101
|
Wang S, Yang C, Zhao Y, Lai H, Zhang L, Gong Q. Sex-linked neurofunctional basis of psychological resilience in late adolescence: a resting-state functional magnetic resonance imaging study. Eur Child Adolesc Psychiatry 2020; 29:1075-1087. [PMID: 31641900 DOI: 10.1007/s00787-019-01421-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/10/2019] [Indexed: 02/05/2023]
Abstract
Psychological resilience refers to the ability to adapt effectively in the face of adversity, which is closely related to an individual's psychological and physical health and well-being. Although previous behavioural studies have shown sex differences in psychological resilience, little is known about the neural basis of sex differences in psychological resilience. Here, we measured amplitude of low-frequency fluctuations (ALFF) via resting-state functional magnetic resonance imaging to investigate the sex-linked neurofunctional basis of psychological resilience in 231 healthy adolescents. At the behavioural level, we replicated previous findings indicating that males are more resilient than females. At the neural level, we found sex differences in the relationship between psychological resilience and ALFF in the right orbitofrontal cortex (OFC). Specifically, males showed a positive correlation between psychological resilience and ALFF in the right OFC, while females showed a negative correlation in this region. The sex-specific association between psychological resilience and spontaneous brain activity might be dependent on differences in hormonal systems and brain development between male and female adolescents. Taken together, the results of our study might provide the first evidence of sex-specific neurofunctional substrates of psychological resilience in adolescents, emphasizing the vital role of sex effects in future psychological resilience-related studies.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, People's Republic of China
| | - Cheng Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Han Lai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lei Zhang
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China. .,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, People's Republic of China. .,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, People's Republic of China.
| |
Collapse
|
102
|
Chen K, Azeez A, Chen DY, Biswal BB. Resting-State Functional Connectivity: Signal Origins and Analytic Methods. Neuroimaging Clin N Am 2020; 30:15-23. [PMID: 31759568 DOI: 10.1016/j.nic.2019.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Resting state functional connectivity (RSFC) has been widely studied in functional magnetic resonance imaging (fMRI) and is observed by a significant temporal correlation of spontaneous low-frequency signal fluctuations (SLFs) both within and across hemispheres during rest. Different hypotheses of RSFC include the biophysical origin hypothesis and cognitive origin hypothesis, which show that the role of SLFs and RSFC is still not completely understood. Furthermore, RSFC and age studies have shown an "age-related compensation" phenomenon. RSFC data analysis methods include time domain analysis, seed-based correlation, regional homogeneity, and principal and independent component analyses. Despite advances in RSFC, the authors also discuss challenges and limitations, ranging from head motion to methodological limitations.
Collapse
Affiliation(s)
- Kai Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Azeezat Azeez
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA
| | - Donna Y Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA.
| |
Collapse
|
103
|
Masaki Y, Kashiwagi Y, Rokugawa T, Ito M, Iimori H, Abe K. Pharmacological MRI responses of raclopride in rats: The relationship with D2 receptor occupancy and cataleptic behavior. Synapse 2020; 74:e22180. [PMID: 32644234 DOI: 10.1002/syn.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 11/08/2022]
Abstract
Pharmacological magnetic resonance imaging (phMRI) allows the visualization of brain pharmacological effects of drugs using functional MRI (fMRI). phMRI can help us facilitate central nervous system (CNS) drug development. However, there have been few studies demonstrating the dose relationship of the fMRI response induced by CNS drugs to underlying target engagement or behavioral efficacy. To clarify these relationships, we examined receptor occupancy measurements using positron emission tomography (PET) (n = 3~5), fMRI (n = 5~8) and a cataleptic behavior (n = 6) with raclopride, a dopamine D2 receptor antagonist (8, 20, and 200 μg/kg) on Wistar rats. Dopamine D2 receptor occupancy was increased dose dependently by raclopride (41.8 ± 2.7%, 8 μg/kg; 64.9 ± 2.8%, 20 μg/kg; 83.1 ± 3.0%, 200 μg/kg). phMRI study revealed significant positive responses to raclopride at 200 μg/kg specifically in the striatum and nucleus accumbens, related to dopaminergic system. Slight fMRI responses were observed at 20 μg/kg in some areas corresponding to the striatum and nucleus accumbens. There were no noticeable fMRI responses at 8 μg/kg raclopride administration. Raclopride at 200 μg/kg significantly increased the cataleptic score, although, at 8 and 20 μg/kg, raclopride had no significant effects. These findings showed that raclopride-induced fMRI responses were observed at doses inducing cataleptic behavior and high D2 receptor occupancy, suggesting that phMRI can be useful for dose selection in clinical trial as an evaluation method of brain activity, which reflects behavioral responses induced by target engagements.
Collapse
Affiliation(s)
- Yukiko Masaki
- Imaging Biomarker, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Yuto Kashiwagi
- Imaging Biomarker, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Takemi Rokugawa
- Imaging Biomarker, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Miwa Ito
- Imaging Biomarker, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Hitoshi Iimori
- Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Kohji Abe
- Imaging Biomarker, Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
104
|
Hu X, Zhang L, Bu X, Li H, Gao Y, Lu L, Tang S, Wang Y, Huang X, Gong Q. White matter disruption in obsessive-compulsive disorder revealed by meta-analysis of tract-based spatial statistics. Depress Anxiety 2020; 37:620-631. [PMID: 32275111 DOI: 10.1002/da.23008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/29/2020] [Accepted: 03/10/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Exploring white matter (WM) microstructural alterations is a momentous step for gaining insights about underlying mechanisms of obsessive-compulsive disorder (OCD) and improving the efficacy of therapies for this condition. Many tract-based spatial statistics (TBSS) studies have revealed abnormalities of fractional anisotropy (FA; an index of WM integrity) in OCD. However, research works have not drawn robust conclusions. Therefore, we integrated the findings of TBSS studies to identify the most consistent FA changes in OCD using meta-analytical approach. METHODS Online databases were systematically searched for all TBSS studies comparing FA between patients with OCD and controls. A coordinate-based meta-analysis was performed using anisotropic effect size version of the seed-based d mapping software. Meanwhile, meta-regression was used to explore the potential association of clinical characteristics with regional FA abnormalities. RESULTS Our meta-analysis included 488 OCD patients and 519 controls across 17 datasets. FA reductions were identified in the genu of the corpus callosum and the left orbitofrontal WM in OCD patients relative to controls. Metaregression analyses showed that the FA in the left orbitofrontal WM was negatively and independently correlated with symptom severity and illness duration in patients with OCD. CONCLUSIONS The current study provides a quantitative overview of TBSS findings in OCD and demonstrates the most prominent and replicable WM abnormalities in OCD are in the anterior part of the brain including interhemispheric connection and orbitofrontal region. Additionally, our findings suggest that FA reduction in the orbitofrontal WM might be a potential biomarker in predicting disease severity and progression in patients with OCD.
Collapse
Affiliation(s)
- Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xuan Bu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shi Tang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yanlin Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
105
|
Wang S, Zhao Y, Li J, Lai H, Qiu C, Pan N, Gong Q. Neurostructural correlates of hope: dispositional hope mediates the impact of the SMA gray matter volume on subjective well-being in late adolescence. Soc Cogn Affect Neurosci 2020; 15:395-404. [PMID: 32378710 PMCID: PMC7308655 DOI: 10.1093/scan/nsaa046] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023] Open
Abstract
There has been increasing interest in identifying factors to predict subjective well-being in the emerging field of positive psychology over the past two decades. Dispositional hope, which reflects one's goal-directed tendencies, including both pathway thinking (planning to meet goals) and agency thinking (goal-directed determination), has emerged as a stable predictor for subjective well-being. However, the neurobiological substrates of dispositional hope and the brain-hope mechanism for predicting subjective well-being remain unclear. Here, we examined these issues in 231 high school graduates within the same grade by estimating cortical gray matter volume (GMV) utilizing a voxel-based morphometry method based on structural magnetic resonance imaging. Whole-brain regression analyses and prediction analyses showed that higher dispositional hope was stably associated with greater GMV in the left supplementary motor area (SMA). Furthermore, mediation analyses revealed that dispositional hope mediated the relation between left SMA volume and subjective well-being. Critically, our results were obtained after adjusting for age, sex, family socioeconomic status and total GMV. Altogether, our study presents novel evidence for the neuroanatomical basis of dispositional hope and suggests an underlying indirect effect of dispositional hope on the link between brain gray matter structure and subjective well-being.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), the Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu 610036, China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest Minzu University, Chengdu 610041, China
| | - Jingguang Li
- College of Teacher Education, Dali University, Dali 671003, China
| | - Han Lai
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), the Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chen Qiu
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Psychology, The Faculty of Social Science, The University of Hong Kong, Pokfulam 999077, Hong Kong
| | - Nanfang Pan
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), the Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), the Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu 610036, China
| |
Collapse
|
106
|
Hu N, Sun H, Fu G, Zhang W, Xiao Y, Zhang L, Li W, Li Z, Huang G, Tan Y, Sweeney JA, Gong Q, Lui S. Anatomic abnormalities of hippocampal subfields in never-treated and antipsychotic-treated patients with long-term schizophrenia. Eur Neuropsychopharmacol 2020; 35:39-48. [PMID: 32402652 DOI: 10.1016/j.euroneuro.2020.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023]
Abstract
Hippocampal volume deficits have been reported in chronically-treated schizophrenia patients, however, the longer-term effects of antipsychotic medications on hippocampal anatomy are unclear. This case-control study investigated volume differences in hippocampal subfields of never-treated and antipsychotic-treated patients with long-term schizophrenia. High spatial-resolution T1-weighted magnetic resonance images were collected from 29 never-treated and 40 antipsychotic-treated patients with long-term schizophrenia matched for illness duration (all ≥ 5 years), and 40 demographically-matched healthy controls. Hippocampal subfield volumes were measured using FreeSurfer v6.0, compared across groups and between hemispheres, and correlated with clinical features. Volume reductions were found in both patient groups compared to healthy controls in 8 of 26 hippocampal subfields (Cohen's d = 0.46 - 1.17, P = < .001 - .03), and more diffusely and obviously in never-treated than treated patients (Cohen's d = 0.50 - 0.90, P = < .001 - .04). Greater right-than-left volumes were seen in treated patients and healthy controls in 11 of 13 subfields (T = 2.30 - 7.29, P = < .001 - .03), but not in never-treated patients, in whom the volumes were reduced more on the right than on the left. Subfield volumes were negatively correlated with symptom severity and illness duration, and declined with age in never-treated patients. Findings indicate clinically-relevant and age-related volume reductions in hippocampal subfields of never-treated patients with long-term schizophrenia. Broader and greater subfield deficits in never-treated than treated patients, especially in the right hippocampus, suggest that long-term antipsychotic treatment may benefit hippocampal structures over the longer-term course of illness.
