101
|
Wei A, Wang Z, Rancu AL, Yang Z, Tan S, Borg TK, Gao BZ. In Vivo-Like Morphology of Intercalated Discs Achieved in a Neonatal Cardiomyocyte Culture Model. Tissue Eng Part A 2020; 26:1209-1221. [PMID: 32515285 PMCID: PMC7699015 DOI: 10.1089/ten.tea.2020.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
In vitro cultures to be used in various analytical investigations of cardiomyocyte (CM) growth and function for enhancing insight into physiological and pathological mechanisms should closely express in vivo morphology. The aim of the studies is to explore how to use microfabrication and physical-cue-addition techniques to establish a neonatal rat CM culture model that expresses an end-to-end connected rod shape with in vivo-like intercalated discs (ICDs). Freshly isolated neonatal rat CMs were cultured on microgrooved polydimethylsiloxane substrate. Cell alignment and ICD orientation were evaluated using confocal fluorescence and transmission electron microscopy under various combinations of different culture conditions. Cyclic stretch and blebbistatin tests were conducted to explore mechanical and electrical effects. Laboratory-made MATLAB software was developed to quantify cell alignment and ICD orientation. Our results demonstrate that the mechanical effect associated with the electrical stimulation may contribute to step-like ICD formation viewed from the top. In addition, our study reveals that a suspended elastic substrate that was slack with scattered folds, not taut, enabled CM contraction of equal strength on both apical and basal cell surfaces, allowing the cultured CMs to express a three-dimensional rod shape with disc-like ICDs viewed cross-sectionally. Impact statement In this article, we describe how the tugging forces generated by cardiomyocytes (CMs) facilitate the formation of the morphology of the intercalated discs (ICDs) to achieve mechanoelectrical coupling between CMs. Correspondingly, we report experimental techniques we developed to enable the in vivo-like behavior of the tugging forces to support the development of in vivo-like morphology in ICDs. These techniques will enhance insight into physiological and pathological mechanisms related to the development of tissue-engineered cardiac constructs in various analytical investigations of CM growth and function.
Collapse
Affiliation(s)
- Ailin Wei
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Zhonghai Wang
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | | | - Zongming Yang
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Shenghao Tan
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Thomas Keith Borg
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bruce Zhi Gao
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
102
|
Islam MR, Virag J, Oyen ML. Micromechanical poroelastic and viscoelastic properties of ex-vivo soft tissues. J Biomech 2020; 113:110090. [PMID: 33176223 DOI: 10.1016/j.jbiomech.2020.110090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
Soft biological tissues demonstrate strong time-dependent mechanical behavior, arising from their intrinsic viscoelasticity and fluid flow-induced poroelasticity. It is increasingly recognized that time-dependent mechanical properties of soft tissues influence their physiological functions and are linked to several pathological processes. Nevertheless, soft tissue time-dependent characteristics, especially their micromechanical variation with tissue composition and location, remain poorly understood. Nanoindentation is a well-established technique to measure local elastic properties but has not been fully explored to determine micro-scale time-dependent properties of soft tissues. Here, a nanoindentation-based experimental strategy is implemented to characterize the micro-scale poroelastic and viscoelastic behavior of mouse heart, kidney, and liver tissues. It is demonstrated that heart tissue exhibits substantial mechanical heterogeneity where the elastic modulus varies spatially from 1 to 30 kPa. In contrast, both kidney and liver tissues show relatively homogeneous response with elastic modulus 0.5-3 kPa. All three tissues demonstrate marked load relaxation under constant indentation, where the relaxation behavior is observed to be largely dominated by tissue viscoelasticity. Intrinsic permeability varies among different tissues, where heart tissue is found to be less permeable compared to kidney and liver tissues. Overall, the results presented herein provide key insights into the time-dependent micromechanical behavior of different tissues and can therefore contribute to studies of tissue pathology and tissue engineering applications.
Collapse
Affiliation(s)
- Mohammad R Islam
- Department of Engineering, East Carolina University, Greenville, NC 27834, United States
| | - Jitka Virag
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Michelle L Oyen
- Department of Engineering, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|
103
|
Pretorius D, Kahn-Krell AM, LaBarge WC, Lou X, Kannappan R, Pollard AE, Fast VG, Berry JL, Eberhardt AW, Zhang J. Fabrication and characterization of a thick, viable bi-layered stem cell-derived surrogate for future myocardial tissue regeneration. Biomed Mater 2020; 16. [PMID: 33053512 DOI: 10.1088/1748-605x/abc107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Cardiac tissue surrogates show promise for restoring mechanical and electrical function in infarcted left ventricular (LV) myocardium. For these cardiac surrogates to be useful in vivo, they are required to support synchronous and forceful contraction over the infarcted region. These design requirements necessitate a thickness sufficient to produce a useful contractile force, an area large enough to cover an infarcted region, and prevascularization to overcome diffusion limitations. Attempts to meet these requirements have been hampered by diffusion limits of oxygen and nutrients (100-200 μm) leading to necrotic regions.This study demonstrates a novel layer-by-layer (LbL) fabrication method used to produce tissue surrogates that meet these requirements and mimic normal myocardium in form and function. Thick (1.5-2 mm) LbL cardiac tissues created from human induced pluripotent stem cell-derived cardiomyocytes and endothelial cells were assessed, in vitro, over a four week period for viability (< 5.6 ± 1.4 % nectrotic cells), cell morphology, viscoelastic properties and functionality. Viscoelastic properties of the cardiac surrogates were determined via stress relaxation response modeling and compared to native murine LV tissue. Viscoelastic characterization showed that the generalized Maxwell model of order 4 described the samples well (0.7 < R2 < 0.98). Functional performance assessment showed enhanced t-tubule network development, gap junction communication as well as conduction velocity (16.9 ± 2.3 cm s-1). These results demonstrate that LbL fabrication can be utilized successfully in creating complex, functional cardiac surrogates for therapeutic applications.
Collapse
Affiliation(s)
- Danielle Pretorius
- Biomedical Engineering, The University of Alabama at Birmingham, Volker Hall Room G094, 1670 University Blvd, Birmingham, Alabama, 35294-2182, UNITED STATES
| | - Asher M Kahn-Krell
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Wesley C LaBarge
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Xi Lou
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Ramaswamy Kannappan
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Andrew E Pollard
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Vladimir G Fast
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Joel L Berry
- School of Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Alan W Eberhardt
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| | - Jianyi Zhang
- Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, UNITED STATES
| |
Collapse
|
104
|
Napiwocki BN, Lang D, Stempien A, Zhang J, Vaidyanathan R, Makielski JC, Eckhardt LL, Glukhov AV, Kamp TJ, Crone WC. Aligned human cardiac syncytium for in vitro analysis of electrical, structural, and mechanical readouts. Biotechnol Bioeng 2020; 118:442-452. [PMID: 32990953 DOI: 10.1002/bit.27582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/30/2020] [Accepted: 09/11/2020] [Indexed: 11/06/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as an exciting new tool for cardiac research and can serve as a preclinical platform for drug development and disease modeling studies. However, these aspirations are limited by current culture methods in which hPSC-CMs resemble fetal human cardiomyocytes in terms of structure and function. Herein we provide a novel in vitro platform that includes patterned extracellular matrix with physiological substrate stiffness and is amenable to both mechanical and electrical analysis. Micropatterned lanes promote the cellular and myofibril alignment of hPSC-CMs while the addition of micropatterned bridges enable formation of a functional cardiac syncytium that beats synchronously over a large two-dimensional area. We investigated the electrophysiological properties of the patterned cardiac constructs and showed they have anisotropic electrical impulse propagation, as occurs in the native myocardium, with speeds 2x faster in the primary direction of the pattern as compared to the transverse direction. Lastly, we interrogated the mechanical function of the pattern constructs and demonstrated the utility of this platform in recording the strength of cardiomyocyte contractions. This biomimetic platform with electrical and mechanical readout capabilities will enable the study of cardiac disease and the influence of pharmaceuticals and toxins on cardiomyocyte function. The platform also holds potential for high throughput evaluation of drug safety and efficacy, thus furthering our understanding of cardiovascular disease and increasing the translational use of hPSC-CMs.
