2-yl)-hexanoic acid and 6-(6-dimethylamino-1,3-dioxo-1 H,3H-benzo[de]isoqu-inolin-2-yl)-hexanoic acid have been synthesized, characterized, and attached to 12-mer oligodeoxyribonucleotides at their 5'-end using suitable linker molecule. These labeled oligodeoxyribonucleotides have shown appreciable fluorescence even at 0.0019 microM concentrations. Thermal denaturation studies have shown comparatively higher Tm values when oligodeoxyribonucleotides are labeled. These labeled oligodeoxyribonucleotides have been purified on RP-HPLC utilizing their hydrophobicity and on polyacrylamide gel because of their easy detection due to fluorescence.
Collapse
Affiliation(s)
- Shipra Singh
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | | | | | | |
Collapse
|
124
|
Kim K, Liu F. Inhibition of gene expression in human cells using RNase P-derived ribozymes and external guide sequences. ACTA ACUST UNITED AC 2007; 1769:603-12. [PMID: 17976837 DOI: 10.1016/j.bbaexp.2007.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 09/13/2007] [Accepted: 09/14/2007] [Indexed: 11/19/2022]
Abstract
Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. This enzyme is a ribonucleoprotein complex for tRNA processing. In Escherichia coli, RNase P contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). EGSs, which are RNAs derived from natural tRNAs, bind to a target mRNA and render the mRNA susceptible to hydrolysis by RNase P and M1 ribozyme. When covalently linked with a guide sequence, M1 can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which cleaves any target RNAs that base pair with the guide sequence. Studies have demonstrated efficient cleavage of mRNAs by M1GS and RNase P complexed with EGSs in vitro. Moreover, highly active M1GS and EGSs were successfully engineered using in vitro selection procedures. EGSs and M1GS ribozymes are effective in blocking gene expression in both bacteria and human cells, and exhibit promising activity for antimicrobial, antiviral, and anticancer applications. In this review, we highlight some recent results using the RNase P-based technology, and offer new insights into the future of using EGS and M1GS RNA as tools for basic research and as gene-targeting agents for clinical applications.
Collapse
Affiliation(s)
- Kihoon Kim
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
125
|
Guga P, Janicka M, Maciaszek A, Rebowska B, Nowak G. Hoogsteen-paired homopurine [RP-PS]-DNA and homopyrimidine RNA strands form a thermally stable parallel duplex. Biophys J 2007; 93:3567-74. [PMID: 17693472 PMCID: PMC2072079 DOI: 10.1529/biophysj.107.108183] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homopurine deoxyribonucleoside phosphorothioates possessing all internucleotide linkages of R(P) configuration form a duplex with an RNA or 2'-OMe-RNA strand with Hoogsteen complementarity. The duplexes formed with RNA templates are thermally stable at pH 5.3, while those formed with a 2'-OMe-RNA are stable at neutrality. Melting temperature and fluorescence quenching experiments indicate that the strands are parallel. Remarkably, these duplexes are thermally more stable than parallel Hoogsteen duplexes and antiparallel Watson-Crick duplexes formed by unmodified homopurine DNA molecules of the same sequence with corresponding RNA templates.
Collapse
Affiliation(s)
- Piotr Guga
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Department of Bioorganic Chemistry, Łódź, Poland.
