101
|
Premkumar L, Kurth F, Neyer S, Schembri MA, Martin JL. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase. J Biol Chem 2013; 289:2563-76. [PMID: 24311786 DOI: 10.1074/jbc.m113.516898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (-161 mV) is more reducing than EcDsbC (-130 mV) and EcDsbG (-126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer.
Collapse
Affiliation(s)
- Lakshmanane Premkumar
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology and
| | | | | | | | | |
Collapse
|
102
|
Lukesh JC, VanVeller B, Raines RT. Thiols and selenols as electron-relay catalysts for disulfide-bond reduction. Angew Chem Int Ed Engl 2013; 52:12901-4. [PMID: 24123634 PMCID: PMC3885359 DOI: 10.1002/anie.201307481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 01/21/2023]
Abstract
Pass them on! Dithiobutylamine immobilized on a resin is a useful reagent for the reduction of disulfide bonds. Its ability to reduce a disulfide bond in a protein is enhanced greatly if used along with a soluble strained cyclic disulfide or mixed diselenide that relays electrons from the resin to the protein. This electron-relay catalysis system provides distinct advantages over the use of excess soluble reducing agent alone.
Collapse
Affiliation(s)
- John C. Lukesh
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Brett VanVeller
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Ronald T. Raines
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, WI 53706, USA, Fax: (+1) 1-608-890-2583, Homepage: http://www.biochem.wisc.edu/faculty/raines/lab. Department of Biochemistry, 433 Babcock Drive, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
103
|
Lee YJ, Lee DH, Jeong KJ. Enhanced production of human full-length immunoglobulin G1 in the periplasm of Escherichia coli. Appl Microbiol Biotechnol 2013; 98:1237-46. [PMID: 24270917 DOI: 10.1007/s00253-013-5390-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 11/29/2022]
Abstract
Monoclonal antibodies are currently the most important pharmaceutical proteins, and the economic production of functional immunoglobulin G (IgG) is an important issue in biotechnology. Recent successes in the development of aglycosylated IgG variants that do not require glycosylation for effector functions have increased the use of Escherichia coli as an alternative host for economic production of IgG, instead of traditional mammalian host expression systems. Here, we have developed a new E. coli host-vector system for the high-level production of full-length IgG1 by examining (1) E. coli strains, (2) modification of 5' untranslated region sequences, and (3) co-expression of periplasmic foldase. With the engineered host-vector system, fed-batch cultivations were conducted at two different conditions, and under optimized conditions, up to 362 mg/L of full-length IgG1 could be produced in a relatively short-time (22 h) cultivation. The fully assembled IgG1 from fed-batch cultivation was purified with high purity and yield. With the purified IgG1, the specific bindings to an antigen, anthrax toxin PA, and to human neonatal Fc receptor were successfully demonstrated.
Collapse
Affiliation(s)
- Yong Jae Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | | | | |
Collapse
|
104
|
Lukesh JC, VanVeller B, Raines RT. Thiols and Selenols as Electron-Relay Catalysts for Disulfide-Bond Reduction. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
105
|
Premkumar L, Heras B, Duprez W, Walden P, Halili M, Kurth F, Fairlie DP, Martin JL. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1981-94. [PMID: 24100317 PMCID: PMC3792642 DOI: 10.1107/s0907444913017800] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited substrate-binding specificity.
Collapse
Affiliation(s)
- Lakshmanane Premkumar
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Begoña Heras
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Wilko Duprez
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Patricia Walden
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Maria Halili
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Fabian Kurth
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| | - Jennifer L. Martin
- Institute for Molecular Bioscience, Division of Chemistry and Structural Biology, University of Queensland, St Lucia, QLD 4067, Australia
| |
Collapse
|
106
|
Perturbation of cytochrome c maturation reveals adaptability of the respiratory chain in Mycobacterium tuberculosis. mBio 2013; 4:e00475-13. [PMID: 24045640 PMCID: PMC3781833 DOI: 10.1128/mbio.00475-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mycobacterium tuberculosis depends on aerobic respiration for growth and utilizes an aa3-type cytochrome c oxidase for terminal electron transfer. Cytochrome c maturation in bacteria requires covalent attachment of heme to apocytochrome c, which occurs outside the cytoplasmic membrane. We demonstrate that in M. tuberculosis the thioredoxin-like protein Rv3673c, which we named CcsX, is required for heme insertion in cytochrome c. Inactivation of CcsX resulted in loss of c-type heme absorbance, impaired growth and virulence of M. tuberculosis, and induced cytochrome bd oxidase. This suggests that the bioenergetically less efficient bd oxidase can compensate for deficient cytochrome c oxidase activity, highlighting the flexibility of the M. tuberculosis respiratory chain. A spontaneous mutation in the active site of vitamin K epoxide reductase (VKOR) suppressed phenotypes of the CcsX mutant and abrogated the activity of the disulfide bond-dependent alkaline phosphatase, which shows that VKOR is the major disulfide bond catalyzing protein in the periplasm of M. tuberculosis. IMPORTANCE Mycobacterium tuberculosis requires oxygen for growth; however, the biogenesis of respiratory chain components in mycobacteria has not been explored. Here, we identified a periplasmic thioredoxin, CcsX, necessary for heme insertion into cytochrome c. We investigated the consequences of disrupting cytochrome c maturation (CCM) for growth and survival of M. tuberculosis in vitro and for its pathogenesis. Appearance of a second-site suppressor mutation in the periplasmic disulfide bond catalyzing protein VKOR indicates the strong selective pressure for a functional cytochrome c oxidase. The observation that M. tuberculosis is able to partially compensate for defective CCM by upregulation of the cytochrome bd oxidase exposes a functional role of this alternative terminal oxidase under normal aerobic conditions and during pathogenesis. This suggests that targeting both oxidases simultaneously might be required to effectively disrupt respiration in M. tuberculosis.
Collapse
|
107
|
Tang M, Comellas G, Rienstra CM. Advanced solid-state NMR approaches for structure determination of membrane proteins and amyloid fibrils. Acc Chem Res 2013; 46:2080-8. [PMID: 23659727 DOI: 10.1021/ar4000168] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solid-state NMR (SSNMR) spectroscopy has become an important technique for studying the biophysics and structure biology of proteins. This technique is especially useful for insoluble membrane proteins and amyloid fibrils, which are essential for biological functions and are associated with human diseases. In the past few years, as major contributors to the rapidly advancing discipline of biological SSNMR, we have developed a family of methods for high-resolution structure determination of microcrystalline, fibrous, and membrane proteins. Key developments include order-of-magnitude improvements in sensitivity, resolution, instrument stability, and sample longevity under data collection conditions. These technical advances now enable us to apply new types of 3D and 4D experiments to collect atomic-resolution structural restraints in a site-resolved manner, such as vector angles, chemical shift tensors, and internuclear distances, throughout large proteins. In this Account, we present the technological advances in SSNMR approaches towards protein structure determination. We also describe the application of those methods for large membrane proteins and amyloid fibrils. Particularly, the SSNMR measurements of an integral membrane protein DsbB support the formation of a charge-transfer complex between DsbB and ubiquinone during the disulfide bond transfer pathways. The high-resolution structure of the DsbA-DsbB complex demonstrates that the joint calculation of X-ray and SSNMR restraints for membrane proteins with low-resolution crystal structure is generally applicable. The SSNMR investigations of α-synuclein fibrils from both wild type and familial mutants reveal that the structured regions of α-synuclein fibrils include the early-onset Parkinson's disease mutation sites. These results pave the way to understanding the mechanism of fibrillation in Parkinson's disease.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Gemma Comellas
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
108
|
Yu X, Jin L, Jih J, Shih C, Hong Zhou Z. 3.5Å cryoEM structure of hepatitis B virus core assembled from full-length core protein. PLoS One 2013; 8:e69729. [PMID: 24039702 PMCID: PMC3765168 DOI: 10.1371/journal.pone.0069729] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/12/2013] [Indexed: 12/14/2022] Open
Abstract
The capsid shell of infectious hepatitis B virus (HBV) is composed of 240 copies of a single protein called HBV core antigen (HBc). An atomic model of a core assembled from truncated HBc was determined previously by X-ray crystallography. In an attempt to obtain atomic structural information of HBV core in a near native, non-crystalline environment, we reconstructed a 3.5Å-resolution structure of a recombinant core assembled from full-length HBc by cryo electron microscopy (cryoEM) and derived an atomic model. The structure shows that the 240 molecules of full-length HBc form a core with two layers. The outer layer, composed of the N-terminal assembly domain, is similar to the crystal structure of the truncated HBc, but has three differences. First, unlike the crystal structure, our cryoEM structure shows no disulfide bond between the Cys61 residues of the two subunits within the dimer building block, indicating such bond is not required for core formation. Second, our cryoEM structure reveals up to four more residues in the linker region (amino acids 140-149). Third, the loops in the cryoEM structures containing this linker region in subunits B and C are oriented differently (~30° and ~90°) from their counterparts in the crystal structure. The inner layer, composed of the C-terminal arginine-rich domain (ARD) and the ARD-bound RNAs, is partially-ordered and connected with the outer layer through linkers positioned around the two-fold axes. Weak densities emanate from the rims of positively charged channels through the icosahedral three-fold and local three-fold axes. We attribute these densities to the exposed portions of some ARDs, thus explaining ARD's accessibility by proteases and antibodies. Our data supports a role of ARD in mediating communication between inside and outside of the core during HBV maturation and envelopment.
