101
|
Conformational dynamics of oligosaccharides characterized by paramagnetism-assisted NMR spectroscopy in conjunction with molecular dynamics simulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:217-30. [PMID: 25408346 DOI: 10.1007/978-3-319-11280-0_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
102
|
Dam TK, Brewer CF. Probing lectin-mucin interactions by isothermal titration microcalorimetry. Methods Mol Biol 2015; 1207:75-90. [PMID: 25253134 DOI: 10.1007/978-1-4939-1396-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Isothermal titration microcalorimetry (ITC) can directly determine the thermodynamic binding parameters of biological molecules including affinity constant, binding stoichiometry, and heat of binding (enthalpy) and indirectly the entropy and free energy of binding. ITC has been extensively used to study the binding of lectins to mono- and oligosaccharides, but limited applications to lectin-glycoprotein interactions. Inherent experimental challenges to ITC include sample precipitation during the experiment and relative high amount of sample required, but careful design of experiments can minimize these problems and allow valuable information to be obtained. For example, the thermodynamics of binding of lectins to multivalent globular and linear glycoproteins (mucins) have been described. The results are consistent with a dynamic binding mechanism in which lectins bind and jump from carbohydrate to carbohydrate epitope in these molecules leading to increased affinity. Importantly, the mechanism of binding of lectins to mucins appears similar to that for a variety of protein ligands binding to DNA. Recent results also show that high affinity lectin-mucin cross-linking interactions are driven by favorable entropy of binding that is associated with the bind and jump mechanism. The results suggest that the binding of ligands to biopolymers, in general, may involve a common mechanism that involves enhanced entropic effects that facilitate binding interactions.
Collapse
Affiliation(s)
- Tarun K Dam
- Department of Chemistry, Michigan Technological University, Houghton, MI, USA
| | | |
Collapse
|
103
|
Kříž Z, Adam J, Mrázková J, Zotos P, Chatzipavlou T, Wimmerová M, Koča J. Engineering the Pseudomonas aeruginosa II lectin: designing mutants with changed affinity and specificity. J Comput Aided Mol Des 2014; 28:951-60. [DOI: 10.1007/s10822-014-9774-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 07/02/2014] [Indexed: 12/20/2022]
|
104
|
Rachel H, Chang-Chun L. Recent advances toward the development of inhibitors to attenuate tumor metastasis via the interruption of lectin-ligand interactions. Adv Carbohydr Chem Biochem 2014; 69:125-207. [PMID: 24274369 DOI: 10.1016/b978-0-12-408093-5.00005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant glycosylation is a well-recognized phenomenon that occurs on the surface of tumor cells, and the overexpression of a number of ligands (such as TF, sialyl Tn, and sialyl Lewis X) has been correlated to a worse prognosis for the patient. These unique carbohydrate structures play an integral role in cell-cell communication and have also been associated with more metastatic cancer phenotypes, which can result from binding to lectins present on cell surfaces. The most well studied metastasis-associated lectins are the galectins and selectins, which have been correlated to adhesion, neoangiogenesis, and immune-cell evasion processes. In order to slow the rate of metastatic lesion formation, a number of approaches have been successfully developed which involve interfering with the tumor lectin-substrate binding event. Through the generation of inhibitors, or by attenuating lectin and/or carbohydrate expression, promising results have been observed both in vitro and in vivo. This article briefly summarizes the involvement of lectins in the metastatic process and also describes different approaches used to prevent these undesirable carbohydrate-lectin binding events, which should ultimately lead to improvement in current cancer therapies.
Collapse
Affiliation(s)
- Hevey Rachel
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
105
|
Amano K, Fujihashi M, Ando A, Miki K, Nagata Y. Involvement of Tyrosines at Fucose-binding Sites ofAleuria aurantiaLectin: Non-equal Response to Site-directed Mutagenesis among Five Sites. Biosci Biotechnol Biochem 2014; 68:841-7. [PMID: 15118312 DOI: 10.1271/bbb.68.841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Since the involvement of Tyr residues in the fucose-binding of Aleuria aurantia lectin (AAL) was proved by chemical modification using the Tyr-specific reagent tetranitromethane, site-directed mutagenesis was attempted. Since the tertiary structure of AAL was determined recently to be a six-bladed beta-propeller fold, and five fucose-binding sites per subunit were found, based on positions of Tyr residues in the tertiary structure, three classes of mutants were constructed: 1) Tyr on the 2nd beta-strand of each blade (beta-2 mutants), 2) Tyr or Trp on the 3rd beta-strand (beta-3 mutants), and 3) Tyr outside of binding sites (other-Y mutants). The mutagenized cDNA was expressed in Escherichia coli as His-tag-AAL, and the hemagglutinating activity was assayed. Among 14 mutants, three beta-2 mutants (Y26A, Y79A, and Y181A), and three beta-3 mutants (Y92A, W149A, and Y241A) showed decreased activity. These mutated residues resided at Sites 1, 2, and 4, at the same locations relatively in the binding sites. Mutagenesis of Tyr or Trp at the corresponding locations in Sites 3 and 5 did not lead to a reduction in activity. Results indicate that the properties of Sites 1, 2, and 4 are different from those of Sites 3 and 5, and that the contribution of these two sites to the hemagglutination reaction was minor.
Collapse
Affiliation(s)
- Koh Amano
- Department of Bioresources Chemistry, Faculty of Horticulture, Chiba University, Matsudo, Japan
| | | | | | | | | |
Collapse
|
106
|
Raczkowska J, Ohar M, Stetsyshyn Y, Zemła J, Awsiuk K, Rysz J, Fornal K, Bernasik A, Ohar H, Fedorova S, Shtapenko O, Polovkovych S, Novikov V, Budkowski A. Temperature-responsive peptide-mimetic coating based on poly(N-methacryloyl-l-leucine): properties, protein adsorption and cell growth. Colloids Surf B Biointerfaces 2014; 118:270-9. [PMID: 24780433 DOI: 10.1016/j.colsurfb.2014.03.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/15/2023]
Abstract
Poly(N-methacryloyl-l-leucine) (PNML) coatings were successfully fabricated via polymerization from peroxide initiator grafted to premodified glass substrate. Chemical composition and thickness of PNML coatings were determined using time of flight-secondary ion mass spectrometry (TOF- SIMS) and ellipsometry, respectively. PNML coatings exhibit thermal response of the wettability, between 4 and 28°C, which indicates a transition between hydrated loose coils and hydrophobic collapsed chains. Morphology of the PNML coating was observed with the AFM, transforming with increasing temperature from initially relatively smooth surface to rough and more structured surface. Protein adsorption observed by fluorescence microscopy for model proteins (bovine serum albumin and lentil lectin labeled with fluorescein isothiocyanate) at transition from 5 to 25°C, showed high affinity of PNML coating to proteins at all investigated temperatures and pH. Thus, PNML coating have significant potential for medical and biotechnological applications as protein capture agents or functional replacements of antibodies ("plastic antibodies"). The high proliferation growth of the human embryonic kidney cell (HEK 293) onto PNML coating was demonstrated, indicating its excellent cytocompatibility.
Collapse
Affiliation(s)
- Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland.
| | - Mariya Ohar
- "Lvivska Polytechnika" National University, S. Bandery 12, 79013 Lviv, Ukraine
| | - Yurij Stetsyshyn
- "Lvivska Polytechnika" National University, S. Bandery 12, 79013 Lviv, Ukraine.