Collapse
Affiliation(s)
- Na Hu
- Department of Radiology, West China Hospital of Sichuan University, No 37, Guoxue Alley, Chengdu 610041, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Gui Fu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhe Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Guoping Huang
- Department of Psychiatry, The Mental Health Center of Sichuan, Mianyang, China
| | - Youguo Tan
- Department of Psychiatry, Zigong Mental Health Center, Zigong, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
107
|
Characteristics of gray matter alterations in never-treated and treated chronic schizophrenia patients. Transl Psychiatry 2020; 10:136. [PMID: 32398765 PMCID: PMC7217843 DOI: 10.1038/s41398-020-0828-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
Though gray matter deficits have been consistently revealed in chronic treated schizophrenia, it is still not clear whether there are different brain alterations between chronic never treated and treated patients. To explore the different patterns of gray matter alterations among chronic never treated patients and those treated with monotherapy, we recruited 35 never-treated chronic schizophrenia patients with illness durations ranging from 5 to 48 years, 20 illness duration-matched risperidone monotherapy and 20 clozapine monotherapy patients, and 55 healthy controls. GM (surface area, cortical thickness, and cortical volume) measures were extracted and compared using ANCOVA across the four groups followed by post hoc tests. Relative to controls, both treated and never-treated chronic schizophrenia patients showed reduced GM mainly involving the bilateral medial and rostral middle frontal, left banks superior temporal sulcus, left fusiform, and left pericalcarine cortex and increased in the left cuneus. Compared with the untreated patient group, the two treated groups showed reductions mainly in the bilateral prefrontal, temporal, and left inferior parietal lobules. The clozapine monotherapy patients demonstrated more severe decreases in the bilateral prefrontal cortex and left cuneus and less severe decreases in the left ventral temporal lobe than risperidone monotherapy patients. These findings provide new insights into the long-term effects of antipsychotic treatment on gray matter alterations in schizophrenia patients. Furthermore, the characteristic findings of reductions in the inferior parietal lobule might be specific for long-term antipsychotic treatment, which could be a possible target for medication development in the future.
Collapse
|
108
|
Lai H, Wang S, Zhao Y, Qiu C, Gong Q. Neurostructural correlates of optimism: Gray matter density in the putamen predicts dispositional optimism in late adolescence. Hum Brain Mapp 2020; 41:1459-1471. [PMID: 31816149 PMCID: PMC7267983 DOI: 10.1002/hbm.24888] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023] Open
Abstract
Dispositional optimism reflects one's generalized positive expectancies for future outcomes and plays a crucial role in personal developmental outcomes and health (e.g., counteracting related mental disorders such as depression and anxiety). Increasing evidence has suggested that extraversion is an important personality factor contributing to dispositional optimism. However, less is known about the association between dispositional optimism and brain structure and the role of extraversion in this association. Here, we examined these issues in 231 healthy high school students aged 16 to 20 years (110 males, mean age = 18.48 years, SD = 0.54) by estimating regional gray matter density (rGMD) using a voxel-based morphometry method via structural magnetic resonance imaging. Whole-brain regression analyses revealed a significant positive correlation between dispositional optimism and the rGMD of the bilateral putamen after adjusting for age, sex, family socioeconomic status (SES), general intelligence, and total gray matter volume (TGMV). Moreover, prediction analyses using fourfold balanced cross-validation combined with linear regression confirmed a significant connection between dispositional optimism and putamen density after adjusting for age, sex, and family SES. More importantly, subsequent mediation analysis showed that extraversion may account for the association between putamen density and dispositional optimism after adjusting for age, sex, family SES, general intelligence, TGMV, and the other four Big Five personality traits. Taken together, the current study provides new evidence regarding the neurostructural basis underlying dispositional optimism in adolescents and underscores the importance of extraversion as an essential personality factor for dispositional optimism acquisition.
Collapse
Affiliation(s)
- Han Lai
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011)West China Hospital of Sichuan UniversityChengduChina
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011)West China Hospital of Sichuan UniversityChengduChina
| | - Yajun Zhao
- School of Sociology and PsychologySouthwest Minzu UniversityChengduChina
| | - Chen Qiu
- Department of Psychology, The Faculty of Social ScienceThe University of Hong KongPokfulamHong Kong
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of RadiologyWest China Hospital of Sichuan UniversityChengduChina
- Department of RadiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011)West China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
109
|
Zhu DM, Zhang C, Yang Y, Zhang Y, Zhao W, Zhang B, Zhu J, Yu Y. The relationship between sleep efficiency and clinical symptoms is mediated by brain function in major depressive disorder. J Affect Disord 2020; 266:327-337. [PMID: 32056895 DOI: 10.1016/j.jad.2020.01.155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/29/2019] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sleep disturbance is a common and key symptom that affects most of patients with major depressive disorder (MDD). However, neural substrates underlying sleep disturbance and their clinical relevance in depression remain unclear. METHODS Ninety-six MDD patients underwent resting-state functional MRI. Fractional amplitude of low-frequency fluctuation (fALFF) and resting-state functional connectivity (rsFC) were used to measure brain function. Overnight polysomnography was performed to objectively measure sleep efficiency (SE), which was used to classify patients into normal sleep efficiency (NSE) and low sleep efficiency (LSE) groups. Between-group differences in fALFF and rsFC were examined using two-sample t-tests. Moreover, correlation and mediation analyses were conducted to test for potential associations between SE, brain functional changes, and clinical variables. RESULTS LSE group showed decreased fALFF in right cuneus, thalamus, and middle temporal gyrus compared to NSE group. MDD patients with low SE also exhibited lower rsFC of right cuneus to right lateral temporal cortex, which was associated with more severe depression and anxiety symptoms. More importantly, mediation analyses revealed that the relationships between SE and severity of depression and anxiety symptoms were significantly mediated by the altered rsFC. In addition, these low SE-related brain functional alterations were not affected by antidepressant medication and were independent of structural changes. LIMITATIONS The lack of healthy controls because of "first-night effect". CONCLUSION These findings not only may expand existing knowledge about neuropathology of sleep disturbance in depression, but also may inform real-world clinical practice by improving depression and anxiety symptoms through sleep regulation.
Collapse
Affiliation(s)
- Dao-Min Zhu
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Yu Zhang
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230022, China; Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Biao Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China.
| |
Collapse
|
110
|
Zhang S, Wang W, Su X, Li L, Yang X, Su J, Tan Q, Zhao Y, Sun H, Kemp GJ, Gong Q, Yue Q. White Matter Abnormalities in Anorexia Nervosa: Psychoradiologic Evidence From Meta-Analysis of Diffusion Tensor Imaging Studies Using Tract Based Spatial Statistics. Front Neurosci 2020; 14:159. [PMID: 32194371 PMCID: PMC7063983 DOI: 10.3389/fnins.2020.00159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/11/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Anorexia nervosa (AN) is a debilitating illness whose neural basis remains unclear. Studies using tract-based spatial statistics (TBSS) with diffusion tensor imaging (DTI) have demonstrated differences in white matter (WM) microarchitecture in AN, but the findings are inconclusive and controversial. Objectives: To identify the most consistent WM abnormalities among previous TBSS studies of differences in WM microarchitecture in AN. Methods: By systematically searching online databases, a total of 11 datasets were identified, including 245 patients with AN and 246 healthy controls (HC). We used Seed-based d Mapping to analyze fractional anisotropy (FA) differences between AN patients and HC, and performed meta-regression analysis to explore the effects of clinical characteristics on WM abnormalities in AN. Results: The pooled results of all AN patients showed robustly lower FA in the corpus callosum (CC) and the cingulum compared to HC. These two regions preserved significance in the sensitivity analysis as well as in all subgroup analyses. Fiber tracking showed that the WM tracts primarily involved were the body of the CC and the cingulum bundle. Meta-regression analysis revealed that the body mass index and mean age were not linearly correlated with the lower FA. Conclusions: The most consistent WM microstructural differences in AN were in the interhemispheric connections and limbic association fibers. These common “targets” advance our understanding of the complex neural mechanisms underlying the puzzling symptoms of AN, and may help in developing early treatment approaches.
Collapse
Affiliation(s)
- Simin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Weina Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorui Su
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Lei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jingkai Su
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaoyue Tan
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
111
|
Yang Y, Zhu DM, Zhang C, Zhang Y, Wang C, Zhang B, Zhao W, Zhu J, Yu Y. Brain Structural and Functional Alterations Specific to Low Sleep Efficiency in Major Depressive Disorder. Front Neurosci 2020; 14:50. [PMID: 32082117 PMCID: PMC7005201 DOI: 10.3389/fnins.2020.00050] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/13/2020] [Indexed: 11/13/2022] Open
Abstract
Background Sleep disturbance is common in patients with major depressive disorder (MDD), but the exploration of its neural underpinnings is limited by subjective sleep measurement and single-modality neuroimaging analyses. Methods Ninety six patients with MDD underwent polysomnography examinations and multi-modal magnetic resonance imaging (MRI) scans. According to sleep efficiency, patients were subdivided into well-matched normal sleep efficiency (NSE, N = 42; 14 men; aged 43 ± 10 years) and low sleep efficiency (LSE, N = 54; 23 men; aged 45 ± 12 years) groups. Inter-group differences in brain structure and function were examined by applying voxel-based morphometry (VBM), regional homogeneity (ReHo) and functional connectivity strength (FCS), and tract-based spatial statistics (TBSS) approaches to structural, functional, and diffusion MRI data, respectively. Results There was no significant difference in gray matter volume (GMV) between the NSE and LSE groups. Compared with the NSE group, the LSE group showed increased axial diffusivity in the left superior and posterior corona radiata, and left posterior limb and retrolenticular part of internal capsule. In addition, the LSE group exhibited decreased ReHo in the bilateral lingual gyri and right postcentral gyrus yet increased FCS in the left angular gyrus relative to the NSE group. Moreover, validation analyses revealed that these results remained after adjusting for the medication effect. Conclusion Our data indicate that preserved gray matter morphology, impaired white matter integrity, and decreased local synchronization degree yet increased FCS are specific to low SE in MDD patients. These findings of disassociation between structural and functional alterations might provide insights into the neural mechanisms of sleep disturbance in depression.
