101
|
Pseudomonas aeruginosa Inhibition of Flagellin-activated NF-kappaB and interleukin-8 by human airway epithelial cells. Infect Immun 2009; 77:2857-65. [PMID: 19451246 DOI: 10.1128/iai.01355-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa-induced activation of NF-kappaB and secretion of proinflammatory cytokines by airway epithelial cells require that the bacteria express flagellin. We tested whether P. aeruginosa and human airway epithelial cells secrete factors that modulated this response. Experiments were performed with both the Calu-3 cell line and primary cultures of tracheal epithelial cells. P. aeruginosa strain PAK DeltafliC (flagellin knockout) did not activate NF-kappaB or interleukin-8 (IL-8) but inhibited flagellin-activated NF-kappaB by 40 to 50% and IL-8 secretion by 20 to 25%. PAK DeltafliC also inhibited NF-kappaB induced by IL-1beta and Toll-like receptor 2 agonist Pam3CSK4. Similar inhibitions were observed with strains PAK, PAO1, and PA14. The inhibitory factor was present in conditioned medium isolated from PAK DeltafliC or Calu-3 plus PAK DeltafliC, but it was not present in conditioned medium isolated from Calu-3 cells alone or from PAK DeltafliC that had been heat treated. Inhibition by PAK DeltafliC-conditioned medium was exerted from either the apical or the basolateral side of the epithelium, was enhanced in simple Ringer's solution over that in tissue culture medium, and did not result from altered pH or depletion of glucose. The inhibitory effect of conditioned medium was abolished by boiling and appeared from filtration studies to result from effects of a factor with a molecular mass of <3 kDa. These and further studies with isogenic mutants led to the conclusion that the NF-kappaB and IL-8 response of airway epithelial cells to P. aeruginosa results from a balance of proinflammatory effects of flagellin and antiinflammatory effects of a small (<3-kDa), heat-sensitive factor(s) that is not lipopolysaccharide, C12 homoserine lactone, alginate, CIF, or exotoxin A, S, T, U, or Y.
Collapse
|
102
|
Wright AKA, Rao S, Range S, Eder C, Hofer TPJ, Frankenberger M, Kobzik L, Brightling C, Grigg J, Ziegler-Heitbrock L. Pivotal Advance: Expansion of small sputum macrophages in CF: failure to express MARCO and mannose receptors. J Leukoc Biol 2009; 86:479-89. [DOI: 10.1189/jlb.1108699] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
103
|
Zhang T, Song KW, Hekmat-Nejad M, Morris DG, Wong BR. A modeling-derived hypothesis on chronicity in respiratory diseases: desensitized pathogen recognition secondary to hyperactive IRAK/TRAF6 signaling. PLoS One 2009; 4:e5332. [PMID: 19390631 PMCID: PMC2669711 DOI: 10.1371/journal.pone.0005332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/30/2009] [Indexed: 11/18/2022] Open
Abstract
Several chronic respiratory diseases exhibit hyperactive immune responses in the lung: abundant inflammatory mediators; infiltrating neutrophils, macrophages, lymphocytes and other immune cells; and increased level of proteases. Such diseases include cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and severe/neutrophilic asthma. Paradoxically, patients with these diseases are also susceptible to detrimental bacterial infection and colonization. In this paper, we seek to explain how a positive feedback mechanism via IL-8 could lead to desensitization of epithelial cells to pathogen recognition thus perpetuating bacterial colonization and chronic disease states in the lung. Such insight was obtained from mathematical modeling of the IRAK/TRAF6 signaling module, and is consistent with existing clinical evidence. The potential implications for targeted treatment regimes for these persistent respiratory diseases are explored.
Collapse
Affiliation(s)
- Tingting Zhang
- Roche Palo Alto LLC, Palo Alto, California, United States of America.
| | | | | | | | | |
Collapse
|
104
|
Rottner M, Freyssinet JM, Martínez MC. Mechanisms of the noxious inflammatory cycle in cystic fibrosis. Respir Res 2009; 10:23. [PMID: 19284656 PMCID: PMC2660284 DOI: 10.1186/1465-9921-10-23] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/13/2009] [Indexed: 01/09/2023] Open
Abstract
Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508), accounting for this pathology, is retained in the endoplasmic reticulum (ER), induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis.
Collapse
Affiliation(s)
- Mathilde Rottner
- 1INSERM U 770; Université Paris-Sud 11, Faculté de Médecine, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France.
| | | | | |
Collapse
|
105
|
CFTR is a negative regulator of NFkappaB mediated innate immune response. PLoS One 2009; 4:e4664. [PMID: 19247502 PMCID: PMC2647738 DOI: 10.1371/journal.pone.0004664] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 02/06/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dysfunctional CFTR in the airways is associated with elevated levels of NFkappaB mediated IL-8 signaling leading to neutrophil chemotaxis and chronic lung inflammation in cystic fibrosis. The mechanism(s) by which CFTR mediates inflammatory signaling is under debate. METHODOLOGY/PRINCIPAL FINDINGS We tested the hypothesis that wt-CFTR down-regulates NFkappaB mediated IL-8 secretion. We transiently co-expressed wt-CFTR and IL-8 or NFkappaB promoters driving luciferase expression in HEK293 cells. Wt-CFTR expression in HEK293 cells suppresses both basal and IL1beta induced IL-8, and NFkappaB promoter activities as compared to the control cells transfected with empty vector (p<0.05). We also confirmed these results using CFBE41o- cells and observed that cells stably transduced with wt-CFTR secrete significantly lower amounts of IL-8 chemokine as compared to non-transfected control cells. To test the hypothesis that CFTR must be localized to cell surface lipid rafts in polarized airway epithelial cells in order to mediate the inflammatory response, we treated CFBE41o- cells that had been stably transduced with wt-CFTR with methyl-beta-cyclodextrin (CD). At baseline, CD significantly (p<0.05) induced IL-8 and NFkappaB reporter activities as compared to control cells suggesting a negative regulation of NFkappaB mediated IL-8 signaling by CFTR in cholesterol-rich lipid rafts. Untreated cells exposed to the CFTR channel blocker CFTR-172 inhibitor developed a similar increase in IL-8 and NFkappaB reporter activities suggesting that not only must CFTR be present on the cell surface but it must be functional. We verified these results in vivo by comparing survival, body weight and pro-inflammatory cytokine response to P. aeruginosa LPS in CFTR knock out (CFKO) mice as compared to wild type controls. There was a significant (p<0.05) decrease in survival and body weight, an elevation in IL-1beta in whole lung extract (p<0.01), as well as a significant increase in phosphorylated IkappaB, an inducer of NFkappaB mediated signaling in the CFKO mice. CONCLUSIONS/SIGNIFICANCE Our data suggest that CFTR is a negative regulator of NFkappaB mediated innate immune response and its localization to lipid rafts is involved in control of inflammation.