Collapse
Affiliation(s)
- Xuekui Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lei Jin
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jonathan Jih
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chiaho Shih
- Institute of Biomedical Sciences (IBMS), Academia Sinica, Taipei, Taiwan
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
109
|
Lu Y, Wang HR, Li H, Cui HR, Feng YG, Wang XY. A chloroplast membrane protein LTO1/AtVKOR involving in redox regulation and ROS homeostasis. PLANT CELL REPORTS 2013; 32:1427-40. [PMID: 23689258 DOI: 10.1007/s00299-013-1455-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/20/2013] [Accepted: 04/29/2013] [Indexed: 05/08/2023]
Abstract
The role of LTO1/ At VKOR-DsbA in ROS homeostasis and in redox regulation of cysteine-containing proteins in chloroplast was studied in lto1 - 2 mutant, and a potential target of LTO1 was captured. A chloroplast membrane protein LTO1/AtVKOR-DsbA encoded by the gene At4g35760 was recently found to be an oxidoreductase and involved in assembly of PSII. Here, the growth of a mutant lto1-2 line of Arabidopsis was found to be severely stunted and transgenic complementation ultimately demonstrated the phenotype changes were due to this gene. A proteomic experiment identified 23 proteins presenting a differential abundance in lto1-2 compared with wild-type plants, including components in PSII and proteins scavenging active oxygen. Three scavengers of active oxygen, L-ascorbate peroxidase 1, peroxisomal catalase 2, dehydroascorbate reductase 1, are reduced in lto1-2 plants, corresponding to high levels of accumulation of reactive oxygen species (ROS). The photosynthetic activities of PSII and the quantity of core protein D1 decreased significantly in lto1-2. Further investigation showed the synthesis of D1 was not affected in mutants both at transcription and translation levels. The soluble DsbA-like domain of LTO1 was found to have reduction, oxidation and isomerization activities, and could promote the formation of disulfide bonds in a lumenal protein, FKBP13. A potential target of LTO1 was captured which was involving in chlorophyll degradation and photooxidative stress response. Experimental results imply that LTO1 plays important roles in redox regulation, ROS homeostasis and maintenance of PSII.
Collapse
Affiliation(s)
- Ying Lu
- College of Life Science, Shandong Agricultural University, Taian 271018, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
110
|
Enhanced production of antibody fragment via SRP pathway engineering in Escherichia coli. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-013-0111-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
111
|
Kalyani JN, Bisht S, Lakshmikanth M, Murthy MRN, Savithri HS. Identification of key amino acid residues in the catalytic mechanism of diaminopropionate ammonialyase from Salmonella typhimurium. FEBS J 2013; 280:5039-51. [PMID: 23927374 DOI: 10.1111/febs.12474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 01/15/2023]
Abstract
Diaminopropionate ammonialyase (DAPAL), a fold-type II pyridoxal 5'-phosphate-dependent enzyme, catalyzes the α,β-elimination of diaminopropionate (DAP) to pyruvate and ammonia. DAPAL was able to utilize both d- and l-DAP as substrates with almost equal efficiency. Mutational analysis of functionally important residues such as Thr385, Asp125 and Asp194 was carried out to understand the mechanism by which the isomers are hydrolyzed. Further, the putative residues involved in the formation of disulfide bond Cys271 and Cys299 were also mutated. T385S, T385D sDAPAL were as active with dl-DAP as substrate as sDAPAL, whereas the later exhibited a threefold increase in catalytic efficiency with d-Ser as substrate. Further analysis of these mutants suggested that DAPAL might follow an anti-E2 mechanism of catalysis that does not involve the formation of a quinonoid intermediate. Of the two mutants of Asp125, D125E showed complete loss of activity with d-DAP as substrate, whereas the reaction with l-DAP was not affected significantly, demonstrating that Asp125 was essential for abstraction of protons from the d-isomer. By contrast, mutational analysis of Asp194 showed that the residue may not be directly involved in proton abstraction from l-DAP. sDAPAL does not form a disulfide bond in solution, although the position of Cys299 and Cys271 in the modeled structure of sDAPAL favored the formation of a disulfide bond. Further, unlike eDAPAL, sDAPAL could be activated by monovalent cations. Mutation of the cysteine residues showed that Cys271 may be involved in coordinating the monovalent cation, as observed in the case of other fold-type II enzymes.
Collapse
Affiliation(s)
- Josyula N Kalyani
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
112
|
Bosshart A, Panke S, Bechtold M. Systematic Optimization of Interface Interactions Increases the Thermostability of a Multimeric Enzyme. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
113
|
Bosshart A, Panke S, Bechtold M. Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme. Angew Chem Int Ed Engl 2013; 52:9673-6. [PMID: 23893529 DOI: 10.1002/anie.201304141] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Andreas Bosshart
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | | | | |
Collapse
|
114
|
Overproduction of a C5a receptor antagonist (C5aRA) in Escherichia coli. Protein Expr Purif 2013; 89:169-74. [DOI: 10.1016/j.pep.2013.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/14/2013] [Accepted: 03/15/2013] [Indexed: 01/08/2023]
|
115
|
Jiao L, Kim JS, Song WS, Yoon BY, Lee K, Ha NC. Crystal structure of the periplasmic disulfide-bond isomerase DsbC from Salmonella enterica serovar Typhimurium and the mechanistic implications. J Struct Biol 2013; 183:1-10. [PMID: 23726983 DOI: 10.1016/j.jsb.2013.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/13/2013] [Accepted: 05/21/2013] [Indexed: 02/02/2023]
Abstract
The disulfide-bond isomerase DsbC plays a crucial role in the folding of bacterial proteins in the periplasmic space. DsbC has a V-shaped dimeric structure with two domains, and Cys98 in the C-terminal domain attacks inappropriate disulfide bonds in substrate proteins due to its high nucleophilic activity. In this article, we present the crystal structure of DsbC from Salmonella enterica serovar Typhimurium. We evaluated the conserved residues Asp95 and Arg125, which are located close to Cys98. The mutation of Asp95 or Arg125 abolished the disulfide isomerase activity of DsbC in an in vitro assay using a protein substrate, and the R125A mutation significantly reduced the chaperone activity for the substrate RNase I in vivo. Furthermore, a comparative analysis suggested that the conformation of Arg125 varies depending on the packing or protein-protein interactions. Based on these findings, we suggest that Asp95 and Arg125 modulate the pKa of Cys98 during catalysis.