| | | | | | | | | |
Collapse
|
126
|
Egli M, Pallan PS. Insights from crystallographic studies into the structural and pairing properties of nucleic acid analogs and chemically modified DNA and RNA oligonucleotides. ACTA ACUST UNITED AC 2007; 36:281-305. [PMID: 17288535 DOI: 10.1146/annurev.biophys.36.040306.132556] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemically modified nucleic acids function as model systems for native DNA and RNA; as chemical probes in diagnostics or the analysis of protein-nucleic acid interactions and in high-throughput genomics and drug target validation; as potential antigene-, antisense-, or RNAi-based drugs; and as tools for structure determination (i.e., crystallographic phasing), just to name a few. Biophysical and structural investigations of chemically modified DNAs and RNAs, particularly of nucleic acid analogs with more significant alterations to the well-known base-sugar-phosphate framework (i.e., peptide or hexopyranose nucleic acids), can also provide insights into the properties of the natural nucleic acids that are beyond the reach of studies focusing on DNA or RNA alone. In this review we summarize results from crystallographic analyses of chemically modified DNAs and RNAs that are primarily of interest in the context of the discovery and development of oligonucleotide-based therapeutics. In addition, we re-examine recent structural data on nucleic acid analogs that are investigated as part of a systematic effort to rationalize nature's choice of pentose in the genetic system.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
127
|
Dai Q, Lea CR, Lu J, Piccirilli JA. Syntheses of (2')3'-15N-amino-(2')3'-deoxyguanosine and determination of their pKa values by 15N NMR spectroscopy. Org Lett 2007; 9:3057-60. [PMID: 17629287 DOI: 10.1021/ol071129h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
2'-Amino-2'-deoxyguanosine and 3'-amino-3'-deoxyguanosine are valuable probes for investigating the metal ion interactions at the active site of the group I ribozyme. However, these experiments require a thorough understanding of the protonation state of the amino group at a specific pH. Here, we describe the first syntheses of 2'-15N-amino-2'-deoxyadenosine, 2'-15N-amino-2'-deoxyguanosine, and 3'-15N-amino-3'-deoxyguanosine. The 15N-enriched nucleus allows convenient and accurate determination of the amine pKa by 15N NMR.
Collapse
Affiliation(s)
- Qing Dai
- Department of Biochemistry & Molecular Biology, The University of Chicago, 929 East 57th Street, MC 1028, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
128
|
Schiemann O, Prisner TF. Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 2007; 40:1-53. [PMID: 17565764 DOI: 10.1017/s003358350700460x] [Citation(s) in RCA: 428] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy provides a variety of tools to study structures and structural changes of large biomolecules or complexes thereof. In order to unravel secondary structure elements, domain arrangements or complex formation, continuous wave and pulsed EPR methods capable of measuring the magnetic dipole coupling between two unpaired electrons can be used to obtain long-range distance constraints on the nanometer scale. Such methods yield reliably and precisely distances of up to 80 A, can be applied to biomolecules in aqueous buffer solutions or membranes, and are not size limited. They can be applied either at cryogenic or physiological temperatures and down to amounts of a few nanomoles. Spin centers may be metal ions, metal clusters, cofactor radicals, amino acid radicals, or spin labels. In this review, we discuss the advantages and limitations of the different EPR spectroscopic methods, briefly describe their theoretical background, and summarize important biological applications. The main focus of this article will be on pulsed EPR methods like pulsed electron-electron double resonance (PELDOR) and their applications to spin-labeled biosystems.
Collapse
Affiliation(s)
- Olav Schiemann
- Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, J. W. Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany.
| | | |
Collapse
|
129
|
Guga P, Boczkowska M, Janicka M, Maciaszek A, Kuberski S, Stec WJ. Unusual thermal stability of RNA/[RP-PS]-DNA/RNA triplexes containing a homopurine DNA strand. Biophys J 2007; 92:2507-15. [PMID: 17218459 PMCID: PMC1864848 DOI: 10.1529/biophysj.106.099283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 12/21/2006] [Indexed: 11/18/2022] Open
Abstract
Homopurine deoxyribonucleoside phosphorothioates, as short as hexanucleotides and possessing all internucleotide linkages of RP configuration, form a triple helix with two RNA or 2'-OMe-RNA strands, with Watson-Crick and Hoogsteen complementarity. Melting temperature and fluorescence quenching experiments strongly suggest that the Hoogsteen RNA strand is parallel to the homopurine [RP-PS]-oligomer. Remarkably, these triplexes are thermally more stable than complexes formed by unmodified homopurine DNA molecules of the same sequence. The triplexes formed by phosphorothioate DNA dodecamers containing 4-6 dG residues are thermally stable at pH 7.4, although their stability increases significantly at pH 5.3. FTIR measurements suggest participation of the C2-carbonyl group of the pyrimidines in the stabilization of the triplex structure. Formation of triple-helix complexes with exogenously delivered PS-oligos may become useful for the reduction of RNA accessibility in vivo and, hence, selective suppression/inhibition of the translation process.
