101
|
Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR, McKenna MJ, Meydan C, Mishra T, Nasrini J, Piening BD, Rizzardi LF, Sharma K, Siamwala JH, Taylor L, Vitaterna MH, Afkarian M, Afshinnekoo E, Ahadi S, Ambati A, Arya M, Bezdan D, Callahan CM, Chen S, Choi AMK, Chlipala GE, Contrepois K, Covington M, Crucian BE, De Vivo I, Dinges DF, Ebert DJ, Feinberg JI, Gandara JA, George KA, Goutsias J, Grills GS, Hargens AR, Heer M, Hillary RP, Hoofnagle AN, Hook VYH, Jenkinson G, Jiang P, Keshavarzian A, Laurie SS, Lee-McMullen B, Lumpkins SB, MacKay M, Maienschein-Cline MG, Melnick AM, Moore TM, Nakahira K, Patel HH, Pietrzyk R, Rao V, Saito R, Salins DN, Schilling JM, Sears DD, Sheridan CK, Stenger MB, Tryggvadottir R, Urban AE, Vaisar T, Van Espen B, Zhang J, Ziegler MG, Zwart SR, Charles JB, Kundrot CE, Scott GBI, Bailey SM, Basner M, Feinberg AP, Lee SMC, Mason CE, Mignot E, Rana BK, Smith SM, Snyder MP, Turek FW. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 2019; 364:364/6436/eaau8650. [PMID: 30975860 DOI: 10.1126/science.aau8650] [Citation(s) in RCA: 465] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
To understand the health impact of long-duration spaceflight, one identical twin astronaut was monitored before, during, and after a 1-year mission onboard the International Space Station; his twin served as a genetically matched ground control. Longitudinal assessments identified spaceflight-specific changes, including decreased body mass, telomere elongation, genome instability, carotid artery distension and increased intima-media thickness, altered ocular structure, transcriptional and metabolic changes, DNA methylation changes in immune and oxidative stress-related pathways, gastrointestinal microbiota alterations, and some cognitive decline postflight. Although average telomere length, global gene expression, and microbiome changes returned to near preflight levels within 6 months after return to Earth, increased numbers of short telomeres were observed and expression of some genes was still disrupted. These multiomic, molecular, physiological, and behavioral datasets provide a valuable roadmap of the putative health risks for future human spaceflight.
Collapse
Affiliation(s)
- Francine E Garrett-Bakelman
- Weill Cornell Medicine, New York, NY, USA.,University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Manjula Darshi
- Center for Renal Precision Medicine, University of Texas Health, San Antonio, TX, USA
| | | | - Ruben C Gur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ling Lin
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Cem Meydan
- Weill Cornell Medicine, New York, NY, USA.,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | | | - Jad Nasrini
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health, San Antonio, TX, USA
| | | | - Lynn Taylor
- Colorado State University, Fort Collins, CO, USA
| | | | | | - Ebrahim Afshinnekoo
- Weill Cornell Medicine, New York, NY, USA.,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | - Sara Ahadi
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aditya Ambati
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Daniela Bezdan
- Weill Cornell Medicine, New York, NY, USA.,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA
| | | | - Songjie Chen
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Marisa Covington
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | - Brian E Crucian
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | | | - David F Dinges
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | - Ryan P Hillary
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Peng Jiang
- Northwestern University, Evanston, IL, USA
| | | | | | | | | | | | | | | | - Tyler M Moore
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Hemal H Patel
- University of California, San Diego, La Jolla, CA, USA
| | | | - Varsha Rao
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rintaro Saito
- University of California, San Diego, La Jolla, CA, USA
| | - Denis N Salins
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Michael B Stenger
- National Aeronautics and Space Administration (NASA), Houston, TX, USA
| | | | | | | | | | - Jing Zhang
- Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - John B Charles
- National Aeronautics and Space Administration (NASA), Houston, TX, USA.
| | - Craig E Kundrot
- Space Life and Physical Sciences Division, NASA Headquarters, Washington, DC, USA.
