101
|
Raja M, Kinne RKH. Pathogenic mutations causing glucose transport defects in GLUT1 transporter: The role of intermolecular forces in protein structure-function. Biophys Chem 2015; 200-201:9-17. [PMID: 25863194 DOI: 10.1016/j.bpc.2015.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 12/14/2022]
Abstract
Two families of glucose transporter - the Na(+)-dependent glucose cotransporter-1 (SGLT family) and the facilitated diffusion glucose transporter family (GLUT family) - play a crucial role in the translocation of glucose across the epithelial cell membrane. How genetic mutations cause life-threatening diseases like GLUT1-deficiency syndrome (GLUT1-DS) is not well understood. In this review, we have combined previous functional data with our in silico analyses of the bacterial homologue of GLUT members, XylE (an outward-facing, partly occluded conformation) and previously proposed GLUT1 homology model (an inward-facing conformation). A variety of native and mutant side chain interactions were modeled to highlight the potential roles of mutations in destabilizing protein-protein interaction hence triggering structural and functional defects. This study sets the stage for future studies of the structural properties that mediate GLUT1 dysfunction and further suggests that both SGLT and GLUT families share conserved domains that stabilize the transporter structure/function via a similar mechanism.
Collapse
Affiliation(s)
- Mobeen Raja
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Molecular Structure and Function, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.
| | - Rolf K H Kinne
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
102
|
Weber J, Haberkorn U, Mier W. Cancer stratification by molecular imaging. Int J Mol Sci 2015; 16:4918-46. [PMID: 25749472 PMCID: PMC4394457 DOI: 10.3390/ijms16034918] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022] Open
Abstract
The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2). Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter), as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers.
Collapse
Affiliation(s)
- Justus Weber
- Heidelberg University Hospital, Department of Nuclear Medicine, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Uwe Haberkorn
- Heidelberg University Hospital, Department of Nuclear Medicine, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Walter Mier
- Heidelberg University Hospital, Department of Nuclear Medicine, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| |
Collapse
|
103
|
Abstract
It has been proposed that the non-saturable component of intestinal glucose absorption, apparent following prolonged exposure to high intraluminal glucose concentrations, is mediated via the low affinity glucose and fructose transporter, GLUT2, upregulated within the small intestinal apical border. The evidence that the non-saturable transport component is mediated via an apical membrane sugar transporter is that it is inhibited by phloretin, after exposure to phloridzin. Since the other apical membrane sugar transporter, GLUT5, is insensitive to inhibition by either cytochalasin B, or phloretin, GLUT2 was deduced to be the low affinity sugar transport route. As in its uninhibited state, polarized intestinal glucose absorption depends both on coupled entry of glucose and sodium across the brush border membrane and on the enterocyte cytosolic glucose concentration exceeding that in both luminal and submucosal interstitial fluids, upregulation of GLUT2 within the intestinal brush border will usually stimulate downhill glucose reflux to the intestinal lumen from the enterocytes; thereby reducing, rather than enhancing net glucose absorption across the luminal surface. These states are simulated with a computer model generating solutions to the differential equations for glucose, Na and water flows between luminal, cell, interstitial and capillary compartments. The model demonstrates that uphill glucose transport via SGLT1 into enterocytes, when short-circuited by any passive glucose carrier in the apical membrane, such as GLUT2, will reduce transcellular glucose absorption and thereby lead to increased paracellular flow. The model also illustrates that apical GLUT2 may usefully act as an osmoregulator to prevent excessive enterocyte volume change with altered luminal glucose concentrations.
Collapse
Affiliation(s)
- Richard J Naftalin
- Department of Physiology and BHF Centre of Research Excellence, King's College London, School of Medicine, London, SE1 9HN, UK
| |
Collapse
|
104
|
Yu C, Xue J, Zhu W, Jiao Y, Zhang S, Cao J. Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells. Tumour Biol 2014; 36:81-94. [DOI: 10.1007/s13277-014-2875-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/18/2014] [Indexed: 12/26/2022] Open
|
105
|
Wu JB, Kuo YH, Lin CH, Ho HY, Shih CC. Tormentic acid, a major component of suspension cells of Eriobotrya japonica, suppresses high-fat diet-induced diabetes and hyperlipidemia by glucose transporter 4 and AMP-activated protein kinase phosphorylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10717-10726. [PMID: 25317836 DOI: 10.1021/jf503334d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study was designed to evaluate the effects and mechanism of tormentic acid (PTA) on diabetes and dyslipidemia in high-fat (HF)-fed mice. Feeding C57BL/6J mice with a HF diet for 12 weeks induced type 2 diabetes and hyperlipidemia. During the last 4 weeks, the mice were given orally PTA (at two dosages) or rosiglitazone (Rosi) or water. In this study, the HF diet increased glucose, triglyceride, insulin, and leptin levels, whereas PTA effectively prevented these phenomena and ameliorated insulin resistance. PTA reduced visceral fat mass and hepatic triacylglycerol contents; moreover, PTA significantly decreased both the area of adipocytes and ballooning degeneration of hepatocytes. PTA caused increased skeletal muscular AMP-activated protein kinase (AMPK) phosphorylation and Akt phosphorylation and glucose transporter 4 (GLUT4) proteins, but reduced the hepatic expressions of phosphenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6 Pase) genes. PTA enhanced skeletal muscular Akt phosphorylation and increased insulin sensitivity. PTA also enhanced phospho-AMPK in the liver. Therefore, it is possible that the activation of AMPK by PTA results in decreasing hepatic glucose production while increasing skeletal muscular GLUT4 contents, thus contributing to attenuating the diabetic state. Moreover, PTA exhibits an antihyperlipidemic effect by down-regulations of the hepatic sterol regulatory element binding protein-1c (SREBP-1c) and apolipoprotein C-III (apo C-III) and an increased peroxisome proliferator activated receptor (PPAR)-α expression, thus resulting in decreases in blood triglycerides. These findings demonstrated that PTA was effective for the treatment of diabetes and hyperlipidemia in HF-fed mice.
Collapse
Affiliation(s)
- Jin-Bin Wu
- Graduate Institute of Pharmaceutical Chemistry and ‡Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University , Taichung City 40402, Taiwan
| | | | | | | | | |
Collapse
|
106
|
Oleszczak B, Szablewski L, Pliszka M, Głuszak O, Stopińska-Głuszak U. Transport of deoxy-D-glucose into lymphocytes of patients with polycystic ovary syndrome. Endocrine 2014; 47:618-24. [PMID: 24515540 PMCID: PMC4204006 DOI: 10.1007/s12020-014-0174-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/10/2014] [Indexed: 10/28/2022]
Abstract
Polycystic ovary syndrome (PCOS) is linked to increased risk of insulin resistance and diabetes mellitus in patients' later life. The aim of this study was to investigate uptake of deoxy-D-glucose by peripheral blood lymphocytes of PCOS patients with normal fasting plasma glucose and normal glucose tolerance test. The study involved 20 patients with PCOS with normal fasting plasma glucose and normal glucose in 60 and 120 min of oral glucose tolerance test, aged 18-32 (mean 23), BMI between 20 and 30 (mean 26). A control group consisted of 20 healthy women matched for glucose level (normoglycemia), aged 18-28 years (mean 23), BMI 20-25 (mean 23). Blood for the studies was collected in fasting conditions onto heparin. Lymphocytes were isolated within 2 h from collection by centrifuging. The intracellular transport into lymphocytes was studied using tritium-labeled deoxy-D-glucose and measured with a liquid scintillation counter. Radioactivity in curie per minute (cpm) was evaluated after 24 h. An initial examination was performed to check the presence of GLUT4 in peripheral blood lymphocytes of PCOS women. In all of the studied time points, the value of cpm for lymphocytes of PCOS patients was statistically significantly lower in comparison with the value obtained for lymphocytes of healthy women. However, the profile of deoxy-D-glucose uptake (d cpm) was the same for lymphocytes in both studied groups without statistically significant differences. In lymphocytes of PCOS patients, GLUT4 was detected. The obtained results indicate that PCOS affects the intracellular transport of deoxy-D-glucose into lymphocytes of PCOS patients with normal glucose level.
