101
|
|
102
|
Lin F, Zhang H, Huang J, Xiong C. Substrate Stiffness Coupling TGF-β1 Modulates Migration and Traction Force of MDA-MB-231 Human Breast Cancer Cells in Vitro. ACS Biomater Sci Eng 2018; 4:1337-1345. [DOI: 10.1021/acsbiomaterials.7b00835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
103
|
André Dias S, Planus E, Angely C, Lotteau L, Tissier R, Filoche M, Louis B, Pelle G, Isabey D. Perfluorocarbon induces alveolar epithelial cell response through structural and mechanical remodeling. Biomech Model Mechanobiol 2018; 17:961-973. [PMID: 29450740 DOI: 10.1007/s10237-018-1005-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/02/2018] [Indexed: 01/25/2023]
Abstract
During total liquid ventilation, lung cells are exposed to perfluorocarbon (PFC) whose chemophysical properties highly differ from standard aqueous cell feeding medium (DMEM). We herein perform a systematic study of structural and mechanical properties of A549 alveolar epithelial cells in order to characterize their response to PFC exposure, using DMEM as control condition. Changes in F-actin structure, focal adhesion density and glycocalyx distribution are evaluated by confocal fluorescent microscopy. Changes in cell mechanics and adhesion are measured by multiscale magnetic twisting cytometry (MTC). Two different microrheological models (single Voigt and power law) are used to analyze the cell mechanics characterized by cytoskeleton (CSK) stiffness and characteristic relaxation times. Cell-matrix adhesion is analyzed using a stochastic multibond deadhesion model taking into account the non-reversible character of the cell response, allowing us to quantify the adhesion weakness and the number of associated bonds. The roles of F-actin structure and glycocalyx layer are evaluated by depolymerizing F-actin and degrading glycocalyx, respectively. Results show that PFC exposure consistently induces F-actin remodeling, CSK softening and adhesion weakening. These results demonstrate that PFC triggers an alveolar epithelial cell response herein evidenced by a decay in intracellular CSK tension, an adhesion weakening and a glycocalyx layer redistribution. These PFC-induced cell adjustments are consistent with the hypothesis that cells respond to a decrease in adhesion energy at cell surface. This adhesion energy can be even further reduced in the presence of surfactant adsorbed at the cell surface.
Collapse
Affiliation(s)
- Sofia André Dias
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France.,Bertin Technologies, 78180, Montigny le Bretonneux, France
| | - Emmanuelle Planus
- Centre de Recherche, Université Grenoble Alpes, Inserm U1209, CNRS 5309, Grenoble, France
| | - Christelle Angely
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France
| | - Luc Lotteau
- Bertin Technologies, 78180, Montigny le Bretonneux, France
| | - Renaud Tissier
- Inserm, IMRB, U955, Equipe 03, Université Paris Est, UMRS955, UPEC, Ecole Nationale Vétérinaire d'Alfort, 7 avenue du général de Gaulle, 94700, Maisons-Alfort, France
| | - Marcel Filoche
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France.,Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128, Palaiseau, France
| | - Bruno Louis
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France
| | - Gabriel Pelle
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France.,APHP, Groupe Hospitalier H. Mondor A. Chenevier, Service des Explorations Fonctionnelles, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
| | - Daniel Isabey
- Inserm, IMRB, U955, Équipe 13, Biomécanique & Appareil Respiratoire, Université Paris Est, UMR S955, UPEC, CNRS, ERL 7000, 8, rue du Général Sarrail, 94010, Créteil Cedex, France.
| |
Collapse
|
104
|
Zhu W, Kim BC, Wang M, Huang J, Isak A, Bexiga NM, Monticone R, Ha T, Lakatta EG, An SS. TGFβ1 reinforces arterial aging in the vascular smooth muscle cell through a long-range regulation of the cytoskeletal stiffness. Sci Rep 2018; 8:2668. [PMID: 29422510 PMCID: PMC5805716 DOI: 10.1038/s41598-018-20763-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023] Open
Abstract
Here we report exquisitely distinct material properties of primary vascular smooth muscle (VSM) cells isolated from the thoracic aorta of adult (8 months) vs. aged (30 months) F344XBN rats. Individual VSM cells derived from the aged animals showed a tense internal network of the actin cytoskeleton (CSK), exhibiting increased stiffness (elastic) and frictional (loss) moduli than those derived from the adult animals over a wide frequency range of the imposed oscillatory deformation. This discrete mechanical response was long-lived in culture and persistent across a physiological range of matrix rigidity. Strikingly, the pro-fibrotic transforming growth factor β1 (TGFβ1) emerged as a specific modifier of age-associated VSM stiffening in vitro. TGFβ1 reinforced the mechanical phenotype of arterial aging in VSM cells on multiple time and length scales through clustering of mechanosensitive α5β1 and αvβ3 integrins. Taken together, these studies identify a novel nodal point for the long-range regulation of VSM stiffness and serve as a proof-of-concept that the broad-based inhibition of TGFβ1 expression, or TGFβ1 signal transduction in VSM, may be a useful therapeutic approach to mitigate the pathologic progression of central arterial wall stiffening associated with aging.
Collapse
Affiliation(s)
- Wanqu Zhu
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Byoung Choul Kim
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, 21218, USA.,Division of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jessie Huang
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Abraham Isak
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Natalia M Bexiga
- Immunobiological and Biopharmaceutical Laboratory, Department of Pharmaceutical Biochemistry Technology, University of Sao Paulo, Sao Paulo, Brazil
| | - Robert Monticone
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Howard Hughes Medical Institute, Baltimore, Maryland, 21218, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
105
|
Disease-causing mutation in α-actinin-4 promotes podocyte detachment through maladaptation to periodic stretch. Proc Natl Acad Sci U S A 2018; 115:1517-1522. [PMID: 29378953 DOI: 10.1073/pnas.1717870115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
α-Actinin-4 (ACTN4) bundles and cross-links actin filaments to confer mechanical resilience to the reconstituted actin network. How this resilience is built and dynamically regulated in the podocyte, and the cause of its failure in ACTN4 mutation-associated focal segmental glomerulosclerosis (FSGS), remains poorly defined. Using primary podocytes isolated from wild-type (WT) and FSGS-causing point mutant Actn4 knockin mice, we report responses to periodic stretch. While WT cells largely maintained their F-actin cytoskeleton and contraction, mutant cells developed extensive and irrecoverable reductions in these same properties. This difference was attributable to both actin material changes and a more spatially correlated intracellular stress in mutant cells. When stretched cells were further challenged using a cell adhesion assay, mutant cells were more likely to detach. Together, these data suggest a mechanism for mutant podocyte dysfunction and loss in FSGS-it is a direct consequence of mechanical responses of a cytoskeleton that is brittle.
Collapse
|
106
|
Kumar A, Placone JK, Engler AJ. Understanding the extracellular forces that determine cell fate and maintenance. Development 2017; 144:4261-4270. [PMID: 29183939 DOI: 10.1242/dev.158469] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells interpret signals from their microenvironment while simultaneously modifying the niche through secreting factors and exerting mechanical forces. Many soluble stem cell cues have been determined over the past century, but in the past decade, our molecular understanding of mechanobiology has advanced to explain how passive and active forces induce similar signaling cascades that drive self-renewal, migration, differentiation or a combination of these outcomes. Improvements in stem cell culture methods, materials and biophysical tools that assess function have improved our understanding of these cascades. Here, we summarize these advances and offer perspective on ongoing challenges.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Jesse K Placone
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA .,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
107
|
Noll N, Mani M, Heemskerk I, Streichan SJ, Shraiman BI. Active Tension Network model suggests an exotic mechanical state realized in epithelial tissues. NATURE PHYSICS 2017; 13:1221-1226. [PMID: 30687408 PMCID: PMC6344062 DOI: 10.1038/nphys4219] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/28/2017] [Indexed: 05/22/2023]
Abstract
Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal - "isogonal" - deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit y embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena.
Collapse
Affiliation(s)
- Nicholas Noll
- Department of Physics, University of California Santa Barbara
| | - Madhav Mani
- Department of Applied Mathematics, Northwestern University
| | | | - Sebastian J Streichan
- Department of Physics, University of California Santa Barbara
- Kavli Institute for Theoretical Physics
| | - Boris I Shraiman
- Department of Physics, University of California Santa Barbara
- Kavli Institute for Theoretical Physics
| |
Collapse
|
108
|
Gullekson C, Cojoc G, Schürmann M, Guck J, Pelling A. Mechanical mismatch between Ras transformed and untransformed epithelial cells. SOFT MATTER 2017; 13:8483-8491. [PMID: 29091102 DOI: 10.1039/c7sm01396e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The organization of the actin cytoskeleton plays a key role in regulating cell mechanics. It is fundamentally altered during transformation, affecting how cells interact with their environment. We investigated mechanical properties of cells expressing constitutively active, oncogenic Ras (RasV12) in adherent and suspended states. To do this, we utilized atomic force microscopy and a microfluidic optical stretcher. We found that adherent cells stiffen and suspended cells soften with the expression of constitutively active Ras. The effect on adherent cells was reversed when contractility was inhibited with the ROCK inhibitor Y-27632, resulting in softer RasV12 cells. Our findings suggest that increased ROCK activity as a result of Ras has opposite effects on suspended and adhered cells. Our results also establish the importance of the activation of ROCK by Ras and its effect on cell mechanics.