Collapse
Affiliation(s)
- B N Napiwocki
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - D Lang
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - A Stempien
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J Zhang
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - R Vaidyanathan
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J C Makielski
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - L L Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - A V Glukhov
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - T J Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - W C Crone
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
105
|
Sun H, Pratt RE, Hodgkinson CP, Dzau VJ. Sequential paracrine mechanisms are necessary for the therapeutic benefits of stem cell therapy. Am J Physiol Cell Physiol 2020; 319:C1141-C1150. [PMID: 33026832 DOI: 10.1152/ajpcell.00516.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell injections are an attractive therapeutic tool. It has been demonstrated that injected stem cells promote tissue repair and regeneration via paracrine mechanisms. However, the effects of injected stem cells continue for far longer than they are present. We hypothesized that the effects of injected stem cells are prolonged because of a sequential paracrine relay mechanism. Conditioned media was collected from mesenchymal stem cells (MSCs) after 24 h. This media was then added to RAW264.7. Media was collected from the macrophages after 24 h and was then added to endothelial cells (ECs). This conditioned macrophage media, but not control media, promoted wound healing and induced EC differentiation. Similar results were observed with primary macrophages. To identify the active paracrine factors released by macrophages in response to stimulation by MSC conditioned media we used an antibody array, identifying increased expression of the angiogenesis-related proteins stromal cell-derived factor 1 (SDF1) and plasminogen activator inhibitor-1 (PAI-1). Knockdown of either protein inhibited the ability of conditioned media derived from MSC paracrine factor-stimulated macrophages to induce EC differentiation both in vitro and in vivo. Conditioned media derived from postnatal day 7 (P7) mouse macrophages induced EC differentiation. Moreover, SDF1 and PAI-1 levels were >120 higher in P7 macrophages compared with adult macrophages, suggesting that MSC paracrine factors promote adult macrophages to adopt a juvenile phenotype. These results indicate that MSC paracrine factors induce macrophages to secrete SDF1 and PAI-1, in-turn inducing endothelial cells to differentiate. Identification of a sequential paracrine mechanism opens new therapeutic avenues for stem cell therapy.
Collapse
Affiliation(s)
- Hualing Sun
- Mandel Center for Heart and Vascular Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
106
|
Nguyen-Truong M, Li YV, Wang Z. Mechanical Considerations of Electrospun Scaffolds for Myocardial Tissue and Regenerative Engineering. Bioengineering (Basel) 2020; 7:E122. [PMID: 33022929 PMCID: PMC7711753 DOI: 10.3390/bioengineering7040122] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Biomaterials to facilitate the restoration of cardiac tissue is of emerging importance. While there are many aspects to consider in the design of biomaterials, mechanical properties can be of particular importance in this dynamically remodeling tissue. This review focuses on one specific processing method, electrospinning, that is employed to generate materials with a fibrous microstructure that can be combined with material properties to achieve the desired mechanical behavior. Current methods used to fabricate mechanically relevant micro-/nanofibrous scaffolds, in vivo studies using these scaffolds as therapeutics, and common techniques to characterize the mechanical properties of the scaffolds are covered. We also discuss the discrepancies in the reported elastic modulus for physiological and pathological myocardium in the literature, as well as the emerging area of in vitro mechanobiology studies to investigate the mechanical regulation in cardiac tissue engineering. Lastly, future perspectives and recommendations are offered in order to enhance the understanding of cardiac mechanobiology and foster therapeutic development in myocardial regenerative medicine.
Collapse
Affiliation(s)
- Michael Nguyen-Truong
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
| | - Yan Vivian Li
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
- Department of Design and Merchandising, Colorado State University, Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
107
|
Ceccato TL, Starbuck RB, Hall JK, Walker CJ, Brown TE, Killgore JP, Anseth KS, Leinwand LA. Defining the Cardiac Fibroblast Secretome in a Fibrotic Microenvironment. J Am Heart Assoc 2020; 9:e017025. [PMID: 32924724 PMCID: PMC7792426 DOI: 10.1161/jaha.120.017025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiac fibroblasts (CFs) have the ability to sense stiffness changes and respond to biochemical cues to modulate their states as either quiescent or activated myofibroblasts. Given the potential for secretion of bioactive molecules to modulate the cardiac microenvironment, we sought to determine how the CF secretome changes with matrix stiffness and biochemical cues and how this affects cardiac myocytes via paracrine signaling. Methods and Results Myofibroblast activation was modulated in vitro by combining stiffness cues with TGFβ1 (transforming growth factor β 1) treatment using engineered poly (ethylene glycol) hydrogels, and in vivo with isoproterenol treatment. Stiffness, TGFβ1, and isoproterenol treatment increased AKT (protein kinase B) phosphorylation, indicating that this pathway may be central to myofibroblast activation regardless of the treatment. Although activation of AKT was shared, different activating cues had distinct effects on downstream cytokine secretion, indicating that not all activated myofibroblasts share the same secretome. To test the effect of cytokines present in the CF secretome on paracrine signaling, neonatal rat ventricular cardiomyocytes were treated with CF conditioned media. Conditioned media from myofibroblasts cultured on stiff substrates and activated by TGFβ1 caused hypertrophy, and one of the cytokines in that media was insulin growth factor 1, which is a known mediator of cardiac myocyte hypertrophy. Conclusions Culturing CFs on stiff substrates, treating with TGFβ1, and in vivo treatment with isoproterenol all caused myofibroblast activation. Each cue had distinct effects on the secretome or genes encoding the secretome, but only the secretome of activated myofibroblasts on stiff substrates treated with TGFβ1 caused myocyte hypertrophy, most likely through insulin growth factor 1.
Collapse
Affiliation(s)
- Tova L Ceccato
- Department of Molecular, Cellular, and Developmental Biology University of Colorado Boulder CO.,BioFrontiers Institute University of Colorado Boulder CO
| | - Rachel B Starbuck
- Department of Chemical and Biological Engineering University of Colorado Boulder CO
| | - Jessica K Hall
- Department of Molecular, Cellular, and Developmental Biology University of Colorado Boulder CO
| | - Cierra J Walker
- BioFrontiers Institute University of Colorado Boulder CO.,Materials Science and Engineering Program University of Colorado Boulder CO
| | - Tobin E Brown
- Applied Chemicals and Materials Division National Institute of Standards and Technology Boulder CO
| | - Jason P Killgore
- Applied Chemicals and Materials Division National Institute of Standards and Technology Boulder CO
| | - Kristi S Anseth
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Chemical and Biological Engineering University of Colorado Boulder CO
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology University of Colorado Boulder CO.,BioFrontiers Institute University of Colorado Boulder CO
| |
Collapse
|
108
|
Bugg D, Bretherton R, Kim P, Olszewski E, Nagle A, Schumacher AE, Chu N, Gunaje J, DeForest CA, Stevens K, Kim DH, Davis J. Infarct Collagen Topography Regulates Fibroblast Fate via p38-Yes-Associated Protein Transcriptional Enhanced Associate Domain Signals. Circ Res 2020; 127:1306-1322. [PMID: 32883176 DOI: 10.1161/circresaha.119.316162] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE Myocardial infarction causes spatial variation in collagen organization and phenotypic diversity in fibroblasts, which regulate the heart's ECM (extracellular matrix). The relationship between collagen structure and fibroblast phenotype is poorly understood but could provide insights regarding the mechanistic basis for myofibroblast heterogeneity in the injured heart. OBJECTIVE To investigate the role of collagen organization in cardiac fibroblast fate determination. METHODS AND RESULTS Biomimetic topographies were nanofabricated to recapitulate differential collagen organization in the infarcted mouse heart. Here, adult cardiac fibroblasts were freshly isolated and cultured on ECM topographical mimetics for 72 hours. Aligned mimetics caused cardiac fibroblasts to elongate while randomly organized topographies induced circular morphology similar to the disparate myofibroblast morphologies measured in vivo. Alignment cues also induced myofibroblast differentiation, as >60% of fibroblasts formed αSMA (α-smooth muscle actin) stress fibers and expressed myofibroblast-specific ECM genes like Postn (periostin). By contrast, random organization caused 38% of cardiac fibroblasts to express αSMA albeit with downregulated myofibroblast-specific ECM genes. Coupling topographical cues with the profibrotic agonist, TGFβ (transforming growth factor beta), additively upregulated myofibroblast-specific ECM genes independent of topography, but only fibroblasts on flat and randomly oriented mimetics had increased percentages of fibroblasts with αSMA stress fibers. Increased tension sensation at focal adhesions induced myofibroblast differentiation on aligned mimetics. These signals were transduced by p38-YAP (yes-associated protein)-TEAD (transcriptional enhanced associate domain) interactions, in which both p38 and YAP-TEAD (yes-associated protein transcriptional enhanced associate domain) binding were required for myofibroblast differentiation. By contrast, randomly oriented mimetics did not change focal adhesion tension sensation or enrich for p38-YAP-TEAD interactions, which explains the topography-dependent diversity in fibroblast phenotypes observed here. CONCLUSIONS Spatial variations in collagen organization regulate cardiac fibroblast phenotype through mechanical activation of p38-YAP-TEAD signaling, which likely contribute to myofibroblast heterogeneity in the infarcted myocardium.