Collapse
Affiliation(s)
- Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dao-Min Zhu
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Zhang
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Biao Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
112
|
Husain SF, Tang TB, Yu R, Tam WW, Tran B, Quek TT, Hwang SH, Chang CW, Ho CS, Ho RC. Cortical haemodynamic response measured by functional near infrared spectroscopy during a verbal fluency task in patients with major depression and borderline personality disorder. EBioMedicine 2020; 51:102586. [PMID: 31877417 PMCID: PMC6938854 DOI: 10.1016/j.ebiom.2019.11.047] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Functional near infrared spectroscopy (fNIRS) provides a direct and quantitative assessment of cortical haemodynamic function during a cognitive task. This functional neuroimaging modality may be used to elucidate the pathophysiology of psychiatric disorders, and identify neurophysiological differences between co-occurring psychiatric disorders. However, fNIRS research on borderline personality disorder (BPD) has been limited. Hence, this study aimed to compare cerebral haemodynamic function in healthy controls (HC), patients with major depressive disorder (MDD) and patients with BPD. METHODS fNIRS signals during a verbal fluency task designed for clinical assessment was recorded for all participants. Demographics, clinical history and symptom severity were also noted. FINDINGS Compared to HCs (n = 31), both patient groups (MDD, n = 31; BPD, n = 31) displayed diminished haemodynamic response in the frontal, temporal and parietal cortices. Moreover, haemodynamic response in the right frontal cortex is markedly lower in patients with MDD compared to patients with BPD. INTERPRETATION Normal cortical function in patients with BPD is disrupted, but not as extensively as in patients with MDD. These results provide further neurophysiological evidence for the distinction of patients with MDD from patients with BPD.
Collapse
Affiliation(s)
- Syeda F Husain
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tong-Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), University Teknologi PETRONAS, Perak, Malaysia
| | - Rongjun Yu
- Department of Psychology, Faculty of Arts and Social Science, National University of Singapore, Singapore
| | - Wilson W Tam
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bach Tran
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States; Institute for Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam; Center of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Travis T Quek
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shi-Hui Hwang
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cheryl W Chang
- Department of Psychological Medicine, National University Health System, Singapore
| | - Cyrus S Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Roger C Ho
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
113
|
Zhang Y, Yang Y, Zhu L, Zhu Q, Jia Y, Zhang L, Peng Q, Wang J, Liu J, Fan W, Wang J. Volumetric Deficit Within the Fronto-Limbic-Striatal Circuit in First-Episode Drug Naïve Patients With Major Depression Disorder. Front Psychiatry 2020; 11:600583. [PMID: 33551870 PMCID: PMC7854541 DOI: 10.3389/fpsyt.2020.600583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Depression is a major psychiatric disorder and the leading cause of disability worldwide. Previous evidence suggested certain pattern of structural alterations were induced by major depression disorder (MDD) with heterogeneity due to patients' clinical characteristics and proposed that early impairment of fronto-limbic-striatal circuit was involved. Yet the hypothesis couldn't be replicated fully. Accordingly, this study aimed to validate this hypothesis in a new set of first-episode, drug naïve MDD patients and further explore the neuroimaging biomarker of illness severity using whole-brain voxel-based morphometry (VBM). Materials and Methods: A total of 93 participants, 30 patients with first-episode medication-naïve MDD, and 63 healthy controls were enrolled in the study. VBM was applied to analyze differences in the gray matter volume (GMV) between these two groups. The correlation between the GMV of the identified brain regions and the severity of clinical symptoms quantified by the Hamilton Depression Scale (HAMD) was further conducted in the post-hoc analysis to confirm the role of GMV structural alteration in clinical symptoms. Results: Our results revealed that the brain gray matter volume of the prefrontal lobe, limbic system, striatum, cerebellum, temporal lobe, and bilateral lingual gyri were significantly decreased in MDD patients compared with healthy controls. Besides, the HAMD scores were negatively correlated with GMV of the right insula and positively correlated with that of the right lingual gyrus. Conclusions: Our findings provide robust evidence that gray matter structural abnormalities within the prefronto-limbic-striatal circuit are implicated in the pathophysiology of MDD at an early stage without confounding influence of medication status. Besides, our data suggest that the cerebellum, lingual gyrus, and fusiform gyrus should also be integrated into the brain alterations in MDD. Future synthesis of individual neuroimaging studies and more advanced statistical analysis comparing subfields of the aforementioned regions are warranted to further shed light on the neurobiology of the disease and assist in the diagnosis of this burdensome disorder.
Collapse
Affiliation(s)
- Yiran Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yun Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Jia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qinmu Peng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazheng Wang
- Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
114
|
Abstract
The application of personalized medicine to psychiatry is challenging. Psychoradiology could provide biomarkers based on objective tests in support of the diagnostic classifications and treatment planning. We review potential psychoradiological biomarkers for psychopharmaceutical effects. Although none of the biomarkers reviewed are yet of sufficient clinical utility to inform the selection of a specific pharmacologic compound for an individual patient, there is strong consensus that advanced multimodal approaches will contribute to discovery of novel treatment predictors in psychiatric disorders. Progress has been sufficient to warrant enthusiasm, in which application of neuroimaging-based biomarkers would represent a paradigm shift and modernization of psychiatric practice.
Collapse
|
115
|
Ivleva EI, Turkozer HB, Sweeney JA. Imaging-Based Subtyping for Psychiatric Syndromes. Neuroimaging Clin N Am 2019; 30:35-44. [PMID: 31759570 DOI: 10.1016/j.nic.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite considerable research evidence demonstrating significant neurobiological alterations in psychiatric disorders, incorporating neuroimaging approaches into clinical practice remains challenging. There is an urgent need for biologically validated psychiatric disease constructs that can inform diagnostic algorithms and targeted treatment development. In this article, we present a conceptual review of the most robust and impactful findings from studies that use neuroimaging methods in efforts to define distinct disease subtypes, while emphasizing cross-diagnostic and dimensional approaches. In addition, we discuss current challenges in psychoradiology and outline potential future strategies for clinically applicable translation.
Collapse
Affiliation(s)
- Elena I Ivleva
- Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, NC5, Dallas, TX 75390, USA.
| | - Halide B Turkozer
- Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, NC5, Dallas, TX 75390, USA
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati, 2600 Clifton Avenue, Cincinnati, OH 45221, USA
| |
Collapse
|
116
|
Abstract
In neuroimaging research, averaging data at the level of the group results in blurring of potentially meaningful individual differences. A more widespread use of an individual-specific approach is advocated for, which involves a more thorough investigation of each individual in a group, and characterization of idiosyncrasies at the level of behavior, cognition, and symptoms, as well as at the level of brain organization. It is hoped that such an approach, focused on individuals, will provide convergent findings that will help identify the underlying pathologic condition in various psychiatric disorders and help in the development of treatments individualized for each patient.
Collapse
Affiliation(s)
- Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129, USA.
| | - William J Liu
- Department of Neuroscience, Grossman Institute of Neurobiology, The College, University of Chicago, 5812 South Ellis Avenue, MC 0912, Suite P-400, Chicago, IL 60637, USA
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129, USA
| | - Louisa Dahmani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129, USA
| |
Collapse
|
117
|
Keshavan MS, Collin G, Guimond S, Kelly S, Prasad KM, Lizano P. Neuroimaging in Schizophrenia. Neuroimaging Clin N Am 2019; 30:73-83. [PMID: 31759574 DOI: 10.1016/j.nic.2019.09.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Schizophrenia is a chronic psychotic disorder with a lifetime prevalence of about 1%. Onset is typically in adolescence or early adulthood; characteristic symptoms include positive symptoms, negative symptoms, and impairments in cognition. Neuroimaging studies have shown substantive evidence of brain structural, functional, and neurochemical alterations that are more pronounced in the association cortex and subcortical regions. These abnormalities are not sufficiently specific to be of diagnostic value, but there may be a role for imaging techniques to provide predictions of outcome. Incorporating multimodal imaging datasets using machine learning approaches may offer better diagnostic and predictive value in schizophrenia.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA.
| | - Guusje Collin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA; University Medical Center Utrecht Brain Center, Heidelberglaan 100, Postbus 85500, 3508 GA, Utrecht, the Netherlands
| | - Synthia Guimond
- Department of Psychiatry, The Royal's Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Sinead Kelly
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA
| | - Konasale M Prasad
- University of Pittsburgh School of Medicine, Suite 279, 3811 O'Hara St, Pittsburgh, PA 15213, USA; Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Paulo Lizano
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA
| |
Collapse
|
118
|
Abstract
This review summarizes current knowledge obtained from psychoradiological studies of posttraumatic stress disorder (PTSD). We first focus on 3 key anatomic structures (hippocampus, amygdala, and medial prefrontal cortex) and the functional circuits to which they contribute. In addition, we discuss the triple-network model, a widely accepted neurobiological model of PTSD that explains the vast majority of neuroimaging findings, as well as their interactions and relationships to functional disruptions in PTSD.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Osamu Abe
- Department of Radiology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
119
|
Li F, Wu D, Lui S, Gong Q, Sweeney JA. Clinical Strategies and Technical Challenges in Psychoradiology. Neuroimaging Clin N Am 2019; 30:1-13. [PMID: 31759566 DOI: 10.1016/j.nic.2019.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Psychoradiology is an emerging discipline at the intersection between radiology and psychiatry. It holds promise for playing a role in clinical diagnosis, evaluation of treatment response and prognosis, and illness risk prediction for patients with psychiatric disorders. Addressing complex issues, such as the biological heterogeneity of psychiatric syndromes and unclear neurobiological mechanisms underpinning radiological abnormalities, is a challenge that needs to be resolved. With the advance of multimodal imaging and more efforts in standardization of image acquisition and analysis, psychoradiology is becoming a promising tool for the future of clinical care for patients with psychiatric disorders.