| | - Graham B I Scott
- National Space Biomedical Research Institute, Baylor College of Medicine, Houston, TX, USA.
| | | | - Mathias Basner
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | | | | - Christopher E Mason
- Weill Cornell Medicine, New York, NY, USA. .,The Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, USA.,The Feil Family Brain and Mind Research Institute, New York, NY, USA.,The WorldQuant Initiative for Quantitative Prediction, New York, NY, USA
| | | | - Brinda K Rana
- University of California, San Diego, La Jolla, CA, USA.
| | - Scott M Smith
- National Aeronautics and Space Administration (NASA), Houston, TX, USA.
| | | | | |
Collapse
|
102
|
Strollo F, Gentile S, Strollo G, Mambro A, Vernikos J. Recent Progress in Space Physiology and Aging. Front Physiol 2018; 9:1551. [PMID: 30483144 PMCID: PMC6240610 DOI: 10.3389/fphys.2018.01551] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Astronauts coming back from long-term space missions present with different health problems potentially affecting mission performance, involving all functional systems and organs and closely resembling those found in the elderly. This review points out the most recent advances in the literature in areas of expertise in which specific research groups were particularly creative, and as they relate to aging and to possible benefits on Earth for disabled people. The update of new findings and approaches in space research refers especially to neuro-immuno-endocrine-metabolic interactions, optic nerve edema, motion sickness and muscle-tendon-bone interplay and aims at providing the curious - and even possibly naïve young researchers – with a source of inspiration and of creative ideas for translational research.
Collapse
Affiliation(s)
| | - Sandro Gentile
- Campania University "Luigi Vanvitelli" and Nefrocenter Research Network, Naples, Italy
| | | | - Andrea Mambro
- Anesthesiology and Resuscitation Unit, "Misercordia" Hospital, Grosseto, Italy
| | | |
Collapse
|
103
|
Seibert FS, Bernhard F, Stervbo U, Vairavanathan S, Bauer F, Rohn B, Pagonas N, Babel N, Jankowski J, Westhoff TH. The Effect of Microgravity on Central Aortic Blood Pressure. Am J Hypertens 2018; 31:1183-1189. [PMID: 30052726 DOI: 10.1093/ajh/hpy119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Blood pressure has been traditionally measured at peripheral arteries. In the past decade, evidence has grown that central aortic blood pressure may be a more powerful predictor for cardiovascular events, but data on its regulation are rare. The present work examines the impact of microgravity on central blood pressure for the first time. METHODS We performed 7 parabolic flights with 22 seconds of weightlessness in each parabola. Hemodynamic parameters including central systolic blood pressure were measured noninvasively in a free-floating position in 20 healthy subjects (19-43 years of age). RESULTS Arterial elasticity at rest was normal in all participants (augmentation index 14% (interquartile range (IQR) 10-22), pulse wave velocity 5.2 m/s (IQR 5.0-5.4)). Transition of 1g to 0g led to a significant increase of central systolic blood pressure from 124 (IQR 118-133) to 127 (IQR 119-133) mm Hg (P = 0.017). Cardiac index augmented significantly from 2.5 (IQR 2.2-2.8) to 2.7 (IQR 2.3-3.0) l/min/m2 (P < 0.001), while peripheral vascular resistance showed a decrease from 1.30 (IQR 1.14-1.48) to 1.25 (IQR 1.15-1.40) s × mm Hg/ml (P = 0.037). Peripheral systolic blood pressure did not change significantly (P > 0.05). CONCLUSION Whereas there is a multitude of studies on the effects of microgravity on peripheral blood pressure, this study provides first data on central aortic blood pressure. An acute loss of gravity leads to a central blood volume shift with an augmentation of cardiac output. In healthy subjects with normal arterial stiffness, the compensatory decrease of peripheral resistance does not outweigh this effect resulting in an increase of central blood pressure.