Collapse
Affiliation(s)
- Darrian Bugg
- Pathology (D.B., J.G., K.S., J.D.), University of Washington, Seattle.,Center for Cardiovascular Biology (D.B., R.B., E.O., A.N., J.G., K.S., J.D.), University of Washington, Seattle
| | - Ross Bretherton
- Bioengineering (R.B., P.K., E.O., A.N., N.C., C.A.D., K.S., J.D.), University of Washington, Seattle.,Center for Cardiovascular Biology (D.B., R.B., E.O., A.N., J.G., K.S., J.D.), University of Washington, Seattle
| | - Peter Kim
- Bioengineering (R.B., P.K., E.O., A.N., N.C., C.A.D., K.S., J.D.), University of Washington, Seattle
| | - Emily Olszewski
- Bioengineering (R.B., P.K., E.O., A.N., N.C., C.A.D., K.S., J.D.), University of Washington, Seattle.,Center for Cardiovascular Biology (D.B., R.B., E.O., A.N., J.G., K.S., J.D.), University of Washington, Seattle
| | - Abigail Nagle
- Bioengineering (R.B., P.K., E.O., A.N., N.C., C.A.D., K.S., J.D.), University of Washington, Seattle.,Center for Cardiovascular Biology (D.B., R.B., E.O., A.N., J.G., K.S., J.D.), University of Washington, Seattle
| | | | - Nick Chu
- Bioengineering (R.B., P.K., E.O., A.N., N.C., C.A.D., K.S., J.D.), University of Washington, Seattle
| | - Jagadambika Gunaje
- Pathology (D.B., J.G., K.S., J.D.), University of Washington, Seattle.,Center for Cardiovascular Biology (D.B., R.B., E.O., A.N., J.G., K.S., J.D.), University of Washington, Seattle
| | - Cole A DeForest
- Bioengineering (R.B., P.K., E.O., A.N., N.C., C.A.D., K.S., J.D.), University of Washington, Seattle.,Institute for Stem Cell and Regenerative Medicine (C.A.D., K.S., J.D.), University of Washington, Seattle.,Chemical Engineering (C.A.D.), University of Washington, Seattle
| | - Kelly Stevens
- Bioengineering (R.B., P.K., E.O., A.N., N.C., C.A.D., K.S., J.D.), University of Washington, Seattle.,Pathology (D.B., J.G., K.S., J.D.), University of Washington, Seattle.,Institute for Stem Cell and Regenerative Medicine (C.A.D., K.S., J.D.), University of Washington, Seattle.,Center for Cardiovascular Biology (D.B., R.B., E.O., A.N., J.G., K.S., J.D.), University of Washington, Seattle
| | - Deok-Ho Kim
- Biomedical Engineering, Johns Hopkins University, Baltimore, MD (D.-H.K.).,Medicine, Johns Hopkins School of Medicine, Baltimore, MD (D.-H.K.)
| | - Jennifer Davis
- Center for Cardiovascular Biology (D.B., R.B., E.O., A.N., J.G., K.S., J.D.), University of Washington, Seattle
| |
Collapse
|
109
|
Bretherton R, Bugg D, Olszewski E, Davis J. Regulators of cardiac fibroblast cell state. Matrix Biol 2020; 91-92:117-135. [PMID: 32416242 PMCID: PMC7789291 DOI: 10.1016/j.matbio.2020.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Fibroblasts are the primary regulator of cardiac extracellular matrix (ECM). In response to disease stimuli cardiac fibroblasts undergo cell state transitions to a myofibroblast phenotype, which underlies the fibrotic response in the heart and other organs. Identifying regulators of fibroblast state transitions would inform which pathways could be therapeutically modulated to tactically control maladaptive extracellular matrix remodeling. Indeed, a deeper understanding of fibroblast cell state and plasticity is necessary for controlling its fate for therapeutic benefit. p38 mitogen activated protein kinase (MAPK), which is part of the noncanonical transforming growth factor β (TGFβ) pathway, is a central regulator of fibroblast to myofibroblast cell state transitions that is activated by chemical and mechanical stress signals. Fibroblast intrinsic signaling, local and global cardiac mechanics, and multicellular interactions individually and synergistically impact these state transitions and hence the ECM, which will be reviewed here in the context of cardiac fibrosis.
Collapse
Affiliation(s)
- Ross Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Darrian Bugg
- Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States
| | - Emily Olszewski
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States; Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, United States; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|
110
|
Soft Matrix Promotes Cardiac Reprogramming via Inhibition of YAP/TAZ and Suppression of Fibroblast Signatures. Stem Cell Reports 2020; 15:612-628. [PMID: 32857980 PMCID: PMC7486305 DOI: 10.1016/j.stemcr.2020.07.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/14/2023] Open
Abstract
Direct cardiac reprogramming holds great potential for regenerative medicine. However, it remains inefficient, and induced cardiomyocytes (iCMs) generated in vitro are less mature than those in vivo, suggesting that undefined extrinsic factors may regulate cardiac reprogramming. Previous in vitro studies mainly used hard polystyrene dishes, yet the effect of substrate rigidity on cardiac reprogramming remains unclear. Thus, we developed a Matrigel-based hydrogel culture system to determine the roles of matrix stiffness and mechanotransduction in cardiac reprogramming. We found that soft matrix comparable with native myocardium promoted the efficiency and quality of cardiac reprogramming. Mechanistically, soft matrix enhanced cardiac reprogramming via inhibition of integrin, Rho/ROCK, actomyosin, and YAP/TAZ signaling and suppression of fibroblast programs, which were activated on rigid substrates. Soft substrate further enhanced cardiac reprogramming with Sendai virus vectors via YAP/TAZ suppression, increasing the reprogramming efficiency up to ∼15%. Thus, mechanotransduction could provide new targets for improving cardiac reprogramming. Hydrogel culture reveals the role of mechanotransduction in cardiac reprogramming Soft ECM comparable with native myocardium promotes cardiac reprogramming Soft ECM promotes cardiac reprogramming via YAP/TAZ/fibroblast signaling inhibition Soft ECM promotes Sendai virus vector-mediated cardiac reprogramming
Collapse
|
111
|
Aguado BA, Schuetze KB, Grim JC, Walker CJ, Cox AC, Ceccato TL, Tan AC, Sucharov CC, Leinwand LA, Taylor MRG, McKinsey TA, Anseth KS. Transcatheter aortic valve replacements alter circulating serum factors to mediate myofibroblast deactivation. Sci Transl Med 2020; 11:11/509/eaav3233. [PMID: 31511425 PMCID: PMC6754739 DOI: 10.1126/scitranslmed.aav3233] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/25/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
The transcatheter aortic valve replacement (TAVR) procedure has emerged as a minimally invasive treatment for patients with aortic valve stenosis (AVS). However, alterations in serum factor composition and biological activity after TAVR remain unknown. Here, we quantified the systemic inflammatory effects of the TAVR procedure and hypothesized that alterations in serum factor composition would modulate valve and cardiac fibrosis. Serum samples were obtained from patients with AVS immediately before their TAVR procedure (pre-TAVR) and about 1 month afterward (post-TAVR). Aptamer-based proteomic profiling revealed alterations in post-TAVR serum composition, and ontological analysis identified inflammatory macrophage factors implicated in myofibroblast activation and deactivation. Hydrogel biomaterials used as valve matrix mimics demonstrated that post-TAVR serum reduced myofibroblast activation of valvular interstitial cells relative to pre-TAVR serum from the same patient. Transcriptomics and curated network analysis revealed a shift in myofibroblast phenotype from pre-TAVR to post-TAVR and identified p38 MAPK signaling as one pathway involved in pre-TAVR–mediated myofibroblast activation. Post-TAVR serum deactivated valve and cardiac myofibroblasts initially exposed to pre-TAVR serum to a quiescent fibroblast phenotype. Our in vitro deactivation data correlated with patient disease severity measured via echocardiography and multimorbidity scores, and correlations were dependent on hydrogel stiffness. Sex differences in cellular responses to male and female sera were also observed and may corroborate clinical observations regarding sex-specific TAVR outcomes. Together, alterations in serum composition after TAVR may lead to an antifibrotic fibroblast phenotype, which suggests earlier interventions may be beneficial for patients with advanced AVS to prevent further disease progression. Transcatheter aortic valve replacement alters a patient’s serum proteome, reversing valvular interstitial cell and cardiac myofibroblast activation. Aortic valve stenosis (narrowing of the aortic valve) contributes to inadequate blood flow, fibrosis, hypertrophy, and, ultimately, heart failure. Transcatheter aortic valve replacement (TAVR) improves blood flow, but little is known about cardiac remodeling after the procedure. Aguado and colleagues performed proteomics on serum samples collected from patients before and after TAVR and studied the effects of serum on valve and cardiac cells using hydrogel culture platforms. A role for p38 MAPK signaling in activating cells was identified using pre-TAVR serum, whereas post-TAVR serum returned cells to a quiescent state. Along with preliminary insights into sex-specific differences, the authors’ research supports a role for TAVR-induced alteration of circulating inflammatory cytokines in regulating valve cell phenotype.