Collapse
Affiliation(s)
- Li Jiao
- Department of Manufacturing Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
116
|
Sperling LJ, Tang M, Berthold DA, Nesbitt AE, Gennis RB, Rienstra CM. Solid-state NMR study of a 41 kDa membrane protein complex DsbA/DsbB. J Phys Chem B 2013; 117:6052-60. [PMID: 23527473 DOI: 10.1021/jp400795d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The disulfide bond generation system in E. coli is led by a periplasmic protein, DsbA, and an integral membrane protein, DsbB. Here we present a solid-state NMR (SSNMR) study of a 41 kDa membrane protein complex DsbA/DsbB precipitated in the presence of native lipids to investigate conformational changes and dynamics that occur upon transient complex formation within the electron transfer pathway. Chemical shift changes in the periplasmic enzyme DsbA in three states (wild type, C33S mutant, and in complex with DsbB) reveal structural and/or dynamic information. We report a 4.9 ppm (15)N chemical shift change observed for Pro31 in the active site between the wild type and C33S mutant of DsbA. Additionally, the Pro31 residue remains elusive in the DsbA/DsbB complex, indicating that the dynamics change drastically in the active site between the three states of DsbA. Using three-dimensional SSNMR spectra, partial (13)C and (15)N de novo chemical shift assignments throughout DsbA in the DsbA/DsbB complex were compared with the shifts from DsbA alone to map site-specific chemical shift perturbations. These results demonstrate that there are further structural and dynamic changes of DsbA in the native membrane observed by SSNMR, beyond the differences between the crystal structures of DsbA and the DsbA/DsbB complex.
Collapse
Affiliation(s)
- Lindsay J Sperling
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | | | | | | | |
Collapse
|
117
|
Davey L, Ng CKW, Halperin SA, Lee SF. Functional analysis of paralogous thiol-disulfide oxidoreductases in Streptococcus gordonii. J Biol Chem 2013; 288:16416-16429. [PMID: 23615907 DOI: 10.1074/jbc.m113.464578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Disulfide bonds are important for the stability of many extracellular proteins, including bacterial virulence factors. Formation of these bonds is catalyzed by thiol-disulfide oxidoreductases (TDORs). Little is known about their formation in Gram-positive bacteria, particularly among facultative anaerobic Firmicutes, such as streptococci. To investigate disulfide bond formation in Streptococcus gordonii, we identified five putative TDORs from the sequenced genome. Each of the putative TDOR genes was insertionally inactivated with an erythromycin resistance cassette, and the mutants were analyzed for autolysis, extracellular DNA release, biofilm formation, bacteriocin production, and genetic competence. This analysis revealed a single TDOR, SdbA, which exhibited a pleiotropic mutant phenotype. Using an in silico analysis approach, we identified the major autolysin AtlS as a natural substrate of SdbA and showed that SdbA is critical to the formation of a disulfide bond that is required for autolytic activity. Analysis by BLAST search revealed homologs to SdbA in other Gram-positive species. This study provides the first in vivo evidence of an oxidoreductase, SdbA, that affects multiple phenotypes in a Gram-positive bacterium. SdbA shows low sequence homology to previously identified oxidoreductases, suggesting that it may belong to a different class of enzymes. Our results demonstrate that SdbA is required for disulfide bond formation in S. gordonii and indicate that this enzyme may represent a novel type of oxidoreductase in Gram-positive bacteria.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Crystal K W Ng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
118
|
Lee YJ, Kim HS, Ryu AJ, Jeong KJ. Enhanced production of full-length immunoglobulin G via the signal recognition particle (SRP)-dependent pathway in Escherichia coli. J Biotechnol 2013; 165:102-8. [PMID: 23528343 DOI: 10.1016/j.jbiotec.2013.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 11/18/2022]
Abstract
Because of the lack of post-translational glycosylation, Escherichia coli is not a preferable host for immunoglobulin G (IgG) production. However, recent successes in the developments of aglycosylated IgG variants that do not require glycosylation for effector functions have increased the likelihood of using E. coli for IgG production. Here, we have developed a new E. coli host-vector system for enhanced production of recombinant IgG using: (i) a combination of SRP/Sec-dependent pathways for the efficient secretion of heavy and light chains in the periplasm; (ii) co-expression of periplasmic foldase (DsbC) for efficient assembly of IgG in the periplasm; and (iii) co-expression of Ffh for enhancing the SRP machinery. Finally, with engineered host-vector system, fed-batch cultivations were conducted at four different conditions, and under an optimized condition, up to 62 mg/L of active full-length IgG was produced during a 28-h cultivation.
Collapse
Affiliation(s)
- Yong Jae Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology-KAIST, Republic of Korea
| | | | | | | |
Collapse
|
119
|
Zidane N, Dussart P, Bremand L, Villani ME, Bedouelle H. Thermodynamic stability of domain III from the envelope protein of flaviviruses and its improvement by molecular design. Protein Eng Des Sel 2013; 26:389-99. [PMID: 23479674 DOI: 10.1093/protein/gzt010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Flavivirus genus includes widespread and severe human pathogens like the four serotypes of dengue virus (DENV1 to DENV4), yellow fever virus, Japanese encephalitis virus and West Nile virus. Domain III (ED3) of the viral envelope protein interacts with cell receptors and contains epitopes recognized by virus neutralizing antibodies. Its structural, antigenic and immunogenic properties have been thoroughly studied contrary to its physico-chemical properties. Here, the ED3 domains of the above pathogenic flaviviruses were produced in the periplasm of Escherichia coli. Their thermodynamic stabilities were measured and compared in experiments of unfolding equilibriums, induced with chemicals or heat and monitored through protein fluorescence. A designed ED3 domain, with the consensus sequence of DENV strains from all serotypes, was highly stable. The low stability of the ED3 domain from DENV3 was increased by three changes of residues in the protein core without affecting its reactivity towards DENV-infected human serums. Additional changes showed that the stability of ED3 varied with the DENV3 genotype. The T(m) of ED3 was higher than 69°C for all the tested viruses and reached 86°C for the consensus ED3. The latter, deprived of its disulfide bond by mutations, was predominantly unfolded at 20°C. These results will help better understand and design the properties of ED3 for its use as diagnostic, vaccine or therapeutic tools.
Collapse
Affiliation(s)
- Nora Zidane
- Unit of Molecular Prevention and Therapy of Human Diseases, Department of Infection and Epidemiology, Institut Pasteur, Rue du Dr. Roux, F-75015 Paris, France
| | | | | | | | | |
Collapse
|
120
|
Top-Down Characterization of the Post-Translationally Modified Intact Periplasmic Proteome from the Bacterium Novosphingobium aromaticivorans. INTERNATIONAL JOURNAL OF PROTEOMICS 2013; 2013:279590. [PMID: 23555055 PMCID: PMC3608174 DOI: 10.1155/2013/279590] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
Abstract
The periplasm of Gram-negative bacteria is a dynamic and physiologically important subcellular compartment where the constant exposure to potential environmental insults amplifies the need for proper protein folding and modifications. Top-down proteomics analysis of the periplasmic fraction at the intact protein level provides unrestricted characterization and annotation of the periplasmic proteome, including the post-translational modifications (PTMs) on these proteins. Here, we used single-dimension ultra-high pressure liquid chromatography coupled with the Fourier transform mass spectrometry (FTMS) to investigate the intact periplasmic proteome of Novosphingobium aromaticivorans. Our top-down analysis provided the confident identification of 55 proteins in the periplasm and characterized their PTMs including signal peptide removal, N-terminal methionine excision, acetylation, glutathionylation, pyroglutamate, and disulfide bond formation. This study provides the first experimental evidence for the expression and periplasmic localization of many hypothetical and uncharacterized proteins and the first unrestrictive, large-scale data on PTMs in the bacterial periplasm.