Collapse
Affiliation(s)
- Felix S Seibert
- Medical Department I, University Hospital, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Fabian Bernhard
- Medical Department I, University Hospital, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Ulrik Stervbo
- Medical Department I, University Hospital, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Sinthuya Vairavanathan
- Medical Department I, University Hospital, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Frederic Bauer
- Medical Department I, University Hospital, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Benjamin Rohn
- Medical Department I, University Hospital, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Nikolaos Pagonas
- Medical Department I, University Hospital, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Nina Babel
- Medical Department I, University Hospital, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Timm H Westhoff
- Medical Department I, University Hospital, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| |
Collapse
|
104
|
Edgell H, Grinberg A, Beavers KR, Gagné N, Hughson RL. Efficacy of fluid loading as a countermeasure to the hemodynamic and hormonal changes of 28-h head-down bed rest. Physiol Rep 2018; 6:e13874. [PMID: 30298552 PMCID: PMC6175712 DOI: 10.14814/phy2.13874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 11/24/2022] Open
Abstract
After exposure to microgravity, or head-down bed rest (HDBR), fluid loading is often used with the intent of increasing plasma volume and maintaining mean arterial pressure during orthostatic stress. Nine men (aged 18-32 years) underwent three randomized trials with lower body negative pressure (LBNP) before and after: (1) 4-h of sitting with fluid loading (1 g sodium chloride/125 mL of water starting 2.5-h before LBNP), (2) 28-h of 6-degree HDBR without fluid loading, and (3) 28-h of 6-degree HDBR with fluid loading. LBNP was progressive from 0 to -40 mmHg. After 28-h HDBR, fluid loading did not protect against the loss of plasma volume (-280 ± 64 mL without fluid loading, -207 ± 86 with fluid loading, P = 0.472) nor did it protect against a drop of mean arterial pressure (P = 0.017) during LBNP (Post-28 h HDBR response from 0 to -40 mmHg LBNP: 88 ± 4 to 85 ± 4 mmHg without fluid loading and 93 ± 4 to 88 ± 5 mmHg with fluid loading, P = 0.557 between trials). However, fluid loading did protect against the loss of stroke volume index and central venous pressure observed after 28-h HDBR. Fluid loading also attenuated the increase of angiotensin II seen after 28-h HDBR and throughout the LBNP protocol (Post-28 h HDBR response from 0 to -40 mmHg LBNP: 16.6 ± 3.4 to 23.7 ± 5.0 pg/mL without fluid loading and 6.1 ± 0.8 to 12.2 ± 2.3 pg/mL with fluid loading, P < 0.001 between trials). Our results indicate that fluid loading did not protect against plasma volume loss due to HDBR or change blood pressure responses to LBNP. However, changes in central venous pressure, stroke volume and fluid regulatory hormones could potentially influence longer duration studies and those with more severe orthostatic stress.