| | - Joanna Zemła
- Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Jakub Rysz
- Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Katarzyna Fornal
- Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - Andrzej Bernasik
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Halyna Ohar
- "Lvivska Polytechnika" National University, S. Bandery 12, 79013 Lviv, Ukraine
| | - Svitlana Fedorova
- Institute of Animal Biology, National Academy of Agrarian Sciences of Ukrainian, Vasyl' Stus Str. 38, 79034 Lviv, Ukraine
| | - Oksana Shtapenko
- Institute of Animal Biology, National Academy of Agrarian Sciences of Ukrainian, Vasyl' Stus Str. 38, 79034 Lviv, Ukraine
| | | | - Volodymyr Novikov
- "Lvivska Polytechnika" National University, S. Bandery 12, 79013 Lviv, Ukraine
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| |
Collapse
|
107
|
Huang Y, Huang X, Wang Z, Tan JM, Hui KM, Wang W, Ren Q. Function of two novel single-CRD containing C-type lectins in innate immunity from Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2014; 37:313-321. [PMID: 24561128 DOI: 10.1016/j.fsi.2014.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/28/2013] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
C-type lectin is one of the pattern-recognition proteins of the non-self-innate immune system in invertebrates. In this study, two novel C-type lectin cDNAs (EsCTL1 and EsCTL2) of Eriocheir sinensis were cloned and characterized. EsCTL1 has 169 amino acids, whereas EsCTL2 has 164 amino acids. These two lectins contain one carbohydrate-recognition domain. Phylogenetic analysis showed that EsCTL1 and EsCTL2 were not clustered with other reported lectins from crabs. EsCTL1 and EsCTL2 were expressed only in the hepatopancreas, as detected by real-time PCR. When healthy crabs were challenged with lipopolysaccharide (LPS), peptidoglycan (PGN), Staphylococcus aureus, or Aeromonas hydrophila, the expression levels of EsCTL1 and EsCTL2 were significantly regulated. The recombinant EsCTL1 and EsCTL2 can agglutinate both Gram-positive (S. aureus) and Gram-negative bacteria (Vibrio parahaemolyticus and A. hydrophila) in a Ca2+ -dependent manner. The recombinant EsCTL1 and EsCTL2 can directly bind to LPS and PGN and to all tested microorganisms (S. aureus, Bacillus thuringiensis, Bacillus subtilis, Escherichia coli, Vibrio natriegens, V. parahaemolyticus, and A. hydrophila). Furthermore, rEsCTL1 and rEsCTL2 may facilitate the clearance of V. parahaemolyticus in vivo. These results suggest that EsCTL1 and EsCTL2 may have important roles in the anti-bacterial immunity of Chinese mitten crab.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1, Wenyuan Road, Nanjing 210046, PR China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1, Wenyuan Road, Nanjing 210046, PR China
| | - Zheng Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1, Wenyuan Road, Nanjing 210046, PR China
| | - Jing-Min Tan
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1, Wenyuan Road, Nanjing 210046, PR China
| | - Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1, Wenyuan Road, Nanjing 210046, PR China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1, Wenyuan Road, Nanjing 210046, PR China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1, Wenyuan Road, Nanjing 210046, PR China.
| |
Collapse
|
108
|
de Melo AA, Carneiro RF, de Melo Silva W, Moura RDM, Silva GC, de Sousa OV, de Sousa Saboya JP, Nascimento KSD, Saker-Sampaio S, Nagano CS, Cavada BS, Sampaio AH. HGA-2, a novel galactoside-binding lectin from the sea cucumber Holothuria grisea binds to bacterial cells. Int J Biol Macromol 2014; 64:435-42. [DOI: 10.1016/j.ijbiomac.2013.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 11/26/2022]
|
109
|
Huang Y, An L, Hui KM, Ren Q, Wang W. An LDLa domain-containing C-type lectin is involved in the innate immunity of Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:333-344. [PMID: 24140432 DOI: 10.1016/j.dci.2013.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/21/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
C-type lectins (CTLs) have crucial functions in recognizing and eliminating pathogens in innate immunity. This study identified a novel low-density lipoprotein receptor class A (LDLa) domain-containing CTL, designated as EsCTLDcp, from the Chinese mitten crab Eriocheir sinensis. The EsCTLDcp cDNA is 1258 bp long, with a 975 bp open reading frame that encodes a 324-amino acid protein. EsCTLDcp contains a signal peptide, an LDLa, and a single C-type lectin-like domain. EsCTLDcp was only expressed in the hepatopancreas of normal crabs, and its expression was regulated following crab challenge with pathogen-associated molecular patterns and with bacteria. The recombinant EsCTLDcp agglutinates Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Vibrio parahaemolyticus and Aeromonas hydrophila) in the presence of calcium. rEsCTLDcp also binds to various bacteria including S. aureus, Bacillus thuringiensis, Bacillus subtilis, Escherichia coli, Vibrio natriegens, V. parahaemolyticus, and A. hydrophila. The rEsCTLDcp protein helped the crabs clear the virulent Gram-negative bacterium V. parahaemolyticus in vivo, as well as interacted with VP24, an envelope protein of white spot syndrome virus (WSSV). These data suggest that EsCTLDcp functions as a pattern-recognition receptor involved in the innate immunity of E. sinensis.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | | | | | | | | |
Collapse
|
110
|
Rafiq S, Majeed R, Qazi AK, Ganai BA, Wani I, Rakhshanda S, Qurishi Y, Sharma PR, Hamid A, Masood A, Hamid R. Isolation and antiproliferative activity of Lotus corniculatus lectin towards human tumour cell lines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 21:30-38. [PMID: 24055517 DOI: 10.1016/j.phymed.2013.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/02/2013] [Accepted: 08/04/2013] [Indexed: 06/02/2023]
Abstract
The objective of the study was to investigate the anti cancer activity of a lectin isolated from Lotus corniculatus seeds. A tetrameric 70kDa galactose specific lectin was purified using two step simple purification protocol which involved affinity chromatography on AF-BlueHC650M and gel filtration on Sephadex G-100. The lectin was adsorbed on AF-BlueHC650M and desorbed using 1M NaCl in the starting buffer. Gel filtration on Sephadex G-100 yielded a major peak absorbance that gave two bands of 15kDa and 20kDa in SDS PAGE. Hemagglutination activity was completely preserved, when the temperature was in the range of 20-60°C. However, drastic reduction in activity occurred at temperatures above 60°C. Full hemagglutination activity was retained at ambient pH 4-12. Thereafter no activity was observed above pH 13. Hemaglutination of the lectin was inhibited by d-galactose. The lectin showed a strong antiproliferative activity towards human leukemic (THP-1) cancer cells followed by lung cancer (HOP62) cells and HCT116 with an IC50 of 39μg/ml and 50μg/ml and 60μg/ml respectively. Flow cytometry analysis showed an increase in the percentage of cells in sub G0G1 phase confirming that Lotus corniculatus lectin induced apoptosis. Morphological observations showed that Lotus corniculatus lectin (LCL) treated THP-1 cells displayed apparent apoptosis characteristics such as nuclear fragmentation, appearance of membrane enclosed apoptotic bodies and DNA fragmentation. Lotus corniculatus lectin (LCL) effectively inhibits the cell migration in a dose dependent manner as indicated by the wound healing assay.
Collapse
Affiliation(s)
- Shaista Rafiq
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar 190006, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Jin XK, Li S, Guo XN, Cheng L, Wu MH, Tan SJ, Zhu YT, Yu AQ, Li WW, Wang Q. Two antibacterial C-type lectins from crustacean, Eriocheir sinensis, stimulated cellular encapsulation in vitro. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:544-552. [PMID: 23911906 DOI: 10.1016/j.dci.2013.07.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/24/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
The first step of host fighting against pathogens is that pattern recognition receptors recognized pathogen-associated molecular patterns. However, the specificity of recognition within the innate immune molecular of invertebrates remains largely unknown. In the present study, we investigated how invertebrate pattern recognition receptor (PRR) C-type lectins might be involved in the antimicrobial response in crustacean. Based on our previously obtained completed coding regions of EsLecA and EsLecG in Eriocheir sinensis, the recombinant EsLectin proteins were produced via prokaryotic expression system and affinity chromatography. Subsequently, both rEsLecA and rEsLecG were discovered to have wide spectrum binding activities towards microorganisms, and their microbial-binding was calcium-independent. Moreover, the binding activities of both rEsLecA and rEsLecG induced the aggregation against microbial pathogens. Both microorganism growth inhibitory activities assays and antibacterial activities assays revealed their capabilities of suppressing microorganisms growth and directly killing microorganisms respectively. Furthermore, the encapsulation assays signified that both rEsLecA and rEsLecG could stimulate the cellular encapsulation in vitro. Collectively, data presented here demonstrated the successful expression and purification of two C-type lectins proteins in the Chinese mitten crab, and their critical role in the innate immune system of an invertebrate.
Collapse
Affiliation(s)
- Xing-Kun Jin
- School of Life Science, East China Normal University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Chang TC, Lai CH, Chien CW, Liang CF, Adak AK, Chuang YJ, Chen YJ, Lin CC. Synthesis and Evaluation of a Photoactive Probe with a Multivalent Carbohydrate for Capturing Carbohydrate–Lectin Interactions. Bioconjug Chem 2013; 24:1895-906. [DOI: 10.1021/bc400306g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | | | - Chih-Wei Chien
- Department
of Chemistry and
- Institute
of Chemistry, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang Taipei 115, Taiwan
| | | | | | - Yung-Jen Chuang
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan
| | - Yu-Ju Chen
- Institute
of Chemistry, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang Taipei 115, Taiwan
| | | |
Collapse
|
113
|
Abstract
The regenerating gene (Reg) family is a group of small molecules that includes four members found in various species, although only three are found in human tissues. Their expression is stimulated by certain growth factors or cytokines. The Reg family plays different roles in proliferation, migration, and anti-apoptosis through activating different signaling pathways. Their dysexpression is closely associated with a number of human conditions and diseases such as inflammation and cancer, especially in the human digestive system. Clinically, upregulation of Reg proteins is usually demonstrated in histological sections and sera from cancer patients. Therefore, Reg proteins can predict the progression and prognosis of cancers, especially those of the digestive tract, and can also act as diagnostic markers and therapeutic targets.