Collapse
|
121
|
Bodelón G, Palomino C, Fernández LÁ. Immunoglobulin domains inEscherichia coliand other enterobacteria: from pathogenesis to applications in antibody technologies. FEMS Microbiol Rev 2013; 37:204-50. [DOI: 10.1111/j.1574-6976.2012.00347.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022] Open
|
122
|
Berry JD, Rajaure M, Young R. Spanin function requires subunit homodimerization through intermolecular disulfide bonds. Mol Microbiol 2013; 88:35-47. [PMID: 23387988 DOI: 10.1111/mmi.12167] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 11/30/2022]
Abstract
The λ Rz and Rz1 proteins are the subunits of the spanin complex, required for the disruption of the outer membrane during host lysis. Rz, the inner membrane or i-spanin, has a largely alpha-helical periplasmic domain, whereas Rz1, the outer membrane or o-spanin, has a 25% proline content with no predicted secondary structure. We report that both Rz and Rz1 accumulate as homodimers covalently linked by intermolecular disulfide bonds involving all three Cys residues, two in Rz and one in Rz1. Moreover, of these three intermolecular disulfides, spanin function requires the presence of at least one of the two linkages nearest the Rz-Rz1 C-terminal interaction domains; i.e. either the Rz1-Rz1 disulfide or the distal Rz-Rz disulfide link. In a dsbC host, but not in dsbA or dsbA dsbC hosts, formation of the covalent homodimers of Rz is severely reduced and outer membrane disruption is significantly delayed, suggesting that the spanin pathway normally proceeds through DsbA-mediated formation of an intramolecular disulfide in Rz. In contrast, efficient formation of the Rz1-Rz1 disulfide requires DsbA. Finally, Dsb-independent formation of the covalent homodimer of either subunit requires the presence of the other, presumably as a template for close apposition of the thiols.
Collapse
Affiliation(s)
- Joel D Berry
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
123
|
Singh R, Murad W. Protein disulfide topology determination through the fusion of mass spectrometric analysis and sequence-based prediction using Dempster-Shafer theory. BMC Bioinformatics 2013; 14 Suppl 2:S20. [PMID: 23368815 PMCID: PMC3549834 DOI: 10.1186/1471-2105-14-s2-s20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Disulfide bonds constitute one of the most important cross-linkages in proteins and significantly influence protein structure and function. At the state-of-the-art, various methodological frameworks have been proposed for identification of disulfide bonds. These include among others, mass spectrometry-based methods, sequence-based predictive approaches, as well as techniques like crystallography and NMR. Each of these frameworks has its advantages and disadvantages in terms of pre-requisites for applicability, throughput, and accuracy. Furthermore, the results from different methods may concur or conflict in parts. Results In this paper, we propose a novel and theoretically rigorous framework for disulfide bond determination based on information fusion from different methods using an extended formulation of Dempster-Shafer theory. A key advantage of our approach is that it can automatically deal with concurring as well as conflicting evidence in a data-driven manner. Using the proposed framework, we have developed a method for disulfide bond determination that combines results from sequence-based prediction and mass spectrometric inference. This method leads to more accurate disulfide bond determination than any of the constituent methods taken individually. Furthermore, experiments indicate that the method improves the accuracy of bond identification as compared to leading extant methods at the state-of-the-art. Finally, the proposed framework is extensible in that results from any number of approaches can be incorporated. Results obtained using this framework can especially be useful in cases where the complexity of the bonding patterns coupled with specificities of the fragmentation pattern or limitations of computational models impair any single method to perform consistently across a diverse set of molecules.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Computer Science, San Francisco State University, San Francisco, CA 94132, USA.
| | | |
Collapse
|
124
|
Almenara DP, de Moura JP, Scarabotto CP, Zingali RB, Winter CE. The molecular and structural characterization of two vitellogenins from the free-living nematode Oscheius tipulae. PLoS One 2013; 8:e53460. [PMID: 23308227 PMCID: PMC3538542 DOI: 10.1371/journal.pone.0053460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/30/2012] [Indexed: 12/03/2022] Open
Abstract
This paper describes the purification of yolk proteins, which are important for the reproduction of egg-laying animals, and the structural characterization of two vitellogenins, VT1 and OTI-VIT-6, of the nematode Oscheius tipulae. O. tipulae is an alternative model organism to its relative, the widely used Caenorhabditis elegans, and is a good model to understand reproduction in insect parasitic nematodes of the genus Heterorhabditis. The native purified O. tipulae vitellogenin is composed of three polypeptides (VT1, VT2 and VT3), whereas in C. elegans, vitellogenin is composed of four polypeptides. The gene (Oti-vit-1) encoding yolk polypeptide VT1 has been recently identified in the genome of O. tipulae. Immunoblotting and N-terminal sequencing confirmed that VT1 is indeed coded by Oti-vit-1. Utilizing the same experimental approaches, we showed that the polypeptides VT2 and VT3 are derived from the proteolytic processing of the C- and N-terminal portions of the precursor OTI-VIT-6, respectively. We also showed that the recombinant polypeptide (P40), corresponding to the N-terminal sequence of OTI-VIT-6, preferentially interacts with a 100-kDa polypeptide found in adult worm extracts, as we have previously shown for the native vitellins of O. tipulae. Using the putative nematode vitellogenin amino acid sequences available in the UniProtKB database, we constructed a phylogenetic tree and showed that the O. tipulae vitellogenins characterized in this study are orthologous to those of the Caenorhabditis spp. Together, these results represent the first structural and functional comparative study of nematode yolk proteins outside the Caenorhabditis genus and provide insight into the evolution of these lipoproteins within the Nematode Phylum.
Collapse
Affiliation(s)
- Daniela P. Almenara
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| | - Joselene P. de Moura
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| | - Cristiane P. Scarabotto
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| | - Russolina B. Zingali
- Laboratory of Proteomics and Protein and Peptide Microsequencing, Institute of Medical Biochemistry - UFRJ/CCS/Bloco H, Cid. Universitária – Ilha do Fundão, Rio de Janeiro, Brazil
| | - Carlos E. Winter
- Department of Parasitology, Institute of Biomedical Sciences – University of São Paulo, São Paulo, Brazil
| |
Collapse
|
125
|
Travaglini-Allocatelli C. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms. SCIENTIFICA 2013; 2013:505714. [PMID: 24455431 PMCID: PMC3884852 DOI: 10.1155/2013/505714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/24/2013] [Indexed: 05/09/2023]
Abstract
Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Department of Biochemical Sciences, University of Rome “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
- *Carlo Travaglini-Allocatelli:
| |
Collapse
|
126
|
Bulleid NJ. Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harb Perspect Biol 2012; 4:4/11/a013219. [PMID: 23125019 DOI: 10.1101/cshperspect.a013219] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The formation of disulfide bonds between cysteine residues occurs during the folding of many proteins that enter the secretory pathway. As the polypeptide chain collapses, cysteines brought into proximity can form covalent linkages during a process catalyzed by members of the protein disulfide isomerase family. There are multiple pathways in mammalian cells to ensure disulfides are introduced into proteins. Common requirements for this process include a disulfide exchange protein and a protein oxidase capable of forming disulfides de novo. In addition, any incorrect disulfides formed during the normal folding pathway are removed in a process involving disulfide exchange. The pathway for the reduction of disulfides remains poorly characterized. This work will cover the current knowledge in the field and discuss areas for future investigation.