Collapse
Affiliation(s)
- Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China
| | - Dongsheng Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, No. 37 Guo Xue Lane, Chengdu 610041, China
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Suite 3200, 260 Stetson Street, Cincinnati, OH 45219, USA
| |
Collapse
|
120
|
Functional brain networks in never-treated and treated long-term Ill schizophrenia patients. Neuropsychopharmacology 2019; 44:1940-1947. [PMID: 31163450 PMCID: PMC6784906 DOI: 10.1038/s41386-019-0428-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023]
Abstract
This study compared the topological organization of brain function in never-treated and treated long-term schizophrenia patients. In a cross-sectional study, 21 never-treated schizophrenia patients with illness duration over 5 years, 26 illness duration-matched antipsychotic-treated patients and 24 demographically-matched healthy controls underwent a resting-state functional magnetic resonance imaging (MRI) scan. The topological properties of brain functional networks were compared across groups, and then we tested for differential age-related effects in regions with significant group differences. Both never-treated and antipsychotic-treated schizophrenia patient groups showed altered nodal centralities in left pre-/postcentral gyri relative to controls. Never-treated patients demonstrated reduced global efficacy, decreased nodal centralities in right amygdala/hippocampus and bilateral putamen/caudate relative to antipsychotic-treated patients and controls. No significant relationships of age and altered functional metrics were seen in either patient group, and no alterations were greater in the treated group. These findings provide insight into brain function deficits over the longer-term course of schizophrenia independent from potential effects of antipsychotic medication. The presence of greater alterations in never-treated than treated patients suggests that long-term antipsychotic treatment may partially protect or enhance brain global and nodal topological function over the course of schizophrenia, notably involving the amygdala, hippocampus, and striatum that have long been associated with the disorder.
Collapse
|
121
|
Psychiatrie, neurologie : faut-il revenir à la neuropsychiatrie ? Encephale 2019; 45:283-284. [DOI: 10.1016/j.encep.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023]
|
122
|
Huang X, Gong Q, Sweeney JA, Biswal BB. Progress in psychoradiology, the clinical application of psychiatric neuroimaging. Br J Radiol 2019; 92:20181000. [PMID: 31170803 PMCID: PMC6732936 DOI: 10.1259/bjr.20181000] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 02/05/2023] Open
Abstract
Psychoradiology is an emerging field that applies radiological imaging technologies to psychiatric conditions. In the past three decades, brain imaging techniques have rapidly advanced understanding of illness and treatment effects in psychiatry. Based on these advances, radiologists have become increasingly interested in applying these advances for differential diagnosis and individualized patient care selection for common psychiatric illnesses. This shift from research to clinical practice represents the beginning evolution of psychoradiology. In this review, we provide a summary of recent progress relevant to this field based on their clinical functions, namely the (1) classification and subtyping; (2) prediction and monitoring of treatment outcomes; and (3) treatment selection. In addition, we provide guidelines for the practice of psychoradiology in clinical settings and suggestions for future research to validate broader clinical applications. Given the high prevalence of psychiatric disorders and the importance of increased participation of radiologists in this field, a guide regarding advances in this field and a description of relevant clinical work flow patterns help radiologists contribute to this fast-evolving field.
Collapse
Affiliation(s)
| | | | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, USA
| | | |
Collapse
|
123
|
Laird KT, Siddarth P, Krause B, Kilpatrick L, Milillo M, Aguilar Y, Narr KL, Lavretsky H. Anxiety symptoms are associated with smaller insular and orbitofrontal cortex volumes in late-life depression. J Affect Disord 2019; 256:282-287. [PMID: 31200165 PMCID: PMC6750975 DOI: 10.1016/j.jad.2019.05.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/19/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Increasing understanding of the neural correlates of anxiety symptoms in late-life depression (LLD) could inform the development of more targeted and effective treatments. METHODS Grey matter volume (GMV) was assessed with volumetric magnetic resonance imaging in a sample of 113 adults ≥60 years with MDD using the following regions of interest: amygdala, anterior cingulate cortex (ACC), insula, orbitofrontal cortex (OFC), and temporal cortex. RESULTS After controlling for demographic (age, sex, education) and clinical variables (antidepressant use, anxiolytic use, duration of illness, medical comorbidity, cognitive functioning), greater severity of anxiety symptoms was associated with lower GMV bilaterally in the insula, F(1,102) = 6.63, p = 0.01, and OFC, F(1,102) = 8.35, p = 0.005. By contrast, depressive symptom severity was significantly associated with lower bilateral insula volumes, F(1,102) = 6.43, p = 0.01, but not OFC volumes, F(1,102) = 5.37, p = 0.02. LIMITATIONS Limitations include (1) the relatively mild nature of anxiety symptoms in our sample; (2) the cross-sectional research design, which prohibits inferences of directionality; (3) the relatively homogenous demographic of the sample, and (4) the exclusion of participants with significant psychiatric comorbidity, suicidality, or cognitive impairment. CONCLUSIONS Decreased OFC volumes may serve as a unique biomarker of anxiety symptoms in LLD. Future longitudinal and clinical studies with long-term follow up and more diverse samples will help further elucidate the biological, psychological, and social factors affecting associations between anxiety and brain morphology in LLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Helen Lavretsky
- Department of Psychology and Human Development, University of California, Los Angeles (UCLA), 760 Westwood Plaza, Los Angeles, CA 90095, United States.
| |
Collapse
|
124
|
Peng W, Jia Z, Huang X, Lui S, Kuang W, Sweeney JA, Gong Q. Brain structural abnormalities in emotional regulation and sensory processing regions associated with anxious depression. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109676. [PMID: 31226395 DOI: 10.1016/j.pnpbp.2019.109676] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Considerable patients with major depressive disorder (MDD) comorbid with anxious symptoms, referred as anxious depression. The neural structural basis of this MDD specifier remains largely unknown. METHODS 104 patients with anxious depression, 57 MDD patients without significant anxious symptoms, and 160 healthy controls from single research center participated in the study with age and sex well-matched. We investigated gray matter alterations in anxious and non-anxious depression, explored different brain alterations between these two patient groups, and possible relationships between brain structural parameter and clinical information in patients. RESULTS Gray matter volumes differed in the right inferior frontal gyrus, right orbital frontal gyrus, left postcentral gyrus, bilateral culmen and left cuneus among the three groups. Anxious depression had smaller gray matter volumes in the right inferior frontal gyrus and orbital frontal gyrus relative to both non-anxious depression and healthy controls. Patients with anxious depression presented larger gray matter volumes in the left postcentral gyrus than non-anxious depression, and larger gray matter volumes in the left cuneus than healthy controls. In addition, both patient groups showed larger gray matter volumes in bilateral culmen relative to healthy controls. Gray matter volumes in the left postcentral gyrus were positively associated with overall depression severity and anxiety factor scores in anxious depression. CONCLUSION Our study revealed brain structural abnormalities in emotional regulation and sensory processing regions of anxious depression, which may suggested distinct neurobiological mechanisms of this MDD specifier and could help explain different clinical manifestations in anxious depression from pure depression.
Collapse
Affiliation(s)
- Wei Peng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Radiology, People's Hospital of Deyang City, Deyang, PR China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China.
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, OH, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
125
|
Wang S, Zhao Y, Li J, Wang X, Luo K, Gong Q. Brain structure links trait conscientiousness to academic performance. Sci Rep 2019; 9:12168. [PMID: 31434943 PMCID: PMC6704183 DOI: 10.1038/s41598-019-48704-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/31/2019] [Indexed: 02/05/2023] Open
Abstract
In the long history of identifying factors to predict academic performance, conscientiousness, a so-called ‘big five’ personality trait describing self-regulation and goal-directed behavior, has emerged as a stable predictor for this purpose. However, the neuroanatomical substrates of trait conscientiousness and the underlying brain mechanism linking trait conscientiousness and academic performance are still largely unknown. Here, we examined these issues in 148 high school students within the same grade by estimating cortical gray matter volume (GMV) utilizing a voxel-based morphometry method based on structural magnetic resonance imaging. A whole-brain regression analysis showed that trait conscientiousness was positively associated with the GMV in the bilateral superior parietal lobe (SPL) and was negatively associated with the GMV in the right middle frontal gyrus (MFG). Furthermore, mediation analysis revealed that trait conscientiousness mediated the influences of the SPL and MFG volume on academic performance. Importantly, our results persisted even when we adjusted for general intelligence, family socioeconomic status and ‘big five’ personality traits other than conscientiousness. Altogether, our study suggests that the GMV in the frontoparietal network is a neurostructural marker of adolescents’ conscientiousness and reveals a potential brain-personality-achievement pathway for predicting academic performance in which gray matter structures affect academic performance through trait conscientiousness.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, 610041, China
| | - Jingguang Li
- College of Education, Dali University, Dali, 671003, China
| | - Xu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China. .,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, China. .,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
126
|
Wang S, Zhao Y, Zhang L, Wang X, Wang X, Cheng B, Luo K, Gong Q. Stress and the brain: Perceived stress mediates the impact of the superior frontal gyrus spontaneous activity on depressive symptoms in late adolescence. Hum Brain Mapp 2019; 40:4982-4993. [PMID: 31397949 DOI: 10.1002/hbm.24752] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/11/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023] Open
Abstract
Identifying factors for the prediction of depression is a long-standing research topic in psychiatry and psychology. Perceived stress, which reflects the tendency to appraise one's life situations as stressful and overwhelming, has emerged as a stable predictor for depressive symptoms. However, the neurobiological bases of perceived stress and how perceived stress influences depressive symptoms in the healthy brain remain largely unknown. Here, we investigated these issues in 217 healthy adolescents by estimating the fractional amplitude of low-frequency fluctuations (fALFFs) via resting-state functional magnetic resonance imaging. A whole-brain correlation analysis showed that higher levels of perceived stress were associated with greater fALFF in the left superior frontal gyrus (SFG), which is a core brain region for cognitive control and emotion regulation-related processes. Mediation analysis further indicated that perceived stress mediated the link between the fALFF in the left SFG and depressive symptoms. Importantly, our results remained significant even when excluding the influences of head motion, anxiety, SFG gray matter structure, and school environment. Altogether, our findings suggested that the fALFF in the left SFG is a neurofunctional marker of perceived stress in adolescents and revealed a potential indirect effect of perceived stress on the association between the SFG spontaneous activity and depressive symptoms.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, China
| | - Lei Zhang
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| | - Xu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuli Wang
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
127
|
Chen Y, Huang X, Wu M, Li K, Hu X, Jiang P, Chen L, He N, Dai J, Wang S, He M, Guo L, Sweeney JA, Gong Q. Disrupted brain functional networks in drug-naïve children with attention deficit hyperactivity disorder assessed using graph theory analysis. Hum Brain Mapp 2019; 40:4877-4887. [PMID: 31361385 DOI: 10.1002/hbm.24743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 02/05/2023] Open
Abstract
Neuroimaging studies have revealed functional brain network abnormalities in attention deficit hyperactivity disorder (ADHD), but the results have been inconsistent, potentially related to confounding medication effects. Furthermore, specific topological alterations in functional networks and their role in behavioral inhibition dysfunction remain to be established. Resting-state functional magnetic resonance imaging was performed on 51 drug-naïve children with ADHD and 55 age-matched healthy controls. Brain functional networks were constructed by thresholding the partial correlation matrices of 90 brain regions, and graph theory was used to analyze network topological properties. The Stroop test was used to assess cognitive inhibitory abilities. Nonparametric permutation tests were used to compare the topological architectures in the two groups. Compared with healthy subjects, brain networks in ADHD patients demonstrated altered topological characteristics, including lower global (FDR q = 0.01) and local efficiency (p = 0.032, uncorrected) and a longer path length (FDR q = 0.01). Lower nodal efficiencies were found in the left inferior frontal gyrus and anterior cingulate cortex in the ADHD group (FDR both q < 0.05). Altered global and nodal topological efficiencies were associated with the severity of inhibitory cognitive control deficits and hyperactivity symptoms in ADHD (p <0 .05). Alterations in network topologies in drug-naïve ADHD patients indicate weaker small-worldization with decreased segregation and integration of functional brain networks. Deficits in the cingulo-fronto-parietal attention network were associated with inhibitory control deficits.