Collapse
|
114
|
Guo XN, Jin XK, Li S, Yu AQ, Wu MH, Tan SJ, Zhu YT, Li WW, Zhang P, Wang Q. A novel C-type lectin from Eriocheir sinensis functions as a pattern recognition receptor with antibacterial activity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1554-1565. [PMID: 24012749 DOI: 10.1016/j.fsi.2013.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
As pattern recognition receptors (PRRs), C-type lectins (CTLs) play significant roles in recognizing and eliminating pathogens in innate immunity. In this study, a novel CTL (EsLecD) was identified from the crustacean Eriocheir sinensis. The cloning of full-length EsLecD cDNA was based on the initial expressed sequence tags (ESTs) isolated from a hepatopancreatic cDNA library. The full-length EsLecD cDNA of 686 bp with an open reading frame of 468 bp encodes a putative protein of 155 aa residues, including an N-terminal signal peptide and a single carbohydrate-recognition domain (CRD). By quantitative RT-PCR analysis, the EsLecD transcript was mainly detected in the hepatopancreas but rarely in other tissues, and it was significantly upregulated in the hepatopancreas after immune challenge with lipopolysaccharides. The recombinant EsLecD protein (rEsLecD) exhibited the ability to bind to all tested microorganisms, including bacteria and yeast. Meanwhile, calcium significantly increased the binding affinity of rEsLecD toward microorganisms, but it was not essential. The binding of rEsLecD induced the aggregation of microbial pathogens. Moreover, rEsLecD was capable of inhibiting the growth of microorganisms and even directly killing bacteria. Interestingly, rEsLecD could stimulate cellular encapsulation in vitro. In conclusion, results of this study suggest that EsLecD acts as an antibacterial PRR participating in the innate immunity of invertebrates.
Collapse
Affiliation(s)
- Xiao-Nv Guo
- School of Life Science, East China Normal University, Dong-Chuan Road No. 500, Shanghai 200241, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Jin XK, Guo XN, Li S, Wu MH, Zhu YT, Yu AQ, Tan SJ, Li WW, Zhang P, Wang Q. Association of a hepatopancreas-specific C-type lectin with the antibacterial response of Eriocheir sinensis. PLoS One 2013; 8:e76132. [PMID: 24146827 PMCID: PMC3795701 DOI: 10.1371/journal.pone.0076132] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022] Open
Abstract
Pattern recognition receptors (PPRs) are part of the initial step of a host defense against pathogens in detecting pathogen-associated molecular patterns. However, determinants of the specificity of this recognition by innate immune molecules of invertebrates remain largely unknown. In this study, we investigated the potential involvement of an invertebrate PRR C-type lectin in the antimicrobial response of the crustacean Eriocheir sinensis. Based on the initial expressed sequence tags (EST) of a hepatopancreatic cDNA library, the full-length EsLecF cDNA was cloned and determined to contain a 477-bp open reading frame encoding a putative 158-amino-acid protein. A comparison with other reported invertebrate and vertebrate C-type lectin superfamily sequences revealed the presence of a common carbohydrate recognition domain (CRD). EsLecF transcripts in E. sinensis were mainly detected in the hepatopancreas and were inducible by a lipopolysaccharide (LPS) injection. The recombinant EsLecF (rEsLecF) protein produced via a prokaryotic expression system and affinity chromatography was found to have a wide spectrum of binding activities towards various microorganisms, and its microbial-binding activity was calcium-independent. Moreover, the binding of rEsLecF induced the aggregation of microbial pathogens. Results of the microorganism growth inhibitory assay and antibacterial assay revealed capabilities of rEsLecF in suppressing microorganism growth and directly killing bacteria, respectively. Furthermore, rEsLecF could enhance cellular encapsulation in vitro. Collectively, the findings presented here demonstrated the successful isolation of a novel C-type lectin in a crustacean and highlighted its critical role in the innate immunity of an invertebrate.
Collapse
Affiliation(s)
- Xing-Kun Jin
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiao-Nv Guo
- School of Life Science, East China Normal University, Shanghai, China
| | - Shuang Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Min-Hao Wu
- School of Life Science, East China Normal University, Shanghai, China
| | - You-Ting Zhu
- School of Life Science, East China Normal University, Shanghai, China
| | - Ai-Qing Yu
- School of Life Science, East China Normal University, Shanghai, China
| | - Shang-Jian Tan
- School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Ping Zhang
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail: (PZ); (QW)
| | - Qun Wang
- School of Life Science, East China Normal University, Shanghai, China
- * E-mail: (PZ); (QW)
| |
Collapse
|
116
|
Lima TG, McCartney MA. Adaptive evolution of M3 lysin--a candidate gamete recognition protein in the Mytilus edulis species complex. Mol Biol Evol 2013; 30:2688-98. [PMID: 24048587 DOI: 10.1093/molbev/mst165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Marine invertebrate gamete recognition proteins (GRPs) are classic examples of rapid adaptive evolution of reproductive proteins, and hybridizing Mytilus blue mussels allow us to study the evolution of GRPs during speciation following secondary contact. Even with frequent hybridization, positive selection drives divergence of M7 lysin, one of the three Mytilus egg vitelline envelope (VE) lysins. Mytilus trossulus and M. edulis form a broad hybrid zone in the Canadian Maritimes and eastern Maine, isolated by strong (but partial) gamete incompatibility. M7 lysin, however, is an unlikely GRP controlling this gametic incompativility, as earlier studies showed either weak or no positive selection and extensive introgression between the two species. We used reverse transcriptase-polymerase chain reaction and cloned several alleles of M3 lysin, a potent VE lysin encoded by a nonhomologous gene whose evolution has not been studied. McDonald-Kreitman and HKA tests reveal strong positive selection, which PAML branch-site models detect in 19.7% of the codons. Protein structure predictions show that replacements map exclusively to one face of the carbohydrate recognition domain (CRD) of this C-type lectin, with codons under positive selection localizing to CRD regions known to control ligand specificity. Polymorphism/divergence analyses show that selective sweep has purged M. edulis but not M. trossulus of polymorphism, and unique to M3 is an absence of fixed substitutions and broad haplotype sharing between M. edulis and Mediterranean M. galloprovincialis. Taken together, these results suggest that different lysins serve as GRPs in different Mytilus hybrid zones, with M3 likely co-opted to play this role in the western Atlantic.
Collapse
Affiliation(s)
- Thiago G Lima
- Department of Biology and Marine Biology, University of North Carolina Wilmington
| | | |
Collapse
|
117
|
Abstract
Tumor cells exhibit striking changes in cell surface glycosylation as a consequence of dysregulated glycosyltransferases and glycosidases. In particular, an increase in the expression of certain sialylated glycans is a prominent feature of many transformed cells. Altered sialylation has long been associated with metastatic cell behaviors including invasion and enhanced cell survival; however, there is limited information regarding the molecular details of how distinct sialylated structures or sialylated carrier proteins regulate cell signaling to control responses such as adhesion/migration or resistance to specific apoptotic pathways. The goal of this review is to highlight selected examples of sialylated glycans for which there is some knowledge of molecular mechanisms linking aberrant sialylation to critical processes involved in metastasis.
Collapse
Affiliation(s)
- Matthew J Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 982A 1918 University Boulevard, Birmingham, AL 35294-0005, USA
| | | | | |
Collapse
|
118
|
Liu S, Hu G, Sun C, Zhang S. Anti-viral activity of galectin-1 from flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1463-1469. [PMID: 23535640 DOI: 10.1016/j.fsi.2013.03.354] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/21/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Galectins are a family of Ca(2+)-independent soluble lectins characterized by their affinity to β-galactosides. Mammalian galectins have been shown to play a defense role against certain bacteria, fungi and viruses. However, the immunological functions of galectins in fish is poorly characterized. Here we demonstrated that the expression of galectin-1 gene from the flounder Paralichthys olivaceus was decreased in the initial 8 h after challenge with poly I:C, then increased markedly from 24 h onwards, and the recombinant galectin-1 was able to neutralize the lymphocystis disease virus (LCDV), inhibiting the formation of cytopathic effects. In addition, the recombinant galectin had a potential anti-inflammatory activity against infection by LCDV, and was able to restrain the overexpression of the anti-viral protein gene mx against virus infection. These results indicate that flounder galectin-1 has an anti-viral activity, capable of reducing LCDV pathogenicity.