Collapse
Affiliation(s)
- Brian A Aguado
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Katherine B Schuetze
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joseph C Grim
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Cierra J Walker
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA.,Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Anne C Cox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Tova L Ceccato
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Aik-Choon Tan
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew R G Taylor
- Department of Medicine, Adult Clinical Genetics, University of Colorado Health Science Center, Aurora, CO 80045, USA
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA. .,Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
112
|
Zhu M, Chu Y, Shang Q, Zheng Z, Li Y, Cao L, Chen Y, Cao J, Lee OK, Wang Y, Melino G, Lv G, Shao C, Shi Y. Mesenchymal stromal cells pretreated with pro-inflammatory cytokines promote skin wound healing through VEGFC-mediated angiogenesis. Stem Cells Transl Med 2020; 9:1218-1232. [PMID: 32534464 PMCID: PMC7519767 DOI: 10.1002/sctm.19-0241] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/14/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Skin is the largest organ of the human body. Skin wound is one of the most common forms of wound. Mesenchymal stromal cells (MSCs) have been used to aid skin wound healing via their paracrine factors. Because the secretome of MSCs can be greatly enriched and amplified by treatment with IFN‐γ and TNF‐α (IT), we here tested whether supernatant derived from MSCs pretreated with IT, designated as S‐MSCs‐IT, possesses improved wound healing effect by using a murine model of cutaneous excision, S‐MSCs‐IT was found to be more potent in promoting angiogenesis, constricting collagen deposition and accelerating wound closure than control supernatant (S‐MSCs) during the healing of skin wound. VEGFC, but not VEGFA, was greatly upregulated by IT and was found to be a key factor in mediating the improved wound healing effect of S‐MSCs‐IT. Our results indicate that the beneficial paracrine effect of MSCs on wound healing can be enhanced by pretreatment with inflammatory cytokines. IT treatment may represent a new strategy for optimizing the therapeutic effect of MSCs on skin injuries.
Collapse
Affiliation(s)
- Mengting Zhu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', Rome, Italy
| | - Yunpeng Chu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People's Republic of China
| | - Qianwen Shang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People's Republic of China
| | - Zhiyuan Zheng
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People's Republic of China
| | - Yanan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People's Republic of China.,Department of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', Rome, Italy
| | - Lijuan Cao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People's Republic of China
| | - Yongjing Chen
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People's Republic of China
| | - Jianchang Cao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China
| | - Oscar K Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, HongKong, People's Republic of China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China
| | - Gerry Melino
- Department of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', Rome, Italy
| | - Guozhong Lv
- Department of Burn Surgery, The 3rd People's Hospital of Wuxi and Wuxi Medical College of Jiangnan University, Wuxi, People's Republic of China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, People's Republic of China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, People's Republic of China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Shanghai, People's Republic of China
| |
Collapse
|
113
|
Castillo EA, Lane KV, Pruitt BL. Micromechanobiology: Focusing on the Cardiac Cell-Substrate Interface. Annu Rev Biomed Eng 2020; 22:257-284. [PMID: 32501769 DOI: 10.1146/annurev-bioeng-092019-034950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered, in vitro cardiac cell and tissue systems provide test beds for the study of cardiac development, cellular disease processes, and drug responses in a dish. Much effort has focused on improving the structure and function of engineered cardiomyocytes and heart tissues. However, these parameters depend critically on signaling through the cellular microenvironment in terms of ligand composition, matrix stiffness, and substrate mechanical properties-that is, matrix micromechanobiology. To facilitate improvements to in vitro microenvironment design, we review how cardiomyocytes and their microenvironment change during development and disease in terms of integrin expression and extracellular matrix (ECM) composition. We also discuss strategies used to bind proteins to common mechanobiology platforms and describe important differences in binding strength to the substrate. Finally, we review example biomaterial approaches designed to support and probe cell-ECM interactions of cardiomyocytes in vitro, as well as open questions and challenges.
Collapse
Affiliation(s)
- Erica A Castillo
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA; .,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Kerry V Lane
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Beth L Pruitt
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93117, USA;
| |
Collapse
|
114
|
Abstract
Stem cell therapy offers a breakthrough opportunity for the improvement of ischemic heart diseases. Numerous clinical trials and meta-analyses appear to confirm its positive but variable effects on heart function. Whereas these trials widely differed in design, cell type, source, and doses reinjected, cell injection route and timing, and type of cardiac disease, crucial key factors that may favour the success of cell therapy emerge from the review of their data. Various types of cell have been delivered. Injection of myoblasts does not improve heart function and is often responsible for severe ventricular arrythmia occurrence. Using bone marrow mononuclear cells is a misconception, as they are not stem cells but mainly a mix of various cells of hematopoietic lineages and stromal cells, only containing very low numbers of cells that have stem cell-like features; this likely explain the neutral results or at best the modest improvement in heart function reported after their injection. The true existence of cardiac stem cells now appears to be highly discredited, at least in adults. Mesenchymal stem cells do not repair the damaged myocardial tissue but attenuate post-infarction remodelling and contribute to revascularization of the hibernated zone surrounding the scar. CD34+ stem cells - likely issued from pluripotent very small embryonic-like (VSEL) stem cells - emerge as the most convincing cell type, inducing structural and functional repair of the ischemic myocardial area, providing they can be delivered in large amounts via intra-myocardial rather than intra-coronary injection, and preferentially after myocardial infarct rather than chronic heart failure.
Collapse
Affiliation(s)
- Philippe Hénon
- CellProthera SAS and Institut de Recherche en Hématologie et Transplantation, CellProthera SAS 12 rue du Parc, 68100, Mulhouse, France.
| |
Collapse
|
115
|
Gaetani R, Zizzi EA, Deriu MA, Morbiducci U, Pesce M, Messina E. When Stiffness Matters: Mechanosensing in Heart Development and Disease. Front Cell Dev Biol 2020; 8:334. [PMID: 32671058 PMCID: PMC7326078 DOI: 10.3389/fcell.2020.00334] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.,Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| | - Eric Adriano Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino," IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, "Umberto I" Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
116
|
Park TY, Oh JM, Cho JS, Sim SB, Lee J, Cha HJ. Stem cell-loaded adhesive immiscible liquid for regeneration of myocardial infarction. J Control Release 2020; 321:602-615. [DOI: 10.1016/j.jconrel.2020.02.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
|
117
|
Poly(N-isopropylacrylamide) based thin microgel films for use in cell culture applications. Sci Rep 2020; 10:6126. [PMID: 32273560 PMCID: PMC7145875 DOI: 10.1038/s41598-020-63228-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/20/2020] [Indexed: 12/28/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAm) is widely used to fabricate cell sheet surfaces for cell culturing, however copolymer and interpenetrated polymer networks based on PNIPAm have been rarely explored in the context of tissue engineering. Many complex and expensive techniques have been employed to produce PNIPAm-based films for cell culturing. Among them, spin coating has demonstrated to be a rapid fabrication process of thin layers with high reproducibility and uniformity. In this study, we introduce an innovative approach to produce anchored smart thin films both thermo- and electro-responsive, with the aim to integrate them in electronic devices and better control or mimic different environments for cells in vitro. Thin films were obtained by spin coating of colloidal solutions made by PNIPAm and PAAc nanogels. Anchoring the films to the substrates was obtained through heat treatment in the presence of dithiol molecules. From analyses carried out with AFM and XPS, the final samples exhibited a flat morphology and high stability to water washing. Viability tests with cells were finally carried out to demonstrate that this approach may represent a promising route to integrate those hydrogels films in electronic platforms for cell culture applications.
Collapse
|
118
|
Rapp TL, DeForest CA. Visible Light-Responsive Dynamic Biomaterials: Going Deeper and Triggering More. Adv Healthc Mater 2020; 9:e1901553. [PMID: 32100475 DOI: 10.1002/adhm.201901553] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/06/2020] [Indexed: 12/17/2022]
Abstract
Photoresponsive materials have been widely used in vitro for controlled therapeutic delivery and to direct 4D cell fate. Extension of the approaches into a bodily setting requires use of low-energy, long-wavelength light that penetrates deeper into and through complex tissue. This review details recent reports of photoactive small molecules and proteins that absorb visible and/or near-infrared light, opening the door to exciting new applications in multiplexed and in vivo regulation.