Collapse
Affiliation(s)
- Bożenna Oleszczak
- Chair of General Biology and Parasitology, Center for Biostructure Research, Medical University of Warsaw, 5 Chalubinskiego Str, 02-004 Warsaw, Poland
| | - Leszek Szablewski
- Chair of General Biology and Parasitology, Center for Biostructure Research, Medical University of Warsaw, 5 Chalubinskiego Str, 02-004 Warsaw, Poland
| | - Monika Pliszka
- Chair of General Biology and Parasitology, Center for Biostructure Research, Medical University of Warsaw, 5 Chalubinskiego Str, 02-004 Warsaw, Poland
| | - Olgierd Głuszak
- Department of Endocrinology, Medical Centre for Postgraduate Education, Bielanski Hospital, 80 Cegłowska Str, 01–809 Warsaw, Poland
| | - Urszula Stopińska-Głuszak
- Department of Endocrinology, Medical Centre for Postgraduate Education, Bielanski Hospital, 80 Cegłowska Str, 01–809 Warsaw, Poland
| |
Collapse
|
107
|
Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci 2014; 72:251-71. [PMID: 25280482 DOI: 10.1007/s00018-014-1739-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 02/01/2023]
Abstract
Obesity, diabetes, and related metabolic disorders are major health issues worldwide. As the epidemic of metabolic disorders continues, the associated medical co-morbidities, including the detrimental impact on reproduction, increase as well. Emerging evidence suggests that the effects of maternal nutrition on reproductive outcomes are likely to be mediated, at least in part, by oocyte metabolism. Well-balanced and timed energy metabolism is critical for optimal development of oocytes. To date, much of our understanding of oocyte metabolism comes from the effects of extrinsic nutrients on oocyte maturation. In contrast, intrinsic regulation of oocyte development by metabolic enzymes, intracellular mediators, and transport systems is less characterized. Specifically, decreased acid transport proteins levels, increased glucose/lipid content and elevated reactive oxygen species in oocytes have been implicated in meiotic defects, organelle dysfunction and epigenetic alteration. Therefore, metabolic disturbances in oocytes may contribute to the diminished reproductive potential experienced by women with metabolic disorders. In-depth research is needed to further explore the underlying mechanisms. This review also discusses several approaches for metabolic analysis. Metabolomic profiling of oocytes, the surrounding granulosa cells, and follicular fluid will uncover the metabolic networks regulating oocyte development, potentially leading to the identification of oocyte quality markers and prevention of reproductive disease and poor outcomes in offspring.
Collapse
Affiliation(s)
- Ling Gu
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China,
| | | | | | | | | | | |
Collapse
|
108
|
Connealy BD, Northrup H, Au KS. Genetic variations in the GLUT3 gene associated with myelomeningocele. Am J Obstet Gynecol 2014; 211:305.e1-8. [PMID: 24813597 DOI: 10.1016/j.ajog.2014.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/06/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our objectives were to examine the extent of described sequence variation in the glucose transporter 3 (GLUT3) gene in children with myelomeningocele (MM), identify novel variations in the GLUT3 gene in these children, and determine whether these variations may confer a risk of MM. STUDY DESIGN We sequenced the 10 exons of GLUT3, including exon-intron boundaries, on 96 children with MM. Sequencing was performed with Sanger methods and results analyzed with deoxyribonucleic acid analysis software. Frequencies of known single-nucleotide polymorphisms were identified, and those differing from the reference sequence (GRCh37/hg19 assembly) were considered variations. RESULTS Six novel and 9 previously described, genetic variations were identified in our population. The novel variations included a large, 83 base pair deletion involving the core promoter region and part of exon 1 (1 of 96 children), and a 2 base pair deletion in the coding sequence of exon 4 (1 of 96 children). The remaining novel variations were located in the introns in the proximity of the splice sites. Novel mutations in GLUT3 were observed among 6.25% of our population. Additionally, the frequency of the rare allele for rs17847972 located in a splice donor site is higher (P < .001) in MM in our population than expected. CONCLUSION We identified previously undescribed deletions and single-nucleotide variations involving the GLUT3 gene that may be associated with increased susceptibility to MM. Of particular interest, the 2 deletions involve both an important core promoter site and a coding region predicted to have a deleterious effect. The functional significance of these findings is under investigation.
Collapse
Affiliation(s)
- Brendan D Connealy
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Medicine, University of Texas Medical School at Houston, Houston, TX.
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX; Shriners Hospital for Children, Houston, TX
| | - Kit Sing Au
- Division of Medical Genetics, Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX
| |
Collapse
|
109
|
Martínez-Quintana JA, Peregrino-Uriarte AB, Gollas-Galván T, Gómez-Jiménez S, Yepiz-Plascencia G. The glucose transporter 1 -GLUT1- from the white shrimp Litopenaeus vannamei is up-regulated during hypoxia. Mol Biol Rep 2014; 41:7885-98. [PMID: 25167855 DOI: 10.1007/s11033-014-3682-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
During hypoxia the shrimp Litopenaeus vannamei accelerates anaerobic glycolysis to obtain energy; therefore, a correct supply of glucose to the cells is needed. Facilitated glucose transport across the cells is mediated by a group of membrane embedded integral proteins called GLUT; being GLUT1 the most ubiquitous form. In this work, we report the first cDNA nucleotide and deduced amino acid sequences of a glucose transporter 1 from L. vannamei. A 1619 bp sequence was obtained by RT-PCR and RACE approaches. The 5´ UTR is 161 bp and the poly A tail is exactly after the stop codon in the mRNA. The ORF is 1485 bp and codes for 485 amino acids. The deduced protein sequence has high identity to GLUT1 proteins from several species and contains all the main features of glucose transporter proteins, including twelve transmembrane domains, the conserved motives and amino acids involved in transport activity, ligands binding and membrane anchor. Therefore, we decided to name this sequence, glucose transporter 1 of L. vannamei (LvGLUT1). A partial gene sequence of 8.87 Kbp was also obtained; it contains the complete coding sequence divided in 10 exons. LvGlut1 expression was detected in hemocytes, hepatopancreas, intestine gills, muscle and pleopods. The higher relative expression was found in gills and the lower in hemocytes. This indicates that LvGlut1 is ubiquitously expressed but its levels are tissue-specific and upon short-term hypoxia, the GLUT1 transcripts increase 3.7-fold in hepatopancreas and gills. To our knowledge, this is the first evidence of expression of GLUT1 in crustaceans.
Collapse
Affiliation(s)
- José A Martínez-Quintana
- Centro de Investigación en Alimentación y Desarrollo. A.C, P.O. Box 1735, Carretera a Ejido La Victoria Km. 0.6, 83304, Hermosillo, Sonora, Mexico
| | | | | | | | | |
Collapse
|
110
|
Wang Y, Dawid C, Kottra G, Daniel H, Hofmann T. Gymnemic acids inhibit sodium-dependent glucose transporter 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5925-5931. [PMID: 24856809 DOI: 10.1021/jf501766u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To evaluate the activity of botanicals used in Chinese Traditional Medicine as hypoglycemic agents for diabetes type II prevention and/or treatment, extracts prepared from 26 medicinal herbs were screened for their inhibitory activity on sodium-dependent glucose transporter 1 (SGLT1) by using two-electrode voltage-clamp recording of glucose uptake in Xenopus laevis oocytes microinjected with cRNA for SGLT1. Showing by far the strongest SGLT1 inhibitory effect, the phytochemicals extracted from Gymnema sylvestre (Retz.) Schult were located by means of activity-guided fractionation and identified as 3-O-β-D-glucuronopyranosyl-21-O-2-tigloyl-22-O-2-tigloyl gymnemagenin (1) and 3-O-β-D-glucuronopyranosyl-21-O-2-methylbutyryl-22-O-2-tigloyl gymnemagenin (2) by means of LC-MS/MS, UPLC-TOF/MS, and 1D/2D-NMR experiments. Both saponins exhibited low IC50 values of 5.97 (1) and 0.17 μM (2), the latter of which was in the same range as found for the high-affinity inhibitor phlorizin (0.21 μM). As SGLT1 is found in high levels in brush-border membranes of intestinal epithelial cells, these findings demonstrate for the first time the potential of these saponins for inhibiting electrogenic glucose uptake in the gastrointestinal tract.