Collapse
Affiliation(s)
- Shousheng Liu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, China
| | | | | | | |
Collapse
|
119
|
Ouchi K, Saito S, Shibukawa M. New Molecular Motif for Recognizing Sialic Acid Using Emissive Lanthanide–Macrocyclic Polyazacarboxylate Complexes: Deprotonation of a Coordinated Water Molecule Controls Specific Binding. Inorg Chem 2013; 52:6239-41. [DOI: 10.1021/ic400725a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kazuki Ouchi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama,
Japan
| | - Shingo Saito
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama,
Japan
| | - Masami Shibukawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama,
Japan
| |
Collapse
|
120
|
Papale F, Cafiero G, Grimaldi A, Marino G, Rosso F, Mian C, Barollo S, Pennelli G, Sorrenti S, De Antoni E, Barbarisi A. Galectin-3 expression in thyroid fine needle cytology (t-FNAC) uncertain cases: validation of molecular markers and technology innovation. J Cell Physiol 2013; 228:968-74. [PMID: 23042505 DOI: 10.1002/jcp.24242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/26/2012] [Indexed: 12/13/2022]
Abstract
Thyroid cancer is not very common, accounting for 1-2% of all cancers, with a population incidence of about 0.004%. Currently, the ability to discriminate between follicular adenoma and carcinoma represents the major challenge in preclinical diagnosis of thyroid proliferative lesions. Better discrimination between the two would help avoid unnecessary thyroidectomy and save valuable resources. Over the years, galectin-3 (Gal-3) has been proposed as a diagnostic marker with varied success. In this paper, we used Environmental Scanning Electron Microscopy Immunogold Labelling (ESEM-IGL) to investigate the expression of Gal-3 on Thin-Prep fine needle aspiration cytology (FNAC). We optimized the ESEM-IGL method on thyroid cell lines (RO-82 and FTC-133) comparing our membrane Gal-3 labeling data with Western blot. We evaluated 183 thyroid FNAC from Italian patients with a uncertain pre-surgical diagnosis. ESEM-IGL method marker sensitivity is 71.2%, while specificity is 53.3% and diagnostic efficacy is 61.2%. Our results confirmed that Gal-3 expression is associated with situations of hypertrophy and/or cellular hyperproliferation, pathophysiological situations common both to adenomas and to thyroid carcinomas. The innovation of thyroid FNAC Thin-Prep ESEM-IGL shows the levels of Gal-3 immunolabeling clearly, even through the individual cells of a thyroid nodule. However, Gal-3 alone, as a molecular marker of thyroid cancer, can still have a limited application in pre-surgery diagnosis.
Collapse
Affiliation(s)
- F Papale
- Laboratory of Applied Biotechnology, Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Wang L, Wang L, Zhang D, Li F, Wang M, Huang M, Zhang H, Song L. A novel C-type lectin from crab Eriocheir sinensis functions as pattern recognition receptor enhancing cellular encapsulation. FISH & SHELLFISH IMMUNOLOGY 2013; 34:832-842. [PMID: 23296116 DOI: 10.1016/j.fsi.2012.12.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
C-type lectins are a large family of Ca²⁺-dependent carbohydrate binding proteins which play crucial roles to recognize and eliminate pathogens in innate immunity. In the present study, a novel C-type lectin was identified from Eriocheir sinensis (designated as EsCTL). The full-length cDNA of EsCTL was of 789 bp with an open reading frame of 468 bp encoding a polypeptide of 156 amino acids with a signal sequence and single carbohydrate-recognition domain (CRD). The potential tertiary structure of the CRD adopted a typical double-loop structure with Ca²⁺-binding site 2 in the long loop region and two conserved disulfide bridges at the bases of the loops. An EPQ motif to determine carbohydrate binding specificity was identified in the CRD of EsCTL. The mRNA transcripts of EsCTL were mainly detected in hepatopancreas and its relative expression level in hemocytes was significantly up-regulated after the challenges of Vibrio anguillarum (P < 0.05) and Pichia pastoris (P < 0.05). The recombinant EsCTL protein (rEsCTL) could bind different PAMPs, including LPS, PGN, β-glucan, and polyI:C; and also bind various microorganisms including three Gram-positive bacteria, three Gram-negative bacteria and two yeasts. Moreover, rEsCTL could significantly enhance the in vitro encapsulation of crab hemocytes. All these results suggested that EsCTL functioned as an important PRR involved in immune defense against invading pathogen in crab.
Collapse
Affiliation(s)
- Leilei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Coriolano MC, de Melo CML, Santos AJG, Pereira VRA, Coelho LCBB. Rachycentron canadum (cobia) lectin promoted mitogenic response in mice BALB/c splenocytes. Scand J Immunol 2013; 76:567-72. [PMID: 22946764 DOI: 10.1111/j.1365-3083.2012.02774.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mitogenic lectins are invaluable tools to study the biochemical changes associated with lymphocyte activation and proliferation of various immune cells. Rachycentron canadum lectin (RcaL) was detected and purified from serum of cobia fish. The aim of this study was to evaluate the proliferative response and cytokine production in splenocytes of mice in vitro stimulated with RcaL lectin; Canavalia ensiformis lectin (Con A) was used as positive control. A high proliferation index was induced by RcaL in relation to control cells. Furthermore, RcaL induced higher IL-2 and IL-6 production in relation to control. The cell viability was 90% in splenocytes treated with RcaL lectin, but RcaL promoted significant late apoptosis after 24 and 48 h in relation to control. RcaL induced proliferative responses suggesting that this lectin can be used as a mitogenic agent in immunostimulatory assays.
Collapse
Affiliation(s)
- M C Coriolano
- Departamento de Bioquímica, Laboratório de Glicoproteínas da Universidade Federal de Pernambuco-UFPE, Recife, Brazil
| | | | | | | | | |
Collapse
|
123
|
Bulgakov AA, Eliseikina MG, Kovalchuk SN, Petrova IY, Likhatskaya GN, Shamshurina EV, Rasskazov VA. Mannan-binding lectin of the sea urchin Strongylocentrotus nudus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:73-86. [PMID: 22696119 DOI: 10.1007/s10126-012-9460-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
A novel lectin specific to low-branched mannans (MBL-SN) was isolated from coelomic plasma of the sea urchin Strongylocentrotus nudus by combining anion-exchange liquid chromatography on DEAE Toyopearl 650 M, affinity chromatography on mannan-Sepharose and gel filtration on the Sephacryl S-200. The molecular mass of MBL-SN was estimated by sodium dodecyl sulphate polyacrylamide gel electrophoresis under non-reducing conditions to be about 34 kDa. MBL-SN was shown to be a dimer with two identical subunits of about 17 kDa. The native MBL-SN exists as a tetramer. The physico-chemical properties of MBL-SN indicate that it belongs to C-type mannan-binding lectins. The cDNA encoding MBL-SN was cloned from the total cDNA of S. nudus coelomocytes and encodes a 17-kDa protein of 144 amino acid residues that contains a single carbohydrate-recognition domain of C-type lectins. Prediction of the MBL-SN tertiary structure using comparative modelling revealed that MBL-SN is an α/β-protein with eight β-strands and two α-helices. Comparison of the MBL-SN model with available three-dimensional structures of C-type lectins revealed that they share a common fold pattern.
Collapse
Affiliation(s)
- Aleksandr A Bulgakov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, Stoletya Vladivostoku Str. 159, Vladivostok 690022, Russia.
| | | | | | | | | | | | | |
Collapse
|
124
|
Arnaud J, Audfray A, Imberty A. Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. Chem Soc Rev 2013; 42:4798-813. [PMID: 23353569 DOI: 10.1039/c2cs35435g] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The large diversity and complexity of glycan structures together with their crucial role in many biological or pathological processes require the development of new high-throughput techniques for analyses. Lectins are classically used for characterising, imaging or targeting glycoconjugates and, when printed on microarrays, they are very useful tools for profiling glycomes. Development of recombinant lectins gives access to reliable and reproducible material, while engineering of new binding sites on existing scaffolds allows tuning of specificity. From the accumulated knowledge on protein-carbohydrate interactions, it is now possible to use nucleotide and peptide (bio)synthesis for producing new carbohydrate-binding molecules. Such a biomimetic approach can also be addressed by boron chemistry and supra-molecular chemistry for the design of fully artificial glycosensors.