Collapse
|
106
|
Wagner C, Isermann K, Roeder T. Infection induces a survival program and local remodeling in the airway epithelium of the fly. FASEB J 2009; 23:2045-54. [DOI: 10.1096/fj.08-114223] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christina Wagner
- Department of Immunology and Cell BiologyForschungszentrum BorstelBorstelGermany
- Department of ZoophysiologyChristian Albrechts University KielKielGermany
| | - Kerstin Isermann
- Department of ZoophysiologyChristian Albrechts University KielKielGermany
| | - Thomas Roeder
- Department of Immunology and Cell BiologyForschungszentrum BorstelBorstelGermany
- Department of ZoophysiologyChristian Albrechts University KielKielGermany
| |
Collapse
|
107
|
Talebian L, Coutermarsh B, Channon JY, Stanton BA. Corr4A and VRT325 do not reduce the inflammatory response to P. aeruginosa in human cystic fibrosis airway epithelial cells. Cell Physiol Biochem 2009; 23:199-204. [PMID: 19255514 DOI: 10.1159/000204108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND P. aeruginosa chronically colonizes the lung in CF patients and elicits a proinflammatory response. Excessive secretion of IL-6 and IL-8 by CF airway cells in response to P. aeruginosa infection in the CF airway is though to contribute to lung injury. Accordingly, the goal of this study was to test the hypothesis that Corr4a and VRT325, investigational compounds that increase DeltaF508-CFTR mediated Cl(-) secretion in human CF airway cells, reduce the pro-inflammatory response to P. aeruginosa. METHODS IL-6 and IL-8 secretion by polarized CF human airway epithelial cells (CFBE41o-) were measured by multiplex analysis, and DeltaF508-CFTR Cl- secretion was measured in Ussing chambers. Airway cells were exposed to P. aeruginosa (PAO1 or PA14) and Corr4a or VRT325. RESULTS Corr4a and VRT325 increased DeltaF508-CFTR Cl(-) secretion but did not reduce either constitutive IL-6 or IL-8 secretion, or IL-6 and IL-8 secretion stimulated by P. aeruginosa (PA14 or PAO1). CONCLUSIONS Corr4a and VRT325 do not reduce the inflammatory response to P. aeruginosa in human cystic fibrosis airway epithelial cells.
Collapse
Affiliation(s)
- Laleh Talebian
- Department of Physiology, Dartmouth Medical School, Hanover, Germany.
| | | | | | | |
Collapse
|
108
|
Ahmad S, Ahmad A, Dremina ES, Sharov VS, Guo X, Jones TN, Loader JE, Tatreau JR, Perraud AL, Schöneich C, Randell SH, White CW. Bcl-2 suppresses sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression in cystic fibrosis airways: role in oxidant-mediated cell death. Am J Respir Crit Care Med 2009; 179:816-26. [PMID: 19201925 DOI: 10.1164/rccm.200807-1104oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Modulation of the activity of sarcoendoplasmic reticulum calcium ATPase (SERCA) can profoundly affect Ca(2+) homeostasis. Although altered calcium homeostasis is a characteristic of cystic fibrosis (CF), the role of SERCA is unknown. OBJECTIVES This study provides a comprehensive investigation of expression and activity of SERCA in CF airway epithelium. A detailed study of the mechanisms underlying SERCA changes and its consequences was also undertaken. METHODS Lung tissue samples (bronchus and bronchiole) from subjects with and without CF were evaluated by immunohistochemistry. Protein and mRNA expression in primary non-CF and CF cells was determined by Western and Northern blots. MEASUREMENTS AND MAIN RESULTS SERCA2 expression was decreased in bronchial and bronchiolar epithelia of subjects with CF. SERCA2 expression in lysates of polarized tracheobronchial epithelial cells from subjects with CF was decreased by 67% as compared with those from subjects without CF. Several non-CF and CF airway epithelial cell lines were also probed. SERCA2 expression and activity were consistently decreased in CF cell lines. Adenoviral expression of mutant F508 cystic fibrosis transmembrane regulator gene (CFTR), inhibition of CFTR function pharmacologically (CFTR(inh)172), or stable expression of antisense oligonucleotides to inhibit CFTR expression caused decreased SERCA2 expression. In CF cells, SERCA2 interacted with Bcl-2, leading to its displacement from caveolae-related domains of endoplasmic reticulum membranes, as demonstrated in sucrose density gradient centrifugation and immunoprecipitation studies. Knockdown of SERCA2 using siRNA enhanced epithelial cell death due to ozone, hydrogen peroxide, and TNF-alpha. CONCLUSIONS Reduced SERCA2 expression may alter calcium signaling and apoptosis in CF. These findings decrease the likelihood of therapeutic benefit of SERCA inhibition in CF.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Medical and Research Center, A440, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Moss RB. Infection, inflammation, and the downward spiral of cystic fibrosis lung disease. J Pediatr 2009; 154:162-3. [PMID: 19150671 DOI: 10.1016/j.jpeds.2008.09.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/24/2008] [Indexed: 12/24/2022]
|
110
|
Sharafkhaneh A, Velamuri S, Badmaev V, Lan C, Hanania N. The potential role of natural agents in treatment of airway inflammation. Ther Adv Respir Dis 2009; 1:105-20. [PMID: 19124352 DOI: 10.1177/1753465807086096] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Obstructive airway diseases including asthma, chronic obstructive pulmonary disease and cystic fibrosis present with dyspnea and variety of other symptoms. Physiologically, they are characterized by maximal expiratory flow limitation and pathologically, by inflammation of the airways and the lung parenchyma. Inflammation plays a major role in the gradual worsening of the lung function resulting in worsening symptoms. For many years, scientists focused their efforts in identifying various pathways involved in the chronic inflammation present in these diseases. Further, studies are underway to identify various molecular targets in these pathways for the purpose of developing novel therapeutic agents. Natural agents have been used for thousands of years in various cultures for the treatment of several medical conditions and have mostly proven to be safe. Recent in vivo and in vitro studies show potential anti-inflammatory role for some of the existing natural agents. This review provides an overview of the literature related to the anti-inflammatory effects of some of the natural agents which have potential value in the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Amir Sharafkhaneh
- MED VA Medical Center, Bldg. 100(111i), 2002 Holcombe Blvd., Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
111
|
Rada B, Lekstrom K, Damian S, Dupuy C, Leto TL. The Pseudomonas toxin pyocyanin inhibits the dual oxidase-based antimicrobial system as it imposes oxidative stress on airway epithelial cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:4883-93. [PMID: 18802092 DOI: 10.4049/jimmunol.181.7.4883] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The dual oxidase-thiocyanate-lactoperoxidase (Duox/SCN(-)/LPO) system generates the microbicidal oxidant hypothiocyanite in the airway surface liquid by using LPO, thiocyanate, and Duox-derived hydrogen peroxide released from the apical surface of the airway epithelium. This system is effective against several microorganisms that infect airways of cystic fibrosis and other immunocompromised patients. We show herein that exposure of airway epithelial cells to Pseudomonas aeruginosa obtained from long-term cultures inhibits Duox1-dependent hydrogen peroxide release, suggesting that some microbial factor suppresses Duox activity. These inhibitory effects are not seen with the pyocyanin-deficient P. aeruginosa strain PA14 Phz1/2. We show that purified pyocyanin, a redox-active virulence factor produced by P. aeruginosa, inhibits human airway cell Duox activity by depleting intracellular stores of NADPH, as it generates intracellular superoxide. Long-term exposure of human airway (primary normal human bronchial and NCI-H292) cells to pyocyanin also blocks induction of Duox1 by Th2 cytokines (IL-4, IL-13), which was prevented by the antioxidants glutathione and N-acetylcysteine. Furthermore, we showed that low concentrations of pyocyanin blocked killing of wild-type P. aeruginosa by the Duox/SCN(-)/LPO system on primary normal human bronchial epithelial cells. Thus, pyocyanin can subvert Pseudomonas killing by the Duox-based system as it imposes oxidative stress on the host. We also show that lactoperoxidase can oxidize pyocyanin, thereby diminishing its cytotoxicity. These data establish a novel role for pyocyanin in the survival of P. aeruginosa in human airways through competitive redox-based reactions between the pathogen and host.