Collapse
Affiliation(s)
- Piotr Guga
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
| | | | | | | | | | | |
Collapse
|
130
|
Bentley J, Brazier JA, Fisher J, Cosstick R. Duplex stability of DNA·DNA and DNA·RNA duplexes containing 3′-S-phosphorothiolate linkages. Org Biomol Chem 2007; 5:3698-702. [DOI: 10.1039/b713292a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
131
|
Mahato RI, Cheng K, Guntaka RV. Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Expert Opin Drug Deliv 2006; 2:3-28. [PMID: 16296732 DOI: 10.1517/17425247.2.1.3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antisense oligodeoxynucleotides, triplex-forming oligodeoxynucleotides and double-stranded small interfering RNAs have great potential for the treatment of many severe and debilitating diseases. Concerted efforts from both industry and academia have made significant progress in turning these nucleic acid drugs into therapeutics, and there is already one FDA-approved antisense drug in the clinic. Despite the success of one product and several other ongoing clinical trials, challenges still exist in their stability, cellular uptake, disposition, site-specific delivery and therapeutic efficacy. The principles, strategies and delivery consideration of these nucleic acids are reviewed. Furthermore, the ways to overcome the biological barriers are also discussed so that therapeutic concentrations at their target sites can be maintained for a desired period.
Collapse
MESH Headings
- Animals
- DNA/chemistry
- DNA/genetics
- DNA/metabolism
- Drug Carriers
- Gene Expression Regulation
- Gene Silencing
- Gene Targeting/methods
- Genetic Therapy/methods
- Humans
- Nucleic Acid Conformation/drug effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Biosynthesis/drug effects
- RNA Interference
- RNA Splicing/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Ram I Mahato
- University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, 26 South Dunlap Street, Feurt Bldg RM 406, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
132
|
Hirao I. Placing extra components into RNA by specific transcription using unnatural base pair systems. Biotechniques 2006; 40:711, 713, 715 passim. [PMID: 16774113 DOI: 10.2144/000112187] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ichiro Hirao
- Protein Research Group, RIKEN Genomic Sciences Center, Kanagawa, Japan
| |
Collapse
|
133
|
Dioubankova NN, Malakhov AD, Stetsenko DA, Gait MJ, Korshun VA. Phosphoramidites and solid supports based on N-substituted 2,4-dihydroxybutyramides: universal reagents for synthesis of modified oligonucleotides. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
134
|
Stipa P. A multi-step procedure for evaluating the EPR parameters of indolinonic aromatic aminoxyls: A combined DFT and spectroscopic study. Chem Phys 2006. [DOI: 10.1016/j.chemphys.2005.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
135
|
Pavone M, Cimino P, De Angelis F, Barone V. Interplay of Stereoelectronic and Enviromental Effects in Tuning the Structural and Magnetic Properties of a Prototypical Spin Probe: Further Insights from a First Principle Dynamical Approach. J Am Chem Soc 2006; 128:4338-47. [PMID: 16569010 DOI: 10.1021/ja0574872] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nitrogen isotropic hyperfine coupling constant (hcc) and the g tensor of a prototypical spin probe (di-tert-butyl nitroxide, DTBN) in aqueous solution have been investigated by means of an integrated computational approach including Car-Parrinello molecular dynamics and quantum mechanical calculations involving a discrete-continuum embedding. The quantitative agreement between computed and experimental parameters fully validates our integrated approach. Decoupling of the structural, dynamical, and environmental contributions acting onto the spectral observables allows an unbiased judgment of the role played by different effects in determining the overall experimental observables and highlights the importance of finite-temperature vibrational averaging. Together with their intrinsic interest, our results pave the route toward more reliable interpretations of EPR parameters of complex systems of biological and technological relevance.
Collapse
Affiliation(s)
- Michele Pavone
- Dipartimento di Chimica, Università di Napoli FedericoII, Complesso Universitario di Monte Sant'Angelo Via Cintia, Italy
| | | | | | | |
Collapse
|
136
|
Schofield WCE, McGettrick J, Bradley TJ, Badyal JPS, Przyborski S. Rewritable DNA Microarrays. J Am Chem Soc 2006; 128:2280-5. [PMID: 16478182 DOI: 10.1021/ja056367r] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thiol-terminated single-stranded deoxyribonucleic acids (ssDNA) can be immobilized onto pulsed plasma deposited poly(allylmercaptan) surfaces via disulfide bridge chemistry and are found to readily undergo nucleic acid hybridization. Unlike other methods for oligonucleotide attachment to solid surfaces, this approach is shown to be independent of substrate material or geometry, and amenable to highly efficient rewriting.