Collapse
Affiliation(s)
- Corinne Gullekson
- Centre for Interdisciplinary NanoPhysics, Department of Physics, University of Ottawa, 598 King Edward, Ottawa, ON, K1N5N5 Canada.
| | | | | | | | | |
Collapse
|
109
|
Chen Q, Liang Q, Zhuang W, Zhou J, Zhang B, Xu P, Ju Y, Morita Y, Luo Q, Song G. Tenocyte proliferation and migration promoted by rat bone marrow mesenchymal stem cell-derived conditioned medium. Biotechnol Lett 2017; 40:215-224. [PMID: 29018992 DOI: 10.1007/s10529-017-2446-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/21/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To investigate the impact of secreted factors of rat bone marrow mesenchymal stem cells (MSCs) on the proliferation and migration of tenocytes and provide evidence for the development of MSC-based therapeutic methods of tendon injury. RESULTS Rat bone marrow mesenchymal stem cell-derived conditioned medium (MSC-CM) promoted the proliferation of tenocytes within 24 h and decreased the percentage of tenocytes in G1 phase. MSC-CM activated the extracellular signal-regulated kinase1/2 (ERK1/2) signal molecules, while the ERK1/2 inhibitor PD98059 abrogated the MSC-CM-induced proliferation of tenocytes, decreased the fraction of tenocytes in the G1 phase and elevated p-ERK1/2 expression. Furthermore, MSC-CM promoted the migration of tenocytes within 6 h, enhanced the formation of filamentous actin (F-actin) and increased the cellular and nuclear stiffness of tenocytes. CONCLUSIONS MSC-CM promotes tenocyte proliferation by changing cell cycle distribution via the ERK1/2 signaling pathway. MSC-CM-induced tenocyte migration was accompanied by cytoskeletal polymerization and increases in cellular and nuclear stiffness.
Collapse
Affiliation(s)
- Qiufang Chen
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Qingfei Liang
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Weixia Zhuang
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Jun Zhou
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Bingyu Zhang
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400044, China.,Post-doctoral Mobile Stations of Biology, Chongqing University, Chongqing, 400044, China
| | - Pu Xu
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yasuyuki Morita
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
110
|
Sander M, Dobicki H, Ott A. Large Amplitude Oscillatory Shear Rheology of Living Fibroblasts: Path-Dependent Steady States. Biophys J 2017; 113:1561-1573. [PMID: 28978448 PMCID: PMC5627183 DOI: 10.1016/j.bpj.2017.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 01/16/2023] Open
Abstract
Mechanical properties of biological cells play a role in cell locomotion, embryonic tissue formation, and tumor migration among many other processes. Cells exhibit a complex nonlinear response to mechanical cues that is not understood. Cells may stiffen as well as soften, depending on the exact type of stimulus. Here we apply large-amplitude oscillatory shear to a monolayer of separated fibroblast cells suspended between two plates. Although we apply identical steady-state excitations, in response we observe different typical regimes that exhibit cell softening or cell stiffening to varying degrees. This degeneracy of the cell response can be linked to the initial paths that the instrument takes to go from cell rest to steady state. A model of cross-linked, force-bearing filaments submitted to steady-state excitation renders the different observed regimes with minor changes in parameters if the filaments are permitted to self-organize and form different spatially organized structures. We suggest that rather than a complex viscoelastic or plastic response, the different observed regimes reflect the emergence of different steady-state cytoskeletal conformations. A high sensitivity of the cytoskeletal rheology and structure to minor changes in parameters or initial conditions enables a cell to respond to mechanical requirements quickly and in various ways with only minor biochemical intervention. Probing path-dependent rheological changes constitutes a possibly very sensitive assessment of the cell cytoskeleton as a possible tool for medical diagnosis. Our observations show that the memory of subtle differences in earlier deformation paths must be taken into account when deciphering the cell mechanical response to large-amplitude deformations.
Collapse
Affiliation(s)
- Mathias Sander
- Biological Experimental Physics, Department of Physics, Saarland University, Saarbruecken, Germany
| | - Heike Dobicki
- Biological Experimental Physics, Department of Physics, Saarland University, Saarbruecken, Germany
| | - Albrecht Ott
- Biological Experimental Physics, Department of Physics, Saarland University, Saarbruecken, Germany.
| |
Collapse
|
111
|
Dumbali SP, Mei L, Qian S, Maruthamuthu V. Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony. J Biomech Eng 2017; 139:2646921. [PMID: 28753694 DOI: 10.1115/1.4037404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 11/08/2022]
Abstract
Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.
Collapse
Affiliation(s)
- Sandeep P Dumbali
- Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529
| | - Lanju Mei
- Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529
| | - Shizhi Qian
- Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529
| | - Venkat Maruthamuthu
- Mechanical and Aerospace Engineering, Old Dominion University, 4635 Hampton Boulevard, 238e Kaufman, Norfolk, VA 23529 e-mail:
| |
Collapse
|
112
|
Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev 2017; 97:1555-1617. [DOI: 10.1152/physrev.00003.2017] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
The cushioning function of large arteries encompasses distension during systole and recoil during diastole which transforms pulsatile flow into a steady flow in the microcirculation. Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM) proteins that support the mechanical load, while the second important components are vascular smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling in both conductance and resistance arteries are highly relevant to the physiology of normal and early vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interactions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the identification of gene variants affecting arterial stiffening. Now that important hemodynamic and molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the development of arterial stiffness.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Véronique Regnault
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Patrick Segers
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Stéphane Laurent
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| |
Collapse
|
113
|
Stroka KM, Wong BS, Shriver M, Phillip JM, Wirtz D, Kontrogianni-Konstantopoulos A, Konstantopoulos K. Loss of giant obscurins alters breast epithelial cell mechanosensing of matrix stiffness. Oncotarget 2017; 8:54004-54020. [PMID: 28903319 PMCID: PMC5589558 DOI: 10.18632/oncotarget.10997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/20/2016] [Indexed: 01/21/2023] Open
Abstract
Obscurins are a family of RhoGEF-containing proteins with tumor and metastasis suppressing roles in breast epithelium. Downregulation of giant obscurins in normal breast epithelial cells leads to reduced levels of active RhoA and of its downstream effectors. Herein, we elucidate how depletion of giant obscurins affects the response of breast epithelial cells to changes in the mechanical properties of the microenvironment. We find that knockdown of obscurins increases cell morphodynamics, migration speed, and diffusivity on polyacrylamide gels of ≥ 1 kPa, presumably by decreasing focal adhesion area and density as well as cell traction forces. Depletion of obscurins also increases cell mechanosensitivity on soft (0.4-4 kPa) surfaces. Similar to downregulation of obscurins, pharmacological inhibition of Rho kinase in breast epithelial cells increases migration and morphodynamics, suggesting that suppression of Rho kinase activity following obscurin knockdown can account for alterations in morphodynamics and migration. In contrast, inhibition of myosin light chain kinase reduces morphodynamics and migration, suggesting that temporal changes in cell shape are required for efficient migration. Collectively, downregulation of giant obscurins facilitates cell migration through heterogeneous microenvironments of varying stiffness by altering cell mechanobiology.
Collapse
Affiliation(s)
- Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Bin Sheng Wong
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Marey Shriver
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Baltimore, MD, 21201, USA
| | - Jude M. Phillip
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Denis Wirtz
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aikaterini Kontrogianni-Konstantopoulos
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Baltimore, MD, 21201, USA
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, Baltimore, MD, 21201, USA
| | - Konstantinos Konstantopoulos
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
114
|
Mak M, Anderson S, McDonough MC, Spill F, Kim JE, Boussommier-Calleja A, Zaman MH, Kamm RD. Integrated Analysis of Intracellular Dynamics of MenaINV Cancer Cells in a 3D Matrix. Biophys J 2017; 112:1874-1884. [PMID: 28494958 DOI: 10.1016/j.bpj.2017.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/20/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023] Open
Abstract
The intracellular environment is composed of a filamentous network that exhibits dynamic turnover of cytoskeletal components and internal force generation from molecular motors. Particle tracking microrheology enables a means to probe the internal mechanics and dynamics. Here, we develop an analytical model to capture the basic features of the active intracellular mechanical environment, including both thermal and motor-driven effects, and show consistency with a diverse range of experimental microrheology data. We further perform microrheology experiments, integrated with Brownian dynamics simulations of the active cytoskeleton, on metastatic breast cancer cells embedded in a three-dimensional collagen matrix with and without the presence of epidermal growth factor to probe the intracellular mechanical response in a physiologically mimicking scenario. Our results demonstrate that EGF stimulation can alter intracellular stiffness and power output from molecular motor-driven fluctuations in cells overexpressing an invasive isoform of the actin-associated protein Mena.