Collapse
Affiliation(s)
- Yu Wang
- Chair of Food Chemistry and Molecular Sensory Science, Technische Universitaet Muenchen , Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | | | | | | | | |
Collapse
|
111
|
Thorne JL, Campbell MJ. Nuclear receptors and the Warburg effect in cancer. Int J Cancer 2014; 137:1519-27. [PMID: 24895240 PMCID: PMC4790452 DOI: 10.1002/ijc.29012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/28/2014] [Indexed: 12/28/2022]
Abstract
In 1927 Otto Warburg established that tumours derive energy primarily from the conversion of glucose to lactic acid and only partially through cellular respiration involving oxygen. In the 1950s he proposed that all causes of cancer reflected different mechanisms of disabling cellular respiration in favour of fermentation (now termed aerobic glycolysis). The role of aberrant glucose metabolism in cancer is now firmly established. The shift away from oxidative phosphorylation towards the metabolically expensive aerobic glycolysis is somewhat counter-intuitive given its wasteful nature. Multiple control processes are in place to maintain cellular efficiency and it is likely that these mechanisms are disrupted to facilitate the shift to the reliance on aerobic glycolysis. One such process of cell control is mediated by the nuclear receptor superfamily. This large family of transcription factors plays a significant role in sensing environmental cues and controlling decisions on proliferation, differentiation and cell death for example, to regulate glucose uptake and metabolism and to modulate the actions of oncogenes and tumour suppressors. In this review we highlight mechanisms by which nuclear receptors actions are altered during tumorigenic transformation and can serve to enhance the shift to aerobic glycolysis. At the simplest level, a basic alteration in NR behaviour can serve to enhance glycolytic flux thus providing a basis for enhanced survival within the tumour micro-environment. Ameliorating the enhanced NR activity in this context may help to sensitize cancer cells to Warburg targeted therapies and may provide future drug targets.
Collapse
Affiliation(s)
- James L Thorne
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom
| | - Moray J Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
112
|
D-Pinitol andmyo-Inositol Stimulate Translocation of Glucose Transporter 4 in Skeletal Muscle of C57BL/6 Mice. Biosci Biotechnol Biochem 2014; 74:1062-7. [DOI: 10.1271/bbb.90963] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
113
|
[De Vivo disease. GLUT-1 deficiency syndrome: a case report]. Arch Pediatr 2014; 21:302-5. [PMID: 24503455 DOI: 10.1016/j.arcped.2013.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/10/2013] [Accepted: 12/09/2013] [Indexed: 01/01/2023]
Abstract
GLUT-1 deficiency syndrome is a rare genetic disease where the specific glucose transporter through the brain barrier is deficient. GLUT-1 deficiency causes an array of symptoms that may vary considerably from one patient to another. Signs and symptoms may include seizures, movement disorders, speech and language disorders, and developmental delays. We report a case of an infant who presented myoclonic events often occurring prior to meals, associated with developmental delay. The diagnosis was made before the discovery of hypoglycorrhachia associated with normal plasma glucose, proven biochemically by DNA analysis. Treatment with a ketogenic diet proved to be successful in controlling the epilepsy.
Collapse
|
114
|
Abstract
The Major Facilitator Superfamily (MFS) is a diverse group of secondary transporters with over 10,000 members, found in all kingdoms of life, including Homo sapiens. One objective of determining crystallographic models of the bacterial representatives is identification and physical localization of residues important for catalysis in transporters with medical relevance. The recently solved crystallographic models of the D-xylose permease XylE from Escherichia coli and GlcP from Staphylococcus epidermidus, homologs of the human D-glucose transporters, the GLUTs (SLC2), provide information about the structure of these transporters. The goal of this work is to examine general concepts derived from the bacterial XylE, GlcP, and other MFS transporters for their relevance to the GLUTs by comparing conservation of functionally critical residues. An energy landscape for symport and uniport is presented. Furthermore, the substrate selectivity of XylE is compared with GLUT1 and GLUT5, as well as a XylE mutant that transports D-glucose.
Collapse
|
115
|
Validation of the Antidiabetic and Hypolipidemic Effects of Clitocybe nuda by Assessment of Glucose Transporter 4 and Gluconeogenesis and AMPK Phosphorylation in Streptozotocin-Induced Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:705636. [PMID: 24639883 PMCID: PMC3930086 DOI: 10.1155/2014/705636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/04/2013] [Indexed: 01/08/2023]
Abstract
The study was designed to investigate the effects of extract of Clitocybe nuda (CNE) on type 1 diabetes mellitus and dyslipidemia in streptozotocin- (STZ-) induced diabetic mice. Diabetes was induced by injection of STZ. Diabetic mice were randomly divided into five groups and given orally CNE (C1: 0.2, C2: 0.5, and C3: 1.0 g/kg body weight) or metformin (Metf) or vehicle for 4 weeks. STZ induction decreased in the levels of insulin, body weight, and the weight of skeletal muscle, whereas the levels of blood glucose, hemoglobin nonenzymatically (percent HbA1c), and circulating triglyceride (P < 0.001, P < 0.001, and P < 0.01, resp.) were increased. CNE decreased the levels of blood glucose, HbA1c, and triglyceride levels, whereas it increased the levels of insulin and leptin compared with the vehicle-treated STZ group. STZ induction caused a decrease in the protein contents of skeletal muscular and hepatic phosphorylation of AMP-activated protein kinase (phospho-AMPK) and muscular glucose transporter 4 (GLUT4). Muscular phospho-AMPK contents were increased in C2-, C3-, and Metf-treated groups. CNE and Metf significantly increased the muscular proteins of GLUT4. Liver phospho-AMPK showed an increase in all CNE- and Metf-treated groups combined with the decreased hepatic glucose production by decreasing phosphenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase), and 11beta hydroxysteroid dehydroxygenase (11β-HSD1) gene, which contributed to attenuating diabetic state. The study indicated that the hypoglycemic properties of CNE were related to both the increased muscular glucose uptake and the reduction in hepatic gluconeogenesis. CNE exerts hypolipidemic effect by increasing gene expressions of peroxisome proliferator-activated receptor α (PPARα) and decreasing expressions of fatty acid synthesis, including acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) 2. Therefore, amelioration of diabetic and dyslipidemic state by CNE in STZ-induced diabetic mice occurred by regulation of GLUT4, PEPCK, DGAT2, and AMPK phosphorylation.