Collapse
Affiliation(s)
- Heather Edgell
- Faculty of Applied Health SciencesUniversity of WaterlooWaterlooOntarioCanada
- School of Kinesiology and Health SciencesYork UniversityTorontoOntarioCanada
| | - Anna Grinberg
- Faculty of Applied Health SciencesUniversity of WaterlooWaterlooOntarioCanada
| | - Keith R. Beavers
- Faculty of Applied Health SciencesUniversity of WaterlooWaterlooOntarioCanada
| | - Nathalie Gagné
- Faculty of Applied Health SciencesUniversity of WaterlooWaterlooOntarioCanada
| | - Richard L. Hughson
- Faculty of Applied Health SciencesUniversity of WaterlooWaterlooOntarioCanada
- Schlegel‐University of Waterloo Research Institute for AgingWaterlooOntarioCanada
| |
Collapse
|
105
|
Evans JM, Knapp CF, Goswami N. Artificial Gravity as a Countermeasure to the Cardiovascular Deconditioning of Spaceflight: Gender Perspectives. Front Physiol 2018; 9:716. [PMID: 30034341 PMCID: PMC6043777 DOI: 10.3389/fphys.2018.00716] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Space flight-induced physiological deconditioning resulting from decreased gravitational input, decreased plasma volume, and disruption of regulatory mechanisms is a significant problem in returning astronauts as well as in normal aging. Here we review effects of a promising countermeasure on cardiovascular systems of healthy men and women undergoing Earth-based models of space-flight. This countermeasure is produced by a centrifuge and called artificial gravity (AG). Numerous studies have determined that AG improves orthostatic tolerance (as assessed by various protocols) of healthy ambulatory men, of men deconditioned by bed rest or by immersion (both wet and dry) and, in one case, following spaceflight. Although a few studies of healthy, ambulatory women and one study of women deconditioned by furosemide, have reported improvement of orthostatic tolerance following exposure to AG, studies of bed-rested women exposed to AG have not been conducted. However, in ambulatory, normovolemic subjects, AG training was more effective in men than women and more effective in subjects who exercised during AG than in those who passively rode the centrifuge. Acute exposure to an AG protocol, individualized to provide a common stimulus to each person, also improved orthostatic tolerance of normovolemic men and women and of furosemide-deconditioned men and women. Again, men's tolerance was more improved than women's. In both men and women, exposure to AG increased stroke volume, so greater improvement in men vs. women was due in part to their different vascular responses to AG. Following AG exposure, resting blood pressure (via decreased vascular resistance) decreased in men but not women, indicating an increase in men's vascular reserve. Finally, in addition to counteracting space flight deconditioning, improved orthostatic tolerance through AG-induced improvement of stroke volume could benefit aging men and women on Earth.
Collapse
Affiliation(s)
- Joyce M. Evans
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Charles F. Knapp
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Nandu Goswami
- Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
106
|
Notarius CF, Boushel RC, MacDonald MJ, Shoemaker JK. Horizon meeting on cardiovascular physiology: Dedicated to Dr. Mike Sharratt. Appl Physiol Nutr Metab 2018; 43:865-868. [PMID: 29969568 DOI: 10.1139/apnm-2018-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This perspective document summarizes discussions held at the Canadian Society for Exercise Physiology Annual Meeting in Winnipeg on October 27, 2017, when an expert panel was assembled to discuss the key questions and challenges for future research in cardiovascular exercise physiology. We were inspired by the example of the late Dr. Mike Sharratt, an accomplished and impactful Professor in the Faculty of Kinesiology at the University of Waterloo. Dr. Sharratt had a unique ability to bring experts together and translate theory into action, with a central goal of optimizing the health benefits of exercise, particularly in the fields of cardiac rehabilitation and aging (University of Waterloo Applied Health Science Department 2016; University of Waterloo Health Science Newsletter, 10-1-2017 ( http://uwaterloo.ca/applied-health-sciences/news/remembering-mike-sharratt )).