Collapse
Affiliation(s)
- Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts.
| | | | - Meghan C McDonough
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Fabian Spill
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jessica E Kim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Howard Hughes Medical Institute, Boston University, Boston, Massachusetts.
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
115
|
Okamoto T, Kawamoto E, Takagi Y, Akita N, Hayashi T, Park EJ, Suzuki K, Shimaoka M. Gap junction-mediated regulation of endothelial cellular stiffness. Sci Rep 2017; 7:6134. [PMID: 28733642 PMCID: PMC5522438 DOI: 10.1038/s41598-017-06463-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/14/2017] [Indexed: 12/21/2022] Open
Abstract
Endothelial monolayers have shown the ability to signal each other through gap junctions. Gap junction-mediated cell-cell interactions have been implicated in the modulation of endothelial cell functions during vascular inflammation. Inflammatory mediators alter the mechanical properties of endothelial cells, although the exact role of gap junctions in this process remains unclear. Here, we sought to study the role of gap junctions in the regulation of endothelial stiffness, an important physical feature that is associated with many vascular pathologies. The endothelial cellular stiffness of living endothelial cells was determined by using atomic force microscopy. We found that tumor necrosis factor-α transiently increased endothelial cellular stiffness, which is regulated by cytoskeletal rearrangement and cell-cell interactions. We explored the role of gap junctions in endothelial cellular stiffening by utilizing gap junction blockers, carbenoxolone, inhibitory anti-connexin 32 antibody or anti-connexin 43 antibody. Blockade of gap junctions induced the cellular stiffening associated with focal adhesion formation and cytoskeletal rearrangement, and prolonged tumor necrosis factor-α-induced endothelial cellular stiffening. These results suggest that gap junction-mediated cell-cell interactions play an important role in the regulation of endothelial cellular stiffness.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane, 693-8501, Japan. .,Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan.
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan.,Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu-city, 514-8507, Japan
| | - Yoshimi Takagi
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Nobuyuki Akita
- Faculty of Medical Engineering, Suzuka University of Medical Science, 1001-1, Kishioka-cho, Suzuka-city, Mie, 510-0293, Japan
| | - Tatsuya Hayashi
- Department of Biochemistry, Mie Prefectural College of Nursing, 1-1-1 Yumegaoka, Tsu-city, Mie, 514-0116, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan
| | - Koji Suzuki
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki-cho, Suzuka-city, Mie, 513-8679, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie, 514-8507, Japan.
| |
Collapse
|
116
|
Cui B, Cao X, Zou W, Wan Y, Wang N, Wang Y, Li P, Hua F, Liu Y, Zhang X, Li K, Lv X, Huang B, Hu Z. Regulation of immune-related diseases by multiple factors of chromatin, exosomes, microparticles, vaccines, oxidative stress, dormancy, protein quality control, inflammation and microenvironment: a meeting report of 2017 International Workshop of the Chinese Academy of Medical Sciences (CAMS) Initiative for Innovative Medicine on Tumor Immunology. Acta Pharm Sin B 2017. [PMCID: PMC6281278 DOI: 10.1016/j.apsb.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Immune cells play key roles in cancer and chronic
inflammatory disease. A better understanding of the mechanisms and risks will
help develop novel target therapies. At the 2017 International Workshop of the
Chinese Academy of Medical Sciences (CAMS) Initiative for Innovative Medicine on
Tumor Immunology held in Beijing, China, on May 12, 2017, a number of speakers
reported new findings and ongoing studies on immune-related diseases such as
cancer, fibrotic disease, diabetes, and others. A considerably insightful
overview was provided on cancer immunity, tumor microenvironments, and new
immunotherapy for cancer. In addition, chronic inflammatory diseases were
discussed. These findings may offer new insights into targeted
immunotherapy.
Collapse
Affiliation(s)
- Bing Cui
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
| | - Xuetao Cao
- National Key Laboratory of Medical Molecular Biology,
Department of Immunology, Institute of Basic Medical Sciences and Peking Union
Medical College, Chinese Academy of Medical Sciences, Beijing
100005, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School
of Medicine, Ann Arbor, MI 48109, USA; The University of Michigan Comprehensive
Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Graduate
Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI
48109, USA
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine,
McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8N
3Z5, Canada
| | - Ning Wang
- Laboratory for Cellular Biomechanics and Regenerative
Medicine, Department of Biomedical Engineering, School of Life Science and
Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074,
China; Department of Mechanical Science and Engineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology,
National Center for International Research in Cell and Gene Therapy, Zhengzhou
University, Zhengzhou, 450001, China; School of Basic Medical Sciences, Academy
of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Center for
Molecular Oncology, Barts Cancer Institute, Queen Mary University of London,
London EC1M 6BQ, UK
| | - Pingping Li
- Diabetes Research Center of Chinese Academy of Medical
Sciences, Beijing 100050,
China
| | - Fang Hua
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
| | - Yuying Liu
- Institute of Medicinal Biotechnology, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing,
100050, China
| | - Xiaowei Zhang
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
| | - Ke Li
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
- Institute of Medicinal Biotechnology, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing,
100050, China
| | - Xiaoxi Lv
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
| | - Bo Huang
- National Key Laboratory of Medical Molecular Biology,
Department of Immunology, Institute of Basic Medical Sciences and Peking Union
Medical College, Chinese Academy of Medical Sciences, Beijing
100005, China
- Department of Biochemistry & Molecular Biology,
Tongji Medical College, Huazhong University of Science & Technology, Wuhan,
430030, China; Clinical Immunology Center, Chinese Academy of Medical Sciences,
Beijing, 100050,
China
- Corresponding author at: National Key Laboratory of
Medical Molecular Biology, Department of Immunology, Institute of Basic Medical
Sciences and Peking Union Medical College, Chinese Academy of Medical Sciences,
Beijing 100005, China
| | - Zhuowei Hu
- State Key Laboratory of Bioactive Substance and
Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing
100050, China
- Corresponding author. Tel.: +861083165034.
| |
Collapse
|
117
|
Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells. Nat Protoc 2017; 12:1437-1450. [PMID: 28686583 DOI: 10.1038/nprot.2017.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.
Collapse
|
118
|
Fischer-Friedrich E, Toyoda Y, Cattin CJ, Müller DJ, Hyman AA, Jülicher F. Rheology of the Active Cell Cortex in Mitosis. Biophys J 2017; 111:589-600. [PMID: 27508442 DOI: 10.1016/j.bpj.2016.06.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
The cell cortex is a key structure for the regulation of cell shape and tissue organization. To reach a better understanding of the mechanics and dynamics of the cortex, we study here HeLa cells in mitosis as a simple model system. In our assay, single rounded cells are dynamically compressed between two parallel plates. Our measurements indicate that the cortical layer is the dominant mechanical element in mitosis as opposed to the cytoplasmic interior. To characterize the time-dependent rheological response, we extract a complex elastic modulus that characterizes the resistance of the cortex against area dilation. In this way, we present a rheological characterization of the cortical actomyosin network in the linear regime. Furthermore, we investigate the influence of actin cross linkers and the impact of active prestress on rheological behavior. Notably, we find that cell mechanics values in mitosis are captured by a simple rheological model characterized by a single timescale on the order of 10 s, which marks the onset of fluidity in the system.
Collapse
Affiliation(s)
- Elisabeth Fischer-Friedrich
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Institute of Life Science, Kurume University, Kurume, Japan
| | - Cedric J Cattin
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
| |
Collapse
|
119
|
|
120
|
Abstract
Living cells and tissues experience physical forces and chemical stimuli in a human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.