Collapse
Affiliation(s)
- W C E Schofield
- Department of Chemistry, Science Laboratories, and School of Biological and Biomedical Science, Durham University, Durham DH1 3LE, England, UK
| | | | | | | | | |
Collapse
|
137
|
Shibata T, Buurma NJ, Brazier JA, Thompson P, Haq I, Williams DM. 7,8-Dihydropyrido[2,3-d]pyrimidin-2-one; a bicyclic cytosine analogue capable of enhanced stabilisation of DNA duplexes. Chem Commun (Camb) 2006:3516-8. [PMID: 16921430 DOI: 10.1039/b606058g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporation of a bicyclic cytosine analogue, 3-beta-D-(2'-deoxyribofuranosyl)-7,8-dihydropyrido[2,3-d]pyrimidine, into synthetic DNA duplexes results in a greatly enhanced thermal stability (3-4 degrees C per modification) compared to the corresponding unmodified duplex.
Collapse
Affiliation(s)
- Takayuki Shibata
- Centre for Chemical Biology, Department of Chemistry, Richard Roberts Building, University of Sheffield, Brook Hill, Sheffield, UK
| | | | | | | | | | | |
Collapse
|
138
|
Wilton SD, Fletcher S. Redirecting Splicing to Address Dystrophin Mutations: Molecular By-pass Surgery. ALTERNATIVE SPLICING AND DISEASE 2006; 44:161-97. [PMID: 17076269 DOI: 10.1007/978-3-540-34449-0_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutations in the dystrophin gene that prevent synthesis of a functional protein lead to Duchenne muscular dystrophy (DMD), the most common serious childhood muscular dystrophy. The major isoform is produced in skeletal muscle and the size of the dystrophin gene and complexity of expression have posed great challenges to the development of a therapy for DMD. Considerable progress has been made in the areas of gene and cell replacement, yet it appears that any potential therapy for DMD is still some years away. Other approaches are being considered, and one that has generated substantial interest over the last few years is induced exon skipping. Antisense oligonucleotides have been used to block abnormal splice sites and force pre-mRNA processing back to the normal patterns. This approach is re-interpreted to address the more common dystrophin mutations, where normal splice sites are targeted to induce abnormal splicing, resulting in specific exon exclusion. Selected exon removal during processing of the dystrophin pre-mRNA can by-pass nonsense mutations or restore a disrupted reading frame arising from genomic deletions or duplications. Attributes of the dystrophin gene that have hampered gene replacement therapy may be regarded as positive features for induced exon skipping, which may be regarded as a form of by-pass surgery at the molecular level. In humans, antisense oligonucleotides have been more generally applied to down-regulate specific gene expression, for the treatment of acquired conditions such as malignancies and viral infections. From interesting in vitro experiments several years ago, the dystrophin exon-skipping field has progressed to the stage of planning for clinical trials.
Collapse
Affiliation(s)
- Stephen D Wilton
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia
| | | |
Collapse
|
139
|
Iyer RP, Padmanabhan S, Coughlin JE. Microwave-assisted functionalization of solid supports for rapid loading of nucleosides. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2006; Chapter 3:Unit3.13. [PMID: 18428955 DOI: 10.1002/0471142700.nc0313s23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ultra-fast and efficient functionalization of solid supports such as controlled-pore glass (CPG), amino methyl polystyrene, and Tentagel has been achieved using microwave-assisted procedures. Both amino- and carboxy-terminated supports are easily prepared within minutes, in a reproducible manner, using microwave-assisted methodologies. The resulting functionalized supports are efficiently coupled to nucleosides using dimethylformamide as a solvent in conjunction with a specially designed reactor and workstation called LOTUS. Using these improved protocols, CPG with loadings of 75 to 85 micromol/g can be prepared on a large scale within 3 to 4 days starting from native CPG, as opposed to traditional methods that require 10 to 15 days to achieve the same objective. In addition, the methods described here can potentially be employed for rapid functionalization of other solid matrices such as beads, slides, and pins for applications in microarrays or combinatorial chemistry.