Collapse
|
116
|
Antidiabetic and Antihyperlipidemic Effects of Clitocybe nuda on Glucose Transporter 4 and AMP-Activated Protein Kinase Phosphorylation in High-Fat-Fed Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:981046. [PMID: 24550994 PMCID: PMC3914338 DOI: 10.1155/2014/981046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 12/31/2022]
Abstract
The objective of this study was to evaluate the antihyperlipidemic and antihyperglycemic effects and mechanism of the extract of Clitocybe nuda (CNE), in high-fat- (HF-) fed mice. C57BL/6J was randomly divided into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed with a HF diet for 8 weeks. Then, the HF group was subdivided into five groups and was given orally CNE (including C1: 0.2, C2: 0.5, and C3: 1.0 g/kg/day extracts) or rosiglitazone (Rosi) or vehicle for 4 weeks. CNE effectively prevented HF-diet-induced increases in the levels of blood glucose, triglyceride, insulin (P < 0.001, P < 0.01, P < 0.05, resp.) and attenuated insulin resistance. By treatment with CNE, body weight gain, weights of white adipose tissue (WAT) and hepatic triacylglycerol content were reduced; moreover, adipocytes in the visceral depots showed a reduction in size. By treatment with CNE, the protein contents of glucose transporter 4 (GLUT4) were significantly increased in C3-treated group in the skeletal muscle. Furthermore, CNE reduces the hepatic expression of glucose-6-phosphatase (G6Pase) and glucose production. CNE significantly increases protein contents of phospho-AMP-activated protein kinase (AMPK) in the skeletal muscle and adipose and liver tissues. Therefore, it is possible that the activation of AMPK by CNE leads to diminished gluconeogenesis in the liver and enhanced glucose uptake in skeletal muscle. It is shown that CNE exhibits hypolipidemic effect in HF-fed mice by increasing ATGL expression, which is known to help triglyceride to hydrolyze. Moreover, antidiabetic properties of CNE occurred as a result of decreased hepatic glucose production via G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic states by CNE in HF-fed mice occurred by regulation of GLUT4, G6Pase, ATGL, and AMPK phosphorylation.
Collapse
|
117
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
118
|
An J, Haile WB, Wu F, Torre E, Yepes M. Tissue-type plasminogen activator mediates neuroglial coupling in the central nervous system. Neuroscience 2013; 257:41-8. [PMID: 24200922 DOI: 10.1016/j.neuroscience.2013.10.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023]
Abstract
The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. For a long time it was believed that glucose was the only source of energy for neurons. However, a growing body of experimental evidence indicates that lactic acid, generated by aerobic glycolysis in perivascular astrocytes, is also a source of energy for neuronal activity, particularly when the supply of glucose from the intravascular space is interrupted. Adenosine monophosphate-activated protein kinase (AMPK) is an evolutionary conserved kinase that couples cellular activity with energy consumption via induction of the uptake of glucose and activation of the glycolytic pathway. The uptake of glucose by the blood-brain barrier is mediated by glucose transporter-1 (GLUT1), which is abundantly expressed in endothelial cells and astrocytic end-feet processes. Tissue-type plasminogen activator (tPA) is a serine proteinase that is found in endothelial cells, astrocytes and neurons. Genetic overexpression of neuronal tPA or treatment with recombinant tPA protects neurons from the deleterious effects of metabolic stress or excitotoxicity, via a mechanism independent of tPA's ability to cleave plasminogen into plasmin. The work presented here shows that exposure to metabolic stress induces the rapid release of tPA from murine neurons but not from astrocytes. This tPA induces AMPK activation, membrane recruitment of GLUT1, and GLUT1-mediated glucose uptake in astrocytes and endothelial cells. Our data indicate that this is followed by the synthesis and release of lactic acid from astrocytes, and that the uptake of this lactic acid via the monocarboxylate transporter-2 promotes survival in neurons exposed to metabolic stress.
Collapse
Affiliation(s)
- J An
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - W B Haile
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - F Wu
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - E Torre
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - M Yepes
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA.
| |
Collapse
|
119
|
Welch KC, Allalou A, Sehgal P, Cheng J, Ashok A. Glucose transporter expression in an avian nectarivore: the ruby-throated hummingbird (Archilochus colubris). PLoS One 2013; 8:e77003. [PMID: 24155916 PMCID: PMC3796544 DOI: 10.1371/journal.pone.0077003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/26/2013] [Indexed: 01/22/2023] Open
Abstract
Glucose transporter (GLUT) proteins play a key role in the transport of monosaccharides across cellular membranes, and thus, blood sugar regulation and tissue metabolism. Patterns of GLUT expression, including the insulin-responsive GLUT4, have been well characterized in mammals. However, relatively little is known about patterns of GLUT expression in birds with existing data limited to the granivorous or herbivorous chicken, duck and sparrow. The smallest avian taxa, hummingbirds, exhibit some of the highest fasted and fed blood glucose levels and display an unusual ability to switch rapidly and completely between endogenous fat and exogenous sugar to fuel energetically expensive hovering flight. Despite this, nothing is known about the GLUT transporters that enable observed rapid rates of carbohydrate flux. We examined GLUT (GLUT1, 2, 3, & 4) expression in pectoralis, leg muscle, heart, liver, kidney, intestine and brain from both zebra finches (Taeniopygia guttata) and ruby-throated hummingbirds (Archilochus colubris). mRNA expression of all four transporters was probed using reverse-transcription PCR (RT-PCR). In addition, GLUT1 and 4 protein expression were assayed by western blot and immunostaining. Patterns of RNA and protein expression of GLUT1-3 in both species agree closely with published reports from other birds and mammals. As in other birds, and unlike in mammals, we did not detect GLUT4. A lack of GLUT4 correlates with hyperglycemia and an uncoupling of exercise intensity and relative oxidation of carbohydrates in hummingbirds. The function of GLUTs present in hummingbird muscle tissue (e.g. GLUT1 and 3) remain undescribed. Thus, further work is necessary to determine if high capillary density, and thus surface area across which cellular-mediated transport of sugars into active tissues (e.g. muscle) occurs, rather than taxon-specific differences in GLUT density or kinetics, can account for observed rapid rates of sugar flux into these tissues.
Collapse
Affiliation(s)
- Kenneth C. Welch
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- * E-mail:
| | - Amina Allalou
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Prateek Sehgal
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Jason Cheng
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Aarthi Ashok
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
120
|
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013. [PMID: 23506862 DOI: 10.1016/j.mam.2012.07.001,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members.
Collapse
Affiliation(s)
- Mike Mueckler
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
121
|
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013; 34:121-38. [PMID: 23506862 DOI: 10.1016/j.mam.2012.07.001] [Citation(s) in RCA: 844] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/03/2012] [Indexed: 12/11/2022]
Abstract
GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members.
Collapse
Affiliation(s)
- Mike Mueckler
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
122
|
The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013. [PMID: 23506862 DOI: 10.1016/j.mam.2012.07.001;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members.
Collapse
|
123
|
Jones HN, Crombleholme T, Habli M. Adenoviral-mediated placental gene transfer of IGF-1 corrects placental insufficiency via enhanced placental glucose transport mechanisms. PLoS One 2013; 8:e74632. [PMID: 24019972 PMCID: PMC3760855 DOI: 10.1371/journal.pone.0074632] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/05/2013] [Indexed: 01/11/2023] Open
Abstract
Previous work in our laboratory demonstrated that over-expression of human insulin-like growth factor -1 (hIGF-1) in the placenta corrects fetal weight deficits in mouse, rat, and rabbit models of intrauterine growth restriction without changes in placental weight. The underlying mechanisms of this effect have not been elucidated. To investigate the effect of intra-placental IGF-1 over-expression on placental function we examined glucose transporter expression and localization in both a mouse model of IUGR and a model of human trophoblast, the BeWo Choriocarcinoma cell line.