Collapse
Affiliation(s)
- Ning Wang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
121
|
Cirka H, Monterosso M, Diamantides N, Favreau J, Wen Q, Billiar K. Active Traction Force Response to Long-Term Cyclic Stretch Is Dependent on Cell Pre-stress. Biophys J 2017; 110:1845-1857. [PMID: 27119644 DOI: 10.1016/j.bpj.2016.02.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/07/2016] [Accepted: 02/15/2016] [Indexed: 10/21/2022] Open
Abstract
Mechanical stimulation is recognized as a potent modulator of cellular behaviors such as proliferation, differentiation, and extracellular matrix assembly. However, the study of how cell-generated traction force changes in response to stretch is generally limited to short-term stimulation. The goal of this work is to determine how cells actively alter their traction force in response to long-term physiological cyclic stretch as a function of cell pre-stress. We have developed, to our knowledge, a novel method to assess traction force after long-term (24 h) uniaxial or biaxial cyclic stretch under conditions of high cell pre-stress with culture on stiff (7.5 kPa) polyacrylamide gels (with or without transforming growth factor β1 (TGF-β1)) and low pre-stress by treating with blebbistatin or culture on soft gels (0.6 kPa). In response to equibiaxial stretch, valvular interstitial cells on stiff substrates decreased their traction force (from 300 nN to 100 nN) and spread area (from 3000 to 2100 μm(2)). With uniaxial stretch, the cells had similar decreases in traction force and area and reoriented perpendicular to the stretch. TGF-β1-treated valvular interstitial cells had higher pre-stress (1100 nN) and exhibited a larger drop in traction force with uniaxial stretch, but the percentage changes in force and area with stretch were similar to the non-TGF-β1-treated group. Cells with inhibited myosin II motors increased traction force (from 41 nN to 63 nN) and slightly reoriented toward the stretch direction. In contrast, cells cultured on soft gels increased their traction force significantly, from 15 nN to 45 nN, doubled their spread area, elongated from an initially rounded morphology, and reoriented perpendicular to the uniaxial stretch. Contractile-moment measurements provided results consistent with total traction force measurements. The combined results indicate that the change in traction force in response to external cyclic stretch is dependent upon the initial cell pre-stress. This finding is consistent with depolymerization of initially high-tension actin stress fibers, and reinforcement of an initially low-tension actin cytoskeleton.
Collapse
Affiliation(s)
- Heather Cirka
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | | | - Nicole Diamantides
- Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania
| | - John Favreau
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Kristen Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
122
|
Andresen Eguiluz RC, Kaylan KB, Underhill GH, Leckband DE. Substrate stiffness and VE-cadherin mechano-transduction coordinate to regulate endothelial monolayer integrity. Biomaterials 2017. [PMID: 28624707 DOI: 10.1016/j.biomaterials.2017.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The vascular endothelium is subject to diverse mechanical cues that regulate vascular endothelial barrier function. In addition to rigidity sensing through integrin adhesions, mechanical perturbations such as changes in fluid shear stress can also activate force transduction signals at intercellular junctions. This study investigated how extracellular matrix rigidity and intercellular force transduction, activated by vascular endothelial cadherin, coordinate to regulate the integrity of endothelial monolayers. Studies used complementary mechanical measurements of endothelial monolayers grown on patterned substrates of variable stiffness. Specifically perturbing VE-cadherin receptors activated intercellular force transduction signals that increased integrin-dependent cell contractility and disrupted cell-cell and cell-matrix adhesions. Further investigations of the impact of substrate rigidity on force transduction signaling demonstrated how cells integrate extracellular mechanics cues and intercellular force transduction signals, to regulate endothelial integrity and global tissue mechanics. VE-cadherin specific signaling increased focal adhesion remodeling and cell contractility, while sustaining the overall mechanical equilibrium at the mesoscale. Conversely, increased substrate rigidity exacerbates the disruptive effects of intercellular force transduction signals, by increasing heterogeneity in monolayer stress distributions. The results provide new insights into how substrate stiffness and intercellular force transduction coordinate to regulate endothelial monolayer integrity.
Collapse
Affiliation(s)
- Roberto C Andresen Eguiluz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Kerim B Kaylan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
123
|
Herum KM, Lunde IG, McCulloch AD, Christensen G. The Soft- and Hard-Heartedness of Cardiac Fibroblasts: Mechanotransduction Signaling Pathways in Fibrosis of the Heart. J Clin Med 2017; 6:jcm6050053. [PMID: 28534817 PMCID: PMC5447944 DOI: 10.3390/jcm6050053] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Cardiac fibrosis, the excessive accumulation of extracellular matrix (ECM), remains an unresolved problem in most forms of heart disease. In order to be successful in preventing, attenuating or reversing cardiac fibrosis, it is essential to understand the processes leading to ECM production and accumulation. Cardiac fibroblasts are the main producers of cardiac ECM, and harbor great phenotypic plasticity. They are activated by the disease-associated changes in mechanical properties of the heart, including stretch and increased tissue stiffness. Despite much remaining unknown, an interesting body of evidence exists on how mechanical forces are translated into transcriptional responses important for determination of fibroblast phenotype and production of ECM constituents. Such mechanotransduction can occur at multiple cellular locations including the plasma membrane, cytoskeleton and nucleus. Moreover, the ECM functions as a reservoir of pro-fibrotic signaling molecules that can be released upon mechanical stress. We here review the current status of knowledge of mechanotransduction signaling pathways in cardiac fibroblasts that culminate in pro-fibrotic gene expression.
Collapse
Affiliation(s)
- Kate M Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
- Center for Heart Failure Research, Oslo University Hospital, 0450 Oslo, Norway.
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
- Center for Heart Failure Research, Oslo University Hospital, 0450 Oslo, Norway.
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway.
- Center for Heart Failure Research, Oslo University Hospital, 0450 Oslo, Norway.
| |
Collapse
|
124
|
Ronca A, Maiullari F, Milan M, Pace V, Gloria A, Rizzi R, De Santis R, Ambrosio L. Surface functionalization of acrylic based photocrosslinkable resin for 3D printing applications. Bioact Mater 2017; 2:131-137. [PMID: 29744422 PMCID: PMC5935055 DOI: 10.1016/j.bioactmat.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/28/2022] Open
Abstract
The limited number of resins, available for stereolithography applications, is one of the key drivers in research applied to rapid prototyping. In this work an acrylic photocrosslinkable resin based on methyl methacrylate (MMA), butyl methacrylate (BMA) and poly(ethylene glycol) dimethacrylate (PEGDA) was developed with different composition and characterized in terms of mechanical, thermal and biological behaviour. Two different systems have been developed using different amount of reagent. The influence of every components have been evaluated on the final characteristic of the resin in order to optimize the final composition for applications in bone tissue engineering. The crosslinked materials showed good mechanical properties and thermal stabilities and moreover cytotoxicity test confirms good biocompatibility with no cytotoxic effect on cells metabolism. Moreover two different treatments have been proposed, using fetal bovine serum (FBS) and methanol (MeOH), in order to improve cell recognition of the surfaces. Samples threatened with MeOH allow cell adhesion and survival, promoting spreading, elongation and fusion of C2C12 muscle myoblast cells. Photocrosslinkable biocompatible resin for application in tissue engineering. Surface treatment to improve materials wettability. Myoblast spreading and elongation on photocrosslinked modified surfaces.
Collapse
Affiliation(s)
- A Ronca
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Italy
| | - F Maiullari
- Institute of Cellular Biology and Neurobiology - National Research Council (IBCN- CNR), Italy
| | - M Milan
- Institute of Cellular Biology and Neurobiology - National Research Council (IBCN- CNR), Italy
| | - V Pace
- Institute of Cellular Biology and Neurobiology - National Research Council (IBCN- CNR), Italy
| | - A Gloria
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Italy
| | - R Rizzi
- Institute of Cellular Biology and Neurobiology - National Research Council (IBCN- CNR), Italy
| | - R De Santis
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Italy
| | - L Ambrosio
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Italy
| |
Collapse
|
125
|
Sutton A, Shirman T, Timonen JVI, England GT, Kim P, Kolle M, Ferrante T, Zarzar LD, Strong E, Aizenberg J. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation. Nat Commun 2017; 8:14700. [PMID: 28287116 PMCID: PMC5355809 DOI: 10.1038/ncomms14700] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
Mechanical forces in the cell's natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.