Collapse
Affiliation(s)
- Neil J Bulleid
- Institute of Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
127
|
Roszczenko P, Radomska KA, Wywial E, Collet JF, Jagusztyn-Krynicka EK. A novel insight into the oxidoreductase activity of Helicobacter pylori HP0231 protein. PLoS One 2012; 7:e46563. [PMID: 23056345 PMCID: PMC3463561 DOI: 10.1371/journal.pone.0046563] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/31/2012] [Indexed: 12/16/2022] Open
Abstract
Background The formation of a disulfide bond between two cysteine residues stabilizes protein structure. Although we now have a good understanding of the Escherichia coli disulfide formation system, the machineries at work in other bacteria, including pathogens, are poorly characterized. Thus, the objective of this work was to improve our understanding of the disulfide formation machinery of Helicobacter pylori, a leading cause of ulcers and a risk factor for stomach cancer worldwide. Methods and Results The protein HP0231 from H. pylori, a structural counterpart of E. coli DsbG, is the focus of this research. Its function was clarified by using a combination of biochemical, microbiological and genetic approaches. In particular, we determined the biochemical properties of HP0231 as well as its redox state in H. pylori cells. Conclusion Altogether our results show that HP0231 is an oxidoreductase that catalyzes disulfide bond formation in the periplasm. We propose to call it HpDsbA.
Collapse
Affiliation(s)
- Paula Roszczenko
- Department of Bacterial Genetics, Institute of Microbiology, the University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, the University of Warsaw, Warsaw, Poland
| | - Katarzyna A. Radomska
- Department of Bacterial Genetics, Institute of Microbiology, the University of Warsaw, Warsaw, Poland
| | - Ewa Wywial
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jean-Francois Collet
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Université Catholique de Louvain, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
| | | |
Collapse
|
128
|
Huang JY, Liu WJ, Wang HC, Lee DY, Leu JH, Wang HC, Tsai MH, Kang ST, Chen IT, Kou GH, Chang GD, Lo CF. Penaeus monodon thioredoxin restores the DNA binding activity of oxidized white spot syndrome virus IE1. Antioxid Redox Signal 2012; 17:914-26. [PMID: 22332765 PMCID: PMC3392615 DOI: 10.1089/ars.2011.4264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS In this study we identified viral gene targets of the important redox regulator thioredoxin (Trx), and explored in depth how Trx interacts with the immediate early gene #1 (IE1) of the white spot syndrome virus (WSSV). RESULTS In a pull-down assay, we found that recombinant Trx bound to IE1 under oxidizing conditions, and a coimmunoprecipitation assay showed that Trx bound to WSSV IE1 when the transfected cells were subjected to oxidative stress. A pull-down assay with Trx mutants showed that no IE1 binding occurred when cysteine 62 was replaced by serine. Electrophoretic mobility shift assay (EMSA) showed that the DNA binding activity of WSSV IE1 was downregulated under oxidative conditions, and that Penaeus monodon Trx (PmTrx) restored the DNA binding activity of the inactivated, oxidized WSSV IE1. Another EMSA experiment showed that IE1's Cys-X-X-Cys motif and cysteine residue 55 were necessary for DNA binding. Measurement of the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in WSSV-infected shrimp showed that oxidative stress was significantly increased at 48 h postinfection. The biological significance of Trx was also demonstrated in a double-strand RNA Trx knockdown experiment where suppression of shrimp Trx led to significant decreases in mortality and viral copy numbers. INNOVATION AND CONCLUSION WSSV's pathogenicity is enhanced by the virus' use of host Trx to rescue the DNA binding activity of WSSV IE1 under oxidizing conditions.
Collapse
Affiliation(s)
- Jiun-Yan Huang
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Production of functional antibody fragments in a vesicle-based eukaryotic cell-free translation system. J Biotechnol 2012; 164:220-31. [PMID: 22982167 DOI: 10.1016/j.jbiotec.2012.08.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/15/2012] [Accepted: 08/30/2012] [Indexed: 12/17/2022]
Abstract
Cell-free protein synthesis is of increasing interest for the rapid and high-throughput synthesis of many proteins, in particular also antibody fragments. In this study, we present a novel strategy for the production of single chain antibody fragments (scFv) in a eukaryotic in vitro translation system. This strategy comprises the cell-free expression, isolation and label-free interaction analysis of a model antibody fragment synthesized in two differently prepared insect cell lysates. These lysates contain translocationally active microsomal structures derived from the endoplasmic reticulum (ER), allowing for posttranslational modifications of cell-free synthesized proteins. Both types of these insect cell lysates enable the synthesis and translocation of scFv into ER-derived vesicles. However, only the one that has a specifically adapted redox potential yields functional active antibody fragments. We have developed a new methodology for the isolation of functional target proteins based on the translocation of cell-free produced scFv into microsomal structures and subsequent collection of protein-enriched vesicles. Antibody fragments that have been released from these vesicles are shown to be well suited for label-free binding studies. Altogether, these results show the potential of insect cell lysates for the production, purification and selection of antibody fragments in an easy-to-handle and time-saving manner.
Collapse
|
130
|
Norambuena J, Flores R, Cárdenas JP, Quatrini R, Chávez R, Levicán G. Thiol/Disulfide system plays a crucial role in redox protection in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum. PLoS One 2012; 7:e44576. [PMID: 22970253 PMCID: PMC3435265 DOI: 10.1371/journal.pone.0044576] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/09/2012] [Indexed: 11/22/2022] Open
Abstract
Thiol/disulfide systems are involved in the maintenance of the redox status of proteins and other molecules that contain thiol/disulfide groups. Leptospirillum ferriphilum DSM14647, an acidophilic bacterium that uses Fe2+ as electron donor, and withstands very high concentrations of iron and other redox active metals, is a good model to study how acidophiles preserve the thiol/disulfide balance. We studied the composition of thiol/disulfide systems and their role in the oxidative stress response in this extremophile bacterium. Bioinformatic analysis using genomic data and enzymatic assays using protein extracts from cells grown under oxidative stress revealed that the major thiol/disulfide system from L. ferriphilum are a cytoplasmic thioredoxin system (composed by thioredoxins Trx and thioredoxin reductase TR), periplasmic thiol oxidation system (DsbA/DsbB) and a c-type cytochrome maturation system (DsbD/DsbE). Upon exposure of L. ferriphilum to reactive oxygen species (ROS)-generating compounds, transcriptional activation of the genes encoding Trxs and the TR enzyme, which results in an increase of the corresponding activity, was observed. Altogether these data suggest that the thioredoxin-based thiol/disulfide system plays an important role in redox protection of L. ferriphilum favoring the survival of this microorganism under extreme environmental oxidative conditions.
Collapse
Affiliation(s)
- Javiera Norambuena
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rodrigo Flores
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan P. Cárdenas
- Laboratorio de Ecofisiología Microbiana, Fundación Ciencia y Vida, Santiago, Chile
| | - Raquel Quatrini
- Laboratorio de Ecofisiología Microbiana, Fundación Ciencia y Vida, Santiago, Chile
| | - Renato Chávez
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Gloria Levicán
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
131
|
Oxidative refolding of lysozyme assisted by DsbA, DsbC and the GroEL apical domain immobilized in cellulose. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
132
|
Malojčić G, Geertsma ER, Brozzo MS, Glockshuber R. Mechanism of the Prokaryotic Transmembrane Disulfide Reduction Pathway and Its In Vitro Reconstitution from Purified Components. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
133
|
Goy-López S, Juárez J, Alatorre-Meda M, Casals E, Puntes VF, Taboada P, Mosquera V. Physicochemical characteristics of protein-NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9113-9126. [PMID: 22439664 DOI: 10.1021/la300402w] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Gold nanoparticles (Au NPs) from 5 to 100 nm in size synthesized with HAuCl(4) and sodium citrate were complexed with the plasma protein human serum albumin (HSA). Size, surface charge, and surface plasmon bands of the Au NPs are largely modified by the formation of a protein corona via electrostatic interactions and hydrogen bonding as revealed by thermodynamic data. Negative values of the entropy of binding suggested a restriction in the biomolecule mobility upon adsorption. The structure of the adsorbed protein molecules is slightly affected by the interaction with the metal surface, but this effect is enhanced as the NP curvature decreases. Also, it is observed that the protein molecules adsorbed onto the NP surface are more resistant to complete thermal denaturation than free protein ones as deduced from the increases in the melting temperature of the adsorbed protein. Differences in the conformations of the adsorbed protein molecules onto small (<40 nm) and large NPs were observed on the basis of ζ-potential data and FTIR spectroscopy, also suggesting a better resistance of adsorbed protein molecules to thermal denaturing conditions. We think this enhanced protein stability is responsible for a reduced formation of HSA amyloid-like fibrils in the presence of small Au NPs under HSA fibrillation conditions.