Collapse
Affiliation(s)
- Catherine F Notarius
- a University Health Network and Mount Sinai Hospital Division of Cardiology, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Robert C Boushel
- b School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Maureen J MacDonald
- c Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - J Kevin Shoemaker
- d School of Kinesiology, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
107
|
Hughson RL, Peterson SD, Yee NJ, Greaves DK. Reply to van Houwelingen and Langewouters. J Appl Physiol (1985) 2018; 125:228. [PMID: 30043693 DOI: 10.1152/japplphysiol.00063.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging , Waterloo, Ontario , Canada
| | - Sean D Peterson
- Department of Mechanical and Mechatronics Engineering, University of Waterloo , Waterloo, Ontario , Canada
| | - Nicholas J Yee
- Schlegel-University of Waterloo Research Institute for Aging , Waterloo, Ontario , Canada
| | - Danielle K Greaves
- Schlegel-University of Waterloo Research Institute for Aging , Waterloo, Ontario , Canada
| |
Collapse
|
108
|
van Houwelingen MJ, Langewouters G. Response to "Cardiac output by pulse contour analysis does not match the increase measured by rebreathing during human spaceflight". J Appl Physiol (1985) 2018; 125:226-227. [PMID: 30043695 DOI: 10.1152/japplphysiol.00003.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Marc J van Houwelingen
- Erasmus Medical Center , Rotterdam , The Netherlands.,Finapres Medical Systems, Enschede , The Netherlands
| | | |
Collapse
|
109
|
Verma AK, Xu D, Bruner M, Garg A, Goswami N, Blaber AP, Tavakolian K. Comparison of Autonomic Control of Blood Pressure During Standing and Artificial Gravity Induced via Short-Arm Human Centrifuge. Front Physiol 2018; 9:712. [PMID: 29988521 PMCID: PMC6026653 DOI: 10.3389/fphys.2018.00712] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Autonomic control of blood pressure is essential toward maintenance of cerebral perfusion during standing, failure of which could lead to fainting. Long-term exposure to microgravity deteriorates autonomic control of blood pressure. Consequently, astronauts experience orthostatic intolerance on their return to gravitational environment. Ground-based studies suggest sporadic training in artificial hypergravity can mitigate spaceflight deconditioning. In this regard, short-arm human centrifuge (SAHC), capable of creating artificial hypergravity of different g-loads, provides an auspicious training tool. Here, we compare autonomic control of blood pressure during centrifugation creating 1-g and 2-g at feet with standing in natural gravity. Continuous blood pressure was acquired simultaneously from 13 healthy participants during supine baseline, standing, supine recovery, centrifugation of 1-g, and 2-g, from which heart rate (RR) and systolic blood pressure (SBP) were derived. The autonomic blood pressure regulation was assessed via spectral analysis of RR and SBP, spontaneous baroreflex sensitivity, and non-linear heart rate and blood pressure causality (RR↔SBP). While majority of these blood pressure regulatory indices were significantly different (p < 0.05) during standing and 2-g centrifugation compared to baseline, no change (p > 0.05) was observed in the same indices during 2-g centrifugation compared to standing. The findings of the study highlight the capability of artificial gravity (2-g at feet) created via SAHC toward evoking blood pressure regulatory controls analogous to standing, therefore, a potential utility toward mitigating deleterious effects of microgravity on cardiovascular performance and minimizing post-flight orthostatic intolerance in astronauts.
Collapse
Affiliation(s)
- Ajay K. Verma
- Department of Electrical Engineering, University of North Dakota, Grand Forks, ND, United States
| | - Da Xu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Michelle Bruner
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Amanmeet Garg
- Department of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Andrew P. Blaber
- Department of Electrical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Kouhyar Tavakolian
- Department of Electrical Engineering, University of North Dakota, Grand Forks, ND, United States
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
110
|
Cromer WE, Zawieja DC. Acute exposure to space flight results in evidence of reduced lymph Transport, tissue fluid Shifts, and immune alterations in the rat gastrointestinal system. LIFE SCIENCES IN SPACE RESEARCH 2018; 17:74-82. [PMID: 29753416 DOI: 10.1016/j.lssr.2018.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Space flight causes a number of alterations in physiological systems, changes in the immunological status of subjects, and altered interactions of the host to environmental stimuli. We studied the effect of space flight on the lymphatic system of the gastrointestinal tract which is responsible for lipid transport and immune surveillance which includes the host interaction with the gut microbiome. We found that there were signs of tissue damage present in the space flown animals that was lacking in ground controls (epithelial damage, crypt morphological changes, etc.). Additionally, morphology of the lymphatic vessels in the tissue suggested a collapsed state at time of harvest and there was a profound change in the retention of lipid in the villi of the ileum. Contrary to our assumptions there was a reduction in tissue fluid volume likely associated with other fluid shifts described. The reduction of tissue fluid volume in the colon and ileum is a likely contributing factor to the state of the lymphatic vessels and lipid transport issues observed. There were also associated changes in the number of MHC-II+ immune cells in the colon tissue, which along with reduced lymphatic competence would favor immune dysfunction in the tissue. These findings help expand our understanding of the effects of space flight on various organ systems. It also points out potential issues that have not been closely examined and have to potential for the need of countermeasure development.