Collapse
Affiliation(s)
- Julie Arnaud
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-CNRS), affiliated to Grenoble-Université and ICMG, Grenoble, France
| | | | | |
Collapse
|
125
|
Chandran T, Sharma A, Vijayan M. Generation of Ligand Specificity and Modes of Oligomerization in β-Prism I Fold Lectins. DYNAMICS OF PROTEINS AND NUCLEIC ACIDS 2013; 92:135-78. [DOI: 10.1016/b978-0-12-411636-8.00004-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
126
|
Wang XW, Wang JX. Diversity and multiple functions of lectins in shrimp immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:27-38. [PMID: 22561073 DOI: 10.1016/j.dci.2012.04.009] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 03/22/2012] [Accepted: 04/21/2012] [Indexed: 05/19/2023]
Abstract
Lectins play important roles in many biological processes, including protein trafficking, cell signaling, pathogen recognition, as effector molecules, and so on, because of their capacity to bind carbohydrates. Presently, seven groups of lectins have been identified in shrimp: C-type, L-type, P-type, M-type, fibrinogen-like domain lectins, galectins, and calnexin/calreticulin. These lectins have different structures, diverse expression patterns, and multiple functions in the shrimp immune response. This review summarizes the research progress and analyzes the diversity of shrimp lectins, focusing mainly on the C-type lectin family. Shrimp C-type lectins show considerable diversity in their domain architectures, sugar substrates, tissue distributions, expression patterns responding to pathogen challenge and functions in shrimp immunity.
Collapse
Affiliation(s)
- Xian-Wei Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | |
Collapse
|
127
|
Tian X, Baek KH, Shin I. Dual-labeled glycoclusters: synthesis and their application in monitoring lectin-mediated endocytosis. MOLECULAR BIOSYSTEMS 2013; 9:978-86. [DOI: 10.1039/c3mb25491g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
128
|
Bavireddi H, Bharate P, Kikkeri R. Use of Boolean and fuzzy logics in lactose glycocluster research. Chem Commun (Camb) 2013; 49:9185-7. [DOI: 10.1039/c3cc44615h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
129
|
Abhinav KV, Sharma A, Vijayan M. Identification of mycobacterial lectins from genomic data. Proteins 2012. [DOI: 10.1002/prot.24219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
130
|
Temperature and pH dual-responsive coatings of oligoperoxide-graft-poly(N-isopropylacrylamide): Wettability, morphology, and protein adsorption. J Colloid Interface Sci 2012; 387:95-105. [DOI: 10.1016/j.jcis.2012.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 11/18/2022]
|
131
|
Abstract
Catfish is one of the most important aquaculture species in America (as well as in Asia and Africa). In recent years, the production of catfish has suffered massive financial losses due to pathogen spread and breakouts. Innate immunity plays a crucial role in increasing resistance to pathogenic organisms and has generated increasing interest in the past few years. This review summarizes the current understanding of innate immune-related genes in catfish, including pattern recognition receptors, antimicrobial peptides, complements, lectins, cytokines, transferrin and gene expression profiling using microarrays and next generation sequencing technologies. This review will benefit the understanding of innate immune system in catfish and further efforts in studying the innate immune-related genes in fish.
Collapse
|
132
|
Li M, Leatherland JF. The interaction between maternal stress and the ontogeny of the innate immune system during teleost embryogenesis: implications for aquaculture practice. JOURNAL OF FISH BIOLOGY 2012; 81:1793-1814. [PMID: 23130684 DOI: 10.1111/j.1095-8649.2012.03447.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The barrier defences and acellular innate immune proteins play critical roles during the early-stage fish embryos prior to the development of functional organ systems. The innate immune proteins in the yolk of embryos are of maternal origin. Maternal stress affects the maternal-to-embryo transfer of these proteins and, therefore, environmental stressors may change the course of embryo development, including embryonic immunocompetency, via their deleterious effect on maternal physiology. This review focuses on the associations that exist between maternal stress, maternal endocrine disturbance and the responses of the acellular innate immune proteins of early-stage fish embryos. Early-stage teleostean embryos are dependent upon the adult female for the formation of the zona pellucida as an essential barrier defence, for their supply of nutrients, and for the innate immunity proteins and antibodies that are transferred from the maternal circulation to the oocytes; maternally derived hormones are also transferred, some of which (such as cortisol) are known to exert a suppressive action on some aspects of the immune defences. This review summarizes what is known about the effects of oocyte cortisol content on the immune system components in early embryos. The review also examines recent evidence that embryonic cells during early cleavage have the capacity to respond to increased maternal cortisol transfer; this emphasizes the importance of maternal and early immune competence on the later life of fishes, both in the wild and in intensive culture.
Collapse
Affiliation(s)
- M Li
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
133
|
Jin XK, Li WW, Cheng L, Li S, Guo XN, Yu AQ, Wu MH, He L, Wang Q. Two novel short C-type lectin from Chinese mitten crab, Eriocheir sinensis, are induced in response to LPS challenged. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1149-1158. [PMID: 22982336 DOI: 10.1016/j.fsi.2012.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/27/2012] [Accepted: 08/30/2012] [Indexed: 06/01/2023]
Abstract
The basic mechanism of host fighting against pathogens is pattern recognition receptors recognized pathogen-associated molecular patterns. However, the specificity of recognition within the innate immune molecular of invertebrates remains largely unknown. For this reason, we investigated the immune functionality of two pattern recognition receptors, C-type lectin EsLecA and EsLecG, post lipopolysaccharides (LPS) challenge in Chinese mitten crab (Eriocheir sinensis), which is a commercially important and disease vulnerable aquaculture species. The cloning of full-length EsLecA and EsLecG cDNA were based on the initial expressed sequence tags (EST) isolated from a hepatopancreatic cDNA library via PCR. The EsLecA cDNA contained a 480-bp open reading frame that encoded a putative 159-amino-acid protein, while EsLecG cDNA contained a 465-bp open reading frame that encoded a putative 154-amino-acid protein. Comparison, with other reported invertebrate and vertebrate sequences, revealed the presence of carbohydrate recognition domains that were common among C-type lectin superfamilies. EsLecA and EsLecG mRNA expression in E. sinensis were (a) both detected in all tissues, including the hepatopancreas, gills, hemocytes, testis, accessory gland, ovary, muscle, stomach, intestine, heart, thoracic ganglia and brain, and (b) responsive in hepatopancreas, gill, hemocytes post-LPS immuno-challenge all appeared dramatically variation. Collectively, the data presented here demonstrate the successful isolation of two novel C-type lectins from the Chinese mitten crab, and their role in the innate immune system of an invertebrate.
Collapse
Affiliation(s)
- Xing-Kun Jin
- School of Life Science, East China Normal University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Seufi AM, Galal FH, Hafez EE. Characterization of multisugar-binding C-type lectin (SpliLec) from a bacterial-challenged cotton leafworm, Spodoptera littoralis. PLoS One 2012; 7:e42795. [PMID: 22916161 PMCID: PMC3423437 DOI: 10.1371/journal.pone.0042795] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/11/2012] [Indexed: 11/18/2022] Open
Abstract
Background Various proteins that display carbohydrate-binding activity in a Ca2+-dependent manner are classified into the C-type lectin family. They have one or two C-type carbohydrate-recognition domains (CRDs) composed of 110–130 amino acid residues in common. C-type lectins mediate cell adhesion, non-self recognition, and immuno-protection processes in immune responses and thus play significant roles in clearance of invaders, either as cell surface receptors for microbial carbohydrates or as soluble proteins existing in tissue fluids. The lectin of Spodoptera littoralis is still uncharacterized. Methodology A single orf encoding a deduced polypeptide consisting of an 18-residue signal peptide and a 291-residue mature peptide, termed SpliLec, was isolated from the haemolymph of the cotton leafworm, S. littoralis, after bacterial challenge using RACE-PCR. Sequence analyses of the data revealed that SpliLec consists of two CRDs. Short-form CRD1 and long-form CRD2 are stabilized by two and three highly conserved disulfide bonds, respectively. SpliLec shares homology with some dipteran lectins suggesting possible common ancestor. The purified SpliLec exhibited a 140-kDa molecular mass with a subunit molecular mass of 35 kDa. The hemagglutination assays of the SpliLec confirmed a thermally stable, multisugar-binding C-type lectin that binds different erythrocytes. The purified SpliLec agglutinated microorganisms and exhibited comparable antimicrobial activity against gram (+) and gram (−) bacteria too. Conclusions Our results suggested an important role of the SpliLec gene in cell adhesion and non-self recognition. It may cooperate with other AMPs in clearance of invaders of Spodoptera littoralis.