Collapse
Affiliation(s)
- Amy Sutton
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jaakko V. I. Timonen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Applied Physics, Aalto University, Espoo 02150, Finland
| | - Grant T England
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Philseok Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mathias Kolle
- Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Thomas Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lauren D Zarzar
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Materials Science and Engineering and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elizabeth Strong
- Harvard College, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
126
|
Kaylan KB, Kourouklis AP, Underhill GH. A High-throughput Cell Microarray Platform for Correlative Analysis of Cell Differentiation and Traction Forces. J Vis Exp 2017:55362. [PMID: 28287589 PMCID: PMC5408965 DOI: 10.3791/55362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microfabricated cellular microarrays, which consist of contact-printed combinations of biomolecules on an elastic hydrogel surface, provide a tightly controlled, high-throughput engineered system for measuring the impact of arrayed biochemical signals on cell differentiation. Recent efforts using cell microarrays have demonstrated their utility for combinatorial studies in which many microenvironmental factors are presented in parallel. However, these efforts have focused primarily on investigating the effects of biochemical cues on cell responses. Here, we present a cell microarray platform with tunable material properties for evaluating both cell differentiation by immunofluorescence and biomechanical cell-substrate interactions by traction force microscopy. To do so, we have developed two different formats utilizing polyacrylamide hydrogels of varying Young's modulus fabricated on either microscope slides or glass-bottom Petri dishes. We provide best practices and troubleshooting for the fabrication of microarrays on these hydrogel substrates, the subsequent cell culture on microarrays, and the acquisition of data. This platform is well-suited for use in investigations of biological processes for which both biochemical (e.g., extracellular matrix composition) and biophysical (e.g., substrate stiffness) cues may play significant, intersecting roles.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Department of Bioengineering, University of Illinois at Urbana-Champaign
| | | | | |
Collapse
|
127
|
Vassaux M, Milan JL. Stem cell mechanical behaviour modelling: substrate's curvature influence during adhesion. Biomech Model Mechanobiol 2017; 16:1295-1308. [PMID: 28224241 PMCID: PMC5511597 DOI: 10.1007/s10237-017-0888-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/09/2017] [Indexed: 12/16/2022]
Abstract
Recent experiments hint that adherent cells are sensitive to their substrate curvature. It is already well known that cells behaviour can be regulated by the mechanical properties of their environment. However, no mechanisms have been established regarding the influence of cell-scale curvature of the substrate. Using a numerical cell model, based on tensegrity structures theory and the non-smooth contact dynamics method, we propose to investigate the mechanical state of adherent cells on concave and convex hemispheres. Our mechanical cell model features a geometrical description of intracellular components, including the cell membrane, the focal adhesions, the cytoskeleton filament networks, the stress fibres, the microtubules, the nucleus membrane and the nucleoskeleton. The cell model has enabled us to analyse the evolution of the mechanical behaviour of intracellular components with varying curvature radii and with the removal of part of these components. We have observed the influence of the convexity of the substrate on the cell shape, the cytoskeletal force networks as well as on the nucleus strains. The more convex the substrate, the more tensed the stress fibres and the cell membrane, the more compressed the cytosol and the microtubules, leading to a stiffer cell. Furthermore, the more concave the substrate, the more stable and rounder the nucleus. These findings achieved using a verified virtual testing methodology, in particular regarding the nucleus stability, might be of significant importance with respect to the division and differentiation of mesenchymal stem cells. These results can also bring some hindsights on cell migration on curved substrates.
Collapse
Affiliation(s)
- M Vassaux
- Institute of Movement Sciences, Aix Marseille University, CNRS, Marseille, France. .,Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, 13009, Marseille, France.
| | - J L Milan
- Institute of Movement Sciences, Aix Marseille University, CNRS, Marseille, France.,Department of Orthopaedics and Traumatology, Institute for Locomotion, APHM, Sainte-Marguerite Hospital, 13009, Marseille, France
| |
Collapse
|
128
|
Muhamed I, Chowdhury F, Maruthamuthu V. Biophysical Tools to Study Cellular Mechanotransduction. Bioengineering (Basel) 2017; 4:E12. [PMID: 28952491 PMCID: PMC5590431 DOI: 10.3390/bioengineering4010012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 01/25/2023] Open
Abstract
The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na⁺, Ca2+, K⁺ channels). The membrane's biomechanical functions include sensing external forces and/or the rigidity of the external environment through force transmission, specific conformational changes and/or signaling through mechanoreceptors (e.g., platelet endothelial cell adhesion molecule (PECAM), vascular endothelial (VE)-cadherin, epithelial (E)-cadherin, integrin) embedded in the membrane. Certain mechanical stimulations through specific receptor complexes induce electrical and/or chemical impulses in cells and propagate across cells and tissues. These biomechanical sensory and biochemical responses have profound implications in normal physiology and disease. Here, we discuss the tools that facilitate the understanding of mechanosensitive adhesion receptors. This article is structured to provide a broad biochemical and mechanobiology background to introduce a freshman mechano-biologist to the field of mechanotransduction, with deeper study enabled by many of the references cited herein.
Collapse
Affiliation(s)
- Ismaeel Muhamed
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | - Farhan Chowdhury
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA.
| | - Venkat Maruthamuthu
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
129
|
An SS, Liggett SB. Taste and smell GPCRs in the lung: Evidence for a previously unrecognized widespread chemosensory system. Cell Signal 2017; 41:82-88. [PMID: 28167233 DOI: 10.1016/j.cellsig.2017.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Taste and smell receptor expression has been traditionally limited to the tongue and nose. We have identified bitter taste receptors (TAS2Rs) and olfactory receptors (ORs) on human airway smooth muscle (HASM) cells. TAS2Rs signal to PLCβ evoking an increase in [Ca2+]i causing membrane hyperpolarization and marked HASM relaxation ascertained by single cell, ex vivo, and in vivo methods. The presence of TAS2Rs in the lung was unexpected, as was the bronchodilatory function which has been shown to be due to signaling within specific microdomains of the cell. Unlike β2-adrenergic receptor-mediated bronchodilation, TAS2R function is not impaired in asthma and shows little tachyphylaxis. HASM ORs do not bronchodilate, but rather modulate cytoskeletal remodeling and hyperplasia, two cardinal features of asthma. We have shown that short chain fatty acids, byproducts of fermentation of polysaccharides by the gut microbiome, activate HASM ORs. This establishes a non-immune gut-lung mechanism that ties observations on gut microbial communities to asthma phenotypes. Subsequent studies by multiple investigators have revealed expression and specialized functions of TAS2Rs and ORs in multiple cell-types and organs throughout the body. Collectively, the data point towards a previously unrecognized chemosensory system which recognizes endogenous and exogenous agonists. These receptors and their ligands play roles in normal homeostatic functions, predisposition or adaptation to disease, and represent drug targets for novel therapeutics.
Collapse
Affiliation(s)
- Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, United States.
| | - Stephen B Liggett
- Department of Internal Medicine, Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 2, Tampa, FL 33612, United States; Department of Pharmacology and Physiology, Center for Personalized Medicine and Genomics, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., MDC 2, Tampa, FL 33612, United States.
| |
Collapse
|
130
|
Yang Y, Wang K, Gu X, Leong KW. Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography. ENGINEERING (BEIJING, CHINA) 2017; 3:36-54. [PMID: 29071164 PMCID: PMC5653318 DOI: 10.1016/j.eng.2017.01.014] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
131
|
Li G, Song Y, Shi M, Du Y, Wang W, Zhang Y. Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography. Acta Biomater 2017; 49:235-246. [PMID: 27890731 DOI: 10.1016/j.actbio.2016.11.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022]
Abstract
Micro/nano-textured titanium surface topography promotes osteoblast differentiation and the Wnt/β-catenin signaling pathway. However, the response of rat bone mesenchymal stem cells (MSCs) to micro/nano-textured topography, and the underlying mechanisms of its effects, are not well understood. We hypothesized that cell division cycle 42 protein (Cdc42), a key member of the Rho GTPases family, may regulate rat MSCs morphology and osteogenic differentiation by micro/nano-textured topography, and that crosstalk between Cdc42 and Wnt/β-catenin is the underlying mechanism. To confirm the hypothesis, we first tested rat MSCs' morphology, cytoskeleton, and osteogenic differentiation on micro/nano-textured topography. We then examined the cells' Wnt pathway and Cdc42 signaling activity. The results show that micro/nano-textured topography enhances MSCs' osteogenic differentiation. In addition, the cells' morphology and cytoskeletal reorganization were dramatically different on smooth surfaces and micropitted/nanotubular topography. Ligands of the canonical Wnt pathway, as well as accumulation of β-catenin in the nucleus, were up-regulated by micro/nano-textured topography. Cdc42 protein expression was markedly increased under these conditions; conversely, Cdc42 silencing significantly depressed the enhancement of MSCs osteogenic differentiation by micro/nano-textured topography. Moreover, Cdc42si attenuated p-GSK3β activation and resulted in β-catenin cytoplasmic degradation on the micro/nano-textured topography. Our results indicate that Cdc42 is a key modulator of rat MSCs morphology and cytoskeletal reorganization, and that crosstalk between Cdc42 and Wnt/β-catenin signaling though GSK3β regulates MSCs osteogenic differentiation by implant topographical cues. STATEMENT OF SIGNIFICANCE Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials. However, the response of bone mesenchymal stem cells (MSCs) to the micro/nano-textured topography and the underlying mechanisms are not well understood. This study shows that the micropitted/nanotubular hierarchical topography produced by etching and anodic oxidation treatment drives fusiform cell morphology, cytoskeletal reorganization as well as better MSCs osteogenic differentiation. The cross-talk between Cdc42 pathway and Wnt/β-catenin pathway though GSK3β modulates the osteoinductive effect of the micro/nano-textured topography on MSCs. This finding sheds light on a novel mechanism involved in micro/nano-textured surface-mediated MSCs osteogenic differentiation and is a major step in the development of new surface modifications aiming to accelerate and enhance the process of osseointegration.