Collapse
Affiliation(s)
- Helen N. Jones
- Center for Fetal Cellular and Molecular Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| | - Timothy Crombleholme
- Colorado Fetal Care Center, Children's Hospital Colorado, Aurora, Colorado, United States of America
| | - Mounira Habli
- Center for Fetal Cellular and Molecular Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
124
|
Mohan S S, Perry JJP, Poulose N, Nair BG, Anilkumar G. Homology modeling of GLUT4, an insulin regulated facilitated glucose transporter and docking studies with ATP and its inhibitors. J Biomol Struct Dyn 2013; 26:455-64. [PMID: 19108584 DOI: 10.1080/07391102.2009.10507260] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
GLUT4 is a 12 transmembrane (TM) protein belonging to the Class I facilitated glucose transporter family that transports glucose into the cells in an insulin regulated manner. GLUT4 plays a key role in the maintenance of blood glucose homeostasis and inhibition of glucose transporter activity may lead to insulin resistance, hallmark of type 2 diabetes. No crystal structure data is available for any members of the facilitated glucose transporter family. Here, in this paper, we have generated a homology model of GLUT4 based on experimental data available on GLUT1, a Class I facilitated glucose transporter and the crystal structure data obtained from the Glycerol 3-phosphate transporter. The model identified regions in GLUT4 that form a channel for the transport of glucose along with the substrate interacting residues. Docking and electrostatic potential data analysis of GLUT4 model has mapped an ATP binding region close to the binding site of cytochalasin B and genistein, two GLUT4 inhibitors, and this may explain the mechanism by which these inhibitors could potentially affect the GLUT4 function.
Collapse
Affiliation(s)
- Suma Mohan S
- School of Biotechnology, Amrita University, Kollam, Kerala 690525, India
| | | | | | | | | |
Collapse
|
125
|
Rajesh P, Sathish S, Srinivasan C, Selvaraj J, Balasubramanian K. Phthalate is associated with insulin resistance in adipose tissue of male rat: role of antioxidant vitamins. J Cell Biochem 2013; 114:558-69. [PMID: 22991202 DOI: 10.1002/jcb.24399] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/06/2012] [Indexed: 01/11/2023]
Abstract
Diethyl hexyl phthalate (DEHP) is a plasticizer, commonly used in a variety of products, including lubricants, perfumes, hairsprays and cosmetics, construction materials, wood finishers, adhesives, floorings and paints. DEHP is an endocrine disruptor and it has a continuum of influence on various organ systems in human beings and experimental animals. However, specific effects of DEHP on insulin signaling in adipose tissue are not known. Adult male albino rats of Wistar strain were divided into four groups. Control, DEHP treated (dissolved in olive oil at a dose of 10, and 100 mg/kg body weight, respectively, once daily through gastric intubations for 30 days) and DEHP + vitamin E (50 mg/kg body weight) and C (100 mg/kg body weight) dissolved in olive oil and distilled water, respectively, once daily through gastric intubations for 30 days. After the completion of treatment, adipose tissue was dissected out to assess various parameters. DEHP treatment escalated H(2)O(2) and hydroxyl radical levels as well as lipid peroxidation in the adipose tissue. DEHP impaired the expression of insulin signaling molecules and their phosphorelay pathways leading to diminish plasma membrane GLUT4 level and thus decreased glucose uptake and oxidation. Blood glucose level was elevated as a result of these changes. Supplementation of vitamins (C & E) prevented the DEHP-induced changes. It is concluded that DEHP-induced ROS and lipid peroxidation disrupts the insulin signal transduction in adipose tissue and favors glucose intolerance. Antioxidant vitamins have a protective role against the adverse effect of DEHP.
Collapse
Affiliation(s)
- Parsanathan Rajesh
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Sekkizhar Campus, Taramani, Chennai 600113, India
| | | | | | | | | |
Collapse
|
126
|
Abstract
Intervertebral disc (IVD) degeneration is implicated as a major cause of low back pain. The alternated phenotypes, reduced cell survival, decreased metabolic activity, loss of matrix production and dystrophic mineralization of nucleus pulposus (NP) cells may be key contributors to progressive IVD degeneration. IVD is the largest avascular structure in the body, characterized by low oxygen tension in vivo. Hypoxia-inducible factor (HIF) is a master transcription factor that is induced upon hypoxia and directs coordinated cellular responses to hypoxic environments. This review summarizes relevant studies concerning the involvement of HIF in the regulation of biological behaviors of NP cells. We describe current data on the expression of HIF in NP cells and further discuss the various roles that HIF plays in the regulation of the phenotype, survival, metabolism, matrix production and dystrophic mineralization of NP cells. Here, we conclude that HIF may be a promising target for the prevention and treatment of IVD degeneration.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopedics Surgery, The Second Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Cheng Zhen Liang
- Department of Orthopedics Surgery, The Second Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Qi Xin Chen
- Department of Orthopedics Surgery, The Second Hospital of Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
127
|
Metabolic disturbance in PCOS: clinical and molecular effects on skeletal muscle tissue. ScientificWorldJournal 2013; 2013:178364. [PMID: 23844380 PMCID: PMC3687487 DOI: 10.1155/2013/178364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/04/2013] [Indexed: 12/21/2022] Open
Abstract
Polycystic ovary syndrome is a complex hormonal disorder affecting the reproductive and metabolic systems with signs and symptoms related to anovulation, infertility, menstrual irregularity and hirsutism.
Skeletal muscle plays a vital role in the peripheral glucose uptake. Since PCOS is associated with defects in the activation and pancreatic dysfunction of β-cell insulin, it is important to understand the molecular mechanisms of insulin resistance in PCOS. Studies of muscle tissue in patients with PCOS reveal defects in insulin signaling. Muscle biopsies performed during euglycemic hyperinsulinemic clamp showed a significant reduction in glucose uptake, and insulin-mediated IRS-2 increased significantly in skeletal muscle. It is recognized that the etiology of insulin resistance in PCOS is likely to be as complicated as in type 2 diabetes and it has an important role in metabolic and reproductive phenotypes of this syndrome. Thus, further evidence regarding the effect of nonpharmacological approaches (e.g., physical exercise) in skeletal muscle of women with PCOS is required for a better therapeutic approach in the management of various metabolic and reproductive problems caused by this syndrome.
Collapse
|
128
|
De Zutter JK, Levine KB, Deng D, Carruthers A. Sequence determinants of GLUT1 oligomerization: analysis by homology-scanning mutagenesis. J Biol Chem 2013; 288:20734-44. [PMID: 23720776 DOI: 10.1074/jbc.m113.469023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.
Collapse
Affiliation(s)
- Julie K De Zutter
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
129
|
Tenore GC, Stiuso P, Campiglia P, Novellino E. In vitro hypoglycaemic and hypolipidemic potential of white tea polyphenols. Food Chem 2013; 141:2379-84. [PMID: 23870971 DOI: 10.1016/j.foodchem.2013.04.128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/12/2013] [Accepted: 04/30/2013] [Indexed: 11/27/2022]
Abstract
The leaves at different processing stages of a single tea cultivar in order to obtain white (WT), green (GT) and black tea (BT) samples, were analysed. The capacities of tea polyphenolics to influence the glucose and lipid metabolism in HepG2 cell lines were evaluated. WT appeared the most active in reducing the glucose and cholesterol uptake (+17.7% and +32.4% in the glucose and cholesterol cell medium concentration, respectively). Incubation with WT enhanced LDL receptor binding activity by 40% (+20% for GT and +0% for BT) and led to an increase in HDL cell medium concentration of 33.3% (+20% for GT and +0% for BT). Finally, WT revealed the best inhibition capacity against lipase activity, and triglyceride levels in the cell medium increased by 400% (+382.6% for GT and +191.3% for BT). The present study intended to contribute to the little knowledge about the potential health benefits of white tea in individuals affected by metabolic syndrome.