Collapse
Affiliation(s)
- Balázs Rada
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Laboratory of Host Defenses, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
112
|
Abstract
Since inflammation and infection occur so early in infancy in cystic fibrosis, the function of innate immune defence in cystic fibrosis has been questioned by many investigators. This review aims to summarize the findings relating to the physical, humoral and cellular components of innate immune defence in cystic fibrosis, and highlights the roles of neutrophils, macrophages and epithelial cells in these activities. In addition, recently identified links between antioxidant defences and cystic fibrosis transmembrane conductance regulator (CFTR) function, and how these may impact on innate lung defence, are summarized.
Collapse
Affiliation(s)
- Siobhain Brennan
- Division of Clinical Sciences, Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Australia.
| |
Collapse
|
113
|
Fulcher ML, Gabriel SE, Olsen JC, Tatreau JR, Gentzsch M, Livanos E, Saavedra MT, Salmon P, Randell SH. Novel human bronchial epithelial cell lines for cystic fibrosis research. Am J Physiol Lung Cell Mol Physiol 2008; 296:L82-91. [PMID: 18978040 DOI: 10.1152/ajplung.90314.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immortalization of human bronchial epithelial (hBE) cells often entails loss of differentiation. Bmi-1 is a protooncogene that maintains stem cells, and its expression creates cell lines that recapitulate normal cell structure and function. We introduced Bmi-1 and the catalytic subunit of telomerase (hTERT) into three non-cystic fibrosis (CF) and three DeltaF508 homozygous CF primary bronchial cell preparations. This treatment extended cell life span, although not as profoundly as viral oncogenes, and at passages 14 and 15, the new cell lines had a diploid karyotype. Ussing chamber analysis revealed variable transepithelial resistances, ranging from 200 to 1,200 Omega.cm(2). In the non-CF cell lines, short-circuit currents were stimulated by forskolin and inhibited by CFTR(inh)-172 at levels mostly comparable to early passage primary cells. CF cell lines exhibited no forskolin-stimulated current and minimal CFTR(inh)-172 response. Amiloride-inhibitable and UTP-stimulated currents were present, but at lower and higher amplitudes than in primary cells, respectively. The cells exhibited a pseudostratified morphology, with prominent apical membrane polarization, few apoptotic bodies, numerous mucous secretory cells, and occasional ciliated cells. CF and non-CF cell lines produced similar levels of IL-8 at baseline and equally increased IL-8 secretion in response to IL-1beta, TNF-alpha, and the Toll-like receptor 2 agonist Pam3Cys. Although they have lower growth potential and more fastidious growth requirements than viral oncogene transformed cells, Bmi-1/hTERT airway epithelial cell lines will be useful for several avenues of investigation and will help fill gaps currently hindering CF research and therapeutic development.
Collapse
Affiliation(s)
- M L Fulcher
- Univ. of North Carolina Cystic Fibrosis Center, CB 7248, Rm. 4011 Thurston-Bowles Bldg., Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Eichstaedt S, Gäbler K, Below S, Müller C, Kohler C, Engelmann S, Hildebrandt P, Völker U, Hecker M, Hildebrandt JP. Effects of Staphylococcus aureus-hemolysin A on calcium signalling in immortalized human airway epithelial cells. Cell Calcium 2008; 45:165-76. [PMID: 18922576 DOI: 10.1016/j.ceca.2008.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 08/27/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
Part of the innate defence of bronchial epithelia against bacterial colonization is secretion of salt and water which generally depends on coordinated actions of receptor-mediated cAMP- and calcium signalling. The hypothesis that Staphylococcus aureus-virulence factors interfere with endogenous signals in host cells was tested by measuring agonist-mediated changes in [Ca(2+)](i) in S9 cells upon pre-incubation with bacterial secretory products. S9 cells responded to mAChR-activation with calcium release from intracellular stores and capacitative calcium influx. Treatment of cells with culture supernatants of S. aureus (COL) or with recombinant alpha-hemolysin (Hla) resulted in time- and concentration-dependent changes in [Ca(2+)](i). High concentrations of Hla (2000 ng/ml) resulted in elevations in [Ca(2+)](i) elicited by accelerated calcium influx. A general Hla-mediated permeabilization of S9 cell membranes to small molecules, however, did not occur. Lower concentrations of Hla (200 ng/ml) induced a reduction in [Ca(2+)](i)-levels during the sustained plateau phase of receptor-mediated calcium signalling which was abolished by pre-incubation of cells with carboxyeosin, an inhibitor of the plasma membrane calcium-ATPase. This indicates that low concentrations of Hla change calcium signalling by accelerating pump-driven extrusion of Ca(2+) ions. In vivo, such a mechanism may result in attenuation of calcium-mediated cellular defence functions and facilitation of bacterial adherence to the bronchial epithelium.
Collapse
Affiliation(s)
- Stefanie Eichstaedt
- Animal Physiology and Biochemistry, Zoological Institute, Johann Sebastian Bach-Strasse 11/12, Ernst Moritz Arndt-University, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Anti-inflammatory effect of miglustat in bronchial epithelial cells. J Cyst Fibros 2008; 7:555-65. [PMID: 18815075 DOI: 10.1016/j.jcf.2008.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 06/06/2008] [Accepted: 06/26/2008] [Indexed: 11/20/2022]
Abstract
The role of CFTR deficiency in promoting inflammation remains unclear. Perez et al. [A. Perez, A.C. Issler, C.U. Cotton, T.J. Kelley, A.S. Verkman and P.B. Davis, CFTR inhibition mimics the cystic fibrosis inflammatory profile. Am J Physiol Lung Cell Mol Physiol 2007; 292:L383-L395.] recently demonstrated that the inhibition of function of w/t CFTR produces an inflammatory profile that resembles that observed in CF patients, whereas we found that correction of F508del-CFTR function with MPB-07 down-modulates the inflammatory response to P. aeruginosa in CF bronchial cells [M.C. Dechecchi, E. Nicolis, V. Bezzerri, A. Vella, M. Colombatti, B.M. Assael, et al., MPB-07 reduces the inflammatory response to Pseudomonas aeruginosa in cystic fibrosis bronchial cells. Am J Respir Cell Mol Biol 2007; 36, 615-624.]. Since both evidence support a link between CFTR function and inflammation, we extended our investigation to other F508del-CFTR correctors, such as miglustat (Norez, 2006), an approved drug for Gaucher disease, in comparison with the galactose analogue NB-DGJ. We report here that miglustat but not NB-DGJ restores F508del-CFTR function in CF bronchial epithelial IB3-1 and CuFi-1 cells. Miglustat and NB-DGJ reduce the inflammatory response to P. aeruginosa in both CF and non-CF bronchial cells, indicating that the anti-inflammatory effect is independent of the correction of F508del-CFTR function. Miglustat also inhibits the inflammatory response induced by the supernatant of mucopurulent material obtained from the lower airway tract of cystic fibrosis patients with chronic bacterial colonization (Ribeiro, 2005). Both compounds do not interfere with the adherence of P. aeruginosa to the cells and reduce the expression of IL-8 not only after challenge with P. aeruginosa but also after exposure to TNF alpha or IL-1 beta, suggesting an effect on transduction proteins downstream and in common with different receptors for pathogens. Finally, miglustat has no major effects on overall binding activity of transcription factors NF-kappaBNF-kB and AP-1. Since miglustat is an approved drug, it could be investigated as a novel anti-inflammatory molecule to ameliorate lung inflammation in CF patients.