Collapse
Affiliation(s)
- AlaaEddeen M Seufi
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.
| | | | | |
Collapse
|
135
|
Wei X, Yang J, Liu X, Yang D, Xu J, Fang J, Wang W, Yang J. Identification and transcriptional analysis of two types of lectins (SgCTL-1 and SgGal-1) from mollusk Solen grandis. FISH & SHELLFISH IMMUNOLOGY 2012; 33:204-212. [PMID: 22565020 DOI: 10.1016/j.fsi.2012.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 04/22/2012] [Indexed: 05/31/2023]
Abstract
C-type lectin and galectin are two types of animal carbohydrate-binding proteins which serve as pathogen recognition molecules and play crucial roles in the innate immunity of invertebrates. In the present study, a C-type lectin (designated as SgCTL-1) and galectin (designated as SgGal-1) were identified from mollusk Solen grandis, and their expression patterns, both in tissues and toward three pathogen-associated molecular patterns (PAMPs) stimulation were characterized. The full-length cDNA of SgCTL-1 and SgGal-1 was 1280 and 1466 bp, containing an open reading frame (ORF) of 519 and 1218 bp, respectively. Their deduced amino acid sequences showed high similarity to other members of C-type lectin and galectin superfamily, respectively. SgCTL-1 encoded a single carbohydrate-recognition domain (CRD), and the motif of Ca(2+)-binding site 2 was EPN (Glu(135)-Pro(136)-Asn(137)). While SgGal-1 encoded two CRDs, and the amino acid residues constituted the carbohydrate-binding motifs were well conserved in CRD1 but partially conserved in CRD2. Although SgCTL-1 and SgGal-1 exhibited different tissue expression pattern, they were both constitutively expressed in all tested tissues, including hemocytes, gonad, mantle, muscle, gill and hepatopancreas, and they were both highly expressed in hepatopancreas and gill. Furthermore, the mRNA expression of two lectins in hemocytes was significantly (P < 0.01) up-regulated with different levels after S. grandis were stimulated by lipopolysaccharide (LPS), peptidoglycan (PGN) or β-1,3-glucan. Our results suggested that SgCTL-1 and SgGal-1 from razor clam were two novel members of animal lectins, and they might function as pattern recognition receptors (PRRs) taking part in the process of pathogen recognition.
Collapse
Affiliation(s)
- Xiumei Wei
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Fisheries Research Institute, Yantai 264006, China
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Tian X, Pai J, Shin I. Analysis of Density-Dependent Binding of Glycans by Lectins Using Carbohydrate Microarrays. Chem Asian J 2012; 7:2052-60. [DOI: 10.1002/asia.201200202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Indexed: 12/11/2022]
|
137
|
Soluble host defense lectins in innate immunity to influenza virus. J Biomed Biotechnol 2012; 2012:732191. [PMID: 22665991 PMCID: PMC3362216 DOI: 10.1155/2012/732191] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/21/2012] [Indexed: 12/24/2022] Open
Abstract
Host defenses against viral infections depend on a complex interplay of innate (nonspecific) and adaptive (specific) components. In the early stages of infection, innate mechanisms represent the main line of host defense, acting to limit the spread of virus in host tissues prior to the induction of the adaptive immune response. Serum and lung fluids contain a range of lectins capable of recognizing and destroying influenza A viruses (IAV). Herein, we review the mechanisms by which soluble endogenous lectins mediate anti-IAV activity, including their role in modulating IAV-induced inflammation and disease and their potential as prophylactic and/or therapeutic treatments during severe IAV-induced disease.
Collapse
|
138
|
Ponader D, Wojcik F, Beceren-Braun F, Dernedde J, Hartmann L. Sequence-Defined Glycopolymer Segments Presenting Mannose: Synthesis and Lectin Binding Affinity. Biomacromolecules 2012; 13:1845-52. [DOI: 10.1021/bm300331z] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Daniela Ponader
- MPI of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam-Golm,
Germany
| | - Felix Wojcik
- MPI of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam-Golm,
Germany
| | - Figen Beceren-Braun
- Institut für
Laboratoriumsmedizin,
Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Jens Dernedde
- Institut für
Laboratoriumsmedizin,
Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin, 12203 Berlin, Germany
| | - Laura Hartmann
- MPI of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam-Golm,
Germany
| |
Collapse
|
139
|
Mu C, Song X, Zhao J, Wang L, Qiu L, Zhang H, Zhou Z, Wang M, Song L, Wang C. A scallop C-type lectin from Argopecten irradians (AiCTL5) with activities of lipopolysaccharide binding and Gram-negative bacteria agglutination. FISH & SHELLFISH IMMUNOLOGY 2012; 32:716-723. [PMID: 22342746 DOI: 10.1016/j.fsi.2012.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 05/31/2023]
Abstract
C-type lectins are a family of calcium-dependent carbohydrate-binding proteins. In the present study, a C-type lectin (designated as AiCTL5) was identified and characterized from Argopecten irradians. The full-length cDNA of AiCTL5 was of 673 bp, containing a 5' untranslated region (UTR) of 24 bp, a 3' UTR of 130 bp with a poly (A) tail, and an open reading frame (ORF) of 519 bp encoding a polypeptide of 172 amino acids with a putative signal peptide of 17 amino acids. A C-type lectin-like domain (CRD) containing 6 conserved cysteines and a putative glycosylation sites were identified in the deduced amino acid sequence of AiCTL5. AiCTL5 shared 11%-27.5% identity with the previous reported C-type lectin from A. irradians. The cDNA fragment encoding the mature peptide of AiCTL5 was recombined into pET-21a (+) with a C-terminal hexa-histidine tag fused in-frame, and expressed in Escherichia coli Origami (DE3). The recombinant AiCTL5 (rAiCTL5) agglutinated Gram-negative E. coli TOP10F' and Listonella anguillarum, but did not agglutinate Gram-positive bacteria Bacillus thuringiensis and Micrococcus luteus, and the agglutination could be inhibited by EDTA, indicating that AiCTL5 was a Ca(2+)-dependent lectin. rAiCTL5 exhibited a significantly strong activity to bind LPS from E. coli, which conformed to the agglutinating activity toward Gram-negative bacteria. Moreover, rAiCTL5 also agglutinated rabbit erythrocytes. These results indicated that AiCTL5 could function as a pattern recognition receptor to protect bay scallop from Gram-negative bacterial infection, and also provide evidence to understand the structural and functional diverse of lectin.
Collapse
Affiliation(s)
- Changkao Mu
- School of Marine Science of Ningbo University, Ningbo, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
González MM, Yoshizaki L, Wolfenstein-Todel C, Fink NE. Isolation of galectin-1 from human platelets: its interaction with actin. Protein J 2012; 31:8-14. [PMID: 22081313 DOI: 10.1007/s10930-011-9367-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Galectins are a family of animal lectins defined by their β-galactoside-binding specificity and a consensus sequence in their carbohydrate-recognition domain. Galectin-1 (Gal-1) is expressed as a non-covalently linked homodimer present in a variety of tissues. Here we describe its isolation from human platelets by a procedure involving ionic exchange chromatography and affinity chromatography on lactose-agarose. Platelet Gal-1 co-purifies with actin, forming an actin-Gal-1 complex which does no dissociate even after treatment with sodium dodecyl sulfate. The presence of both proteins was confirmed by Western blot and by trypsin digestion followed by mass spectrometry identification. By hemagglutination assays we studied the response of recombinant Gal-1/actin, mixed and pre-incubated in different proportions, and then tested against neuraminidase treated rabbit red blood cells. The complex formation was confirmed by confocal microscopy, showing that both proteins co-localised in resting platelets as well as in thrombin-activated ones. These results suggest that endogenous Gal-1 forms an intracellular complex with monomeric actin and that, after platelet activation, Gal-1 could play a role in the polymerization-depolymerization process of actin, which concludes in platelet aggregation.
Collapse
Affiliation(s)
- M M González
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900, La Plata, Argentina
| | | | | | | |
Collapse
|
141
|
Sattler S, Ghadially H, Hofer E. Evolution of the C-type lectin-like receptor genes of the DECTIN-1 cluster in the NK gene complex. ScientificWorldJournal 2012; 2012:931386. [PMID: 22550468 PMCID: PMC3322459 DOI: 10.1100/2012/931386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/29/2011] [Indexed: 01/24/2023] Open
Abstract
Pattern recognition receptors are crucial in initiating and shaping innate and adaptive immune responses and often belong to families of structurally and evolutionarily related proteins. The human C-type lectin-like receptors encoded in the DECTIN-1 cluster within the NK gene complex contain prominent receptors with pattern recognition function, such as DECTIN-1 and LOX-1. All members of this cluster share significant homology and are considered to have arisen from subsequent gene duplications. Recent developments in sequencing and the availability of comprehensive sequence data comprising many species showed that the receptors of the DECTIN-1 cluster are not only homologous to each other but also highly conserved between species. Even in Caenorhabditis elegans, genes displaying homology to the mammalian C-type lectin-like receptors have been detected. In this paper, we conduct a comprehensive phylogenetic survey and give an up-to-date overview of the currently available data on the evolutionary emergence of the DECTIN-1 cluster genes.