Collapse
Affiliation(s)
- Teresa L. Rapp
- Department of Chemical Engineering University of Washington 3781 Okanogan Lane NE Seattle WA 98195 USA
| | - Cole A. DeForest
- Department of Chemical Engineering University of Washington 3781 Okanogan Lane NE Seattle WA 98195 USA
- Department of Bioengineering University of Washington 3720 15th Ave NE Seattle WA 98105 USA
- Institute for Stem Cell & Regenerative Medicine University of Washington 850 Republican Street Seattle WA 98109 USA
- Molecular Engineering & Sciences Institute University of Washington 3946 W Stevens Way NE Seattle WA 98195 USA
| |
Collapse
|
119
|
Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K, Kupcova Skalnikova H, Vodicka P, Kubinova S. A Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from Different Sources, with a Focus on Neuroregenerative Potential. Sci Rep 2020; 10:4290. [PMID: 32152403 PMCID: PMC7062771 DOI: 10.1038/s41598-020-61167-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) can be considered an accessible therapeutic tool for regenerative medicine. Here, we compared the growth kinetics, immunophenotypic and immunomodulatory properties, gene expression and secretome profile of MSCs derived from human adult bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and Wharton’s jelly (WJ-MSCs) cultured in clinically-relevant conditions, with the focus on the neuroregenerative potential. All the cell types were positive for CD10/CD29/CD44/CD73/CD90/CD105/HLA-ABC and negative for CD14/CD45/CD235a/CD271/HLA-DR/VEGFR2 markers, but they differed in the expression of CD34/CD133/CD146/SSEA-4/MSCA-1/CD271/HLA-DR markers. BM-MSCs displayed the highest immunomodulatory activity compared to AT- and WJ-MSCs. On the other hand, BM-MSCs secreted the lower content and had the lower gene expression of neurotrophic growth factors compared to other cell lines, which may be caused by the higher sensitivity of BM-MSCs to nutrient limitations. Despite the differences in growth factor secretion, the MSC secretome derived from all cell sources had a pronounced neurotrophic potential to stimulate the neurite outgrowth of DRG-neurons and reduce the cell death of neural stem/progenitor cells after H2O2 treatment. Overall, our study provides important information for the transfer of basic MSC research towards clinical-grade manufacturing and therapeutic applications.
Collapse
Affiliation(s)
- Yuriy Petrenko
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| | - Irena Vackova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Kristyna Kekulova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.,2nd Medical Faculty, Charles University, V Uvalu 84, 15006, Prague, Czech Republic
| | - Milada Chudickova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Zuzana Koci
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Karolina Turnovcova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Sarka Kubinova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220, Prague, Czech Republic.
| |
Collapse
|
120
|
Ward M, Iskratsch T. Mix and (mis-)match - The mechanosensing machinery in the changing environment of the developing, healthy adult and diseased heart. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118436. [PMID: 30742931 PMCID: PMC7042712 DOI: 10.1016/j.bbamcr.2019.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 01/01/2023]
Abstract
The composition and the stiffness of cardiac microenvironment change during development and/or in heart disease. Cardiomyocytes (CMs) and their progenitors sense these changes, which decides over the cell fate and can trigger CM (progenitor) proliferation, differentiation, de-differentiation or death. The field of mechanobiology has seen a constant increase in output that also includes a wealth of new studies specific to cardiac or cardiomyocyte mechanosensing. As a result, mechanosensing and transduction in the heart is increasingly being recognised as a main driver of regulating the heart formation and function. Recent work has for instance focused on measuring the molecular, physical and mechanical changes of the cellular environment - as well as intracellular contributors to the passive stiffness of the heart. On the other hand, a variety of new studies shed light into the molecular machinery that allow the cardiomyocytes to sense these properties. Here we want to discuss the recent work on this topic, but also specifically focus on how the different components are regulated at various stages during development, in health or disease in order to highlight changes that might contribute to disease progression and heart failure.
Collapse
Key Words
- cm, cardiomyocytes
- hcm, hypertrophic cardiomyopathy
- dcm, dilated cardiomyopathy
- icm, idiopathic cardiomyopathy
- myh, myosin heavy chain
- tnnt, troponin t
- tnni, troponin i
- afm, atomic force microscope
- mre, magnetic resonance elastography
- swe, ultrasound cardiac shear-wave elastography
- lv, left ventricle
- lox, lysyl oxidase
- loxl, lysyl oxidase like protein
- lh, lysyl hydroxylase
- lys, lysin
- lccs, lysald-derived collagen crosslinks
- hlccs, hylald-derived collagen crosslinks
- pka, protein kinase a
- pkc, protein kinase c
- vash1, vasohibin-1
- svbp, small vasohibin binding protein
- tcp, tubulin carboxypeptidase
- ttl, tubulin tyrosine ligase
- mrtf, myocardin-related transcription factor
- gap, gtpase activating protein
- gef, guanine nucleotide exchange factor
Collapse
Affiliation(s)
- Matthew Ward
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, United Kingdom.
| |
Collapse
|
121
|
Herum KM, Romaine A, Wang A, Melleby AO, Strand ME, Pacheco J, Braathen B, Dunér P, Tønnessen T, Lunde IG, Sjaastad I, Brakebusch C, McCulloch AD, Gomez MF, Carlson CR, Christensen G. Syndecan-4 Protects the Heart From the Profibrotic Effects of Thrombin-Cleaved Osteopontin. J Am Heart Assoc 2020; 9:e013518. [PMID: 32000579 PMCID: PMC7033859 DOI: 10.1161/jaha.119.013518] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/05/2019] [Indexed: 01/18/2023]
Abstract
Background Pressure overload of the heart occurs in patients with hypertension or valvular stenosis and induces cardiac fibrosis because of excessive production of extracellular matrix by activated cardiac fibroblasts. This initially provides essential mechanical support to the heart, but eventually compromises function. Osteopontin is associated with fibrosis; however, the underlying signaling mechanisms are not well understood. Herein, we examine the effect of thrombin-cleaved osteopontin on fibrosis in the heart and explore the role of syndecan-4 in regulating cleavage of osteopontin. Methods and Results Osteopontin was upregulated and cleaved by thrombin in the pressure-overloaded heart of mice subjected to aortic banding. Cleaved osteopontin was higher in plasma from patients with aortic stenosis receiving crystalloid compared with blood cardioplegia, likely because of less heparin-induced inhibition of thrombin. Cleaved osteopontin and the specific osteopontin peptide sequence RGDSLAYGLR that is exposed after thrombin cleavage both induced collagen production in cardiac fibroblasts. Like osteopontin, the heparan sulfate proteoglycan syndecan-4 was upregulated after aortic banding. Consistent with a heparan sulfate binding domain in the osteopontin cleavage site, syndecan-4 was found to bind to osteopontin in left ventricles and cardiac fibroblasts and protected osteopontin from cleavage by thrombin. Shedding of the extracellular part of syndecan-4 was more prominent at later remodeling phases, at which time levels of cleaved osteopontin were increased. Conclusions Thrombin-cleaved osteopontin induces collagen production by cardiac fibroblasts. Syndecan-4 protects osteopontin from cleavage by thrombin, but this protection is lost when syndecan-4 is shed in later phases of remodeling, contributing to progression of cardiac fibrosis.