Collapse
Affiliation(s)
- Sonia Goy-López
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Facultad de Física, Campus Vida, 15782, Universidad de Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
134
|
Probing the mutational interplay between primary and promiscuous protein functions: a computational-experimental approach. PLoS Comput Biol 2012; 8:e1002558. [PMID: 22719242 PMCID: PMC3375227 DOI: 10.1371/journal.pcbi.1002558] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/29/2012] [Indexed: 12/16/2022] Open
Abstract
Protein promiscuity is of considerable interest due its role in adaptive metabolic plasticity, its fundamental connection with molecular evolution and also because of its biotechnological applications. Current views on the relation between primary and promiscuous protein activities stem largely from laboratory evolution experiments aimed at increasing promiscuous activity levels. Here, on the other hand, we attempt to assess the main features of the simultaneous modulation of the primary and promiscuous functions during the course of natural evolution. The computational/experimental approach we propose for this task involves the following steps: a function-targeted, statistical coupling analysis of evolutionary data is used to determine a set of positions likely linked to the recruitment of a promiscuous activity for a new function; a combinatorial library of mutations on this set of positions is prepared and screened for both, the primary and the promiscuous activities; a partial-least-squares reconstruction of the full combinatorial space is carried out; finally, an approximation to the Pareto set of variants with optimal primary/promiscuous activities is derived. Application of the approach to the emergence of folding catalysis in thioredoxin scaffolds reveals an unanticipated scenario: diverse patterns of primary/promiscuous activity modulation are possible, including a moderate (but likely significant in a biological context) simultaneous enhancement of both activities. We show that this scenario can be most simply explained on the basis of the conformational diversity hypothesis, although alternative interpretations cannot be ruled out. Overall, the results reported may help clarify the mechanisms of the evolution of new functions. From a different viewpoint, the partial-least-squares-reconstruction/Pareto-set-prediction approach we have introduced provides the computational basis for an efficient directed-evolution protocol aimed at the simultaneous enhancement of several protein features and should therefore open new possibilities in the engineering of multi-functional enzymes. Interpretations of evolutionary processes at the molecular level have been determined to a significant extent by the concept of “trade-off”, the idea that improving a given feature of a protein molecule by mutation will likely bring about deterioration in other features. For instance, if a protein is able to carry out two different molecular tasks based on the same functional site (competing tasks), optimization for one task could be naively expected to impair its performance for the other task. In this work, we report a computational/experimental approach to assess the potential patterns of modulation of two competing molecular tasks in the course of natural evolution. Contrary to the naïve expectation, we find that diverse modulation patterns are possible, including the simultaneous optimization of the two tasks. We show, however, that this simultaneous optimization is not in conflict with the trade-offs expected for two competing tasks: using the language of the theory of economic efficiency, trade-offs are realized in the Pareto set of optimal variants for the two tasks, while most protein variants do not belong to such Pareto set. That is, most protein variants are not Pareto-efficient and can potentially be improved in terms of several features.
Collapse
|
135
|
Sato Y, Inaba K. Disulfide bond formation network in the three biological kingdoms, bacteria, fungi and mammals. FEBS J 2012; 279:2262-71. [DOI: 10.1111/j.1742-4658.2012.08593.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
136
|
Malojčić G, Geertsma ER, Brozzo MS, Glockshuber R. Mechanism of the prokaryotic transmembrane disulfide reduction pathway and its in vitro reconstitution from purified components. Angew Chem Int Ed Engl 2012; 51:6900-3. [PMID: 22674494 DOI: 10.1002/anie.201201337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Indexed: 01/23/2023]
Abstract
Making your (Dsb) connection: the redox pathway bringing reducing equivalents from bacterial cytoplasm, across the inner membrane, to the three reductive Dsb pathways in the otherwise oxidizing periplasm (see scheme; TR=thioredoxin reductase, Trx=thioredoxin) is reconstituted from purified components. Transfer of reducing equivalents across the membrane is demonstrated and underlying mechanistic details are revealed.
Collapse
Affiliation(s)
- Goran Malojčić
- Institute for Molecular Biology and Biophysics, ETH Zurich, Switzerland.
| | | | | | | |
Collapse
|
137
|
Stojanovski D, Bragoszewski P, Chacinska A. The MIA pathway: a tight bond between protein transport and oxidative folding in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1142-50. [PMID: 22579494 DOI: 10.1016/j.bbamcr.2012.04.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 11/29/2022]
Abstract
Many newly synthesized proteins obtain disulfide bonds in the bacterial periplasm, the endoplasmic reticulum (ER) and the mitochondrial intermembrane space. The acquisition of disulfide bonds is critical for the folding, assembly and activity of these proteins. Spontaneous oxidation of thiol groups is inefficient in vivo, therefore cells have developed machineries that catalyse the oxidation of substrate proteins. The identification of the machinery that mediates this process in the intermembrane space of mitochondria, known as MIA (mitochondrial intermembrane space assembly), provided a unique mechanism of protein transport. The MIA machinery introduces disulfide bonds into incoming intermembrane space precursors and thus tightly couples the process of precursor translocation to precursor oxidation. We discuss our current understanding of the MIA pathway and the mechanisms that oversee thiol-exchange reactions in mitochondria.
Collapse
Affiliation(s)
- Diana Stojanovski
- La Trobe Institute for Molecular Sciences, 3086 Melbourne, Australia
| | | | | |
Collapse
|
138
|
Schwarz A, Valdés JJ, Kotsyfakis M. The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis 2012; 3:117-27. [PMID: 22647711 DOI: 10.1016/j.ttbdis.2012.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/03/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
Ticks, as obligate hematophagous ectoparasites, impact greatly on animal and human health because they transmit various pathogens worldwide. Over the last decade, several cystatins from different hard and soft ticks were identified and biochemically analyzed for their role in the physiology and blood feeding lifestyle of ticks. All these cystatins are potent inhibitors of papain-like cysteine proteases, but not of legumain. Tick cystatins were either detected in the salivary glands and/or the midgut, key tick organs responsible for blood digestion and the expression of pharmacologically potent salivary proteins for blood feeding. For example, the transcription of two cystatins named HlSC-1 and Sialostatin L2 was highly upregulated in these tick tissues during feeding. Vaccinating hosts against Sialostatin L2 and Om-cystatin 2 as well as silencing of a cystatin gene from Amblyomma americanum significantly inhibited the feeding ability of ticks. Additionally, Om-cystatin 2 and Sialostatin L possessed strong host immunosuppressive properties by inhibiting dendritic cell maturation due to their interaction with cathepsin S. These two cystatins, together with Sialostatin L2 are the first tick cystatins with resolved three-dimensional structure. Sialostatin L, furthermore, showed preventive properties against autoimmune diseases. In the case of the cystatin Hlcyst-2, experimental evidence showed its role in tick innate immunity, since increased Hlcyst-2 transcript levels were detected in Babesia gibsoni-infected larval ticks and the protein inhibited Babesia growth. Other cystatins, such as Hlcyst-1 or Om-cystatin 2 are assumed to be involved in regulating blood digestion. Only for Bmcystatin was a role in tick embryogenesis suggested. Finally, all the biochemically analyzed tick cystatins are powerful protease inhibitors, and some may be novel antigens for developing anti-tick vaccines and drugs of medical importance due to their stringent target specificity.