Collapse
Affiliation(s)
- Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Kaiming Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ping Jiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lizhou Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Ning He
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Dai
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Manxi He
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| | - Lanting Guo
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
128
|
Hu X, Zhang L, Bu X, Li H, Li B, Tang W, Lu L, Hu X, Tang S, Gao Y, Yang Y, Roberts N, Gong Q, Huang X. Localized Connectivity in Obsessive-Compulsive Disorder: An Investigation Combining Univariate and Multivariate Pattern Analyses. Front Behav Neurosci 2019; 13:122. [PMID: 31249515 PMCID: PMC6584748 DOI: 10.3389/fnbeh.2019.00122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/20/2019] [Indexed: 02/05/2023] Open
Abstract
Recent developments in psychoradiological researches have highlighted the disrupted organization of large-scale functional brain networks in obsessive-compulsive disorder (OCD). However, whether abnormal activation of localized brain areas would affect network dysfunction remains to be fully characterized. We applied both univariate analysis and multivariate pattern analysis (MVPA) approaches to investigate the abnormalities of regional homogeneity (ReHo), an index to measure the localized connectivity, in 88 medication-free patients with OCD and 88 healthy control subjects (HCS). Resting-state functional magnetic resonance imaging (RS-fMRI) data of all the participants were acquired in a 3.0-T scanner. First, we adopted a traditional univariate analysis to explore ReHo alterations between the patient group and the control group. Subsequently, we utilized a support vector machine (SVM) to examine whether ReHo could be further used to differentiate patients with OCD from HCS at the individual level. Relative to HCS, OCD patients showed lower ReHo in the bilateral cerebellum and higher ReHo in the bilateral superior frontal gyri (SFG), right inferior parietal gyrus (IPG), and precuneus [P < 0.05, family-wise error (FWE) correction]. ReHo value in the left SFG positively correlated with Yale-Brown Obsessive Compulsive Scale (Y-BOCS) total score (r = 0 0.241, P = 0.024) and obsessive subscale (r = 0.224, P = 0.036). The SVM classification regarding ReHo yielded an accuracy of 78.98% (sensitivity = 78.41%, specificity = 79.55%) with P < 0.001 after permutation testing. The most discriminative regions contributing to the SVM classification were mainly located in the frontal, temporal, and parietal regions as well as in the cerebellum while the right orbital frontal cortex was identified with the highest discriminative power. Our findings not only suggested that the localized activation disequilibrium between the prefrontal cortex (PFC) and the cerebellum appeared to be associated with the pathophysiology of OCD but also indicated the translational role of the localized connectivity as a potential discriminative pattern to detect OCD at the individual level.
Collapse
Affiliation(s)
- Xinyu Hu
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Lianqing Zhang
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xuan Bu
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Bin Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wanjie Tang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoxiao Hu
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Shi Tang
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Yingxue Gao
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Yanchun Yang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Neil Roberts
- Clinical Research Imaging Centre (CRIC), The Queen's Medical Research Institute (QMRI), University of Edinburgh, Edinburgh, United Kingdom
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
129
|
Zhang L, Hu X, Lu L, Li B, Hu X, Bu X, Li H, Tang S, Yang Y, Roberts N, Sweeney JA, Gong Q, Huang X. Abnormalities of hippocampal shape and subfield volumes in medication-free patients with obsessive-compulsive disorder. Hum Brain Mapp 2019; 40:4105-4113. [PMID: 31188536 DOI: 10.1002/hbm.24688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/06/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023] Open
Abstract
In this study, we sought to identify alterations of hippocampal shape and subfield volumes in a relatively large sample of medication-free obsessive-compulsive disorder (OCD) patients without comorbid depression. 3D T1-weighted Magnetic Resonance Imaging scans were collected from 81 medication-free OCD patients and 95 age- and sex-matched healthy controls (HC). Total hippocampal volume and volume of eight bilateral subfields were measured using FreeSurfer software. Subregional shape deformity was examined via FSL software. Volumetric and shape differences between groups and correlations with OCD symptoms were examined. The volume of right hippocampus was significantly reduced in OCD patients (p = .001, η2 = 0.065). Follow-up analysis of right hemisphere subfields showed reduced volume in right subiculum (p < .001, η2 = 0.081), presubiculum (p < .001, η2 = 0.125), CA2/3 (p = .001, η2 = 0.06), and hippocampal tail (p < 0.001, η2 = 0.105), while the volume of right fimbria was increased (p = .001, η2 = 0.058). Shape analysis revealed a bilateral outward bending in the hippocampal body related to a lateral displacement of hippocampus from the body to the tail. Symptom severity was correlated with volumes of presubiculum (with compulsions, r = -0.25, p = .024) and fimbria (with obsessions, r = -0.28, p = .012), and with the lateral shift of middle and posterior hippocampus (with obsessions). Alterations across hippocampal subfields and overall shape may contribute to the distinctive cognitive and affective abnormalities associated with OCD.
Collapse
Affiliation(s)
- Lianqing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lu Lu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bin Li
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoxiao Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xuan Bu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shi Tang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yanchun Yang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Neil Roberts
- Clinical Research Imaging Centre (CRIC), The Queen's Medical Research Institute (QMRI), University of Edinburgh, Edinburgh, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
130
|
Lai H, Wang S, Zhao Y, Zhang L, Yang C, Gong Q. Brain gray matter correlates of extraversion: A systematic review and meta-analysis of voxel-based morphometry studies. Hum Brain Mapp 2019; 40:4038-4057. [PMID: 31169966 DOI: 10.1002/hbm.24684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 02/05/2023] Open
Abstract
Extraversion is a fundamental personality dimension closely related to an individual's life outcomes and mental health. Although an increasing number of studies have attempted to identify the neurostructural markers of extraversion, the results have been highly inconsistent. The current study aimed to achieve a comprehensive understanding of brain gray matter (GM) correlates of extraversion with a systematic review and meta-analysis approach. Our review showed relatively high interstudy heterogeneity among previous findings. Our meta-analysis of whole-brain voxel-based morphometry studies revealed that extraversion was stably associated with six core brain regions. Additionally, meta-regression analyses identified brain regions where the associations of extraversion with GM volume were modulated by gender and age. The relationships between extraversion and GM structures were discussed based on three extraversion-related functional systems. Furthermore, we explained the gender and age effects. Overall, our study is the first to reveal a comprehensive picture of brain GM correlates of extraversion, and the findings may be useful for the selection of targeted brain areas for extraversion interventions.
Collapse
Affiliation(s)
- Han Lai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, China
| | - Lei Zhang
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, China
| |
Collapse
|
131
|
Wang W, Sun H, Su X, Tan Q, Zhang S, Xia C, Li L, Kemp GJ, Yue Q, Gong Q. Increased right amygdala metabolite concentrations in the absence of atrophy in children and adolescents with PTSD. Eur Child Adolesc Psychiatry 2019; 28:807-817. [PMID: 30392119 DOI: 10.1007/s00787-018-1241-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 10/20/2018] [Indexed: 02/05/2023]
Abstract
Previous studies have shown that posttraumatic stress disorder (PTSD) is associated with dysfunction of the limbic system, in which the amygdala plays an important role. The purpose of this study was to evaluate whether the neurochemical concentrations assessed by proton magnetic resonance spectroscopy (1H-MRS) in the amygdala are abnormal in children and adolescents with PTSD. Twenty-eight pediatric PTSD patients (11 boys, 17 girls) and 24 matched trauma-exposed control subjects (9 boys, 15 girls) underwent magnetic resonance brain imaging and 1H-MRS of the bilateral amygdalae. The concentrations of N-acetylaspartate (NAA), myo-inositol (mI), total creatine (tCr) and total choline (tCho) in the right amygdala were significantly increased in PTSD patients compared with trauma-exposed control subjects. There were significant group-by-age interactions in the left amygdala NAA and right amygdala mI concentrations: older pediatric patients with PTSD had higher left amygdala NAA concentration and younger patients had higher right amygdala mI concentration than trauma-exposed control subjects. There was also a significant correlation between right mI concentration and time since trauma in PTSD patients. Finally, there was significant group-by-age interaction in the left amygdala volume; intragroup analysis revealed that the right amygdala volume was significantly lower than the left in the PTSD group, but not in the control group. These neurochemical abnormalities of the amygdala may indicate that dysfunctions of both neurons and glial cells are involved in the pathology of pediatric PTSD.