Collapse
Affiliation(s)
- Kate M. Herum
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA
- Biotech Research and Innovation CentreUniversity of CopenhagenDenmark
| | - Andreas Romaine
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Ariel Wang
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA
| | - Arne Olav Melleby
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Mari E. Strand
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Julian Pacheco
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA
| | - Bjørn Braathen
- Department of Cardiothoracic SurgeryOslo University HospitalOsloNorway
| | - Pontus Dunér
- Department of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Theis Tønnessen
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- Department of Cardiothoracic SurgeryOslo University HospitalOsloNorway
| | - Ida G. Lunde
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Ivar Sjaastad
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Cord Brakebusch
- Biotech Research and Innovation CentreUniversity of CopenhagenDenmark
| | - Andrew D. McCulloch
- Department of BioengineeringUniversity of California, San DiegoLa JollaCA
- Department of MedicineUniversity of California, San DiegoLa JollaCA
| | - Maria F. Gomez
- Department of Clinical SciencesLund University Diabetes CentreLund UniversityMalmöSweden
| | - Cathrine R. Carlson
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| | - Geir Christensen
- Institute for Experimental Medical ResearchOslo University Hospital and University of OsloNorway
- KG Jebsen Center for Cardiac ResearchUniversity of OsloNorway
- Center for Heart Failure ResearchOslo University HospitalOsloNorway
| |
Collapse
|
122
|
Emig R, Zgierski-Johnston CM, Beyersdorf F, Rylski B, Ravens U, Weber W, Kohl P, Hörner M, Peyronnet R. Human Atrial Fibroblast Adaptation to Heterogeneities in Substrate Stiffness. Front Physiol 2020; 10:1526. [PMID: 31998137 PMCID: PMC6965062 DOI: 10.3389/fphys.2019.01526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/04/2019] [Indexed: 01/12/2023] Open
Abstract
Fibrosis is associated with aging and many cardiac pathologies. It is characterized both by myofibroblast differentiation and by excessive accumulation of extracellular matrix proteins. Fibrosis-related tissue remodeling results in significant changes in tissue structure and function, including passive mechanical properties. This research area has gained significant momentum with the recent development of new tools and approaches to better characterize and understand the ability of cells to sense and respond to their biophysical environment. We use a novel hydrogel, termed CyPhyGel, to provide an advanced in vitro model of remodeling-related changes in tissue stiffness. Based on light-controlled dimerization of a Cyanobacterial Phytochrome, it enables contactless and reversible tuning of hydrogel mechanical properties with high spatial and temporal resolution. Human primary atrial fibroblasts were cultured on CyPhyGels. After 4 days of culturing on stiff (~4.6 kPa) or soft (~2.7 kPa) CyPhyGels, we analyzed fibroblast cell area and stiffness. Cells grown on the softer substrate were smaller and softer, compared to cells grown on the stiffer substrate. This difference was absent when both soft and stiff growth substrates were combined in a single CyPhyGel, with the resulting cell areas being similar to those on homogeneously stiff gels and cell stiffnesses being similar to those on homogeneously soft substrates. Using CyPhyGels to mimic tissue stiffness heterogeneities in vitro, our results confirm the ability of cardiac fibroblasts to adapt to their mechanical environment, and suggest the presence of a paracrine mechanism that tunes fibroblast structural and functional properties associated with mechanically induced phenotype conversion toward myofibroblasts. In the context of regionally increased tissue stiffness, such as upon scarring or in diffuse fibrosis, such a mechanism could help to prevent abrupt changes in cell properties at the border zone between normal and diseased tissue. The light-tunable mechanical properties of CyPhyGels and their suitability for studying human primary cardiac cells make them an attractive model system for cardiac mechanobiology research. Further investigations will explore the interactions between biophysical and soluble factors in the response of cardiac fibroblasts to spatially and temporally heterogeneous mechanical cues.
Collapse
Affiliation(s)
- Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Friedhelm Beyersdorf
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Bartosz Rylski
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
123
|
Mandal K, Gong Z, Rylander A, Shenoy VB, Janmey PA. Opposite responses of normal hepatocytes and hepatocellular carcinoma cells to substrate viscoelasticity. Biomater Sci 2020; 8:1316-1328. [PMID: 31903466 DOI: 10.1039/c9bm01339c] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cellular microenvironment plays a critical role in cell differentiation, proliferation, migration, and homeostasis. Recent studies have shown the importance of substrate viscosity in determining cellular function. Here, we study the mechanoresponse of normal hepatocytes and hepatocellular carcinoma cells (HCC) to elastic and viscoelastic substrates using the Huh7 cell line derived from a human liver tumor and primary human hepatocytes (PHH). Unlike PHH and fibroblasts, which respond to viscoelastic substrates by reducing spreading area and actin bundle assembly compared to purely elastic substrates of the same stiffness, Huh7 cells spread faster on viscoelastic substrates than on purely elastic substrates. The steady state spreading areas of Huh7 cells are larger on viscoelastic substrates, whereas the opposite effect occurs with PHH cells. The viscoelasticity of the microenvironment also promotes motility and multiple long protrusions in Huh7 cells. Pharmacologic disruption of the actin assembly makes cells unable to spread on either elastic or viscoelastic substrates. In contrast, upon vimentin perturbation, cells still spread to a limited degree on elastic substrates but are unable to spread on viscoelastic substrates. The time evolution of cell traction force shows that the peak occurs at an earlier time point on viscoelastic substrates compared to elastic substrates. However, the total force generation at steady state is the same on both substrates after 4 hours. Our data suggest that stress relaxation time scales of the viscoelastic substrate regulate cell dynamics and traction force generation, indicating different binding-unbinding rates of the proteins that form cell attachment sites in HCC cells and normal hepatocytes. These results suggest that liver cancer cells may have different characteristic lifetimes of binding to the substrate in comparision to normal cells, which might cause differences in cell spreading and motility within the diseased tissue.
Collapse
Affiliation(s)
- Kalpana Mandal
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | |
Collapse
|
124
|
Luo X, Seveau de Noray V, Aoun L, Biarnes-Pelicot M, Strale PO, Studer V, Valignat MP, Theodoly O. Lymphocyte perform reverse adhesive haptotaxis mediated by integrins LFA-1. J Cell Sci 2020; 133:jcs.242883. [DOI: 10.1242/jcs.242883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/13/2020] [Indexed: 01/10/2023] Open
Abstract
Cell Guidance by anchored molecules, or haptotaxis, is crucial in development, immunology and cancer. Adhesive haptotaxis, or guidance by adhesion molecules, is well established for mesenchymal cells like fibroblasts, whereas its existence remains unreported for amoeboid cells that require less or no adhesion to migrate. We show here in vitro that amoeboid human T lymphocytes develop adhesive haptotaxis versus densities of integrin ligands expressed by high endothelial venules. Moreover, lymphocytes orient towards increasing adhesion with VLA-4 integrins, like all mesenchymal cells, but towards decreasing adhesion with LFA-1 integrins, which has never been observed. This counterintuitive ‘reverse haptotaxis’ cannot be explained with the existing mesenchymal mechanisms of competition between cells’ pulling edges or of lamellipodia growth activated by integrins, which favor orientation towards increasing adhesion. Mechanisms and functions of amoeboid adhesive haptotaxis remain unclear, however multidirectional integrin-mediated haptotaxis may operate around transmigration ports on endothelium, stromal cells in lymph nodes, and inflamed tissue where integrin ligands are spatially modulated.
Collapse
Affiliation(s)
- Xuan Luo
- LAI, Aix Marseille Univ, CNRS, INSERM, Marseille, France
| | | | - Laurene Aoun
- LAI, Aix Marseille Univ, CNRS, INSERM, Marseille, France
| | | | | | - Vincent Studer
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, Bordeaux, France
- CNRS UMR 5297, F-33000 Bordeaux, France
| | | | | |
Collapse
|
125
|
Pearce HA, Kim YS, Diaz-Gomez L, Mikos AG. Tissue Engineering Scaffolds. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
126
|
Hochman-Mendez C, Pereira de Campos DB, Pinto RS, Mendes BJDS, Rocha GM, Monnerat G, Weissmuller G, Sampaio LC, Carvalho AB, Taylor DA, de Carvalho ACC. Tissue-engineered human embryonic stem cell-containing cardiac patches: evaluating recellularization of decellularized matrix. J Tissue Eng 2020; 11:2041731420921482. [PMID: 32742631 PMCID: PMC7375712 DOI: 10.1177/2041731420921482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/27/2020] [Indexed: 02/05/2023] Open
Abstract
Decellularized cardiac extracellular matrix scaffolds with preserved composition and architecture can be used in tissue engineering to reproduce the complex cardiac extracellular matrix. However, evaluating the extent of cardiomyocyte repopulation of decellularized cardiac extracellular matrix scaffolds after recellularization attempts is challenging. Here, we describe a unique combination of biochemical, biomechanical, histological, and physiological parameters for quantifying recellularization efficiency of tissue-engineered cardiac patches compared with native cardiac tissue. Human embryonic stem cell-derived cardiomyocytes were seeded into rat heart atrial and ventricular decellularized cardiac extracellular matrix patches. Confocal and atomic force microscopy showed cell integration within the extracellular matrix basement membrane that was accompanied by restoration of native cardiac tissue passive mechanical properties. Multi-electrode array and immunostaining (connexin 43) were used to determine synchronous field potentials with electrical coupling. Myoglobin content (~60%) and sarcomere length measurement (>45% vs 2D culture) were used to evaluate cardiomyocyte maturation of integrated cells. The combination of these techniques allowed us to demonstrate that as cellularization efficiency improves, cardiomyocytes mature and synchronize electrical activity, and tissue mechanical/biochemical properties improve toward those of native tissue.