Collapse
Affiliation(s)
- Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy.
| | | | | | | |
Collapse
|
130
|
Chakraborty C, Bandyopadhyay S, Maulik U, Agoramoorthy G. Topology Mapping of Insulin-Regulated Glucose Transporter GLUT4 Using Computational Biology. Cell Biochem Biophys 2013; 67:1261-74. [DOI: 10.1007/s12013-013-9644-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
131
|
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013. [DOI: 10.1016/j.mam.2012.07.001\] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
132
|
The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013. [DOI: 10.1016/j.mam.2012.07.001 or 1=1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
133
|
Szablewski L. Expression of glucose transporters in cancers. Biochim Biophys Acta Rev Cancer 2013; 1835:164-9. [DOI: 10.1016/j.bbcan.2012.12.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/09/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022]
|
134
|
Thamotharan S, Raychaudhuri N, Tomi M, Shin BC, Devaskar SU. Hypoxic adaptation engages the CBP/CREST-induced coactivator complex of Creb-HIF-1α in transactivating murine neuroblastic glucose transporter. Am J Physiol Endocrinol Metab 2013; 304:E583-98. [PMID: 23321477 PMCID: PMC3602690 DOI: 10.1152/ajpendo.00513.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown in vitro a hypoxia-induced time-dependent increase in facilitative glucose transporter isoform 3 (GLUT3) expression in N2A murine neuroblasts. This increase in GLUT3 expression is partially reliant on a transcriptional increase noted in actinomycin D and cycloheximide pretreatment experiments. Transient transfection assays in N2A neuroblasts using murine glut3-luciferase reporter constructs mapped the hypoxia-induced enhancer activities to -857- to -573-bp and -203- to -177-bp regions. Hypoxia-exposed N2A nuclear extracts demonstrated an increase in HIF-1α and p-Creb binding to HRE (-828 to -824 bp) and AP-1 (-187 to -180 bp) cis-elements, respectively, in electromobility shift and supershift assays, which was confirmed by chromatin immunoprecipitation assays. In addition, the interaction of CBP with Creb and HIF-1α and CREST with CBP in hypoxia was detected by coimmunoprecipitation. Furthermore, small interference (si)RNA targeting Creb in these cells decreased endogenous Creb concentrations that reduced by twofold hypoxia-induced glut3 gene transcription. Thus, in N2A neuroblasts, phosphorylated HIF-1α and Creb mediated the hypoxia-induced increase in glut3 transcription. Coactivation by the Ca⁺⁺-dependent CREST and CBP proteins may enhance cross-talk between p-Creb-AP-1 and HIF-1α/HRE of the glut3 gene. Collectively, these processes can facilitate an adaptive response to hypoxic energy depletion targeted at enhancing glucose transport and minimizing injury while fueling the proliferative potential of neuroblasts.
Collapse
Affiliation(s)
- Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
135
|
Sunil C, Duraipandiyan V, Agastian P, Ignacimuthu S. Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food Chem Toxicol 2012; 50:4356-63. [DOI: 10.1016/j.fct.2012.08.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 10/28/2022]
|
136
|
Vollers SS, Carruthers A. Sequence determinants of GLUT1-mediated accelerated-exchange transport: analysis by homology-scanning mutagenesis. J Biol Chem 2012; 287:42533-44. [PMID: 23093404 DOI: 10.1074/jbc.m112.369587] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The class 1 equilibrative glucose transporters GLUT1 and GLUT4 are structurally similar but catalyze distinct modes of transport. GLUT1 exhibits trans-acceleration, in which the presence of intracellular sugar stimulates the rate of unidirectional sugar uptake. GLUT4-mediated uptake is unaffected by intracellular sugar. Using homology-scanning mutagenesis in which domains of GLUT1 are substituted with equivalent domains from GLUT4 and vice versa, we show that GLUT1 transmembrane domain 6 is both necessary and sufficient for trans-acceleration. This region is not directly involved in GLUT1 binding of substrate or inhibitors. Rather, transmembrane domain 6 is part of two putative scaffold domains, which coordinate membrane-spanning amphipathic helices that form the sugar translocation pore. We propose that GLUT1 transmembrane domain 6 restrains import when intracellular sugar is absent by slowing transport-associated conformational changes.
Collapse
Affiliation(s)
- Sabrina S Vollers
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
137
|
The facilitative glucose transporter GLUT12: what do we know and what would we like to know? J Physiol Biochem 2012; 69:325-33. [DOI: 10.1007/s13105-012-0213-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/12/2012] [Indexed: 12/22/2022]
|
138
|
Kim ST, Omurtag K, Moley KH. Decreased spermatogenesis, fertility, and altered Slc2A expression in Akt1-/- and Akt2-/- testes and sperm. Reprod Sci 2012; 19:31-42. [PMID: 22228739 DOI: 10.1177/1933719111424449] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Akt is serine/threonine protein kinase associated with various cellular processes and 3 different isoforms exist. This work describes the reproductive phenotype of Akt1-/- and Akt2-/- in male mice. The seminiferous tubule diameter in Akt1-/- testes was less than wild-type or Akt2-/- testes. The expression of phospho-phosphatase and tensin homologue deleted on chromosome 10 (p-PTEN) and phospho-glycogen synthase kinase 3β (GSK-3β) was elevated in Akt1-/- testes. Alterations in expression and localization to the plasma membrane of several facilitative glucose transporters (Slc2a8, 9a and 9b) were detected in these knockout compared to wild-type mice. Apoptotic sperm were more prevalent in both null mice compared to wild-type mice, whereas sperm concentration and motility were significantly lower in the null sperm. Finally, Akt2-/- sperm had a markedly decreased fertilization rate by in vitro fertilization (IVF) and resulting embryos displayed increased fragmentation and poor growth. These results suggest that altered SLC2A expression and increased PTEN and GSK3β activity may be responsible for the decreased spermatogenesis, sperm maturation, and fertilization in the Akt1-/- and Akt2-/- male mice.
Collapse
Affiliation(s)
- Sung Tae Kim
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
139
|
Lee WL, Klip A. Shuttling glucose across brain microvessels, with a little help from GLUT1 and AMP kinase. Focus on "AMP kinase regulation of sugar transport in brain capillary endothelial cells during acute metabolic stress". Am J Physiol Cell Physiol 2012; 303:C803-5. [PMID: 22814398 DOI: 10.1152/ajpcell.00241.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
140
|
Shen SC, Chang WC, Chang CL. Fraction from wax apple [Syzygium samarangense (Blume) Merrill and Perry] fruit extract ameliorates insulin resistance via modulating insulin signaling and inflammation pathway in tumor necrosis factor α-treated FL83B mouse hepatocytes. Int J Mol Sci 2012; 13:8562-8577. [PMID: 22942720 PMCID: PMC3430251 DOI: 10.3390/ijms13078562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 06/05/2012] [Accepted: 07/03/2012] [Indexed: 11/16/2022] Open
Abstract
Inflammation is associated with the development of insulin resistance in Type 2 diabetes mellitus. In the present study, mouse FL83B cells were treated with tumor necrosis factor-alpha (TNF-α) to induce insulin resistance, and then co-incubated with a fraction from wax apple fruit extract (FWFE). This fraction significantly increased the uptake of the nonradioactive fluorescent indicator 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) in insulin resistant cells. Western blot analysis revealed that, compared with the TNF-α-treated control group, FWFE increased the expression of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), protein kinase B (Akt/PKB), phosphatidylinositol-3 kinase (PI3K), and glucose transporter 2 (GLUT-2), and increased IR tyrosyl phosporylation, in insulin resistant FL83B cells. However, FWFE decreased phosphorylation of c-Jun N-terminal kinases (JNK), but not the expression of the intercellular signal-regulated kinases (ERK), in the same cells. These results suggest that FWFE might alleviate insulin resistance in TNF-α-treated FL83B cells by activating PI3K-Akt/PKB signaling and inhibiting inflammatory response via suppression of JNK, rather than ERK, activation.