Collapse
|
116
|
Improvement in clinical markers in CF patients using a reduced glutathione regimen: An uncontrolled, observational study. J Cyst Fibros 2008; 7:433-6. [DOI: 10.1016/j.jcf.2008.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 01/30/2008] [Accepted: 03/14/2008] [Indexed: 11/23/2022]
|
117
|
Schliebe N, Strotmann R, Busse K, Mitschke D, Biebermann H, Schomburg L, Köhrle J, Bär J, Römpler H, Wess J, Schöneberg T, Sangkuhl K. V2 vasopressin receptor deficiency causes changes in expression and function of renal and hypothalamic components involved in electrolyte and water homeostasis. Am J Physiol Renal Physiol 2008; 295:F1177-90. [PMID: 18715941 DOI: 10.1152/ajprenal.00465.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polyuria, hypernatremia, and hypovolemia are the major clinical signs of inherited nephrogenic diabetes insipidus (NDI). Hypernatremia is commonly considered a secondary sign caused by the net loss of water due to insufficient insertion of aquaporin-2 water channels into the apical membrane of the collecting duct cells. In the present study, we employed transcriptome-wide expression analysis to study gene expression in V2 vasopressin receptor (Avpr2)-deficient mice, an animal model for X-linked NDI. Gene expression changes in NDI mice indicate increased proximal tubular sodium reabsorption. Expression of several key genes including Na+-K+-ATPase and carbonic anhydrases was increased at the mRNA levels and accompanied by enhanced enzyme activities. In addition, altered expression was also observed for components of the eicosanoid and thyroid hormone pathways, including cyclooxygenases and deiodinases, in both kidney and hypothalamus. These effects are likely to contribute to the clinical NDI phenotype. Finally, our data highlight the involvement of the renin-angiotensin-aldosterone system in NDI pathophysiology and provide clues to explain the effectiveness of diuretics and indomethacin in the treatment of NDI.
Collapse
Affiliation(s)
- Nicole Schliebe
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Illek B, Fu Z, Schwarzer C, Banzon T, Jalickee S, Miller SS, Machen TE. Flagellin-stimulated Cl- secretion and innate immune responses in airway epithelia: role for p38. Am J Physiol Lung Cell Mol Physiol 2008; 295:L531-42. [PMID: 18658272 DOI: 10.1152/ajplung.90292.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of an innate immune response in airway epithelia by the human pathogen Pseudomonas aeruginosa requires bacterial expression of flagellin. Addition of flagellin (10(-7) M) to airway epithelial cell monolayers (Calu-3, airway serous cell-like) increased Cl(-) secretion (I(Cl)) beginning after 3-10 min, reaching a plateau after 20-45 min at DeltaI(Cl) = 15-50 microA/cm(2). Similar, although 10-fold smaller, responses were observed in well-differentiated bronchial epithelial cultures. Flagellin stimulated I(Cl) in the presence of maximally stimulating doses of the purinergic agonist ATP, but had no effects following forskolin. IL-1beta (produced by both epithelia and neutrophils during infections) stimulated I(Cl) similar to flagellin. Flagellin-, IL-1beta-, ATP-, and forskolin-stimulated I(Cl) were inhibited by cystic fibrosis transmembrane conductance regulator (CFTR) blockers GlyH101, CFTRinh172, and glibenclamide. Neither flagellin nor IL-1beta altered transepithelial fluxes of membrane-impermeant dextran (10 kDa) or lucifer yellow (mol wt = 457), but both activated p38, NF-kappaB, and IL-8 secretion. Blockers of p38 (SB-202190 and SB-203580) reduced flagellin- and IL-1beta-stimulated I(Cl) by 33-50% but had smaller effects on IL-8 and NF-kappaB. It is concluded that: 1) flagellin and IL-1beta activated p38, NF-kappaB, IL-8, and CFTR-dependent anion secretion without altering tight junction permeability; 2) p38 played a role in regulating I(Cl) and IL-8 but not NF-kappaB; and 3) p38 was more important in flagellin- than IL-1beta-stimulated responses. During P. aeruginosa infections, flagellin and IL-1beta are expected to increase CFTR-dependent ion and fluid flow into and bacterial clearance from the airways. In cystic fibrosis, the secretory response would be absent, but activation of p38, NF-kappaB, and IL-8 would persist.
Collapse
Affiliation(s)
- Beate Illek
- Dept. of Molecular and Cell Biology, Univ. of California-Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Blohmke CJ, Victor RE, Hirschfeld AF, Elias IM, Hancock DG, Lane CR, Davidson AGF, Wilcox PG, Smith KD, Overhage J, Hancock REW, Turvey SE. Innate immunity mediated by TLR5 as a novel antiinflammatory target for cystic fibrosis lung disease. THE JOURNAL OF IMMUNOLOGY 2008; 180:7764-73. [PMID: 18490781 DOI: 10.4049/jimmunol.180.11.7764] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel therapies to target lung inflammation are predicted to improve the lives of people with cystic fibrosis (CF) but specific antiinflammatory targets have not been identified. The goal of this study was to establish whether TLR5 signaling is the key molecular pathway mediating lung inflammation in CF, and to determine whether strategies to inhibit TLR5 can reduce the damaging inflammatory response. The innate immune responses were analyzed in both airway epithelial cells and primary PBMCs from CF patients and matched controls. Additionally, 151 clinical isolates of Pseudomonas aeruginosa from CF patients were assessed for motility and capacity to activate TLR5. Blood and airway cells from CF patients produced significantly more proinflammatory cytokine than did control cells following exposure to the CF pathogens P. aeruginosa and Burkholderia cepacia complex (p < 0.001). Stimulation with pure TLR ligands demonstrated that TLR signaling appears to mediate the excessive cytokine production occurring in CF. Using complementary approaches involving both neutralizing Ab targeting TLR5 and flagellin-deficient bacteria, we established that inhibition of TLR5 abolished the damaging inflammatory response generated by CF airway cells following exposure to P. aeruginosa (p < 0.01). The potential therapeutic value of TLR5 inhibition was further supported by our demonstration that 75% of clinical isolates of P. aeruginosa retained TLR5 activating capacity during chronic CF lung infection. These studies identify the innate immune receptor TLR5 as a novel antiinflammatory target for reducing damaging lung inflammation in CF.