Collapse
Affiliation(s)
- Weina Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorui Su
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaoyue Tan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lingjiang Li
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
132
|
Gao X, Xiao Y, Lv P, Zhang W, Gong Y, Wang T, Gong Q, Ji Y, Lui S. Altered brain network integrity in patients with asthma: A structural connectomic diffusion tensor imaging study. Respir Physiol Neurobiol 2019; 266:89-94. [PMID: 31085322 DOI: 10.1016/j.resp.2019.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
Abstract
Brain functional deficits had been reported in asthma patients. These deficits may be related to treatment resistance, inaccurate self-assessment and poor self-management. However, changes of the structural brain network in asthma patients remain largely unclear. Diffusion tensor imaging were acquired from 54 asthmatic patients and 44 controls. Then we calculated all the participants' structural network metrics. All the participants underwent the test of Hamilton Rating Scale for Depression and Anxiety as well as a lung function. Multiple linear correlation analyses were conducted. At the global level, asthma patients had a higher path length and lower global efficiency than controls, implying a shift toward regular networks. At the local level, asthma patients exhibited abnormal nodal connectivity with other nodes involved the fronto-limbic regions. Our findings highlight more locally segregated but less efficiently integrated structural networks, particularly involving frontal-limbic networks, in asthmatic patients. These findings provide important evidence to support the role of brain networks in the pathophysiology of asthma.
Collapse
Affiliation(s)
- Xin Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, People's Hospital of Deyang City, Deyang, China
| | - Yuan Xiao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Peilin Lv
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Gong
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Ting Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yulin Ji
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
133
|
Fu Y, Xiao Y, Du M, Mao C, Fu G, Yang L, Liu X, Sweeney JA, Lui S, Yan Z. Brain Structural Alterations in Left-Behind Children: A Magnetic Resonance Imaging Study. Front Neural Circuits 2019; 13:33. [PMID: 31133820 PMCID: PMC6517480 DOI: 10.3389/fncir.2019.00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/15/2019] [Indexed: 02/05/2023] Open
Abstract
Parental migration has caused millions of children left behind, especially in China and India. Left-behind children (LBC) have a high risk of mental disorders and may present negative life outcomes in the future. However, little is known whether there are cerebral structural alterations in LBC in relative to those with parents. This study is to explore the effect of parental migration on brain maturation by comparing gray matter volume (GMV) and fractional anisotropy (FA) of LBC with well-matched non-LBC. Thirty-eight LBC (21 boys, age = 9.60 ± 1.8 years) and 30 non-LBC (19 boys, age = 10.00 ± 1.95 years) were recruited and underwent brain scans in 3.0 T MR. Intelligence quotient and other factors including family income, guardians’ educational level and separation time were also acquired. GMV and FA were measured for each participant and compared between groups using 2-sample t-tests with atlas-based analysis. Compared to non-LBC, LBC exhibited greater GMV in emotional and cortico-striato-thalamo-cortical circuits, and altered FA in bilateral superior occipitofrontal fasciculi and right medial lemniscus (p < 0.05, Cohen’s d > 0.89, corrected for false-discovery rate). Other factors including family income, guardians’ educational level and separation time were not associated with these brain changes. Our study provides empirical evidence of altered brain structure in LBC compared to non-LBC, responsible for emotion regulation and processing, which may account for mental disorders and negative life outcome of LBC. Our study suggests that absence of direct biological parental care may impact children’s brain development. Therefore, public health efforts may be needed to provide additional academic and social/emotional supports to LBC when their parents migrate to seeking better economic circumstances, which has become increasingly common in developing countries.
Collapse
Affiliation(s)
- Yuchuan Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Xiao
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Meimei Du
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuanwan Mao
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Lili Yang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - John A Sweeney
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Su Lui
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
134
|
Wang Z, Yuan Y, You J, Zhang Z. Disrupted structural brain connectome underlying the cognitive deficits in remitted late-onset depression. Brain Imaging Behav 2019; 14:1600-1611. [DOI: 10.1007/s11682-019-00091-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
135
|
Xia M, Si T, Sun X, Ma Q, Liu B, Wang L, Meng J, Chang M, Huang X, Chen Z, Tang Y, Xu K, Gong Q, Wang F, Qiu J, Xie P, Li L, He Y. Reproducibility of functional brain alterations in major depressive disorder: Evidence from a multisite resting-state functional MRI study with 1,434 individuals. Neuroimage 2019; 189:700-714. [DOI: 10.1016/j.neuroimage.2019.01.074] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 01/14/2023] Open
|
136
|
Jiang Y, Luo C, Li X, Li Y, Yang H, Li J, Chang X, Li H, Yang H, Wang J, Duan M, Yao D. White-matter functional networks changes in patients with schizophrenia. Neuroimage 2019; 190:172-181. [DOI: 10.1016/j.neuroimage.2018.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/26/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022] Open
|
137
|
Voxel-wise meta-analysis of task-related brain activation abnormalities in major depressive disorder with suicide behavior. Brain Imaging Behav 2019; 14:1298-1308. [DOI: 10.1007/s11682-019-00045-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
138
|
Hao H, Chen C, Mao W, Zhong J, Dai Z. Aberrant brain regional homogeneity in first-episode drug-naïve patients with major depressive disorder: A voxel-wise meta-analysis. J Affect Disord 2019; 245:63-71. [PMID: 30368072 DOI: 10.1016/j.jad.2018.10.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/05/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging studies have reported aberrant brain regional homogeneity (ReHo) in patients with major depressive disorder (MDD). However, the findings across studies were confounded by medication status and different depressive episodes. METHODS A systematic literature search of the PubMed, Embase, and Web of Science databases was conducted. We conducted a quantitative voxel-wise meta-analysis of ReHo studies, using the Seed-based d Mapping approach, in first-episode drug-naïve patients with MDD. RESULTS We identified 10 studies with 12 datasets suitable for inclusion, consisting of 402 first-episode drug-naïve patients with MDD and 330 healthy controls. The most consistent and robust findings were that patients with MDD relative to healthy controls exhibited increased ReHo in the left hippocampus and decreased ReHo in the left orbitofrontal cortex. LIMITATIONS The patient samples included in our meta-analysis were all Chinese, thus limiting the applicability of the present findings to other populations. CONCLUSIONS ReHo alterations in these brain regions are likely to reflect the core disease-related functional abnormalities, which are implicated in emotional dysregulation and cognitive impairment that are seen in the early stage of MDD. These findings contribute to a better understanding of the neurobiological underpinnings of MDD, and the left hippocampus and orbitofrontal cortex could serve as specific regions of interest for further investigations.
Collapse
Affiliation(s)
- HuiHui Hao
- Department of Inspection and Pharmacy, Jiangsu College of Nursing, Huai'an, PR China; Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Chuang Chen
- Department of Hepatopancreatobiliary Surgery, Huai'an Hospital Affiliated to Xuzhou Medical University, Second People's Hospital of Huai'an City, Huai'an, PR China; Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - WeiBing Mao
- Department of Psychiatry, WuXi Xishan People's Hospital, Affiliated to ZhongDa Hospital, School of Medicine, Southeast University, Wuxi, PR China; Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - JianGuo Zhong
- Department of Psychiatry, WuXi Xishan People's Hospital, Affiliated to ZhongDa Hospital, School of Medicine, Southeast University, Wuxi, PR China; Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China.
| | - ZhenYu Dai
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China; Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China.
| |
Collapse
|
139
|
Liu J, Yao L, Zhang W, Deng W, Xiao Y, Li F, Sweeney JA, Gong Q, Lui S. Dissociation of fractional anisotropy and resting-state functional connectivity alterations in antipsychotic-naive first-episode schizophrenia. Schizophr Res 2019; 204:230-237. [PMID: 30121186 DOI: 10.1016/j.schres.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022]
Abstract
Altered resting-state functional connectivity (rsFC) has been demonstrated between multiple brain regions in schizophrenia. However, whether these alterations are related to fractional anisotropy (FA) alterations in pathways that connect regions with altered rsFC remains unknown. In this study, diffusion tensor imaging and resting-state functional magnetic resonance imaging were performed with 181 antipsychotic-naïve first-episode schizophrenia patients and 173 matched healthy controls. FA was measured using tensor-guided tractography in identifiable pathways between selected pairs of brain regions with altered rsFC as determined by prior meta-analysis. Compared with controls, patients showed significantly decreased FA between right caudate nucleus and right pallidum, right caudate nucleus and right putamen, and right hippocampus and right thalamus. Decreased rsFC was observed between right pallidum and right thalamus, and right insula and right superior temporal gyrus. No significant correlation was observed between FA and rsFC. FA between right caudate nucleus and right putamen was inversely correlated with negative symptoms while rsFC between right pallidum and right thalamus was inversely correlated with positive symptoms. The lack of robust correlations between FA and rsFC and no overlap of these abnormalities indicate that regional rsFC alterations in the early course of schizophrenia are not primarily associated with FA alterations. The observation that positive and negative symptoms are related to different functional and structural disturbances is consistent with this dissociation, and with prior work suggests that different pathophysiological mechanism may underlie positive and negative symptoms in the early course of schizophrenia.
Collapse
Affiliation(s)
- Jieke Liu
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Yao
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Department of Psychiatry, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Li
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - John A Sweeney
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Qiyong Gong
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi Magnetic Resonance Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
140
|
Widespread white-matter microstructure integrity reduction in first-episode schizophrenia patients after acute antipsychotic treatment. Schizophr Res 2019; 204:238-244. [PMID: 30177343 DOI: 10.1016/j.schres.2018.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023]
Abstract
Potential effects of initiating acute antipsychotic treatment on white matter (WM) microstructure in schizophrenia patients remain poorly characterized. Thirty-five drug-naïve first-episode schizophrenia patients were scanned before and after six weeks of treatment with second-generation antipsychotic medications. Nineteen demographically matched healthy subjects were scanned twice over the same time interval. Tract-based spatial statistics was used to test for changes in WM microstructural integrity after treatment. Widespread fractional anisotropy (FA) decrease was found in patients after antipsychotic treatment in bilateral posterior corona radiata, anterior corona radiata, superior corona radiata and posterior thalamic radiation, left posterior limb of the internal capsule, and mid-body of the corpus callosum. These effects appeared to result primarily from decreased axial diffusivity. These findings suggest an effect on brain white matter from acute antipsychotic therapy in schizophrenia.