Collapse
Affiliation(s)
- W E Cromer
- Department of Medical Physiology, Texas A&M University Health Science Center, United States.
| | - D C Zawieja
- Department of Medical Physiology, Texas A&M University Health Science Center, United States
| |
Collapse
|
111
|
Validity and reliability of carotid-toe pulse wave velocity as a measure of arterial stiffness in healthy individuals: Comparison to carotid-femoral pulse wave velocity. Artery Res 2018. [DOI: 10.1016/j.artres.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
112
|
Abstract
National space agencies and private corporations aim at an extended presence of humans in space in the medium to long term. Together with currently suboptimal technology, microgravity and cosmic rays raise health concerns about deep-space exploration missions. Both of these physical factors affect the cardiovascular system, whose gravity-dependence is pronounced. Heart and vascular function are, therefore, susceptible to substantial changes in weightlessness. The altered cardiovascular function in space causes physiological problems in the postflight period. A compromised cardiovascular system can be excessively vulnerable to space radiation, synergistically resulting in increased damage. The space radiation dose is significantly lower than in patients undergoing radiotherapy, in whom cardiac damage is well-documented following cancer therapy in the thoracic region. Nevertheless, epidemiological findings suggest an increased risk of late cardiovascular disease even with low doses of radiation. Moreover, the peculiar biological effectiveness of heavy ions in cosmic rays might increase this risk substantially. However, whether radiation-induced cardiovascular effects have a threshold at low doses is still unclear. The main countermeasures to mitigate the effect of the space environment on cardiac function are physical exercise, antioxidants, nutraceuticals, and radiation shielding.
Collapse
|
113
|
Zwart SR, Gibson CR, Gregory JF, Mader TH, Stover PJ, Zeisel SH, Smith SM. Astronaut ophthalmic syndrome. FASEB J 2017; 31:3746-3756. [DOI: 10.1096/fj.201700294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Sara R. Zwart
- Department of Preventive Medicine and Community HealthUniversity of Texas Medical BranchGalvestonTexasUSA
| | | | - Jesse F. Gregory
- Food Science and Human Nutrition DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | | | - Patrick J. Stover
- Division of Nutritional SciencesCornell University, IthacaNew YorkUSA
| | - Steven H. Zeisel
- Nutrition Research InstituteUniversity of North Carolina at Chapel HillKannapolisNorth CarolinaUSA
| | - Scott M. Smith
- Human Health and Performance DirectorateNational Aeronautics and Space Administration Lyndon B. Johnson Space CenterHoustonTexasUSA
| |
Collapse
|
114
|
Cheng YP, Zhang HJ, Su YT, Meng XX, Xie XP, Chang YM, Bao JX. Acid sphingomyelinase/ceramide regulates carotid intima-media thickness in simulated weightless rats. Pflugers Arch 2017; 469:751-765. [PMID: 28357491 DOI: 10.1007/s00424-017-1969-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 11/29/2022]
Abstract
Structural adaptation of arteries to weightlessness might lower the working ability or even threaten the physical health of astronauts, but the underlying mechanism is unclear. Acid sphingomyelinase (ASM) catalyzes ceramide (Cer) generation controlling arterial remodeling through multiple signaling pathways. In the present study, we aimed to investigate the contribution of ASM/Cer to the changes of common carotid artery intima-media thickness (CIMT) induced by simulated weightlessness. Hindlimb-unloaded tail-suspended (HU) rats were used to simulate the effect of weightlessness. Morphology of the carotid artery (CA) was examined by hematoxylin-eosin staining. Protein content of ASM or proliferating cell nuclear antigen (PCNA) was detected by Western blot. Cer level was measured by immunohistochemistry analysis. Apoptosis events were observed by transferase-mediated dUTP nick end labeling (TUNEL) staining. During 4 weeks of tail suspension, CIMT was increased gradually in HU but not in their synchronous control rats (P < 0.05). Correspondingly, the CA of HU rats had a lower apoptosis and higher proliferation of vascular smooth muscle cells (VSMCs). As compared to the control, both ASM protein expression and Cer content were reduced significantly in CA of HU rats (P < 0.05), incubation of which with permeable Cer reversed the changes in apoptosis and proliferation substantially. Furthermore, when the ASM protein content as well as Cer level in CA of control rats was diminished by using an ASM inhibitor, an increase of CIMT along with reduced apoptosis and enhanced proliferation of VSMCs was found. Our results suggest that by controlling the balance between apoptosis and proliferation, ASM/Cer plays an important role in the regulation of CIMT during simulated weightlessness.