Collapse
Affiliation(s)
- Alexandra Schwarz
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, AS CR v.v.i., Ceske Budejovice, Czech Republic.
| | | | | |
Collapse
|
139
|
A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope. mBio 2012; 3:mBio.00291-11. [PMID: 22493033 PMCID: PMC3322552 DOI: 10.1128/mbio.00291-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Escherichia coli membrane protein DsbD functions as an electron hub that dispatches electrons received from the cytoplasmic thioredoxin system to periplasmic oxidoreductases involved in protein disulfide isomerization, cytochrome c biogenesis, and sulfenic acid reduction. Here, we describe a new class of DsbD proteins, named ScsB, whose members are found in proteobacteria and Chlamydia. ScsB has a domain organization similar to that of DsbD, but its amino-terminal domain differs significantly. In DsbD, this domain directly interacts with substrates to reduce them, which suggests that ScsB acts on a different array of substrates. Using Caulobacter crescentus as a model organism, we searched for the substrates of ScsB. We discovered that ScsB provides electrons to the first peroxide reduction pathway identified in the bacterial cell envelope. The reduction pathway comprises a thioredoxin-like protein, TlpA, and a peroxiredoxin, PprX. We show that PprX is a thiol-dependent peroxidase that efficiently reduces both hydrogen peroxide and organic peroxides. Moreover, we identified two additional proteins that depend on ScsB for reduction, a peroxiredoxin-like protein, PrxL, and a novel protein disulfide isomerase, ScsC. Altogether, our results reveal that the array of proteins involved in reductive pathways in the oxidative cell envelope is significantly broader than was previously thought. Moreover, the identification of a new periplasmic peroxiredoxin indicates that in some bacteria, it is important to directly scavenge peroxides in the cell envelope even before they reach the cytoplasm. IMPORTANCE Peroxides are reactive oxygen species (ROS) that damage cellular components such as lipids, proteins, and nucleic acids. The presence of protection mechanisms against ROS is essential for cell survival. Bacteria express cytoplasmic catalases and thiol-dependent peroxidases to directly scavenge harmful peroxides. We report the identification of a peroxide reduction pathway active in the periplasm of Caulobacter crescentus, which reveals that, in some bacteria, it is important to directly scavenge peroxides in the cell envelope even before they reach the cytoplasm. The electrons required for peroxide reduction are delivered to this pathway by ScsB, a new type of membrane electron transporter. We also identified two additional likely ScsB substrates, including a novel protein disulfide isomerase. Our results reveal that the array of proteins involved in reductive pathways in the oxidative environment of the cell envelope is significantly broader than was previously thought.
Collapse
|
140
|
Harrison A, Bakaletz LO, Munson RS. Haemophilus influenzae and oxidative stress. Front Cell Infect Microbiol 2012; 2:40. [PMID: 22919631 PMCID: PMC3417577 DOI: 10.3389/fcimb.2012.00040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/13/2012] [Indexed: 12/16/2022] Open
Abstract
Haemophilus influenzae is a commensal of the human upper respiratory tract. H. influenzae can, however, move out of its commensal niche and cause multiple respiratory tract diseases. Such diseases include otitis media in young children, as well as exacerbations of chronic obstructive pulmonary disease (COPD), sinusitis, conjunctivitis, and bronchitis. During the course of colonization and infection, H. influenzae must withstand oxidative stress generated by multiple reactive oxygen species produced endogenously, by other co-pathogens and by host cells. H. influenzae has, therefore, evolved multiple mechanisms that protect the cell against oxygen-generated stresses. In this review, we will describe these systems relative to the well-described systems in Escherichia coli. Moreover, we will compare how H. influenzae combats the effect of oxidative stress as a necessary phenotype for its roles as both a successful commensal and pathogen.
Collapse
Affiliation(s)
- Alistair Harrison
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus OH, USA. alistair.harrison@ nationwidechildrens.org
| | | | | |
Collapse
|
141
|
Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif 2012; 82:240-51. [DOI: 10.1016/j.pep.2011.10.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
|
142
|
Abstract
Outer membrane protein A (OmpA) of Escherichia coli is a paradigm for the biogenesis of outer membrane proteins; however, the structure and assembly of OmpA have remained controversial. A review of studies to date supports the hypothesis that native OmpA is a single-domain large pore, while a two-domain narrow-pore structure is a folding intermediate or minor conformer. The in vitro refolding of OmpA to the large-pore conformation requires isolation of the protein from outer membranes with retention of an intact disulfide bond followed by sufficient incubation in lipids at temperatures of ≥ 26 °C to overcome the high energy of activation for refolding. The in vivo maturation of the protein involves covalent modification of serines in the eighth β-barrel of the N-terminal domain by oligo-(R)-3-hydroxybutyrates as the protein is escorted across the cytoplasm by SecB for post-translational secretion across the secretory translocase in the inner membrane. After cleavage of the signal sequence, protein chaperones, such as Skp, DegP and SurA, guide OmpA across the periplasm to the β-barrel assembly machinery (BAM) complex in the outer membrane. During this passage, a disulfide bond is formed between C290 and C302 by DsbA, and the hydrophobicity of segments of the C-terminal domain, which are destined for incorporation as β-barrels in the outer membrane bilayer, is increased by covalent attachment of oligo-(R)-3-hydroxybutyrates. With the aid of the BAM complex, OmpA is then assembled into the outer membrane as a single-domain large pore.
Collapse
Affiliation(s)
- Rosetta N Reusch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
143
|
Sugawara E, Nagano K, Nikaido H. Alternative folding pathways of the major porin OprF of Pseudomonas aeruginosa. FEBS J 2012; 279:910-8. [PMID: 22240095 DOI: 10.1111/j.1742-4658.2012.08481.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OprF is the major porin of Pseudomonas aeruginosa and allows very slow, nonspecific, diffusion of solutes. The low permeability of this porin channel is a major factor that enhances other types of resistance mechanisms and often creates strong multidrug resistance in this nosocomial pathogen. We have previously shown that the low permeability is caused by the folding of OprF into two conformers: a majority, two-domain closed-channel conformer containing the N-terminal transmembrane β-barrel and the C-terminal periplasmic, globular domain; and a minority, one-domain open-channel conformer comprising < 5% of the protein population. Our analysis of the bifurcate folding pathway using site-directed mutagenesis showed that slowing down the folding of the two-domain conformer increases the fraction of the open, one-domain conformer. Use of outer membrane protein assembly machinery mutants showed that the absence of the Skp chaperone led to an increased proportion of open conformers. As many environmental pathogens causing nosocomial infections appear to have outer membrane protein (OmpA)/OprF homologs as the major porin, efforts to understand the low permeability of these 'slow porins' are important in our fight against these organisms.
Collapse
Affiliation(s)
- Etsuko Sugawara
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
144
|
Disulfide bond formation and activation of Escherichia coli β-galactosidase under oxidizing conditions. Appl Environ Microbiol 2012; 78:2376-85. [PMID: 22286993 DOI: 10.1128/aem.06923-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli β-galactosidase is probably the most widely used reporter enzyme in molecular biology, cell biology, and biotechnology because of the easy detection of its activity. Its large size and tetrameric structure make this bacterial protein an interesting model for crystallographic studies and atomic mapping. In the present study, we investigate a version of Escherichia coli β-galactosidase produced under oxidizing conditions, in the cytoplasm of an Origami strain. Our data prove the activation of this microbial enzyme under oxidizing conditions and clearly show the occurrence of a disulfide bond in the β-galactosidase structure. Additionally, the formation of this disulfide bond is supported by the analysis of a homology model of the protein that indicates that two cysteines located in the vicinity of the catalytic center are sufficiently close for disulfide bond formation.