Collapse
|
141
|
Bu X, Hu X, Zhang L, Li B, Zhou M, Lu L, Hu X, Li H, Yang Y, Tang W, Gong Q, Huang X. Investigating the predictive value of different resting-state functional MRI parameters in obsessive-compulsive disorder. Transl Psychiatry 2019; 9:17. [PMID: 30655506 PMCID: PMC6336781 DOI: 10.1038/s41398-018-0362-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/26/2018] [Accepted: 12/09/2018] [Indexed: 02/05/2023] Open
Abstract
Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies of obsessive-compulsive disorder (OCD) have facilitated our understanding of OCD pathophysiology based on its intrinsic activity. However, whether the group difference derived from univariate analysis could be useful for informing the diagnosis of individual OCD patients remains unclear. We aimed to apply multivariate pattern analysis of different rs-fMRI parameters to distinguish drug-naive patients with OCD from healthy control subjects (HCS). Fifty-four drug-naive OCD patients and 54 well-matched HCS were recruited. Four different rs-fMRI parameter maps, including the amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo) and functional connectivity strength (FCS), were calculated. Training of a support vector machine (SVM) classifier using rs-fMRI maps produced voxelwise discrimination maps. Overall, the classification accuracies were acceptable for the four rs-fMRI parameters. Excellent performance was achieved when ALFF maps were employed (accuracy, 95.37%, p < 0.01), good performance was achieved by using ReHo maps, weaker performance was achieved by using fALFF maps, and fair performance was achieved by using FCS maps. The brain regions showing the greatest discriminative power included the prefrontal cortex, anterior cingulate cortex, precentral gyrus, and occipital lobes. The application of SVM to rs-fMRI features may provide potential power for OCD classification.
Collapse
Affiliation(s)
- Xuan Bu
- 0000 0004 1770 1022grid.412901.fHuaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Xinyu Hu
- 0000 0004 1770 1022grid.412901.fHuaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Lianqing Zhang
- 0000 0004 1770 1022grid.412901.fHuaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Bin Li
- 0000 0004 1770 1022grid.412901.fMental Health Center, Department of Psychiatry, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Ming Zhou
- 0000 0004 1770 1022grid.412901.fHuaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Lu Lu
- 0000 0004 1770 1022grid.412901.fHuaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Xiaoxiao Hu
- 0000 0004 1770 1022grid.412901.fHuaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Hailong Li
- 0000 0004 1770 1022grid.412901.fHuaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Yanchun Yang
- 0000 0004 1770 1022grid.412901.fMental Health Center, Department of Psychiatry, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Wanjie Tang
- 0000 0004 1770 1022grid.412901.fMental Health Center, Department of Psychiatry, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Qiyong Gong
- 0000 0004 1770 1022grid.412901.fHuaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041 China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
142
|
Reus VI, Lindqvist D. Psychiatric manifestations of neurologic diseases: Etiology, phenomenology, and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2019; 165:1-4. [PMID: 31727208 DOI: 10.1016/b978-0-444-64012-3.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the etiology and meaning of behavioral symptomatology in the context of neurologic disease, and choosing the most effective intervention is a vexing task. This introduction summarizes the history of our understanding of the relationship between behavioral symptoms and primary neurologic conditions, and considers the ways in which both psychiatric and neurologic disorders occurring simultaneously may inform both knowledge of etiology and treatment decisions.
Collapse
Affiliation(s)
- Victor I Reus
- Department of Psychiatry, University of California, San Francisco (UCSF) School of Medicine, San Francisco, CA, United States.
| | | |
Collapse
|
143
|
Yang C, Li L, Hu X, Luo Q, Kuang W, Lui S, Huang X, Dai J, He M, Kemp GJ, Sweeney JA, Gong Q. Psychoradiologic abnormalities of white matter in patients with bipolar disorder: diffusion tensor imaging studies using tract-based spatial statistics. J Psychiatry Neurosci 2019; 44:32-44. [PMID: 30565904 PMCID: PMC6306286 DOI: 10.1503/jpn.170221] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND An increasing number of psychoradiology studies that use tract-based spatial statistics (TBSS) of diffusion tensor imaging have reported abnormalities of white matter in patients with bipolar disorder; however, robust conclusions have proven elusive, especially considering some important clinical and demographic factors. In the present study, we performed a quantitative meta-analysis of TBSS studies to elucidate the most consistent white-matter abnormalities in patients with bipolar disorder. METHODS We conducted a systematic search up to May 2017 for all TBSS studies comparing fractional anisotropy (FA) between patients with bipolar disorder and healthy controls. We performed anisotropic effect size–signed differential mapping meta-analysis. RESULTS We identified a total of 22 data sets including 556 patients with bipolar disorder and 623 healthy controls. We found significant FA reductions in the genu and body of the corpus callosum in patients with bipolar disorder relative to healthy controls. No regions of increased FA were reported. In subgroup analyses, the FA reduction in the genu of the corpus callosum retained significance in patients with bipolar disorder type I, and the FA reduction in the body of the corpus callosum retained significance in euthymic patients with bipolar disorder. Meta-regression analysis revealed that the percentage of female patients was negatively correlated with reduced FA in the body of the corpus callosum. LIMITATIONS Data acquisition, patient characteristics and clinical variables in the included studies were heterogeneous. The small number of diffusion tensor imaging studies using TBSS in patients with bipolar disorder type II, as well as the lack of other clinical information, hindered the application of subgroup meta-analyses. CONCLUSION Our study consistently identified decreased FA in the genu and body of the corpus callosum, suggesting that interhemispheric communication may be the connectivity most affected in patients with bipolar disorder.
Collapse
Affiliation(s)
- Cheng Yang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Lei Li
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Xinyu Hu
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Qiang Luo
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Weihong Kuang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Su Lui
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Xiaoqi Huang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Jing Dai
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Manxi He
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Graham J. Kemp
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - John A Sweeney
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Qiyong Gong
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| |
Collapse
|
144
|
Heunis S, Besseling R, Lamerichs R, de Louw A, Breeuwer M, Aldenkamp B, Bergmans J. Neu 3CA-RT: A framework for real-time fMRI analysis. Psychiatry Res Neuroimaging 2018; 282:90-102. [PMID: 30293911 DOI: 10.1016/j.pscychresns.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Real-time functional magnetic resonance imaging (rtfMRI) allows visualisation of ongoing brain activity of the subject in the scanner. Denoising algorithms aim to rid acquired data of confounding effects, enhancing the blood oxygenation level-dependent (BOLD) signal. Further image processing and analysis methods, like general linear models (GLM) or multivariate analysis, then present application-specific information to the researcher. These processes are typically applied to regions of interest but, increasingly, rtfMRI techniques extract and classify whole brain functional networks and dynamics as correlates for brain states or behaviour, particularly in neuropsychiatric and neurocognitive disorders. We present Neu3CA-RT: a Matlab-based rtfMRI analysis framework aiming to advance scientific knowledge on real-time cognitive brain activity and to promote its translation into clinical practice. Design considerations are listed based on reviewing existing rtfMRI approaches. The toolbox integrates established SPM preprocessing routines, real-time GLM mapping of fMRI data to a basis set of spatial brain networks, correlation of activity with 50 behavioural profiles from the BrainMap database, and an intuitive user interface. The toolbox is demonstrated in a task-based experiment where a subject executes visual, auditory and motor tasks inside a scanner. In three out of four experiments, resulting behavioural profiles agreed with the expected brain state.
Collapse
Affiliation(s)
- Stephan Heunis
- Department of Electrical Engineering, Eindhoven University of Technology, Postal address: PO box 513; Flux buidling, room 7.066, 5600MB Eindhoven, The Netherlands.
| | - René Besseling
- Department of Electrical Engineering, Eindhoven University of Technology, Postal address: PO box 513; Flux buidling, room 7.066, 5600MB Eindhoven, The Netherlands; Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands
| | - Rolf Lamerichs
- Department of Electrical Engineering, Eindhoven University of Technology, Postal address: PO box 513; Flux buidling, room 7.066, 5600MB Eindhoven, The Netherlands; Philips Research Laboratories Eindhoven, Eindhoven, The Netherlands
| | - Anton de Louw
- Department of Electrical Engineering, Eindhoven University of Technology, Postal address: PO box 513; Flux buidling, room 7.066, 5600MB Eindhoven, The Netherlands; Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands
| | - Marcel Breeuwer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Philips Healthcare, Best, The Netherlands
| | - Bert Aldenkamp
- Department of Electrical Engineering, Eindhoven University of Technology, Postal address: PO box 513; Flux buidling, room 7.066, 5600MB Eindhoven, The Netherlands; Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, The Netherlands; Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Ghent University Hospital, Ghent, Belgium; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan Bergmans
- Department of Electrical Engineering, Eindhoven University of Technology, Postal address: PO box 513; Flux buidling, room 7.066, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
145
|
Zhang S, Wang W, Su X, Kemp GJ, Yang X, Su J, Tan Q, Zhao Y, Sun H, Yue Q, Gong Q. Psychoradiological investigations of gray matter alterations in patients with anorexia nervosa. Transl Psychiatry 2018; 8:277. [PMID: 30546047 PMCID: PMC6293321 DOI: 10.1038/s41398-018-0323-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 02/05/2023] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder with high mortality. The underlying neurobiological mechanisms are not well understood, and high-resolution structural magnetic resonance brain imaging studies have given inconsistent results. Here we aimed to psychoradiologically define the most prominent and replicable abnormalities of gray matter volume (GMV) in AN patients, and to examine their relationship to demographics and clinical characteristics, by means of a new coordinate-based meta-analytic technique called seed-based d mapping (SDM). In a pooled analysis of all AN patients we identified decreased GMV in the bilateral median cingulate cortices and posterior cingulate cortices extending to the bilateral precuneus, and the supplementary motor area. In subgroup analysis we found an additional decreased GMV in the right fusiform in adult AN, and a decreased GMV in the left amygdala and left anterior cingulate cortex in AN patients without comorbidity (pure AN). Thus, the most consistent GMV alterations in AN patients are in the default mode network and the sensorimotor network. These psychoradiological findings of the brain abnormalities might underpin the neuropathophysiology in AN.