Collapse
|
132
|
Cyron CJ, Humphrey JD. Growth and Remodeling of Load-Bearing Biological Soft Tissues. MECCANICA 2017; 52:645-664. [PMID: 28286348 PMCID: PMC5342900 DOI: 10.1007/s11012-016-0472-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The past two decades reveal a growing role of continuum biomechanics in understanding homeostasis, adaptation, and disease progression in soft tissues. In this paper, we briefly review the two primary theoretical approaches for describing mechano-regulated soft tissue growth and remodeling on the continuum level as well as hybrid approaches that attempt to combine the advantages of these two approaches while avoiding their disadvantages. We also discuss emerging concepts, including that of mechanobiological stability. Moreover, to motivate and put into context the different theoretical approaches, we briefly review findings from mechanobiology that show the importance of mass turnover and the prestressing of both extant and new extracellular matrix in most cases of growth and remodeling. For illustrative purposes, these concepts and findings are discussed, in large part, within the context of two load-bearing, collagen dominated soft tissues - tendons/ligaments and blood vessels. We conclude by emphasizing further examples, needs, and opportunities in this exciting field of modeling soft tissues.
Collapse
Affiliation(s)
- C J Cyron
- Institute for Computational Mechanics, Technische Universität München, Garching, Germany
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
133
|
Schulze KD, Zehnder SM, Urueña JM, Bhattacharjee T, Sawyer WG, Angelini TE. Elastic modulus and hydraulic permeability of MDCK monolayers. J Biomech 2017; 53:210-213. [PMID: 28173919 DOI: 10.1016/j.jbiomech.2017.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/31/2016] [Accepted: 01/13/2017] [Indexed: 11/26/2022]
Abstract
The critical role of cell mechanics in tissue health has led to the development of many in vitro methods that measure the elasticity of the cytoskeleton and whole cells, yet the connection between these local cell properties and bulk measurements of tissue mechanics remains unclear. To help bridge this gap, we have developed a monolayer indentation technique for measuring multi-cellular mechanics in vitro. Here, we measure the elasticity of cell monolayers and uncover the role of fluid permeability in these multi-cellular systems, finding that the resistance of fluid transport through cells controls their force-response at long times.
Collapse
Affiliation(s)
- K D Schulze
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - S M Zehnder
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - J M Urueña
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - T Bhattacharjee
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - W G Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States; Department of Material Science and Engineering, University of Florida, Gainesville, FL, United States
| | - T E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States; Institute for Cell Engineering and Regenerative Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
134
|
Álvarez-González B, Zhang S, Gómez-González M, Meili R, Firtel RA, Lasheras JC, Del Álamo JC. Two-Layer Elastographic 3-D Traction Force Microscopy. Sci Rep 2017; 7:39315. [PMID: 28074837 PMCID: PMC5225457 DOI: 10.1038/srep39315] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 11/15/2016] [Indexed: 01/16/2023] Open
Abstract
Cellular traction force microscopy (TFM) requires knowledge of the mechanical properties of the substratum where the cells adhere to calculate cell-generated forces from measurements of substratum deformation. Polymer-based hydrogels are broadly used for TFM due to their linearly elastic behavior in the range of measured deformations. However, the calculated stresses, particularly their spatial patterns, can be highly sensitive to the substratum's Poisson's ratio. We present two-layer elastographic TFM (2LETFM), a method that allows for simultaneously measuring the Poisson's ratio of the substratum while also determining the cell-generated forces. The new method exploits the analytical solution of the elastostatic equation and deformation measurements from two layers of the substratum. We perform an in silico analysis of 2LETFM concluding that this technique is robust with respect to TFM experimental parameters, and remains accurate even for noisy measurement data. We also provide experimental proof of principle of 2LETFM by simultaneously measuring the stresses exerted by migrating Physarum amoeboae on the surface of polyacrylamide substrata, and the Poisson's ratio of the substrata. The 2LETFM method could be generalized to concurrently determine the mechanical properties and cell-generated forces in more physiologically relevant extracellular environments, opening new possibilities to study cell-matrix interactions.
Collapse
Affiliation(s)
- Begoña Álvarez-González
- Division of Cell and Developmental Biology, University of California, San Diego.,Department of Mechanical and Aerospace Engineeing, University of California, San Diego
| | - Shun Zhang
- Department of Mechanical and Aerospace Engineeing, University of California, San Diego
| | - Manuel Gómez-González
- Department of Mechanical and Aerospace Engineeing, University of California, San Diego
| | - Ruedi Meili
- Division of Cell and Developmental Biology, University of California, San Diego.,Department of Mechanical and Aerospace Engineeing, University of California, San Diego
| | - Richard A Firtel
- Division of Cell and Developmental Biology, University of California, San Diego
| | - Juan C Lasheras
- Department of Mechanical and Aerospace Engineeing, University of California, San Diego.,Department of Bioengineering, University of California, San Diego.,Center for Medical Devices and Instrumentation, Institute for Engineering in Medicine, University of California, San Diego
| | - Juan C Del Álamo
- Department of Mechanical and Aerospace Engineeing, University of California, San Diego.,Center for Medical Devices and Instrumentation, Institute for Engineering in Medicine, University of California, San Diego
| |
Collapse
|
135
|
Kamm RD, Lammerding J, Mofrad MRK. Cellular Nanomechanics. SPRINGER HANDBOOK OF NANOTECHNOLOGY 2017. [DOI: 10.1007/978-3-662-54357-3_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
136
|
Huang C, Liu L, You Z, Wang B, Du Y, Ogawa R. Keloid progression: a stiffness gap hypothesis. Int Wound J 2016; 14:764-771. [PMID: 27995750 DOI: 10.1111/iwj.12693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/06/2016] [Indexed: 12/19/2022] Open
Abstract
Keloids are fibroproliferative skin disorders characterised clinically by continuous horizontal progression and post-surgical recurrence and histologically by the accumulation of collagen and fibroblast ingredients. Till now, their aetiology remains clear, which may cover genetic, environmental and metabolic factors. Evidence in the involvement of local mechanics (e.g. predilection site and typical shape) and the progress in mechanobiology have incubated our stiffness gap hypotheses in illustrating the chronic but constant development in keloid. We put forward that the enlarged gap between extracellular matrix (ECM) stiffness and cellular stiffness potentiates keloid progression. Matrix stiffness itself provides organisational guidance cues to regulate the mechanosensitive resident cells (e.g. proliferation, migration and apoptosis). During this dynamic process, the ECM stiffness and cell stiffness are not well balanced, and the continuously enlarged stiffness gap between them potentiates keloid progression. The cushion factors, such as prestress for cell stiffness and topology for ECM stiffness, serve as compensations, the decompensation of which aggravates keloid development. It can well explain the typical shape of keloids, their progression in a horizontal but not vertical direction and the post-surgical recurrence, which were evidenced by our clinical cases. Such a stiffness gap hypothesis might be bridged to mechanotherapeutic approaches for keloid progression.
Collapse
Affiliation(s)
- Chenyu Huang
- Department of Dermatology Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Longwei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zhifeng You
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Bingjie Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
137
|
Nguyen AV, Nyberg KD, Scott MB, Welsh AM, Nguyen AH, Wu N, Hohlbauch SV, Geisse NA, Gibb EA, Robertson AG, Donahue TR, Rowat AC. Stiffness of pancreatic cancer cells is associated with increased invasive potential. Integr Biol (Camb) 2016; 8:1232-1245. [PMID: 27761545 PMCID: PMC5866717 DOI: 10.1039/c6ib00135a] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastasis is a fundamentally physical process in which cells are required to deform through narrow gaps as they invade surrounding tissues and transit to distant sites. In many cancers, more invasive cells are more deformable than less invasive cells, but the extent to which mechanical phenotype, or mechanotype, can predict disease aggressiveness in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here we investigate the invasive potential and mechanical properties of immortalized PDAC cell lines derived from primary tumors and a secondary metastatic site, as well as noncancerous pancreatic ductal cells. To investigate how invasive behavior is associated with cell mechanotype, we flow cells through micron-scale pores using parallel microfiltration and microfluidic deformability cytometry; these results show that the ability of PDAC cells to passively transit through pores is only weakly correlated with their invasive potential. We also measure the Young's modulus of pancreatic ductal cells using atomic force microscopy, which reveals that there is a strong association between cell stiffness and invasive potential in PDAC cells. To determine the molecular origins of the variability in mechanotype across our PDAC cell lines, we analyze RNAseq data for genes that are known to regulate cell mechanotype. Our results show that vimentin, actin, and lamin A are among the most differentially expressed mechanoregulating genes across our panel of PDAC cell lines, as well as a cohort of 38 additional PDAC cell lines. We confirm levels of these proteins across our cell panel using immunoblotting, and find that levels of lamin A increase with both invasive potential and Young's modulus. Taken together, we find that stiffer PDAC cells are more invasive than more compliant cells, which challenges the paradigm that decreased cell stiffness is a hallmark of metastatic potential.