Collapse
|
140
|
Aly Y, Wamberg M, Pedersen E. Intercalating Nucleic Acids with Insertion of 5-[(Pyren-1-yl)methylidene]hydantoin-Substituted Butane-1,2-diol. Helv Chim Acta 2005. [DOI: 10.1002/hlca.200590253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
141
|
Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 2005; 123:607-20. [PMID: 16271386 DOI: 10.1016/j.cell.2005.08.044] [Citation(s) in RCA: 785] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 08/30/2005] [Accepted: 08/31/2005] [Indexed: 12/28/2022]
Abstract
In the Drosophila and mammalian RNA interference pathways, siRNAs direct the protein Argonaute2 (Ago2) to cleave corresponding mRNA targets, silencing their expression. Ago2 is the catalytic component of the RNAi enzyme complex, RISC. For each siRNA duplex, only one strand, the guide, is assembled into the active RISC; the other strand, the passenger, is destroyed. An ATP-dependent helicase has been proposed first to separate the two siRNA strands, then the resulting single-stranded guide is thought to bind Ago2. Here, we show that Ago2 instead directly receives the double-stranded siRNA from the RISC assembly machinery. Ago2 then cleaves the siRNA passenger strand, thereby liberating the single-stranded guide. For siRNAs, virtually all RISC is assembled through this cleavage-assisted mechanism. In contrast, passenger-strand cleavage is not important for the incorporation of miRNAs that derive from mismatched duplexes.
Collapse
Affiliation(s)
- Christian Matranga
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
142
|
New phosphoramidite derivatives for the preparation of oligonucleotides containing a hydrazide group in any specified position of the oligonucleotide chain. Russ Chem Bull 2005. [DOI: 10.1007/s11172-006-0175-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
143
|
Johnson AA, Santos W, Pais GCG, Marchand C, Amin R, Burke TR, Verdine G, Pommier Y. Integration requires a specific interaction of the donor DNA terminal 5'-cytosine with glutamine 148 of the HIV-1 integrase flexible loop. J Biol Chem 2005; 281:461-7. [PMID: 16257967 DOI: 10.1074/jbc.m511348200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integration is essential for retroviral replication and gene therapy using retroviral vectors. Human immunodeficiency virus, type 1 (HIV-1), integrase specifically recognizes the terminal sequences of each long terminal repeat (LTR) and cleaves the 3'-end terminal dinucleotide 5'-GT. The exposed 3'-hydroxyl is then positioned for nucleophilic attack and subsequent strand transfer into another DNA duplex (target or chromosomal DNA). We report that both the terminal cytosine at the protruding 5'-end of the long terminal repeats (5'-C) and the integrase residue Gln-148 are critical for strand transfer. Proximity of the 5'-C and Gln-148 was demonstrated by disulfide cross-linking. Cross-linking is inhibited by the inhibitor 5CITEP 1-(5-chloroindol-3-yl)-3-hydroxy-3-(2H-tetrazol-5-yl)-propenone. We propose that strand transfer requires a conformational change of the integrase-viral (donor) DNA complex with formation of an H-bond between the N-3 of the 5'-C and the amine group of Gln-148. These findings have implications for the molecular mechanisms coupling 3'-processing and strand transfer as well as for the molecular pharmacology of integrase inhibitors.
Collapse
Affiliation(s)
- Allison A Johnson
- Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Das SR, Fong R, Piccirilli JA. Nucleotide analogues to investigate RNA structure and function. Curr Opin Chem Biol 2005; 9:585-93. [PMID: 16242990 DOI: 10.1016/j.cbpa.2005.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
RNA plays an essential cellular role in nearly every aspect of the transmission and expression of genetic information, including regulatory roles that have significance for cellular development. Access to RNA bearing synthetic modifications has allowed biological chemists to probe deep into the inner workings of cellular processes. Here, we describe recent advances in harnessing the power of nucleotide analogues to obtain mechanistic and biological insights into RNA structure, function and dynamics.