Collapse
Affiliation(s)
- Christoph J Blohmke
- Department of Paediatrics, British Columbia Children's Hospital and Child and Family Research Institute, University of Brtish Columbia, Vancouver, Britsh Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Plotkowski MC, Brandão BA, de Assis MC, Feliciano LFP, Raymond B, Freitas C, Saliba AM, Zahm JM, Touqui L, Bozza PT. Lipid body mobilization in the ExoU-induced release of inflammatory mediators by airway epithelial cells. Microb Pathog 2008; 45:30-7. [DOI: 10.1016/j.micpath.2008.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 01/22/2008] [Accepted: 01/25/2008] [Indexed: 11/17/2022]
|
121
|
Nichols D, Chmiel J, Berger M. Chronic inflammation in the cystic fibrosis lung: alterations in inter- and intracellular signaling. Clin Rev Allergy Immunol 2008; 34:146-62. [PMID: 17960347 DOI: 10.1007/s12016-007-8039-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A vicious cycle of airway obstruction, infection, and inflammation continues to cause most of the morbidity and mortality in cystic fibrosis (CF). Mutations that result in decreased expression or function of the membrane Cl(-) channel, cystic fibrosis transmembrane regulator (CFTR), result in a decrease in the volume (and hence the depth) of liquid on the airway surface, impaired ciliary function, and dehydrated glandular secretions. In turn, these abnormalities contribute to a milieu, which promotes chronic infection with a limited but unique spectrum of microorganisms. Defects in CFTR also perturb regulation of several intracellular signaling pathways including signal transducers and activator of transcription, I-kappaB and nuclear factor-kappa B, and low molecular weight GTPases. Together, these abnormalities result in excessive production of NF-kappaB dependent cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF), IL-6, and IL-8. There are decreased responses to interferon gamma and transforming growth factor beta leading to decreased production of iNOS and NO. Abnormalities of lipid mediators and decreased secretion of counter/regulatory cytokines have also been reported. Together, these effects combine to create a chronic inflammatory process, which damages and obstructs the airways, and eventually claims the life of the patient.
Collapse
Affiliation(s)
- David Nichols
- Pulmonology and Allergy-Immunology Divisions, Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow, Babies and Children's Hospital, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
122
|
Bezzerri V, Borgatti M, Nicolis E, Lampronti I, Dechecchi MC, Mancini I, Rizzotti P, Gambari R, Cabrini G. Transcription factor oligodeoxynucleotides to NF-kappaB inhibit transcription of IL-8 in bronchial cells. Am J Respir Cell Mol Biol 2008; 39:86-96. [PMID: 18258920 DOI: 10.1165/rcmb.2007-0176oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic pulmonary inflammation in patients affected by cystic fibrosis (CF) is characterized by massive bronchial infiltrates of neutrophils, which is sustained by the interaction of pathogens (e.g., Pseudomonas aeruginosa) with surface bronchial cells. To explore new treatment options focused on the reduction of neutrophil chemotaxis, we applied the transcription factor (TF) decoy approach, based on the intracellular delivery of double-stranded oligodeoxynucleotides (ODNs) causing inhibition of the binding of TF-related proteins to the different consensus sequences in the promoter of specific genes. In CF bronchial IB3-1 cells, P. aeruginosa induced transcription of the neutrophil chemokines IL-8 and GRO-gamma, of the adhesion molecule intercellular adhesion molecule (ICAM)-1, and of the cytokines IL-1beta and IL-6. Since consensus sequences for the TF, NF-kappaB, are contained in the promoters of all these genes, IB3-1, CuFi-1, Beas-2B, and CaLu-3 cells were transfected with double-stranded TF "decoy" ODNs mimicking different NF-kappaB consensus sequences. IL-8 NF-kappaB decoy ODN partially inhibited the P. aeruginosa-dependent transcription of IL-8, GRO-gamma, and IL-6, whereas decoy ODNs to both HIV-1 long terminal repeat and Igk produced a strong, 80 to 85% inhibition of transcription of IL-8, without reducing that of GRO-gamma, ICAM-1, IL-1beta, and IL-6. In conclusion, intracellular delivery of "decoy" molecules aimed to compete with the TF, NF-kappaB, is a promising strategy to obtain inhibition of IL-8 gene transcription.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Laboratory of Molecular Pathology, Laboratory of Clinical Chemistry and Haematology, University Hospital of Verona, Piazzale Stefani 1, I-37126 Verona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
The innate immune system encodes cytosolic Nod-like receptors (NLRs), several of which activate caspase 1 processing and IL-1beta and IL-18 secretion. Macrophages respond to Salmonella typhimurium infection by activating caspase 1 through the NLR Ipaf. This activation is mediated by cytosolic flagellin through the activity of the virulence-associated type III secretion system (T3SS). We demonstrate here that Pseudomonas aeruginosa activates caspase 1 and induces IL-1beta secretion in infected macrophages. While live, virulent P. aeruginosa activate IL-1beta secretion through caspase 1 and Ipaf, strains that have mutations in the T3SS or in flagellin did not. Ipaf-dependent caspase 1 activation could be recapitulated by delivering P. aeruginosa flagellin to the macrophage cytosol. We examined the role of Naip5 in P. aeruginosa-induced caspase 1 activation by using A/J (Naip5-deficient) compared with C57BL/6 and BALB/c (Naip5-sufficient) macrophages and observed that A/J macrophages secrete IL-1beta in response to P. aeruginosa, S. typhimurium, and Listeria monocytogenes infection, as well as in response to cytosolic flagellin, but at slightly reduced levels. Thus, Ipaf-dependent detection of cytosolic flagellin is a conserved mechanism by which macrophages detect the presence of pathogens that use T3SS.
Collapse
|
124
|
Berlutti F, Superti F, Nicoletti M, Morea C, Frioni A, Ammendolia M, Battistoni A, Valenti P. Bovine Lactoferrin Inhibits the Efficiency of Invasion of Respiratory A549 Cells of Different Iron-Regulated Morphological Forms of Pseudomonas Aeruginosa and Burkholderia Cenocepacia. Int J Immunopathol Pharmacol 2008; 21:51-9. [DOI: 10.1177/039463200802100107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa and Burkholderia cenocepacia are two important opportunistic respiratory pathogens of cystic fibrosis (CF) patients. Infections caused by these microorganisms are particularly difficult to eradicate because they are usually highly resistant to several currently available broad-spectrum antibiotics. Lactoferrin (Lf), a glycoprotein found in physiological fluids of mammals and present at high concentrations in infected and inflamed tissues, plays an important role in the natural defence mechanism against pathogens and in immune regulation. In the present study, we evaluate the ability of bovine lactoferrin (bLf) to influence P. aeruginosa PAO1 and B. cenocepacia PV1 adhesiveness and invasiveness, using the A549 human bronchial cell line. Three different iron-induced morphological forms of bacteria (free-living, aggregates and biofilm) were assayed. The addition of bLf to cells just before infection had little influence on adhesion efficiency for all three of the morphological forms of B. cenocepacia PV1, while a slight increase in adhesion efficiency by P. aeruginosa PAO1 was noticed. Conversely, invasion of all three morphological forms of both P. aeruginosa and B. cenocepacia was strongly inhibited by the presence of bLf, independently of its degree of iron-binding activity. This is the first report demonstrating an anti-invasive property of bLf for strains of P. aeruginosa and B. cenocepacia.