Collapse
Affiliation(s)
- Camila Hochman-Mendez
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Regenerative Medicine Research, Texas Heart Institute, Houston, TX, USA
| | - Dilza Balteiro Pereira de Campos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Regenerative Medicine Research, Texas Heart Institute, Houston, TX, USA
| | - Rafael Serafim Pinto
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gustavo Miranda Rocha
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Monnerat
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Weissmuller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz C Sampaio
- Regenerative Medicine Research, Texas Heart Institute, Houston, TX, USA
| | - Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Doris A Taylor
- Regenerative Medicine Research, Texas Heart Institute, Houston, TX, USA
- Doris A Taylor, Regenerative Medicine Research, Texas Heart Institute, 6770 Bertner Avenue, MC 1-135, Houston, TX 77030, USA.
| | - Antonio Carlos Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
127
|
Song C, Zhang X, Wang L, Wen F, Xu K, Xiong W, Li C, Li B, Wang Q, Xing MMQ, Qiu X. An Injectable Conductive Three-Dimensional Elastic Network by Tangled Surgical-Suture Spring for Heart Repair. ACS NANO 2019; 13:14122-14137. [PMID: 31774656 DOI: 10.1021/acsnano.9b06761] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing scaffolds with persistent elasticity and conductivity to mimic microenvironments becomes a feasible way to repair cardiac tissue. Injectable biomaterials for cardiac tissue engineering have demonstrated the ability to restore cardiac function by preventing ventricular dilation, enhancing angiogenesis, and improving conduction velocity. However, limitations are still among them, such as poor mechanical stability, low conductivity, and complicated procedure. Here, we developed thermal plastic poly(glycolic acid) surgical suture and mussel-inspired conductive particle's adhesion into a highly elastic, conductive spring-like coils. The polypyrrole (PPy)-coated biospring acted as an electrode and then was assembled into a solid-state supercapacitor. After being injected through a syringe needle (0.33 mm inner diameter), the tangled coils formed an elastically conductive three-dimensional (3-D) network to modulate cardiac function. We found that cardiomyocytes (CMs) grew along the spring coils' track with elongated morphologies and formed highly oriented sarcomeres. The biospring enhanced the CMs' maturation in synchronous contraction accompanied by high expressions of cardiac-specific proteins, α-actinin, and connexin 43 (cx43). After the elastic, conductive biosprings were injected into the myocardial infarction (MI) area, the left ventricular fractional shortening was improved by about 12.6% and the infarct size was decreased by about 34%. Interestingly, the spring can be utilized as a sensor to measure the CMs' contractile force, which was 1.57 × 10-3 ± 0.26 × 10-3 mN (∼4.1 × 106 cells). Accordingly, this study highlights an injectable biospring to form a tangled conductive 3-D network in vivo for MI repair.
Collapse
Affiliation(s)
- Chen Song
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science; Biomaterials Research Center, School of Biomedical Engineering , Southern Medical University , Guangzhou , Guangdong 510515 , China
- Department of Mechanical Engineering, Faculty of Engineering, Department of Biochemistry and Biomedical Genetics, Faculty of Medicine , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Xingying Zhang
- Department of Mechanical Engineering, Faculty of Engineering, Department of Biochemistry and Biomedical Genetics, Faculty of Medicine , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science; Biomaterials Research Center, School of Biomedical Engineering , Southern Medical University , Guangzhou , Guangdong 510515 , China
| | - Feng Wen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science; Biomaterials Research Center, School of Biomedical Engineering , Southern Medical University , Guangzhou , Guangdong 510515 , China
| | - Kaige Xu
- Department of Mechanical Engineering, Faculty of Engineering, Department of Biochemistry and Biomedical Genetics, Faculty of Medicine , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Weirong Xiong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science; Biomaterials Research Center, School of Biomedical Engineering , Southern Medical University , Guangzhou , Guangdong 510515 , China
| | - Chuangkun Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science; Biomaterials Research Center, School of Biomedical Engineering , Southern Medical University , Guangzhou , Guangdong 510515 , China
| | - Bingyun Li
- Department of Orthopedics, School of Medicine , West Virginia University , Morgantown , West Virginia 26506 , United States
| | - Quan Wang
- Department of Civil and Environmental Engineering , Shantou University , Shantou , Guangdong 515063 , China
| | - Malcolm M Q Xing
- Department of Mechanical Engineering, Faculty of Engineering, Department of Biochemistry and Biomedical Genetics, Faculty of Medicine , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science; Biomaterials Research Center, School of Biomedical Engineering , Southern Medical University , Guangzhou , Guangdong 510515 , China
| |
Collapse
|
128
|
Kim C, Young JL, Holle AW, Jeong K, Major LG, Jeong JH, Aman ZM, Han DW, Hwang Y, Spatz JP, Choi YS. Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels. Ann Biomed Eng 2019; 48:893-902. [PMID: 31802282 DOI: 10.1007/s10439-019-02428-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/27/2019] [Indexed: 11/24/2022]
Abstract
Stiffness gradient hydrogels are a useful platform for studying mechanical interactions between cells and their surrounding environments. Here, we developed linear stiffness gradient hydrogels by controlling the polymerization of gelatin methacryloyl (GelMA) via differential UV penetration with a gradient photomask. Based on previous observations, a stiffness gradient GelMA hydrogel was created ranging from ~ 4 to 13 kPa over 15 mm (0.68 kPa/mm), covering the range of physiological tissue stiffness from fat to muscle, thereby allowing us to study stem cell mechanosensation and differentiation. Adipose-derived stem cells on these gradient hydrogels showed no durotaxis, which allowed for the screening of mechanomarker expression without confounding directed migration effects. In terms of morphological markers, the cell aspect ratio showed a clear positive correlation to the underlying substrate stiffness, while no significant correlation was found in cell size, nuclear size, or nuclear aspect ratio. Conversely, expression of mechanomarkers (i.e., Lamin A, YAP, and MRTFa) all showed a highly significant correlation to stiffness, which could be disrupted via inhibition of non-muscle myosin or Rho/ROCK signalling. Furthermore, we showed that cells plated on stiffer regions became stiffer themselves, and that stem cells showed stiffness-dependent differentiation to fat or muscle as has been previously reported in the literature.
Collapse
Affiliation(s)
- Claire Kim
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Jennifer L Young
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69117, Heidelberg, Germany
| | - Andrew W Holle
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69117, Heidelberg, Germany
| | - Kwanghee Jeong
- Fluid Science and Resources, Department of Chemical Engineering, School of Engineering, University of Western Australia, Perth, WA, 6009, Australia
| | - Luke G Major
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Korea
| | - Zachary M Aman
- Fluid Science and Resources, Department of Chemical Engineering, School of Engineering, University of Western Australia, Perth, WA, 6009, Australia
| | - Dong-Wook Han
- Department of CognoMechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, 46241, Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Korea
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, 69117, Heidelberg, Germany
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| |
Collapse
|
129
|
MicroRNA-29a Exhibited Pro-Angiogenic and Anti-Fibrotic Features to Intensify Human Umbilical Cord Mesenchymal Stem Cells-Renovated Perfusion Recovery and Preventing against Fibrosis from Skeletal Muscle Ischemic Injury. Int J Mol Sci 2019; 20:ijms20235859. [PMID: 31766662 PMCID: PMC6928887 DOI: 10.3390/ijms20235859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
This study was conducted to elucidate whether microRNA-29a (miR-29a) and/or together with transplantation of mesenchymal stem cells isolated from umbilical cord Wharton’s jelly (uMSCs) could aid in skeletal muscle healing and putative molecular mechanisms. We established a skeletal muscle ischemic injury model by injection of a myotoxin bupivacaine (BPVC) into gastrocnemius muscle of C57BL/6 mice. Throughout the angiogenic and fibrotic phases of muscle healing, miR-29a was considerably downregulated in BPVC-injured gastrocnemius muscle. Overexpressed miR-29a efficaciously promoted human umbilical vein endothelial cells proliferation and capillary-like tube formation in vitro, crucial steps for neoangiogenesis, whereas knockdown of miR-29a notably suppressed those endothelial functions. Remarkably, overexpressed miR-29a profitably elicited limbic flow perfusion and estimated by Laser Dopple. MicroRNA-29a motivated perfusion recovery through abolishing the tissue inhibitor of metalloproteinase (TIMP)-2, led great numbers of pro-angiogenic matrix metalloproteinases (MMPs) to be liberated from bondage of TIMP, thus reinforced vascular development. Furthermore, engrafted uMSCs also illustrated comparable effect to restore the flow perfusion and augmented vascular endothelial growth factors-A, -B, and -C expression. Notably, the combination of miR29a and the uMSCs treatments revealed the utmost renovation of limbic flow perfusion. Amplified miR-29a also adequately diminished the collagen deposition and suppressed broad-wide miR-29a targeted extracellular matrix components expression. Consistently, miR-29a administration intensified the relevance of uMSCs to abridge BPVC-aggravated fibrosis. Our data support that miR-29a is a promising pro-angiogenic and anti-fibrotic microRNA which delivers numerous advantages to endorse angiogenesis, perfusion recovery, and protect against fibrosis post injury. Amalgamation of nucleic acid-based strategy (miR-29a) together with the stem cell-based strategy (uMSCs) may be an innovative and eminent strategy to accelerate the healing process post skeletal muscle injury.