Collapse
Affiliation(s)
- Yao-Ping Cheng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Hai-Jun Zhang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yu-Ting Su
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xing-Xing Meng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiao-Ping Xie
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yao-Ming Chang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jun-Xiang Bao
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
115
|
Aubert AE, Larina I, Momken I, Blanc S, White O, Kim Prisk G, Linnarsson D. Towards human exploration of space: the THESEUS review series on cardiovascular, respiratory, and renal research priorities. NPJ Microgravity 2016; 2:16031. [PMID: 28725739 PMCID: PMC5515532 DOI: 10.1038/npjmgrav.2016.31] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- André E Aubert
- Laboratory of Experimental Cardiology, Gasthuisberg University Hospital, KU Leuven, Leuven, Belgium
| | - Irina Larina
- Institute for Biomedical Problems, Moscow, Russia
| | - Iman Momken
- Université d’Evry Val d’Essonne, UBIAE (EA7362), Evry, France
- Université de Strasbourg, IPHC, Strasbourg, France
| | - Stéphane Blanc
- Université de Strasbourg, IPHC, Strasbourg, France
- CNRS, UMR7178, Strasbourg, France
| | | | - G Kim Prisk
- University of California, San Diego, CA, USA
| | | |
Collapse
|
116
|
Hargens AR, Vico L. Long-duration bed rest as an analog to microgravity. J Appl Physiol (1985) 2016; 120:891-903. [PMID: 26893033 DOI: 10.1152/japplphysiol.00935.2015] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/12/2016] [Indexed: 11/22/2022] Open
Abstract
Long-duration bed rest is widely employed to simulate the effects of microgravity on various physiological systems, especially for studies of bone, muscle, and the cardiovascular system. This microgravity analog is also extensively used to develop and test countermeasures to microgravity-altered adaptations to Earth gravity. Initial investigations of bone loss used horizontal bed rest with the view that this model represented the closest approximation to inactivity and minimization of hydrostatic effects, but all Earth-based analogs must contend with the constant force of gravity by adjustment of the G vector. Later concerns about the lack of similarity between headward fluid shifts in space and those with horizontal bed rest encouraged the use of 6 degree head-down tilt (HDT) bed rest as pioneered by Russian investigators. Headward fluid shifts in space may redistribute bone from the legs to the head. At present, HDT bed rest with normal volunteers is the most common analog for microgravity simulation and to test countermeasures for bone loss, muscle and cardiac atrophy, orthostatic intolerance, and reduced muscle strength/exercise capacity. Also, current physiologic countermeasures are focused on long-duration missions such as Mars, so in this review we emphasize HDT bed rest studies with durations of 30 days and longer. However, recent results suggest that the HDT bed rest analog is less representative as an analog for other important physiological problems of long-duration space flight such as fluid shifts, spinal dysfunction and radiation hazards.
Collapse
Affiliation(s)
- Alan R Hargens
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, California; and Institut National de la Santé et de la Recherche Médicale Unité 1059, University of Lyon, St-Etienne, France
| | - Laurence Vico
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, California; and Institut National de la Santé et de la Recherche Médicale Unité 1059, University of Lyon, St-Etienne, France
| |
Collapse
|