Collapse
Affiliation(s)
| | - F. Superti
- Department of Technology and Health, National Institute of Health, Rome
| | - M. Nicoletti
- Department of Biomedical Sciences, University “G d'Annunzio”, Chieti
| | | | | | - M.G. Ammendolia
- Department of Technology and Health, National Institute of Health, Rome
| | - A. Battistoni
- Department of Biology, University “Tor Vergata”, Rome, Italy
| | | |
Collapse
|
125
|
Cheon IS, Woo SS, Kang SS, Im J, Yun CH, Chung DK, Park DK, Han SH. Peptidoglycan-mediated IL-8 expression in human alveolar type II epithelial cells requires lipid raft formation and MAPK activation. Mol Immunol 2007; 45:1665-73. [PMID: 17997161 DOI: 10.1016/j.molimm.2007.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 02/02/2023]
Abstract
Staphylococcus aureus, a major sepsis-causing Gram-positive bacterium, invades pulmonary epithelial cells and causes lung diseases. In the lung, alveolar type II epithelial cells play an important role in innate immunity by secreting chemokines and antimicrobial peptides upon bacterial infection whereas type I cells mainly function in gas-exchange. In this study, we investigated the ability of S. aureus peptidoglycan (PGN) to induce expression of a chemokine, IL-8, in a human alveolar type II epithelial cell line, A549. PGN induces IL-8 mRNA and protein expression in a dose- and time-dependent manner. Supplementation of soluble CD14 further enhanced the PGN-induced IL-8 expression. Interestingly, PGN-induced IL-8 expression was inhibited by nystatin, a specific inhibitor for lipid rafts, but not by chlorpromazine, a specific inhibitor for clathrin-coated pits. Furthermore, PGN-induced IL-8 expression was attenuated by inhibitors for MAP kinases such as ERK, p38 kinase, and JNK/SAPK, whereas no inhibitory effect was observed by inhibitors for reactive oxygen species or protein kinase C. Electrophoretic mobility shift assay demonstrates that PGN increased the DNA binding of the transcription factors, AP-1 and NF-kappaB while minimally, NF-IL6, all of which are involved in the transcription of IL-8. Taken together, these results suggest that PGN induces IL-8 expression in a CD14-enhanced manner in human alveolar type II epithelial cells, through the formation of lipid rafts and the activation of MAP kinases, which ultimately leads to activation of AP-1, NF-kappaB, and NF-IL6.
Collapse
Affiliation(s)
- In Su Cheon
- Department of Oral Microbiology & Immunology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Chassin C, Hornef MW, Bens M, Lotz M, Goujon JM, Vimont S, Arlet G, Hertig A, Rondeau E, Vandewalle A. Hormonal control of the renal immune response and antibacterial host defense by arginine vasopressin. ACTA ACUST UNITED AC 2007; 204:2837-52. [PMID: 17967904 PMCID: PMC2118508 DOI: 10.1084/jem.20071032] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ascending urinary tract infection (UTI) and pyelonephritis caused by uropathogenic Escherichia coli (UPEC) are very common infections that can cause severe kidney damage. Collecting duct cells, the site of hormonally regulated ion transport and water absorption controlled by vasopressin, are the preferential intrarenal site of bacterial adhesion and initiation of inflammatory response. We investigated the effect of the potent V2 receptor (V2R) agonist deamino-8-D-arginine vasopressin (dDAVP) on the activation of the innate immune response using established and primary cultured collecting duct cells and an experimental model of ascending UTI. dDAVP inhibited Toll-like receptor 4–mediated nuclear factor κB activation and chemokine secretion in a V2R-specific manner. The dDAVP-mediated suppression involved activation of protein phosphatase 2A and required an intact cystic fibrosis transmembrane conductance regulator Cl− channel. In vivo infusion of dDAVP induced a marked fall in proinflammatory mediators and neutrophil recruitment, and a dramatic rise in the renal bacterial burden in mice inoculated with UPECs. Conversely, administration of the V2R antagonist SR121463B to UPEC-infected mice stimulated both the local innate response and the antibacterial host defense. These findings evidenced a novel hormonal regulation of innate immune cellular activation and demonstrate that dDAVP is a potent modulator of microbial-induced inflammation in the kidney.
Collapse
Affiliation(s)
- Cécilia Chassin
- Institut National de la Santé et de la Recherche Médicale, U773, Centre de Recherche Biomédicale Bichat-Beaujon, BP 416, 75018 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Uawithya P, Pisitkun T, Ruttenberg BE, Knepper MA. Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiol Genomics 2007; 32:229-53. [PMID: 17956998 DOI: 10.1152/physiolgenomics.00201.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Vasopressin acts on the inner medullary collecting duct (IMCD) in the kidney to regulate water and urea transport. To obtain a "parts list" of gene products expressed in the IMCD, we carried out mRNA profiling of freshly isolated rat IMCD cells using Affymetrix Rat 230 2.0 microarrays with approximately 31,000 features; 7,913 annotated transcripts were found to be expressed above background in the IMCD cells. We have created a new online database (the "IMCD Transcriptome Database;" http://dir.nhlbi.nih.gov/papers/lkem/imcdtr/) to make the results publicly accessible. Among the 30 transcripts with the greatest signals on the arrays were 3 water channels: aquaporin-2, aquaporin-3, and aquaporin-4, all of which have been reported to be targets for regulation by vasopressin. In addition, the transcript with the greatest signal among members of the solute carrier family of genes was the UT-A urea transporter (Slc14a2), which is also regulated by vasopressin. The V2 vasopressin receptor was strongly expressed, but the V1a and V1b vasopressin receptors did not produce signals above background. Among the 200 protein kinases expressed, the serum-glucocorticoid-regulated kinase (Sgk1) had the greatest signal intensity in the IMCD. WNK1 and WNK4 were also expressed in the IMCD with a relatively high signal intensity, as was protein kinase A (beta-catalytic subunit). In addition, a large number of transcripts corresponding to A kinase anchoring proteins and 14-3-3 proteins (phospho-S/T-binding proteins) were expressed. Altogether, the results combine with proteomics studies of the IMCD to provide a framework for modeling complex interaction networks responsible for vasopressin action in collecting duct cells.
Collapse
Affiliation(s)
- Panapat Uawithya
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
128
|
Cai Q, McReynolds MR, Keck M, Greer KA, Hoying JB, Brooks HL. Vasopressin receptor subtype 2 activation increases cell proliferation in the renal medulla of AQP1 null mice. Am J Physiol Renal Physiol 2007; 293:F1858-64. [PMID: 17913837 DOI: 10.1152/ajprenal.00068.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aquaporin (AQP) 1 null mice have a defect in the renal concentrating gradient because of their inability to generate a hyperosmotic medullary interstitium. To determine the effect of vasopressin on renal medullary gene expression, in the absence of high local osmolarity, we infused 1-deamino-8-d-arginine vasopressin (dDAVP), a V(2) receptor (V(2)R)-specific agonist, in AQP1 null mice for 7 days. cDNA microarray analysis was performed on the renal medullary tissue, and 5,140 genes of the possible 12,000 genes on the array were included in the analysis. In the renal medulla of AQP1 null mice, 245 transcripts were identified as increased by dDAVP infusion and 200 transcripts as decreased (1.5-fold or more). Quantitative real-time PCR measurements confirmed the increases seen for cyclin D1, early growth response gene 1, and activating transcription factor 3, genes associated with changes in cell cycle/growth. Changes in mRNA expression were correlated with changes in protein expression by semiquantitative immunoblotting; cyclin D1 and ATF3 were increased significantly in abundance following dDAVP infusion in the renal medulla of AQP1 null mice (161 and 461%, respectively). A significant increase in proliferation of medullary collecting ducts cells, following V(2)R activation, was identified by proliferating cell nuclear antigen immunohistochemistry; colocalization studies with AQP2 indicated that the increase in proliferation was primarily observed in principal cells of the inner medullary collecting duct (IMCD). V(2)R activation, via dDAVP, increased AQP2 and AQP3 protein abundance in the cortical collecting ducts of AQP1 null mice. However, V(2)R activation did not increase AQP2 protein abundance in the IMCD of AQP1 null mice.