Collapse
Affiliation(s)
- Susanne Sattler
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria.
| | | | | |
Collapse
|
142
|
Yang J, Wei X, Liu X, Xu J, Yang D, Yang J, Fang J, Hu X. Cloning and transcriptional analysis of two sialic acid-binding lectins (SABLs) from razor clam Solen grandis. FISH & SHELLFISH IMMUNOLOGY 2012; 32:578-585. [PMID: 22281611 DOI: 10.1016/j.fsi.2012.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
Sialic acid-binding lectin (SABL) plays crucial role in both innate and adaptive immune responses benefiting from its predominant affinity toward glycan. In the present study, two SABLs from razor clam Solen grandis (designated as SgSABL-1 and SgSABL-2) were identified, and their expression patterns, both in tissues and towards microorganism glycan stimulation, were then characterized. The cDNA of SgSABL-1 and SgSABL-2 was 988 and 1281 bp, containing an open reading frame (ORF) of 744 and 570 bp, respectively, and deduced amino acid sequences showed high similarity to other invertebrates SABLs. Both SgSABL-1 and SgSABL-2 encoded a C1q domain. SgSABL-1 and SgSABL-2 were found to be constitutively expressed in a wide range of tissues with different levels, including mantle, gill, gonad, hemocyte, muscle, and hepatopancreas, and both of them were highly expressed in hepatopancreas. SgSABL-1 and SgSABL-2 could be significantly induced after razor clams were stimulated by acetylated subunits-containing glycan LPS and PGN, suggesting the two SgSABLs might perform potential function of glycan recognition. In addition, SgSABL-2 could also be induced by β-1,3-glucan. All these results indicated that SgSABL-1 and SgSABL-2 might be involved in the immune response against microbe infection and contributed to the pathogens recognition.
Collapse
Affiliation(s)
- Jialong Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Gingras AR, Girija UV, Keeble AH, Panchal R, Mitchell DA, Moody PCE, Wallis R. Structural basis of mannan-binding lectin recognition by its associated serine protease MASP-1: implications for complement activation. Structure 2012; 19:1635-43. [PMID: 22078562 DOI: 10.1016/j.str.2011.08.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/04/2011] [Accepted: 08/17/2011] [Indexed: 01/19/2023]
Abstract
Complement activation contributes directly to health and disease. It neutralizes pathogens and stimulates immune processes. Defects lead to immunodeficiency and autoimmune diseases, whereas inappropriate activation causes self-damage. In the lectin and classical pathways, complement is triggered upon recognition of a pathogen by an activating complex. Here we present the first structure of such a complex in the form of the collagen-like domain of mannan-binding lectin (MBL) and the binding domain of its associated protease (MASP-1/-3). The collagen binds within a groove using a pivotal lysine side chain that interacts with Ca(2+)-coordinating residues, revealing the essential role of Ca(2+). This mode of binding is prototypic for all activating complexes of the lectin and classical pathways, and suggests a general mechanism for the global changes that drive activation. The structural insights reveal a new focus for inhibitors and we have validated this concept by targeting the binding pocket of the MASP.
Collapse
|
144
|
Wang L, Wang L, Yang J, Zhang H, Huang M, Kong P, Zhou Z, Song L. A multi-CRD C-type lectin with broad recognition spectrum and cellular adhesion from Argopectenirradians. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:591-601. [PMID: 22037539 DOI: 10.1016/j.dci.2011.10.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/11/2011] [Accepted: 10/02/2011] [Indexed: 05/31/2023]
Abstract
C-type lectins are a superfamily of Ca(2+)-dependent carbohydrate-recognition proteins which play significant roles as pattern recognition receptors (PRRs) in the innate immunity. In this study, a novel C-type lectin with four dissimilar carbohydrate-recognition domains (CRDs) was identified from Argopectenirradians (designated as AiCTL-9). The full-length cDNA of AiCTL-9 was of 2291 bp with an open reading frame of 1827 bp encoding a polypeptide of 608 amino acids with a signal sequence and four CRDs. The motifs determining carbohydrate binding specificity in each CRD of AiCTL-9 were different, and they were YPT in CRD1, EPD in CRD2, EPN in CRD3 and QPN in CRD4, respectively. All the four CRDs shared the similar potential tertiary structure of a typical double-loop structure with Ca(2+)-binding site 2 in the long loop region and two conserved disulfide bridges at the bases of the loops. The mRNA transcripts of AiCTL-9 were mainly detected in hepatopancreas as well as gonad, and also marginally detectable in mantle, adductor, gill and hemocytes. Its relative expression level in hemocytes was significantly up-regulated after the challenges of fungi PichiapastorisGS115 (P<0.05), Gram-positive bacteria Micrococcusluteus (P<0.05) and Gram-negative bacteria Vibrioanguillarum (P<0.01). The recombinant AiCTL-9 (rAiCTL-9) could bind various PAMPs, including LPS, PGN, mannan and glucan, and also displayed agglutinating activity to fungi P. pastorisGS115, Gram-positive bacteria Bacillussubtilis and Gram-negative bacteria EscherichiacoliTOP10F' as well as V. anguillarum in a Ca(2+) dependent manner. Moreover, rAiCTL-9 could initiate the cellular adhesion of hemocytes and enhance their encapsulation invitro. All these results implied that AiCTL-9 was a novel PRR involved in immune response of scallop against a large number of pathogens by recognizing different PAMPs and enhancing scallop hemocytes encapsulation.
Collapse
Affiliation(s)
- Leilei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Miller A, Phillips A, Gor J, Wallis R, Perkins SJ. Near-planar solution structures of mannose-binding lectin oligomers provide insight on activation of lectin pathway of complement. J Biol Chem 2012; 287:3930-45. [PMID: 22167201 PMCID: PMC3281675 DOI: 10.1074/jbc.m111.320341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/01/2011] [Indexed: 12/03/2022] Open
Abstract
The complement system is a fundamental component of innate immunity that orchestrates complex immunological and inflammatory processes. Complement comprises over 30 proteins that eliminate invading microorganisms while maintaining host cell integrity. Protein-carbohydrate interactions play critical roles in both the activation and regulation of complement. Mannose-binding lectin (MBL) activates the lectin pathway of complement via the recognition of sugar arrays on pathogenic surfaces. To determine the solution structure of MBL, synchrotron x-ray scattering and analytical ultracentrifugation experiments showed that the carbohydrate-recognition domains in the MBL dimer, trimer, and tetramer are positioned close to each other in near-planar fan-like structures. These data were subjected to constrained modeling fits. A bent structure for the MBL monomer was identified starting from two crystal structures for its carbohydrate-recognition domain and its triple helical region. The MBL monomer structure was used to identify 10-12 near-planar solution structures for each of the MBL dimers, trimers, and tetramers starting from 900 to 6,859 randomized structures for each. These near-planar fan-like solution structures joined at an N-terminal hub clarified how the carbohydrate-recognition domain of MBL binds to pathogenic surfaces. They also provided insight on how MBL presents a structural template for the binding and auto-activation of the MBL-associated serine proteases to initiate the lectin pathway of complement activation.
Collapse
Affiliation(s)
- Ami Miller
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London, WC1E 6BT and
| | - Anna Phillips
- the Department of Infection, Immunity, and Inflammation, Medical Science Building, University of Leicester, University Road, Leicester, LE1 9HN, United Kingdom
| | - Jayesh Gor
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London, WC1E 6BT and
| | - Russell Wallis
- the Department of Infection, Immunity, and Inflammation, Medical Science Building, University of Leicester, University Road, Leicester, LE1 9HN, United Kingdom
| | - Stephen J. Perkins
- From the Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London, WC1E 6BT and
| |
Collapse
|
146
|
Kamiya Y, Satoh T, Kato K. Molecular and structural basis for N-glycan-dependent determination of glycoprotein fates in cells. Biochim Biophys Acta Gen Subj 2012; 1820:1327-37. [PMID: 22240168 DOI: 10.1016/j.bbagen.2011.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/27/2011] [Accepted: 12/27/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND N-linked oligosaccharides operate as tags for protein quality control, consigning glycoproteins to different fates, i.e. folding in the endoplasmic reticulum (ER), vesicular transport between the ER and the Golgi complex, and ER-associated degradation of glycoproteins, by interacting with a panel of intracellular lectins in the early secretory pathway. SCOPE OF REVIEW This review summarizes the current state of knowledge regarding the molecular and structural basis for glycoprotein-fate determination in cells that is achieved through the actions of the intracellular lectins and its partner proteins. MAJOR CONCLUSIONS Cumulative frontal affinity chromatography (FAC) data demonstrated that the intracellular lectins exhibit distinct sugar-binding specificity profiles. The glycotopes recognized by these lectins as fate determinants are embedded in the triantennary structures of the high-mannose-type oligosaccharides and are exposed upon trimming of the outer glucose and mannose residues during the N-glycan processing pathway. Furthermore, recently emerged 3D structural data offer mechanistic insights into functional interplay between an intracellular lectin and its binding partner in the early secretory pathway. GENERAL SIGNIFICANCE Structural biology approaches in conjunction with FAC methods provide atomic pictures of the mechanisms behind the glycoprotein-fate determination in cells. This article is a part of a Special issue entitled: Glycoproteomics.