Collapse
Affiliation(s)
- Szu-Chuan Shen
- Department of Human Development and Family Studies, National Taiwan Normal University, No. 162, Sec. 1, Heping East Road, Taipei 10610, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-2-77341437; Fax: +886-2-23639635
| | - Wen-Chang Chang
- Graduate Institute of Food Science and Technology, National Taiwan University, P.O. Box 23-14, Taipei 10672, Taiwan; E-Mails: (W.-C.C.); (C.-L.C.)
| | - Chiao-Li Chang
- Graduate Institute of Food Science and Technology, National Taiwan University, P.O. Box 23-14, Taipei 10672, Taiwan; E-Mails: (W.-C.C.); (C.-L.C.)
| |
Collapse
|
141
|
Das SK. The facilitative glucose transporter SLC2A8 regulates reproductive outcomes and growth phenotype in mice. Biol Reprod 2012; 87:48. [PMID: 22743299 DOI: 10.1095/biolreprod.112.102988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Sanjoy K Das
- Division of Reproductive Sciences and Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| |
Collapse
|
142
|
Abstract
Glucose is an essential nutrient for mammalian cells. Emerging evidence suggests that glucose within the oocyte regulates meiotic maturation. However, it remains controversial as to whether, and if so how, glucose enters oocytes within cumulus-oocyte complexes (COCs). We used a fluorescent glucose derivative (6-NBDG) to trace glucose transport within live mouse COCs and employed inhibitors of glucose transporters (GLUTs) and gap junction proteins to examine their distinct roles in glucose uptake by cumulus cells and the oocyte. We showed that fluorescent glucose enters both cumulus-enclosed and denuded oocytes. Treating COCs with GLUT inhibitors leads to simultaneous decreases in glucose uptake in cumulus cells and the surrounded oocyte but no effect on denuded oocytes. Pharmacological blockade of of gap junctions between the oocyte and cumulus cells significantly inhibited fluorescent glucose transport to oocytes. Moreover, we find that both in vivo hyperglycemic environment and in vitro high-glucose culture increase free glucose levels in oocytes via gap junctional channels. These findings reveal an intercellular pathway for glucose transport into oocytes: glucose is taken up by cumulus cells via the GLUT system and then transferred into the oocyte through gap junctions. This intercellular pathway may partly mediate the effects of high-glucose condition on oocyte quality.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|
143
|
Purcell SH, Chi MM, Lanzendorf S, Moley KH. Insulin-stimulated glucose uptake occurs in specialized cells within the cumulus oocyte complex. Endocrinology 2012; 153:2444-54. [PMID: 22408172 PMCID: PMC3339650 DOI: 10.1210/en.2011-1974] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The oocyte exists within the mammalian follicle surrounded by somatic cumulus cells. These cumulus cells metabolize the majority of the glucose within the cumulus oocyte complex and provide energy substrates and intermediates such as pyruvate to the oocyte. The insulin receptor is present in cumulus cells and oocytes; however, it is unknown whether insulin-stimulated glucose uptake occurs in either cell type. Insulin-stimulated glucose uptake is thought to be unique to adipocytes, skeletal and cardiac muscle, and the blastocyst. Here, we show for the first time that many of the components required for insulin signaling are present in both cumulus cells and oocytes. We performed a set of experiments on mouse cumulus cells and oocytes and human cumulus cells using the nonmetabolizable glucose analog 2-deoxy-d-glucose to measure basal and insulin-stimulated glucose uptake. We show that insulin-stimulated glucose uptake occurs in both compact and expanded cumulus cells of mice, as well as in human cumulus cells. Oocytes, however, do not display insulin-stimulated glucose uptake. Insulin-stimulated glucose uptake in cumulus cells is mediated through phosphatidylinositol 3-kinase signaling as shown by inhibition of insulin-stimulated glucose uptake and Akt phosphorylation with the specific phosphatidylinositol 3-kinase inhibitor, LY294002. To test the effect of systemic in vivo insulin resistance on insulin sensitivity in the cumulus cell, cumulus cells from high fat-fed, insulin-resistant mice and women with polycystic ovary syndrome were examined. Both sets of cells displayed blunted insulin-stimulated glucose uptake. Our studies identify another tissue that, through a classical insulin-signaling pathway, demonstrates insulin-stimulated glucose uptake. Moreover, these findings suggest insulin resistance occurs in these cells under conditions of systemic insulin resistance.
Collapse
Affiliation(s)
- Scott H Purcell
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
144
|
Campello RS, Alves-Wagner ABT, Abdulkader F, Mori RCT, Machado UF. Carbohydrate- and lipid-enriched meals acutely disrupt glycemic homeostasis by inducing transient insulin resistance in rats. Can J Physiol Pharmacol 2012; 90:537-45. [PMID: 22510071 DOI: 10.1139/y2012-056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic intake of high-carbohydrate or high-lipid diets is a well-known insulin resistance inducer. This study investigates the immediate effect (1-6 h) of a carbohydrate- or lipid-enriched meal on insulin sensitivity. Fasted rats were refed with standard, carbohydrate-enriched (C), or lipid-enriched (L) meal. Plasma insulin, glucose, and non-esterified fatty acids (NEFA) were measured at 1, 2, 4, and 6 h of refeeding. The glucose-insulin index showed that either carbohydrates or lipids decreased insulin sensitivity at 2 h of refeeding. At this time point, insulin tolerance tests (ITTs) and glucose tolerance tests (GTTs) detected insulin resistance in C rats, while GTT confirmed it in L rats. Reduced glycogen and phosphorylated AKT and GSK3 content revealed hepatic insulin resistance in C rats. Reduced glucose uptake in skeletal muscle subjected to the fatty acid concentration that mimics the high NEFA level of L rats suggests insulin resistance in these animals is mainly in muscle. In conclusion, carbohydrate- or lipid-enriched meals acutely disrupt glycemic homeostasis, inducing a transient insulin resistance, which seems to involve liver and skeletal muscle, respectively. Thus, the insulin resistance observed when those types of diets are chronically consumed may be an evolution of repeated episodes of this transient insulin resistance.
Collapse
Affiliation(s)
- Raquel Saldanha Campello
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| | | | | | | | | |
Collapse
|
145
|
Balon TW. SGLT and GLUT: are they teammates? Focus on “Mouse SGLT3a generates proton-activated currents but does not transport sugar”. Am J Physiol Cell Physiol 2012; 302:C1071-2. [DOI: 10.1152/ajpcell.00054.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Thomas W. Balon
- Diabetes Research Unit, Section of Endocrinology, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
146
|
Nishikawa S, Hosokawa M, Miyashita K. Fucoxanthin promotes translocation and induction of glucose transporter 4 in skeletal muscles of diabetic/obese KK-A(y) mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:389-94. [PMID: 22305278 DOI: 10.1016/j.phymed.2011.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/05/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
Fucoxanthin (Fx) isolated from Undaria pinnatifida suppresses the development of hyperglycemia and hyperinsulinemia of diabetic/obese KK-A(y) mice after 2 weeks of feeding 0.2% Fx-containing diet. In the soleus muscle of KK-A(y) mice that were fed Fx, glucose transporter 4 (GLUT4) translocation to plasma membranes from cytosol was promoted. On the other hand, Fx increased GLUT4 expression levels in the extensor digitorum longus (EDL) muscle, although GLUT4 translocation tended to increase. The expression levels of insulin receptor (IR) mRNA and phosphorylation of Akt, which are in upstream of the insulin signaling pathway regulating GLUT4 translocation, were also enhanced in the soleus and EDL muscles of the mice fed Fx. Furthermore, Fx induced peroxisome proliferator activated receptor γ coactivator-1α (PGC-1α), which has been reported to increase GLUT4 expression, in both soleus and EDL muscles. These results suggest that in diabetic/obese KK-A(y) mice, Fx improves hyperglycemia by activating the insulin signaling pathway, including GLUT4 translocation, and inducing GLUT4 expression in the soleus and EDL muscles, respectively, of diabetic/obese KK-A(y) mice.