Collapse
MESH Headings
- Animals
- Antidiuretic Hormone Receptor Antagonists
- Aquaporin 1/genetics
- Blotting, Western
- Cell Proliferation/drug effects
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Deamino Arginine Vasopressin/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Immunohistochemistry
- In Situ Hybridization
- Kidney Medulla/cytology
- Kidney Medulla/drug effects
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/metabolism
- Mice
- Mice, Knockout
- Oligonucleotide Array Sequence Analysis
- Osmolar Concentration
- Proliferating Cell Nuclear Antigen/metabolism
- Proliferating Cell Nuclear Antigen/physiology
- RNA/biosynthesis
- RNA/genetics
- Receptors, Vasopressin/physiology
- Renal Agents/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Qi Cai
- Dept. of Physiology, College of Medicine, 1501 N. Campbell Ave., Univ. of Arizona, Tucson, AZ 85724-5051, USA
| | | | | | | | | | | |
Collapse
|
129
|
Hybiske K, Fu Z, Schwarzer C, Tseng J, Do J, Huang N, Machen TE. Effects of cystic fibrosis transmembrane conductance regulator and DeltaF508CFTR on inflammatory response, ER stress, and Ca2+ of airway epithelia. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1250-60. [PMID: 17827250 DOI: 10.1152/ajplung.00231.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested whether cystic fibrosis (CF) airway epithelia have larger innate immune responses than non-CF or cystic fibrosis transmembrane conductance regulator (CFTR)-corrected cells, perhaps resulting from ER stress due to retention of DeltaF508CFTR in the endoplasmic reticulum (ER) and activation of cytosolic Ca(2+) (Ca(i)) and nuclear factor (NF)-kappaB signaling. Adenovirus infections of a human CF (DeltaF508/DeltaF508) nasal cell line (CF15) provided isogenic comparisons of wild-type (wt) CFTR and DeltaF508CFTR. In the absence of bacteria, there were no or only small differences among CF15, CF15-lacZ (beta-galactosidase-expressing), CF15-wtCFTR (wtCFTR-corrected), and CF15-DeltaF508CFTR (to test ER retention of DeltaF508CFTR) cells in NF-kappaB activity, interleukin (IL)-8 secretion, Ca(i) responses, and ER stress. Non-CF and CF primary cultures of human bronchial epithelial cells (HBE) secreted IL-8 equivalently. Upon infection with Pseudomonas aeruginosa (PA) or flagellin (key activator for airway epithelia), CF15, CF15-lacZ, CF15-wtCFTR, and CF15DeltaF508CFTR cells exhibited equal PA binding, NF-kappaB activity, and IL-8 secretion; cells also responded similarly to flagellin when both CFTR (forskolin) and Ca(i) signaling (ATP) were activated. CF and non-CF HBE responded similarly to flagellin + ATP. Thapsigargin (Tg, releases ER Ca(2+)) increased flagellin-stimulated NF-kappaB and ER stress similarly in all cells. We conclude that ER stress, Ca(i), and NF-kappaB signaling and IL-8 secretion were unaffected by wt- or DeltaF508CFTR in control and during exposure to PA, flagellin, flagellin + ATP, or flagellin + ATP + forskolin. Tg, but not wt- or DeltaF508CFTR, triggered ER stress. Previous measurements showing hyperinflammatory responses in CF airway epithelia may have resulted from cell-specific, rather than CFTR- or DeltaF508CFTR-specific effects.
Collapse
Affiliation(s)
- Kevin Hybiske
- Dept. of Molecular and Cell Biology, 231 LSA, Univ. of California-Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 2007; 87:1047-82. [PMID: 17615396 DOI: 10.1152/physrev.00048.2006] [Citation(s) in RCA: 375] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary diseases (COPD), comprised of pulmonary emphysema, chronic bronchitis, and structural and inflammatory changes of small airways, is a leading cause of morbidity and mortality in the world. A better understanding of the pathobiology of COPD is critical for the developing of novel therapies, as the majority of patients with the disease have little therapeutic options at the present time. The pathobiology of COPD encompasses multiple injurious processes including inflammation (excessive or inappropriate innate and adaptive immunity), cellular apoptosis, altered cellular and molecular alveolar maintenance program, abnormal cell repair, extracellular matrix destruction (protease and anti-protease imbalance), and oxidative stress (oxidant and antioxidant imbalance). These processes are triggered by urban and rural air pollutants and active and/or passive cigarette smoke and modified by cellular senescence and infection. A series of receptor-mediated signal transduction pathways are activated by reactive oxygen species and tobacco components, resulting in impairment of a variety of cell signaling and cytokine networks, subsequently leading to chronic airway responses with mucus production, airway remodeling, and alveolar destruction. The authors provide an updated insight into the molecular and cellular pathobiology of COPD based on human and/or animal data.
Collapse
Affiliation(s)
- Toshinori Yoshida
- Division of Cardiopulmonary Pathology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
131
|
Abstract
Cystic fibrosis (CF) typically follows a more severe clinical course than non-CF bronchiectasis. Despite this recognized difference, the underpinnings of respiratory biology support a common pathogeneses of the anatomic deformations of bronchiectasis. This article reviews the observed manifestations among the related diseases of bronchiectasis and CF and discusses some of their similarities and differences. As more details of the mechanisms of bronchiectasis are unveiled, more parallels among the seemingly disparate causes of CF and non-CF bronchiectasis are recognized. With these insights, more opportunities to halt the vicious circle have become apparent.
Collapse
Affiliation(s)
- Brian M Morrissey
- Division of Pulmonary/Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of California-Davis, 4150 V Street, Suite 3400, Sacramento, CA 95817, USA.
| |
Collapse
|
132
|
Sueblinvong V, Suratt BT, Weiss DJ. Novel Therapies for the Treatment of Cystic Fibrosis: New Developments in Gene and Stem Cell Therapy. Clin Chest Med 2007; 28:361-79. [PMID: 17467554 DOI: 10.1016/j.ccm.2007.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystic fibrosis (CF) was one of the first target diseases for lung gene therapy. Studies of lung gene transfer for CF have provided many insights into the necessary components of successful gene therapy for lung diseases. Many advancements have been achieved with promising results in vitro and in small animal models. However, studies in primate models and patients have been discouraging despite a large number of clinical trials. This reflects a number of obstacles to successful, sustained, and repeatable gene transfer in the lung. Cell-based therapy with embryonic stem cells and adult stem cells (bone marrow or cord blood), have been investigated recently and may provide a viable therapeutic approach in the future. In this article, the authors review CF pathophysiology with a focus on specific targets in the lung epithelium for gene transfer and summarize the current status and future directions of gene- and cell-based therapies.