Collapse
Affiliation(s)
- Angelyn V Nguyen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA.
| | - Kendra D Nyberg
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA. and Department of Bioengineering, University of California, Los Angeles, USA
| | - Michael B Scott
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA.
| | - Alia M Welsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA
| | - Andrew H Nguyen
- Department of General Surgery, University of California, Los Angeles, USA
| | - Nanping Wu
- Department of General Surgery, University of California, Los Angeles, USA
| | - Sophia V Hohlbauch
- Asylum Research, an Oxford Instruments Company, Santa Barbara, California, USA
| | - Nicholas A Geisse
- Asylum Research, an Oxford Instruments Company, Santa Barbara, California, USA
| | - Ewan A Gibb
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Timothy R Donahue
- Department of General Surgery, University of California, Los Angeles, USA and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA. and Department of Bioengineering, University of California, Los Angeles, USA and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, USA
| |
Collapse
|
138
|
Kivanany PB, Grose KC, Petroll WM. Temporal and spatial analysis of stromal cell and extracellular matrix patterning following lamellar keratectomy. Exp Eye Res 2016; 153:56-64. [PMID: 27732879 PMCID: PMC5121062 DOI: 10.1016/j.exer.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/22/2016] [Accepted: 10/07/2016] [Indexed: 01/19/2023]
Abstract
Extracellular matrix (ECM) supplies both physical and chemical signals to keratocytes which can impact their differentiation to fibroblasts and/or myofibroblasts. It also provides a substrate through which they migrate during wound repair. We have previously shown that following transcorneal freeze injury (FI), migrating corneal fibroblasts align parallel to the stromal lamellae during wound repopulation. In this study, we compare cell and ECM patterning both within and on top of the stroma at different time points following lamellar keratectomy (LK) in the rabbit. Twelve rabbits received LK in one eye. Rabbits were monitored using in vivo confocal microscopy at 3, 7, 21 and 60 days after injury. A subset of animals was sacrificed at each time point to further investigate cell and matrix patterning. Tissue was fixed and labeled in situ with Alexa Fluor 488 phalloidin (for F-actin), and imaged using multiphoton fluorescence and second harmonic generation (SHG) imaging (for collagen). Immediately following LK, cell death occurred in the corneal stroma directly beneath the injury. At 7 and 21 days after LK, analysis of fluorescence (F-actin) and SHG results (collagen) indicated that fibroblasts were co-aligned with the collagen lamellae within this region. In contrast, stromal cells accumulating on top of the stromal wound bed were randomly arranged, contained more prominent stress fibers, and expressed alpha smooth muscle actin (α-SMA) and fibronectin. At 60 days, cells and matrix in this region had become co-aligned into lamellar-like structures; cells were elongated but did not express stress fibers. Corneal haze measured using in vivo confocal microscopy peaked at 21 days after LK, and was significantly reduced by 60 days. Cell morphology and patterning observed in vivo was similar to that observed in situ. Our results suggest that the topography and alignment of the collagen lamellae direct fibroblast patterning during repopulation of the native stroma after LK injury in the rabbit. In contrast, stromal cells accumulating on top of the stromal wound bed initially align randomly and produce a fibrotic ECM. Remarkably, over time, these cells appear to remodel the ECM to produce a lamellar structure that is similar to the native corneal stroma.
Collapse
Affiliation(s)
- Pouriska B Kivanany
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, United States; Biomedical Engineering Graduate Program, UT Southwestern Medical Center, Dallas, TX, United States
| | - Kyle C Grose
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, United States
| | - W Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, United States; Biomedical Engineering Graduate Program, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
139
|
Kim TH, Gill NK, Nyberg KD, Nguyen AV, Hohlbauch SV, Geisse NA, Nowell CJ, Sloan EK, Rowat AC. Cancer cells become less deformable and more invasive with activation of β-adrenergic signaling. J Cell Sci 2016; 129:4563-4575. [PMID: 27875276 DOI: 10.1242/jcs.194803] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022] Open
Abstract
Invasion by cancer cells is a crucial step in metastasis. An oversimplified view in the literature is that cancer cells become more deformable as they become more invasive. β-adrenergic receptor (βAR) signaling drives invasion and metastasis, but the effects on cell deformability are not known. Here, we show that activation of β-adrenergic signaling by βAR agonists reduces the deformability of highly metastatic human breast cancer cells, and that these stiffer cells are more invasive in vitro We find that βAR activation also reduces the deformability of ovarian, prostate, melanoma and leukemia cells. Mechanistically, we show that βAR-mediated cell stiffening depends on the actin cytoskeleton and myosin II activity. These changes in cell deformability can be prevented by pharmacological β-blockade or genetic knockout of the β2-adrenergic receptor. Our results identify a β2-adrenergic-Ca2+-actin axis as a new regulator of cell deformability, and suggest that the relationship between cell mechanical properties and invasion might be dependent on context.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA.,Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles 90095, USA
| | - Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA
| | - Kendra D Nyberg
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA.,Department of Bioengineering, University of California, Los Angeles 90095, USA
| | - Angelyn V Nguyen
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA
| | - Sophia V Hohlbauch
- Asylum Research, an Oxford Instruments Company, Santa Barbara, CA 93117, USA
| | - Nicholas A Geisse
- Asylum Research, an Oxford Instruments Company, Santa Barbara, CA 93117, USA
| | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Erica K Sloan
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles 90095, USA.,Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles 90095, USA.,UCLA AIDS Institute, University of California, Los Angeles 90095, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA .,Department of Bioengineering, University of California, Los Angeles 90095, USA.,UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles 90095, USA
| |
Collapse
|
140
|
Wang Y, Lu Y, Luo M, Shi X, Pan Y, Zeng H, Deng L. Evaluation of pharmacological relaxation effect of the natural product naringin on in vitro cultured airway smooth muscle cells and in vivo ovalbumin-induced asthma Balb/c mice. Biomed Rep 2016; 5:715-722. [PMID: 28101344 DOI: 10.3892/br.2016.797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
Asthma has become a common chronic respiratory disease worldwide and its prevalence is predicted to continue increasing in the next decade, particularly in developing countries. A key component in asthma therapy is to alleviate the excessive bronchial airway narrowing ultimately due to airway smooth muscle contraction, which is often facilitated by a smooth muscle relaxant, such as the β2-adrenergic agonists. Recently, bitter taste receptor (TAS2R) agonists, including saccharin and chloroquine, have been found to potently relax the airway smooth muscle cells (ASMCs) via intracellular Ca2+ signaling. This inspires a great interest in screening the vast resource of natural bitter substances for potential bronchodilatory drugs. In the present study, the relaxation effect of naringin, a compound extracted from common grapefruit, on ASMCs cultured in vitro or bronchial airways of Balb/c mice in vivo was evaluated. The results demonstrated that, when exposed to increasing doses of naringin (0.125, 0.25, 0.5 and 1.0 mM), the traction force generated by the cultured ASMCs decreased progressively, while the intracellular calcium flux signaling in the ASMCs increased. When inhaled at increasing doses (15, 30 and 60 µg), naringin also dose-dependently reduced the bronchial airway resistance of the normal and ovalbumin-induced asthma Balb/c mice in response to challenge with methacholine. In conclusion, these findings indicate that naringin was able to effectively relax murine ASMCs in vitro and in vivo, thus suggesting that it is a promising drug agent to be further investigated in the development of novel bronchodilators for the treatment of asthma.