Collapse
|
145
|
Merdanovic M, Clausen T, Kaiser M, Huber R, Ehrmann M. Protein quality control in the bacterial periplasm. Annu Rev Microbiol 2012; 65:149-68. [PMID: 21639788 DOI: 10.1146/annurev-micro-090110-102925] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Melisa Merdanovic
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117 Essen, Germany.
| | | | | | | | | |
Collapse
|
146
|
Liu Q, Yang X, Zhang M, Wang L, Liu J, Chen J, He A, Li Z, Wu Z, Zhan X. Molecular characterization and immunolocalization of a protein disulfide isomerase from Angiostrongylus cantonensis. Parasitol Res 2012; 110:2501-7. [PMID: 22218922 DOI: 10.1007/s00436-011-2791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/14/2011] [Indexed: 01/09/2023]
Abstract
Protein disulfide isomerases (PDIs), belonging to the thioredoxin superfamily, are oxidoreductases that catalyze the formation, reduction, and isomerization of disulfide bonds among cysteine residues of proteins. In this study, we report the cloning and characterization of a cDNA encoding a protein disulfide isomerase (AcPDI) from a cDNA library of fourth-stage larvae of Angiostrongylus cantonensis. The deduced amino acid sequence contains two thioredoxin domains and exhibits high identity to the homologues from other species. Quantitative real-time PCR (qRT-PCR) was performed at the third-stage larvae, fourth-stage larvae, and adult stage of A. cantonensis, and the results revealed that the AcPDI mRNA, while expressed at all three stages, is expressed at a significantly higher level in female adult worms. Results of immunohistochemical studies indicated that the AcPDI expression was specifically localized in the tegument and uterus wall of female adult worms. Biochemical analysis showed that recombinant AcPDI was biologically active in vitro and exhibited the typical biochemical functions of PDIs: oxidase/isomerase and reductase activities. Collectively, these results implied that AcPDI may be a female-enriched protein and associated with the reproductive development of A. cantonensis. In addition, considering its biochemical properties, AcPDI may be involved in the formation of the cuticle of A. cantonensis.
Collapse
Affiliation(s)
- Qian Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2 Road, Guangzhou, Guangdong, 510089, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Truppo E, Supuran CT, Sandomenico A, Vullo D, Innocenti A, Di Fiore A, Alterio V, De Simone G, Monti SM. Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors. Bioorg Med Chem Lett 2012; 22:1560-4. [PMID: 22277279 DOI: 10.1016/j.bmcl.2011.12.134] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/30/2011] [Accepted: 12/31/2011] [Indexed: 01/15/2023]
Abstract
Human carbonic anhydrase (CA, EC 4.2.1.1) VII is a cytosolic enzyme with high carbon dioxide hydration activity. Here we report an unexpected S-glutathionylation of hCA VII which has also been observed earlier in vivo for hCA III, another cytosolic isoform. Cys183 and Cys217 were found to be the residues involved in reaction with glutathione for hCA VII. The two reactive cysteines were then mutated and the corresponding variant (C183S/C217S) expressed. The native enzyme, the variant and the S-glutathionylated adduct (sgCA VII) as well as hCA III were fully characterized for their CO(2) hydration, esterase/phosphatase activities, and inhibition with sulfonamides. Our findings suggest that hCA VII could use the in vivo S-glutathionylation to function as an oxygen radical scavenger for protecting cells from oxidative damage, as the activity and affinity for inhibitors of the modified enzyme are similar to those of the wild type.
Collapse
|
148
|
Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 2012; 60:263-324. [PMID: 22633061 DOI: 10.1016/b978-0-12-398264-3.00004-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Mtb is persistently exposed to numerous oxidoreductive stresses during its pathogenic cycle of infection and transmission. The distinctive ability of Mtb, not only to survive the redox stress manifested by the host but also to use it for synchronizing the metabolic pathways and expression of virulence factors, is central to its success as a pathogen. This review describes the paradigmatic redox and hypoxia sensors employed by Mtb to continuously monitor variations in the intracellular redox state and the surrounding microenvironment. Two component proteins, namely, DosS and DosT, are employed by Mtb to sense changes in oxygen, nitric oxide, and carbon monoxide levels, while WhiB3 and anti-sigma factor RsrA are used to monitor changes in intracellular redox state. Using these and other unidentified redox sensors, Mtb orchestrates its metabolic pathways to survive in nutrient-deficient, acidic, oxidative, nitrosative, and hypoxic environments inside granulomas or infectious lesions. A number of these metabolic pathways are unique to mycobacteria and thus represent potential drug targets. In addition, Mtb employs versatile machinery of the mycothiol and thioredoxin systems to ensure a reductive intracellular environment for optimal functioning of its proteins even upon exposure to oxidative stress. Mtb also utilizes a battery of protective enzymes, such as superoxide dismutase (SOD), catalase (KatG), alkyl hydroperoxidase (AhpC), and peroxiredoxins, to neutralize the redox stress generated by the host immune system. This chapter reviews the current understanding of mechanisms employed by Mtb to sense and neutralize redox stress and their importance in TB pathogenesis and drug development.
Collapse
|
149
|
The Aeromonas dsbA mutation decreased their virulence by triggering type III secretion system but not flagella production. Microb Pathog 2011; 52:130-9. [PMID: 22198000 DOI: 10.1016/j.micpath.2011.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/17/2011] [Accepted: 10/27/2011] [Indexed: 11/21/2022]
Abstract
Pathogenesis of Aeromonas species have been reported to be associated with virulence factors such as lipopolysaccharides (LPS), bacterial toxins, bacterial secretion systems, flagella, and other surface molecules. Dsb (Disulfide bond) proteins play an important role in catalyzing disulfide bond formation in proteins within the periplasmic space. An A. hydrophila dsbA mutant with attenuated virulence using Dictyostelium amoebae as an alternative host model was identified. The attenuated virulence was tested in other animal models (by intraperitoneal injection in fish and mice) and was correlated with the presence of a defective type III secretion system for the first time in non enteric bacteria. The dsbA mutation was shown in several enteric bacteria to involve the outer membrane secretin. The defect in Aeromonas also seems to involve the outer membrane secretin homologue named AscC. However, unlike what happen in Escherichia coli, no changes in motility or flagella expression were observed for A. hydrophila dsbA mutants. The loss of E. coli motility caused by deletion of dsbA is likely due to defective disulfide bond formation in FlgI, a component of the flagella. No disulfide bond formation in FlgI homologues in Aeromonas flagella biogenesis, either polar or lateral, could be expected according to their amino acid residues sequences.
Collapse
|
150
|
Yu L, Lu W, Wei Y. AcrB trimer stability and efflux activity, insight from mutagenesis studies. PLoS One 2011; 6:e28390. [PMID: 22163011 PMCID: PMC3230630 DOI: 10.1371/journal.pone.0028390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/07/2011] [Indexed: 11/30/2022] Open
Abstract
The multidrug transporter AcrB in Escherichia coli exists and functions as a homo-trimer. The assembly process of obligate membrane protein oligomers, including AcrB, remains poorly understood. In a previous study, we have shown that individual AcrB subunit is capable of folding independently, suggesting that trimerization of AcrB follows a three-stage pathway in which monomers first fold, and then assemble. Here we destabilized the AcrB trimer through mutating a single Pro (P223) in the protruding loop of AcrB, which drastically reduced the protein activity. We replaced P223 separately with five residues, including Ala, Val, Tyr, Asn, and Gly, and found that AcrBP223G was the least active. Detailed characterization of AcrBP223G revealed that the protein existed as a well-folded monomer after purification, but formed a trimer in vivo. The function of the mutant could be partly restored through strengthening the stability of the trimer using an inter-subunit disulfide bond. Our results also suggested that the protruding loop is well structured during AcrB assembly with P223 served as a “wedge” close to the tip to stabilize the AcrB trimer structure. When this wedge is disrupted, the stability of the trimer is reduced, accompanied by a decrease of drug efflux activity.
Collapse
Affiliation(s)
- Linliang Yu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wei Lu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|