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary and Critical Care Medicine, The University of Vermont and Fletcher Allen Health Care, 149 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | |
Collapse
|
133
|
Hajj R, Lesimple P, Nawrocki-Raby B, Birembaut P, Puchelle E, Coraux C. Human airway surface epithelial regeneration is delayed and abnormal in cystic fibrosis. J Pathol 2007; 211:340-50. [PMID: 17186573 DOI: 10.1002/path.2118] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) at an advanced stage of the disease is characterized by airway epithelial injury and remodelling. Whether CF remodelling is related to infection and inflammation or due to an abnormal regenerative process is still undecided. We have recently established the expression and secretion profiles of interleukin (IL)-8, matrix metalloproteinase (MMP)-7, MMP-9, and tissue inhibitor of metalloproteinase (TIMP)-1 during non-CF airway epithelial regeneration in a humanized nude mouse xenograft model. To enhance our understanding of CF remodelling, we compared the regeneration process of non-infected human CF and non-CF nasal epithelia. In both CF and non-CF situations, epithelial regeneration was characterized by successive steps of cell adhesion and migration, proliferation, pseudostratification, and terminal differentiation. However, histological examination of the grafts showed a delay in differentiation of the CF airway epithelium. Cell proliferation was higher in the regenerating CF epithelium, and the differentiated CF epithelium exhibited a pronounced height increase and basal cell hyperplasia in comparison with non-CF epithelium. In addition, while the number of goblet cells expressing MUC5AC was similar in CF and non-CF regenerated epithelia, the number of MUC5B-immunopositive goblet cells was lower in CF grafts. The expression of human IL-8, MMP-7, MMP-9, and TIMP-1 was enhanced in CF epithelium, especially early in the regenerative process. Together, our data strongly suggest that the regeneration of human CF airway surface epithelium is characterized by remodelling, delayed differentiation, and altered pro-inflammatory and MMP responses.
Collapse
Affiliation(s)
- R Hajj
- INSERM U514, Reims, France; Université de Reims, IFR53, Reims, France
| | | | | | | | | | | |
Collapse
|
134
|
Abstract
Cystic fibrosis (CF) is the commonest genetic cause of bronchiectasis in the Caucasian population. Since identification of the putative gene in 1989, the molecular basis of the condition has become clearer with characterisation of the unique pathophysiology. The small airways are the primary site of lung disease, with an intense but localised inflammatory picture, dominated by neutrophils. The clinical heterogeneity is explained to some degree by the distinct molecular consequences of the many mutations that have been recognised to affect the CF transmembrane conductance regulator (CFTR) gene; however other genes appear to modify the phenotype as well as environmental exposure. It has become increasingly apparent that certain conditions may result from CFTR dysfunction without fulfilling diagnostic criteria for CF. In some cases this may result in single organ disease for which the term CF (or CFTR)-related disease has been advocated. Congenital bilateral absence of the vas deferens is the most clearly characterised of these. In other cases where a mild CF phenotype is apparent, atypical CF is probably a better term. It remains unclear whether carrier status predisposes to certain conditions such as chronic rhinosinusitis or pancreatitis.
Collapse
Affiliation(s)
- Kevin W Southern
- Royal Liverpool Children's Hospital, Institute of Child Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
135
|
Allard JB, Poynter ME, Marr KA, Cohn L, Rincon M, Whittaker LA. Aspergillus fumigatus generates an enhanced Th2-biased immune response in mice with defective cystic fibrosis transmembrane conductance regulator. THE JOURNAL OF IMMUNOLOGY 2007; 177:5186-94. [PMID: 17015704 DOI: 10.4049/jimmunol.177.8.5186] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cystic fibrosis (CF) lung disease is characterized by persistent airway inflammation and airway infection that ultimately leads to respiratory failure. Aspergillus sp. are present in the airways of 20-40% of CF patients and are of unclear clinical significance. In this study, we demonstrate that CF transmembrane conductance regulator (CFTR)-deficient (CFTR knockout, Cftr(tm1Unc-)TgN(fatty acid-binding protein)CFTR) and mutant (DeltaF508) mice develop profound lung inflammation in response to Aspergillus fumigatus hyphal Ag exposure. CFTR-deficient mice also develop an enhanced Th2 inflammatory response to A. fumigatus, characterized by elevated IL-4 in the lung and IgE and IgG1 in serum. In contrast, CFTR deficiency does not promote a Th1 immune response. Furthermore, we demonstrate that CD4+ T cells from naive CFTR-deficient mice produce higher levels of IL-4 in response to TCR ligation than wild-type CD4+ T cells. The Th2 bias of CD4+ T cells in the absence of functional CFTR correlates with elevated nuclear levels of NFAT. Thus, CFTR is important to maintain the Th1/Th2 balance in CD4+ T cells.
Collapse
Affiliation(s)
- Jenna B Allard
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
136
|
Ameen N, Silvis M, Bradbury NA. Endocytic trafficking of CFTR in health and disease. J Cyst Fibros 2007; 6:1-14. [PMID: 17098482 PMCID: PMC1964799 DOI: 10.1016/j.jcf.2006.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 12/25/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl-selective anion channel expressed in epithelial tissues. Mutations in CFTR lead to the genetic disease cystic fibrosis (CF). Within each epithelial cell, CFTR interacts with a large number of transient macromolecular complexes, many of which are involved in the trafficking and targeting of CFTR. Understanding how these complexes regulate the trafficking and fate of CFTR, provides a singular insight not only into the patho-physiology of cystic fibrosis, but also provides potential drug targets to help cure this debilitating disease.
Collapse
Affiliation(s)
- Nadia Ameen
- Department of Paediatrics, University of Pittsburgh School of Medicine
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine
| | - Mark Silvis
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine
| | | |
Collapse
|
137
|
Chakraborty A, Brooks H, Zhang P, Smith W, McReynolds MR, Hoying JB, Bick R, Truong L, Poindexter B, Lan H, Elbjeirami W, Sheikh-Hamad D. Stanniocalcin-1 regulates endothelial gene expression and modulates transendothelial migration of leukocytes. Am J Physiol Renal Physiol 2006; 292:F895-904. [PMID: 17032941 DOI: 10.1152/ajprenal.00219.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mammalian counterpart of the fish calcium-regulating hormone stanniocalcin-1 (STC1) inhibits monocyte chemotactic protein-1- and stromal-derived factor-1alpha (SDF-1alpha)-mediated chemotaxis and diminishes chemokinesis in macrophage-like RAW264.7 and U937 cells in a manner that may involve attenuation of the intracellular calcium signal. STC1 is strongly induced in the kidney following obstructive injury. We hypothesized that STC1 may serve to attenuate the influx of inflammatory cells to the site of tissue injury. In this study, we examined the effect of STC1 on the migration of freshly isolated human macrophages, neutrophils, and T and B lymphocytes through quiescent or IL-1beta-treated human umbilical vein endothelial cell (HUVEC) monolayers. STC1 inhibited transmigration of macrophages and T lymphocytes through quiescent or IL-1beta-activated HUVECs but did not attenuate the transmigration of neutrophils and B lymphocytes. STC1 regulates gene expression in cultured endothelial cells and is detected on the apical surface of endothelial cells in vivo. The data suggest that STC1 plays a critical role in transendothelial migration of inflammatory cells and is involved in the regulation of numerous aspects of endothelial function.
Collapse
Affiliation(s)
- Arup Chakraborty
- Renal Section, Dept. of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
|