Collapse
Affiliation(s)
- Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Weina Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaorui Su
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, China
| | - Jingkai Su
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, China
| | - Qiaoyue Tan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, 610041, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
146
|
Abnormal metabolite concentrations and amygdala volume in patients with recent-onset posttraumatic stress disorder. J Affect Disord 2018; 241:539-545. [PMID: 30153637 DOI: 10.1016/j.jad.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/08/2018] [Accepted: 08/07/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previous psychoradiological studies of posttraumatic stress disorder (PTSD) were mainly of patients at a chronic stage, focusing on brain regions outside the amygdala. The goals of this study were to investigate the early biochemical and structural changes of anterior cingulate cortex (ACC) and amygdala in patients with PTSD and to explore their relationships. METHODS Seventy-eight drug-naïve PTSD subjects and 71 non-PTSD age- and sex-matched control subjects were enrolled, all of whom had suffered the same earthquake about one year before. Single-voxel proton magnetic resonance spectroscopy (1H-MRS) was performed and absolute metabolite concentrations in ACC and bilateral amygdalae were estimated with LCModel. Bilateral amygdalae were manually outlined and their volumes were calculated and corrected for the total intracranial volume. RESULTS The PTSD group showed significantly increased N-acetylaspartate (NAA) concentration in the ACC, increased creatine (Cr) concentration in the left amygdala, and increased myo-inositol (mI) concentration in the right amygdala, compared to non-PTSD controls. The NAA concentration in ACC was negatively correlated with the time since trauma. The PTSD group showed significantly decreased volumes of bilateral amygdalae compared to non-PTSD controls, but amygdala volumes were not correlated with metabolite concentrations. LIMITATIONS Longitudinal studies are needed to explore the metabolic and structural changes of PTSD at different stages. The volume of ACC was not measured. CONCLUSIONS This concurrent increase in some metabolite concentrations and decrease of amygdala volumes may represent a pattern of biochemical and morphological changes in recent-onset PTSD which is different from that reported in chronic PTSD.
Collapse
|
147
|
Jenkins LM, Stange JP, Bessette KL, Chang YS, Corwin SD, Skerrett KA, Patrón VG, Zubieta JK, Crane NA, Passarotti AM, Pine DS, Langenecker SA. Differential engagement of cognitive control regions and subgenual cingulate based upon presence or absence of comorbid anxiety with depression. J Affect Disord 2018; 241:371-380. [PMID: 30145507 PMCID: PMC6237191 DOI: 10.1016/j.jad.2018.07.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/30/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) and anxiety disorders are highly comorbid, sharing many similar symptoms, including impairments in cognitive control. Deficits in cognitive control could be a potential mechanism underlying impaired emotion regulation in mood disorders. METHODS Participants were 44 individuals with no history of mental illness (healthy controls, HC), 31 individuals in the remitted state of MDD (rMDD), and 18 individuals who met lifetime DSM-IV-TR criteria for rMDD and an anxiety disorder in remission (Comorbid). Participants completed a Parametric Go/No-Go (PGNG) test during fMRI. Event-related analyses modeled activity for cognitive control successes (Hits for Targets, Rejections for Lures) and failures (Commissions on Lures) on the PGNG task. RESULTS The rMDD group showed significantly reduced activity within the cognitive control network (CCN) during Commission errors, including the middle frontal gyrus and inferior parietal lobule (IPL). The Comorbid group showed significantly reduced activity in several clusters within the CCN during correct Rejections, including the left IPL and right inferior frontal gyrus and greater subgenual cingulate. Notably, during correct Rejections, 60% of activation for the Comorbid group was within the Salience and Emotion Network (SEN), with 0% within the CCN. LIMITATIONS The size of the Comorbid subgroup was modest, preventing subanalysis of the different AD subtypes. CONCLUSIONS There is evidence that CCN activity declines in rMDD and that there may be compensatory SEN activity in individuals with Comorbid rMDD and anxiety. Our findings support the identification of comorbid anxiety as a meaningful subtype of MDD that may obscure group differences between rMDD and HCs.
Collapse
Affiliation(s)
| | | | | | - Yi-Shin Chang
- The University of Illinois at Chicago, Department of Psychiatry
| | | | | | | | | | | | | | | | - Scott A. Langenecker
- The University of Illinois at Chicago, Department of Psychiatry,Department of Psychiatry, The University of Michigan,Corresponding author: Scott A. Langenecker, Cognitive Neuroscience Center, Department of Psychiatry, The University of Illinois at Chicago, 1601 W Taylor St. Chicago, IL 60612 and
| |
Collapse
|
148
|
Suo X, Lei D, Li L, Li W, Dai J, Wang S, He M, Zhu H, Kemp GJ, Gong Q. Psychoradiological patterns of small-world properties and a systematic review of connectome studies of patients with 6 major psychiatric disorders. J Psychiatry Neurosci 2018; 43:427. [PMID: 30375837 PMCID: PMC6203546 DOI: 10.1503/jpn.170214] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/07/2018] [Accepted: 01/28/2018] [Indexed: 02/05/2023] Open
Abstract
Background Brain connectome research based on graph theoretical analysis shows that small-world topological properties play an important role in the structural and functional alterations observed in patients with psychiatric disorders. However, the reported global topological alterations in small-world properties are controversial, are not consistently conceptualized according to agreed-upon criteria, and are not critically examined for consistent alterations in patients with each major psychiatric disorder. Methods Based on a comprehensive PubMed search, we systematically reviewed studies using noninvasive neuroimaging data and graph theoretical approaches for 6 major psychiatric disorders: schizophrenia, major depressive disorder (MDD), attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BD), obsessive–compulsive disorder (OCD) and posttraumatic stress disorder (PTSD). Here, we describe the main patterns of altered small-world properties and then systematically review the evidence for these alterations in the structural and functional connectome in patients with these disorders. Results We selected 40 studies of schizophrenia, 33 studies of MDD, 5 studies of ADHD, 5 studies of BD, 7 studies of OCD and 5 studies of PTSD. The following 4 patterns of altered small-world properties are defined from theperspectives of segregation and integration: "regularization," "randomization," "stronger small-worldization" and "weaker small-worldization." Although more differences than similarities are noted in patients with these disorders, a prominent trend is the structural regularization versus functional randomization in patients with schizophrenia. Limitations Differences in demographic and clinical characteristics, preprocessing steps and analytical methods can produce contradictory results, increasing the difficulty of integrating results across different studies. Conclusion Four psychoradiological patterns of altered small-world properties are proposed. The analysis of altered smallworld properties may provide novel insights into the pathophysiological mechanisms underlying psychiatric disorders from a connectomic perspective. In future connectome studies, the global network measures of both segregation and integration should be calculated to fully evaluate altered small-world properties in patients with a particular disease.
Collapse
Affiliation(s)
- Xueling Suo
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Du Lei
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Lei Li
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Wenbin Li
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Jing Dai
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Song Wang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Manxi He
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Hongyan Zhu
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Graham J. Kemp
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Qiyong Gong
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| |
Collapse
|
149
|
Abstract
PURPOSE OF REVIEW To explore the most recent developments in the effective diagnosis and treatment of neuropsychiatric symptoms (NPS) in Alzheimer's disease (AD). RECENT FINDINGS The clinical diagnosis of NPS in AD is facilitated by the use of the Neuropsychiatric Inventory (NPI). CT and MRI scans can be useful for detecting structural changes indicating AD. Other promising diagnostic methodologies that are less frequently used in the clinical setting include positron emission tomography (PET) scans for detecting amyloid and blood tests for detecting serum biomarkers. Numerous pharmaceutical agents have been studied for their use in managing NPS, with antipsychotics being popular for managing agitation but also having significant side effects. Non-pharmacological interventions, such as reminiscence therapy and the Describe, Investigate, Create, Evaluate (DICE) approach may be able to provide treatment without such adverse effects. Diagnosing AD and the comorbid NPS remains primarily a clinical endeavor with CT and MRI scans sometimes used, but evidence is amassing for the use of other imaging modalities and different lab tests for convenient and empiric diagnosis of AD to distinguish it from other psychiatric illnesses. The number of pharmacologic treatments for NPS that are safe as well as efficacious remains limited, yet non-pharmacologic interventions have clear clinical utility. In addition to searching for more successful pharmacological treatments, further research should focus on novel diagnostic tests and non-pharmacologic therapies.
Collapse
Affiliation(s)
- David Wolinsky
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Karina Drake
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Jolene Bostwick
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
150
|
Gong B, Naveed S, Hafeez DM, Afzal KI, Majeed S, Abele J, Nicolaou S, Khosa F. Neuroimaging in Psychiatric Disorders: A Bibliometric Analysis of the 100 Most Highly Cited Articles. J Neuroimaging 2018; 29:14-33. [PMID: 30311320 DOI: 10.1111/jon.12570] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Extensive research has been conducted to find neuroimaging biomarkers for psychiatric disorders. This study aimed at identifying trends of the 100 most highly cited articles on neuroimaging in primary psychiatric disorders. METHODS The most highly cited original research articles were identified and analyzed, following searches of MEDLINE and Web of Science All Databases. RESULTS The top 100 articles ranked by yearly citation (from 137.5 to 31.1) were published between 1989 and 2017. Depressive disorders (30 articles), schizophrenia spectrum and other psychotic disorders (27), autism spectrum disorder (17), substance-related and addictive disorders (7), and post-traumatic stress disorder (7) were among the most studied conditions. Functional magnetic resonance imaging (42), structural magnetic resonance imaging (30), and positron emission tomography (22) were the most utilized neuroimaging modalities. While 85 articles investigated the pathophysiology of psychiatric disorders (including 7 focusing on developmental changes and 1 on genetic susceptibility), 15 articles studied the impact of treatment, including antidepressants (6), deep brain stimulation (4), antipsychotics (3), behavior therapy (3), and exercise (1). The analysis also identified the most contributing authors, countries (the United States: 71 articles, the United Kingdom: 8, Canada: 5, and China: 5), and journals (JAMA Psychiatry: 20 articles and Biological Psychiatry: 17). Ninety-eight studies were prospective, and two were retrospective. The sample size ranged from 3 to 1,188 (median: 21). CONCLUSIONS Our study identified intellectual milestones in the utility of neuroimaging in investigating primary psychiatric disorders. The historic trends could help guide future research in this field.
Collapse
Affiliation(s)
- Bo Gong
- MD Undergraduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sadiq Naveed
- Child and Adolescent Psychiatry, KVC Hospitals, Kansas City, KS
| | | | - Khalid I Afzal
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL
| | - Salman Majeed
- Department of Psychiatry, Penn State Hershey Medical Center, Hershey, PA
| | - Jonathan Abele
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Savvas Nicolaou
- Department of Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Faisal Khosa
- Department of Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|