Collapse
Affiliation(s)
- Yue Wang
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Nursing, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Yun Lu
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Xiaohao Shi
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Yan Pan
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Huilong Zeng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Nursing, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| |
Collapse
|
141
|
Duan Y, Long J, Chen J, Jiang X, Zhu J, Jin Y, Lin F, Zhong J, Xu R, Mao L, Deng L. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat. Exp Cell Res 2016; 349:109-118. [PMID: 27720670 DOI: 10.1016/j.yexcr.2016.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Abstract
A disintegrin and metalloproteinase 33 (ADAM33) has been identified as a susceptibility gene for asthma, but details of the causality are not fully understood. We hypothesize that soluble ADAM33 (sADAM33) overexpression can alter the mechanical behaviors of airway smooth muscle cells (ASMCs) via regulation of the cell's contractile phenotype, and thus contributes to airway hyperresponsiveness (AHR) in asthma. To test this hypothesis, we either overexpressed or knocked down the sADAM33 in rat ASMCs by transfecting the cells with sADAM33 coding sequence or a small interfering RNA (siRNA) that specifically targets the ADAM33 disintegrin domain, and subsequently assessed the cells for stiffness, contractility and traction force, together with the expression level of contractile and proliferative phenotype markers. We also investigated whether these changes were dependent on Rho/ROCK pathway by culturing the ASMCs either in the absence or presence of ROCK inhibitor (H1152). The results showed that the ASMCs with sADAM33 overexpression were stiffer and more contractile, generated greater traction force, exhibited increased expression levels of contractile phenotype markers and markedly enhanced Rho activation. Furthermore these changes were largely attenuated when the cells were cultured in the presence of H-1152. However, the knock-down of ADAM33 seemed insufficient to influence majority of the mechanical behaviors of the ASMCs. Taken together, we demonstrated that sADAM33 overexpression altered the mechanical behaviors of ASMCs in vitro, which was most likely by promoting a hypercontractile phenotype transition of ASMCs through Rho/ROCK pathway. This revelation may establish the previously missing link between ADAM33 expression and AHR, and also provide useful insight for targeting sADAM33 in asthma prevention and therapy.
Collapse
Affiliation(s)
- Yiyuan Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030, China
| | - Jiaoyue Long
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030, China
| | - Jun Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030, China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030, China
| | - Jian Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030, China
| | - Yang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030, China
| | - Feng Lin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030, China
| | - Jun Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030, China
| | - Rong Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030, China
| | - Lizheng Mao
- Jiangsu Asialand Biomed-Technology Co. Ltd., Changzhou, Jiangsu 213164, China
| | - Linhong Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, and Bioengineering College, Chongqing University, Shapingba, Chongqing 400030, China; Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
142
|
Bonakdar N, Gerum R, Kuhn M, Spörrer M, Lippert A, Schneider W, Aifantis KE, Fabry B. Mechanical plasticity of cells. NATURE MATERIALS 2016; 15:1090-4. [PMID: 27376682 DOI: 10.1038/nmat4689] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/01/2016] [Indexed: 05/06/2023]
Abstract
Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.
Collapse
Affiliation(s)
- Navid Bonakdar
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Max-Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Richard Gerum
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Michael Kuhn
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Marina Spörrer
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Anna Lippert
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Werner Schneider
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Katerina E Aifantis
- Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, Arizona 85721, USA
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
143
|
Persistence of fan-shaped keratocytes is a matrix-rigidity-dependent mechanism that requires α 5β 1 integrin engagement. Sci Rep 2016; 6:34141. [PMID: 27678055 PMCID: PMC5039689 DOI: 10.1038/srep34141] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/05/2016] [Indexed: 12/27/2022] Open
Abstract
Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of αvβ3 or α5β1 integrins, we show that αVβ3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α5β1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of αvβ3 and α5β1 integrins in the molecular clutch model.
Collapse
|
144
|
Chronopoulos A, Robinson B, Sarper M, Cortes E, Auernheimer V, Lachowski D, Attwood S, García R, Ghassemi S, Fabry B, Del Río Hernández A. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun 2016; 7:12630. [PMID: 27600527 PMCID: PMC5023948 DOI: 10.1038/ncomms12630] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 07/18/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal survival rate. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homoeostasis of the tumour microenvironment to favour cancer cell invasion. Here we report that ATRA, an active metabolite of vitamin A, restores mechanical quiescence in PSCs via a mechanism involving a retinoic acid receptor beta (RAR-β)-dependent downregulation of actomyosin (MLC-2) contractility. We show that ATRA reduces the ability of PSCs to generate high traction forces and adapt to extracellular mechanical cues (mechanosensing), as well as suppresses force-mediated extracellular matrix remodelling to inhibit local cancer cell invasion in 3D organotypic models. Our findings implicate a RAR-β/MLC-2 pathway in peritumoural stromal remodelling and mechanosensory-driven activation of PSCs, and further suggest that mechanical reprogramming of PSCs with retinoic acid derivatives might be a viable alternative to stromal ablation strategies for the treatment of PDAC. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homeostasis of the tumour microenvironment. Here the authors show that all-trans retinoic acid reduces retinoic acid receptor beta dependent-actomyosin contractility and restores mechanical quiescence in PSCs.
Collapse
Affiliation(s)
- Antonios Chronopoulos
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Benjamin Robinson
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Muge Sarper
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Ernesto Cortes
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Vera Auernheimer
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Simon Attwood
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Rebeca García
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Saba Ghassemi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ben Fabry
- Department of Physics, Biophysics Group, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Armando Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
145
|
Weng S, Shao Y, Chen W, Fu J. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis. NATURE MATERIALS 2016; 15:961-967. [PMID: 27240108 PMCID: PMC4996707 DOI: 10.1038/nmat4654] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 05/04/2016] [Indexed: 05/07/2023]
Abstract
Mechanical homeostasis-a fundamental process by which cells maintain stable states under environmental perturbations-is regulated by two subcellular mechanotransducers: cytoskeleton tension and integrin-mediated focal adhesions (FAs). Here, we show that single-cell mechanical homeostasis is collectively driven by the distinct, graduated dynamics (rheostasis) of subcellular cytoskeleton tension and FAs. Such rheostasis involves a mechanosensitive pattern wherein ground states of cytoskeleton tension and FA determine their distinct reactive paths through either relaxation or reinforcement. Pharmacological perturbations of the cytoskeleton and molecularly modulated integrin catch-slip bonds biased the rheostasis and induced non-homeostasis of FAs, but not of cytoskeleton tension, suggesting a unique sensitivity of FAs in regulating homeostasis. Theoretical modelling revealed myosin-mediated cytoskeleton contractility and catch-slip-bond-like behaviours in FAs and the cytoskeleton as sufficient and necessary mechanisms for quantitatively recapitulating mechanosensitive rheostasis. Our findings highlight the previously underappreciated physical nature of the mechanical homeostasis of cells.
Collapse
Affiliation(s)
- Shinuo Weng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiqiang Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence should be addressed to J.F. ()
| |
Collapse
|
146
|
Kourouklis AP, Kaylan KB, Underhill GH. Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells. Biomaterials 2016; 99:82-94. [DOI: 10.1016/j.biomaterials.2016.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
|
147
|
Cohen O, Safran SA. Elastic interactions synchronize beating in cardiomyocytes. SOFT MATTER 2016; 12:6088-6095. [PMID: 27352146 DOI: 10.1039/c6sm00351f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Motivated by recent experimental results, we study theoretically the synchronization of the beating phase and frequency of two nearby cardiomyocyte cells. Each cell is represented as an oscillating force dipole in an infinite, viscoelastic medium and the propagation of the elastic signal within the medium is predicted. We examine the steady-state beating of two nearby cells, and show that elastic interactions result in forces that synchronize the phase and frequency of beating in a manner that depends on their mutual orientation. The theory predicts both in-phase and anti-phase steady-state beating depending on the relative cell orientations, as well as how synchronized beating varies with substrate elasticity and the inter-cell distance. These results suggest how mechanics plays a role in cardiac efficiency, and may be relevant for the design of cardiomyocyte based micro devices and other biomedical applications.
Collapse
Affiliation(s)
- Ohad Cohen
- Dept. Materials and Interfaces, Weizmann Institute of Science, Rehovot, IL 76100, Israel.
| | - Samuel A Safran
- Dept. Materials and Interfaces, Weizmann Institute of Science, Rehovot, IL 76100, Israel.
| |
Collapse
|
148
|
Simulation of extracellular matrix remodeling by fibroblast cells in soft three-dimensional bioresorbable scaffolds. Biomech Model Mechanobiol 2016; 15:1685-1698. [DOI: 10.1007/s10237-016-0791-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
|
149
|
A Langevin model of physical forces in cell volume fluctuations. J Biomech 2016; 49:1286-1289. [DOI: 10.1016/j.jbiomech.2015.12.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/30/2015] [Accepted: 12/30/2015] [Indexed: 11/17/2022]
|
150
|
Polacheck WJ, Chen CS. Measuring cell-generated forces: a guide to the available tools. Nat Methods 2016; 13:415-23. [PMID: 27123817 PMCID: PMC5474291 DOI: 10.1038/nmeth.3834] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
Abstract
Forces generated by cells are critical regulators of cell adhesion, signaling, and function, and they are also essential drivers in the morphogenetic events of development. Over the past 20 years, several methods have been developed to measure these forces. However, despite recent substantial interest in understanding the contribution of these forces in biology, implementation and adoption of the developed methods by the broader biological community remain challenging because of the inherently multidisciplinary expertise required to conduct and interpret the measurements. In this review, we introduce the established methods and highlight the technical challenges associated with implementing each technique in a biological laboratory.
Collapse
Affiliation(s)
- William J. Polacheck
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| |
Collapse
|