Collapse
Affiliation(s)
- Subha R Das
- Howard Hughes Medical Institute, Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
145
|
Dai Q, Deb SK, Hougland JL, Piccirilli JA. Improved synthesis of 2'-amino-2'-deoxyguanosine and its phosphoramidite. Bioorg Med Chem 2005; 14:705-13. [PMID: 16202607 DOI: 10.1016/j.bmc.2005.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
2'-Amino-2'-deoxynucleosides and oligonucleotides containing them have proven highly effective for an array of biochemical applications. The guanosine analogue and its phosphoramidite derivatives have been accessed previously from 2'-amino-2'-deoxyuridine by transglycosylation, but with limited overall efficiency and convenience. Using simple modifications of known reaction types, we have developed useful protocols to obtain 2'-amino-2'-deoxyguanosine and two of its phosphoramidite derivatives with greater convenience, fewer steps, and higher yields than reported previously. These phosphoramidites provide effective synthons for the incorporation of 2'-amino-2'-deoxyguanosine into oligonucleotides.
Collapse
Affiliation(s)
- Qing Dai
- Howard Hughes Medical Institute, The University of Chicago, MC 1028, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
146
|
Gherghe CM, Krahn JM, Weeks KM. Crystal Structures, Reactivity and Inferred Acylation Transition States for 2‘-Amine Substituted RNA. J Am Chem Soc 2005; 127:13622-8. [PMID: 16190727 DOI: 10.1021/ja053647y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribose 2'-amine substitutions are broadly useful as structural probes in nucleic acids. In addition, structure-selective chemical reaction at 2'-amine groups is a robust technology for interrogating local nucleotide flexibility and conformational changes in RNA and DNA. We analyzed crystal structures for several RNA duplexes containing 2'-amino cytidine (C(N)) residues that form either C(N)-G base pairs or C(N)-A mismatches. The 2'-amine substitution is readily accommodated in an A-form RNA helix and thus differs from the C2'-endo conformation observed for free nucleosides. The 2'-amide product structure was visualized directly by acylating a C(N)-A mismatch in intact crystals and is also compatible with A-form geometry. To visualize conformations able to facilitate formation of the amide-forming transition state, in which the amine nucleophile carries a positive partial charge, we analyzed crystals of the C(N)-A duplex at pH 5, where the 2'-amine is protonated. The protonated amine moves to form a strong electrostatic interaction with the 3'-phosphodiester. Taken together with solution-phase experiments, 2'-amine acylation is likely facilitated by either of two transition states, both involving precise positioning of the adjacent 3'-phosphodiester group.
Collapse
Affiliation(s)
- Costin M Gherghe
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | |
Collapse
|
147
|
Elliott SL, Brazier J, Cosstick R, Connolly BA. Mechanism of the Escherichia coli DNA T:G-mismatch endonuclease (Vsr protein) probed with thiophosphate-containing oligodeoxynucleotides. J Mol Biol 2005; 353:692-703. [PMID: 16188275 DOI: 10.1016/j.jmb.2005.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
The mechanism of the Escherichia coli DNA T:G mismatch endonuclease (Vsr) has been investigated using oligodeoxynucleotides substituted, at the scissile phosphate, with isomeric phosphorothioates and a 3'-phosphorothiolate. Binding and kinetic data with the phosphorothioates/phosphorothiolate indicate that the two magnesium ions, which constitute essential co-factors, are required to stabilise the extra negative charge developed on the phosphate as the transition state is formed. Additionally one of the magnesium ions serves to activate the leaving group (the non-bridging 3'-oxygen atom of the scissile phosphate) during the hydrolysis reaction. Stereochemical analysis, using the R(p) phosphorothioate isomer, indicates that Vsr carries out a hydrolytic reaction with inversion of stereochemistry at phosphorus, compatible with an in-line attack of water and a pentacovalent transition state with trigonal bipyramidal geometry. In conjunction with structures of Vsr bound to its products, these data allow the reconstruction of the enzyme-substrate complex and a comprehensive description of the hydrolysis mechanism.