Collapse
Affiliation(s)
- Sho Nishikawa
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato Hakodate, Hokkaido 041-8611, Japan
| | | | | |
Collapse
|
147
|
Masud R, Shameer K, Dhar A, Ding K, Kullo IJ. Gene expression profiling of peripheral blood mononuclear cells in the setting of peripheral arterial disease. J Clin Bioinforma 2012; 2:6. [PMID: 22409835 PMCID: PMC3381689 DOI: 10.1186/2043-9113-2-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/12/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Peripheral arterial disease (PAD) is a relatively common manifestation of systemic atherosclerosis that leads to progressive narrowing of the lumen of leg arteries. Circulating monocytes are in contact with the arterial wall and can serve as reporters of vascular pathology in the setting of PAD. We performed gene expression analysis of peripheral blood mononuclear cells (PBMC) in patients with PAD and controls without PAD to identify differentially regulated genes. METHODS PAD was defined as an ankle brachial index (ABI) ≤0.9 (n = 19) while age and gender matched controls had an ABI > 1.0 (n = 18). Microarray analysis was performed using Affymetrix HG-U133 plus 2.0 gene chips and analyzed using GeneSpring GX 11.0. Gene expression data was normalized using Robust Multichip Analysis (RMA) normalization method, differential expression was defined as a fold change ≥1.5, followed by unpaired Mann-Whitney test (P < 0.05) and correction for multiple testing by Benjamini and Hochberg False Discovery Rate. Meta-analysis of differentially expressed genes was performed using an integrated bioinformatics pipeline with tools for enrichment analysis using Gene Ontology (GO) terms, pathway analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG), molecular event enrichment using Reactome annotations and network analysis using Ingenuity Pathway Analysis suite. Extensive biocuration was also performed to understand the functional context of genes. RESULTS We identified 87 genes differentially expressed in the setting of PAD; 40 genes were upregulated and 47 genes were downregulated. We employed an integrated bioinformatics pipeline coupled with literature curation to characterize the functional coherence of differentially regulated genes. CONCLUSION Notably, upregulated genes mediate immune response, inflammation, apoptosis, stress response, phosphorylation, hemostasis, platelet activation and platelet aggregation. Downregulated genes included several genes from the zinc finger family that are involved in transcriptional regulation. These results provide insights into molecular mechanisms relevant to the pathophysiology of PAD.
Collapse
Affiliation(s)
- Rizwan Masud
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester MN 55905, USA
| | - Khader Shameer
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester MN 55905, USA
| | - Aparna Dhar
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester MN 55905, USA
| | - Keyue Ding
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester MN 55905, USA
| | - Iftikhar J Kullo
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester MN 55905, USA
| |
Collapse
|
148
|
Gao L, Lv C, Xu C, Li Y, Cui X, Gu H, Ni X. Differential regulation of glucose transporters mediated by CRH receptor type 1 and type 2 in human placental trophoblasts. Endocrinology 2012; 153:1464-71. [PMID: 22234467 DOI: 10.1210/en.2011-1673] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucose transport across the placenta is mediated by glucose transporters (GLUT), which is critical for normal development and survival of the fetus. Regulatory mechanisms of GLUT in placenta have not been elucidated. Placental CRH has been implicated to play a key role in the control of fetal growth and development. We hypothesized that CRH, produced locally in placenta, could act to modulate GLUT in placenta. To investigate this, we obtained human placentas from uncomplicated term pregnancies and isolated and cultured trophoblast cells. GLUT1 and GLUT3 expressions in placenta were determined, and effects of CRH on GLUT1 and GLUT3 were examined. GLUT1 and GLUT3 were identified in placental villous syncytiotrophoblasts and the endothelium of vessels. Treatment of cultured placental trophoblasts with CRH resulted in an increase in GLUT1 expression while a decrease in GLUT3 expression in a dose-dependent manner. Cells treated with either CRH antibody or nonselective CRH receptor (CRH-R) antagonist astressin showed a decrease in GLUT1 and an increase in GLUT3 expression. CRH-R1 antagonist antalarmin decreased GLUT1 expression while increased GLUT3 expression. CRH-R2 antagonist astressin2b increased the expression of both GLUT1 and GLUT3. Knockdown of CRH-R1 decreased GLUT1 expression while increased GLUT3 expression. CRH-R2 knockdown caused an increase in both GLUT1 and GLUT3 expression. Our data suggest that, in placenta, CRH produced locally regulates GLUT1 and GLUT3 expression, CRHR1 and CRHR2-mediated differential regulation of GLUT1 and GLUT3 expression. Placental CRH may regulate the growth of fetus and placenta by modulating the expression of GLUT in placenta during pregnancy.
Collapse
Affiliation(s)
- Lu Gao
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
149
|
Yamamoto N, Ueda M, Sato T, Kawasaki K, Sawada K, Kawabata K, Ashida H. Measurement of glucose uptake in cultured cells. ACTA ACUST UNITED AC 2012; Chapter 12:Unit 12.14.1-22. [PMID: 22147347 DOI: 10.1002/0471141755.ph1214s55] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Facilitative glucose uptake transport systems are ubiquitous in animal cells and responsible for transporting glucose across the cell surface membrane. Evaluation of glucose uptake is crucial in the study of numerous diseases and metabolic disorders, such as myocardial ischemia, diabetes mellitus, and cancer. Methods for assessing glucose uptake into mammalian cells are detailed in this unit. The work is divided into four sections: (1) a brief overview of glucose uptake assays in cultured cells; (2) a method for measuring glucose uptake using radiolabeled 3-O-methylglucose; (3) a method for measuring glucose uptake using radiolabeled 2-deoxyglucose (2DG); and (4) an improved method for measuring 2DG-uptake using an enzymatic, fluorometric assay, eliminating the need for radiolabeled glucose analogs.
Collapse
Affiliation(s)
- Norio Yamamoto
- Food Science Research Center, House Wellness Foods Corporation, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
150
|
Mobasheri A. Glucose: an energy currency and structural precursor in articular cartilage and bone with emerging roles as an extracellular signaling molecule and metabolic regulator. Front Endocrinol (Lausanne) 2012; 3:153. [PMID: 23251132 PMCID: PMC3523231 DOI: 10.3389/fendo.2012.00153] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/19/2012] [Indexed: 01/19/2023] Open
Abstract
In the skeletal system glucose serves as an essential source of energy for the development, growth, and maintenance of bone and articular cartilage. It is particularly needed for skeletal morphogenesis during embryonic growth and fetal development. Glucose is vital for osteogenesis and chondrogenesis, and is used as a precursor for the synthesis of glycosaminoglycans, glycoproteins, and glycolipids. Glucose sensors are present in tissues and organs that carry out bulk glucose fluxes (i.e., intestine, kidney, and liver). The beta cells of the pancreatic islets of Langerhans respond to changes in blood glucose concentration by varying the rate of insulin synthesis and secretion. Neuronal cells in the hypothalamus are also capable of sensing extracellular glucose. Glucosensing neurons use glucose as a signaling molecule to alter their action potential frequency in response to variations in ambient glucose levels. Skeletal muscle and adipose tissue can respond to changes in circulating glucose but much less is known about glucosensing in bone and cartilage. Recent research suggests that bone cells can influence (and be influenced by) systemic glucose metabolism. This focused review article discusses what we know about glucose transport and metabolism in bone and cartilage and highlights recent studies that have linked glucose metabolism, insulin signaling, and osteocalcin activity in bone. These new findings in bone cells raise important questions about nutrient sensing, uptake, storage and processing mechanisms and how they might contribute to overall energy homeostasis in health and disease. The role of glucose in modulating anabolic and catabolic gene expression in normal and osteoarthritic chondrocytes is also discussed. In summary, cartilage and bone cells are sensitive to extracellular glucose and adjust their gene expression and metabolism in response to varying extracellular glucose concentrations.
Collapse
Affiliation(s)
- Ali Mobasheri
- *Correspondence: Ali Mobasheri, Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Nottingham, Leicestershire LE12 5RD, UK. e-mail:
| |
Collapse
|