Collapse
Affiliation(s)
- Yukiko Kamiya
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | | | | |
Collapse
|
147
|
Abstract
Synapse formation is driven by precisely orchestrated intercellular communication between the presynaptic and the postsynaptic cell, involving a cascade of anterograde and retrograde signals. At the neuromuscular junction (NMJ), both neuron and muscle secrete signals into the heavily glycosylated synaptic cleft matrix sandwiched between the two synapsing cells. These signals must necessarily traverse and interact with the extracellular environment, for the ligand-receptor interactions mediating communication to occur. This complex synaptomatrix, rich in glycoproteins and proteoglycans, comprises heterogeneous, compartmentalized domains where specialized glycans modulate trans-synaptic signaling during synaptogenesis and subsequent synapse modulation. The general importance of glycans during development, homeostasis and disease is well established, but this important molecular class has received less study in the nervous system. Glycan modifications are now understood to play functional and modulatory roles as ligands and co-receptors in numerous tissues; however, roles at the synapse are relatively unexplored. We highlight here properties of synaptomatrix glycans and glycan-interacting proteins with key roles in synaptogenesis, with a particular focus on recent advances made in the Drosophila NMJ genetic system. We discuss open questions and interesting new findings driving this investigation of complex, diverse, and largely understudied glycan mechanisms at the synapse.
Collapse
Affiliation(s)
- Neil Dani
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|
148
|
Wei X, Liu X, Yang J, Fang J, Qiao H, Zhang Y, Yang J. Two C-type lectins from shrimp Litopenaeus vannamei that might be involved in immune response against bacteria and virus. FISH & SHELLFISH IMMUNOLOGY 2012; 32:132-140. [PMID: 22094589 DOI: 10.1016/j.fsi.2011.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
C-type lectins play crucial roles in innate immunity to recognize and eliminate pathogens efficiently. In the present study, two C-type lectins from shrimp Litopenaeus vannamei (designated as LvLectin-1 and LvLectin-2) were identified, and their expression patterns, both in tissues and toward pathogen stimulation, were then characterized. The full-length cDNA of LvLectin-1 and LvLectin-2 was 567 and 625 bp, containing an open reading frame (ORF) of 471 and 489 bp, respectively, and deduced amino acid sequences showed high similarity to other members of C-type lectin superfamily. Both two C-type lectins encoded a single carbohydrate-recognition domain (CRD). The motif of Ca(2+) binding site 2 in CRD, which determined carbohydrate-binding specificity, was QPN (Gln(122)-Pro(123)-Asn(124)) in LvLectin-1, but QPD (Gln(128)-Pro(129)-Asp(130)) in LvLectin-2. Two C-type lectins exhibited similar tissue expression pattern, for their mRNA were both constitutively expressed in all tested tissues, including hepatopancreas, muscle, gill, hemocytes, gonad and heart, furthermore they were both mostly expressed in hepatopancreas, though the expression level of LvLectin-2 was much higher than LvLectin-1. The expression level of two C-type lectins mRNA in hemocytes varied greatly after the challenge of Listonella anguillarum or WSSV. After L. anguillarum challenge, the expression of both C-type lectins were significantly (P<0.01) up-regulated compared with blank group, and LvLectin-1 exhibited higher level than LvLectin-2; while after the stimulation of WSSV, the expression of LvLectin-2 was significantly up-regulated at 6 h (P<0.01) and 12 h (P<0.05), but the expression level of LvLectin-1 down-regulated significantly (P<0.01) to 0.4-fold at 6 and 12 h post-stimulation. The results indicated that the two C-type lectins might be involved in immune response toward pathogen infection, and they might perform different recognition specificity toward bacteria or virus.
Collapse
Affiliation(s)
- Xiumei Wei
- Shandong Marine Fisheries Research Institute, Yantai 264006, China
| | | | | | | | | | | | | |
Collapse
|
149
|
Vizzini A, Parrinello D, Sanfratello MA, Salerno G, Cammarata M, Parrinello N. Inducible galectins are expressed in the inflamed pharynx of the ascidian Ciona intestinalis. FISH & SHELLFISH IMMUNOLOGY 2012; 32:101-109. [PMID: 22085774 DOI: 10.1016/j.fsi.2011.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/14/2011] [Accepted: 10/23/2011] [Indexed: 05/31/2023]
Abstract
Although ascidians belong to a key group in chordate phylogenesis, amino acid sequences of Ciona intestinalis galectin-CRDs (CiLgals-a and -b) have been retained too divergent from vertebrate galectins. In the present paper, to contribute in disclosing Bi-CRD galectin evolution a novel attempt was carried out on CiLgals-a and -b CRDs phylogenetic analysis, and their involvement in ascidian inflammatory responses was shown. CiLgals resulted aligned with Bi-CRD galectins from vertebrates (Xenopus tropicalis, Gallus gallus, Mus musculus, Homo sapiens), cephalochordates (Branchiostoma floridae), echinoderms (Strongylocentrotus purpuratus) and a mono-CRD galectin from the ascidian Clavelina picta. The CiLgals-a N-terminal and C-terminal CRDs contain the signature sequence involved in carbohydrate binding, whereas the CiLgals-b C-CRD presents only three out of seven key aminoacids and it could not be suitable as sugar binding motif. Sequence similarity between clusters suggests an evolutionary model based on CRD domain gene duplication and sequence diversification. In particular CiLgals-b N-CRD and C-CRD were similar to each other and both grouped with the ascidian C. picta mono-CRD. Homology modeling process shows a CiLgals molecular structure superimposed to chicken and mouse galectins. The CiLgals-a and CiLgals-b genes were upregulated by LPS inoculation suggesting that they are inducible and expressed in the inflamed pharynx as revealed by real-time PCR analysis. Finally, in situ hybridization and immunohistochemical assays showed their localization in the inflamed tissues, while immunoblotting analysis indicated that CiLgals can form oligomers.
Collapse
Affiliation(s)
- Aiti Vizzini
- Department of Environmental Biology and Biodiversity, Laboratory of Marine Immunobiology, University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
| | | | | | | | | | | |
Collapse
|
150
|
Pujic P, Fournier P, Alloisio N, Hay AE, Maréchal J, Anchisi S, Normand P. Lectin genes in the Frankia alni genome. Arch Microbiol 2011; 194:47-56. [PMID: 22159868 DOI: 10.1007/s00203-011-0770-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 11/07/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
Frankia alni strain ACN14a's genome was scanned for the presence of determinants involved in interactions with its host plant, Alnus spp. One such determinant type is lectin, proteins that bind specifically to sugar motifs. The genome of F. alni was found to contain 7 such lectin-coding genes, five of which were of the ricinB-type. The proteins coded by these genes contain either only the lectin domain, or also a heat shock protein or a serine-threonine kinase domain upstream. These lectins were found to have several homologs in Streptomyces spp., and a few in other bacterial genomes among which none in Frankia EAN1pec and CcI3 and two in strain EUN1f. One of these F. alni genes, FRAAL0616, was cloned in E. coli, fused with a reporter gene yielding a fusion protein that was found to bind to both root hairs and to bacterial hyphae. This protein was also found to modify the dynamics of nodule formation in A. glutinosa, resulting in a higher number of nodules per root. Its role could thus be to permit binding of microbial cells to root hairs and help symbiosis to occur under conditions of low Frankia cell counts such as in pioneer situations.
Collapse
Affiliation(s)
- Petar Pujic
- Ecologie Microbienne, UMR5557 CNRS, Universite Lyon, Universite Lyon1, 16 rue Dubois, 69622 Villeurbanne cedex, France.
| | | | | | | | | | | | | |
Collapse
|