Collapse
Affiliation(s)
- Sarah L Elliott
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|
148
|
Quinn JR, Zimmerman SC. Structure−Function Studies on a Synthetic Guanosine Receptor That Simultaneously Binds Watson−Crick and Hoogsteen Sites. J Org Chem 2005; 70:7459-67. [PMID: 16149771 DOI: 10.1021/jo0501689] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[structure: see text] A series of receptors (11-16) designed to simultaneously bind the Watson-Crick and Hoogsteen sites of guanosine were synthesized, and their binding of guanosine tri-O-pentanoate (32) was probed via 1H NMR complexation studies in 5% DMSO-d6-chloroform-d. The guanosine receptors were synthesized with aminonaphthalene or aminoquinoline auxiliary groups tethered to N-4 of cytosine via a methylene or carbonyl group. A structure-function relationship was established allowing energetic contributions made by components of nucleoside analogues to be probed and more general design rules formulated that may guide the development of more efficacious DNA bases.
Collapse
Affiliation(s)
- Jordan R Quinn
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
149
|
Skory CD. Inhibition of non-homologous end joining and integration of DNA upon transformation of Rhizopus oryzae. Mol Genet Genomics 2005; 274:373-83. [PMID: 16133163 DOI: 10.1007/s00438-005-0028-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Accepted: 06/27/2005] [Indexed: 01/12/2023]
Abstract
Site-directed integration of DNA in the fungus Rhizopus has long been problematic because linearized plasmids used for transformation tend to replicate in high-molecular-weight concatenated structures, and rarely integrate into the chromosome. This work examines the methods that might interfere with the multimerization process, select against plasmids that had recircularized, and encourage strand invasion, hopefully leading to plasmid integration. In vitro methods were used to determine if the structure of the double-strand break had any effect on the ability to rejoin plasmid ends. In cell-free extracts, little difference in end-joining activity was found between linearized plasmids with 5' overhangs, 3' overhangs, or blunt ends. In addition, dephosphorylation of ends had no effect. Transformation of plasmids prepared in the same ways confirmed that they were easily religated in vivo, with almost all prototrophic isolates retaining autonomously replicated plasmids. It was possible to block religation by modifying the free ends of the linearized plasmids using oligonucleotide adapters which were blocked at the 3'-OH position and contained phosphorothioate nucleotides to make them nuclease-resistant. However, gene replacement, with repair of the auxotrophic mutation in the host chromosome, was the predominant event observed upon the transformation of these plasmids. The highest rates of integration were obtained with a plasmid containing a truncated, non-functional pyrG gene. Autonomous replication of this plasmid did not support prototrophic growth, but homologous recombination into the chromosome restored the function of the endogenous pyrG gene. All of the transformants obtained with this selective construct were found to have integrated the plasmid, with multicopy insertion being common.
Collapse
Affiliation(s)
- Christopher D Skory
- Bioproducts and Biocatalysis Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, USA
| |
Collapse
|
150
|
Ohbayashi T, Kuwahara M, Hasegawa M, Kasamatsu T, Tamura T, Sawai H. Expansion of repertoire of modified DNAs prepared by PCR using KOD Dash DNA polymerase. Org Biomol Chem 2005; 3:2463-8. [PMID: 15976864 DOI: 10.1039/b504330a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thymidine analogues bearing a variety of functional groups at the C5-position via an amino-linker arm were prepared and the substrate activity for PCR using thermophilic KOD Dash DNA polymerase was examined. The enzyme accepted the thymidine analogues bearing pyridine, imidazole, biotin, a cationic-charged guanidinium, a cationic-charged amino, mercaptopyridyl and phenanthrolne groups at the C5-position, forming the corresponding PCR product. However, a thymidine analogue bearing a carboxyl group at the C5-position was a poor substrate and the corresponding PCR products could not be obtained. The thymidine analogue bearing a mercapto group was also a poor substrate for the enzyme, because it dimerized by disulfide linkage under PCR conditions. The enzyme hardly accepts the thymidine analogues with a negatively-charged carboxyl group or a bulky group as a substrate. KOD Dash DNA polymerase, having a broader substrate specificity than any other DNA polymerase, will expand the variety of modified DNAs that can be prepared by PCR.
Collapse
Affiliation(s)
- Tsutomu Ohbayashi
- Department of Applied Chemistry, Gunma University, Kiryu, Gunma 376-8515, Japan
| | | | | | | | | | | |
Collapse
|