Collapse
|
130
|
Hsu MF, Yu SH, Chuang SJ, Kuo TKC, Singal PK, Huang CY, Kao CL, Kuo CH. Can mesenchymal stem cell lysate reverse aging? Aging (Albany NY) 2019; 10:2900-2910. [PMID: 30362957 PMCID: PMC6224235 DOI: 10.18632/aging.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022]
Abstract
Recent findings regarding uses of adipose-derived mesenchymal stem cell (MSC)-lysate on weight loss and improved glucose tolerance in mice on a high-fat diet suggest an encouraging possibility of using MSC lysate for an anti-aging intervention in humans. However, weight loss and lipopenia during late life can be as life-threatening as hyperglycemia during early adulthood. For this 3-year lifelong experiment, a total of 92 rats were randomized into the vehicle-injected group (F=22; M=24) and the MSC lysate injected group (F=22, M=24). We examined longevity, spontaneous locomotor activity, and body composition in rats maintained on a normal diet and received an intermittent treatment of human adipose-derived MSC lysate (3 times a week, 11 times a month given every second month), starting at 12 months of age until natural death. In substantiating previous knowledge regarding the effects of long-term MSC lysate treatments on fat loss and insulin resistance, the present findings also highlighted a shortened average lifespan, a longer inactive time, and a greater bone loss with a relative increase of lean mass in MSC lysate rats with respect to controls. Conclusion: Our data suggest that MSC lysate treatments stimulate disparity in tissue development and produce a cachexia-like effect to decrease longevity.
Collapse
Affiliation(s)
- Ming-Fen Hsu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Szu-Hsien Yu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Sheng-Ju Chuang
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan.,Université Catholique de Louvain and de Duve Institute, Brussels, Belgium
| | - Tom Kwang-Chun Kuo
- Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre and Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Chih-Yang Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital and National Yang Ming University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| |
Collapse
|
131
|
Laminin-511 Supplementation Enhances Stem Cell Localization With Suppression in the Decline of Cardiac Function in Acute Infarct Rats. Transplantation 2019; 103:e119-e127. [PMID: 30730478 DOI: 10.1097/tp.0000000000002653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The extracellular matrix, in particular basement membrane components such as laminins (LMs), is essential for stem cell differentiation and self-renewal. LM511 and LM221 are the main extracellular matrix components of the epicardium, where stem cells were abundant. Here, we examined whether LMs affected the regeneration process by modulating stem cell activities. METHODS In vitro, adhesive, and proliferative activities of mesenchymal stem cells (MSCs) were evaluated on LM511 and LM221. To examine the effects of LMs in vivo, we established an acute myocardial infarction model by ligation of the proximal part of the left anterior descending artery at the height of the left atrial appendage and then placed atelocollagen sheets with or without LM511 and LM221 over the anterolateral surface of the left ventricular wall. Four or 8 weeks later, cardiac function, histology, and cytokine expressions were analyzed. RESULTS MSCs showed greater proliferation and adhesive properties on LM511 than on LM221. In vivo, at 4 weeks, isolectin B4-positive cells were significantly higher in the LM511-transplanted group than in the control group. Moreover, some isolectin B4-positive cells expressed both platelet-derived growth factor receptor α and CD90, suggesting that LM511 enhanced MSC recruitment and attachment at the implanted site. After 8 weeks, these cells were more abundant than at 4 weeks. Transplantation with LM511-conjugated sheets increased the expression of cardioprotective and angiogenic factors. CONCLUSIONS Transplantation with LM511-conjugated sheets enhanced MSC localization to the implantation site and modulated stem cells activities, leading to angiogenesis in acute myocardial infarction rat models.
Collapse
|
132
|
Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci 2019; 98. [DOI: 10.1016/j.progpolymsci.2019.101147] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
133
|
Bushkalova R, Farno M, Tenailleau C, Duployer B, Cussac D, Parini A, Sallerin B, Girod Fullana S. Alginate-chitosan PEC scaffolds: A useful tool for soft tissues cell therapy. Int J Pharm 2019; 571:118692. [DOI: 10.1016/j.ijpharm.2019.118692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/13/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
|
134
|
Lyra-Leite DM, Andres AM, Cho N, Petersen AP, Ariyasinghe NR, Kim SS, Gottlieb RA, McCain ML. Matrix-guided control of mitochondrial function in cardiac myocytes. Acta Biomater 2019; 97:281-295. [PMID: 31401347 PMCID: PMC6801042 DOI: 10.1016/j.actbio.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 02/08/2023]
Abstract
In ventricular myocardium, extracellular matrix (ECM) remodeling is a hallmark of physiological and pathological growth, coincident with metabolic rewiring of cardiac myocytes. However, the direct impact of the biochemical and mechanical properties of the ECM on the metabolic function of cardiac myocytes is mostly unknown. Furthermore, understanding the impact of distinct biomaterials on cardiac myocyte metabolism is critical for engineering physiologically-relevant models of healthy and diseased myocardium. For these reasons, we systematically measured morphological and metabolic responses of neonatal rat ventricular myocytes cultured on fibronectin- or gelatin-coated polydimethylsiloxane (PDMS) of three elastic moduli and gelatin hydrogels with four elastic moduli. On all substrates, total protein content, cell morphology, and the ratio of mitochondrial DNA to nuclear DNA were preserved. Cytotoxicity was low on all substrates, although slightly higher on PDMS compared to gelatin hydrogels. We also quantified oxygen consumption rates and extracellular acidification rates using a Seahorse extracellular flux analyzer. Our data indicate that several metrics associated with baseline glycolysis and baseline and maximum mitochondrial function are enhanced when cardiac myocytes are cultured on gelatin hydrogels compared to all PDMS substrates, irrespective of substrate rigidity. These results yield new insights into how mechanical and biochemical cues provided by the ECM impact mitochondrial function in cardiac myocytes. STATEMENT OF SIGNIFICANCE: Cardiac development and disease are associated with remodeling of the extracellular matrix coincident with metabolic rewiring of cardiac myocytes. However, little is known about the direct impact of the biochemical and mechanical properties of the extracellular matrix on the metabolic function of cardiac myocytes. In this study, oxygen consumption rates were measured in neonatal rat ventricular myocytes maintained on several commonly-used biomaterial substrates to reveal new relationships between the extracellular matrix and cardiac myocyte metabolism. Several mitochondrial parameters were enhanced on gelatin hydrogels compared to synthetic PDMS substrates. These data are important for comprehensively understanding matrix-regulation of cardiac myocyte physiology. Additionally, these data should be considered when selecting scaffolds for engineering in vitro cardiac tissue models.
Collapse
Affiliation(s)
- Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Allen M Andres
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles CA, 90048, United States
| | - Nathan Cho
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Suyon Sarah Kim
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States
| | - Roberta A Gottlieb
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles CA, 90048, United States
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles CA, 90089, United States; Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles CA, 90033, United States.
| |
Collapse
|
135
|
Szydlak R, Majka M, Lekka M, Kot M, Laidler P. AFM-based Analysis of Wharton's Jelly Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:E4351. [PMID: 31491893 PMCID: PMC6769989 DOI: 10.3390/ijms20184351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
Wharton's jelly mesenchymal stem cells (WJ-MSCs) are multipotent stem cells that can be used in regenerative medicine. However, to reach the high therapeutic efficacy of WJ-MSCs, it is necessary to obtain a large amount of MSCs, which requires their extensive in vitro culturing. Numerous studies have shown that in vitro expansion of MSCs can lead to changes in cell behavior; cells lose their ability to proliferate, differentiate and migrate. One of the important measures of cells' migration potential is their elasticity, determined by atomic force microscopy (AFM) and quantified by Young's modulus. This work describes the elasticity of WJ-MSCs during in vitro cultivation. To identify the properties that enable transmigration, the deformability of WJ-MSCs that were able to migrate across the endothelial monolayer or Matrigel was analyzed by AFM. We showed that WJ-MSCs displayed differences in deformability during in vitro cultivation. This phenomenon seems to be strongly correlated with the organization of F-actin and reflects the changes characteristic for stem cell maturation. Furthermore, the results confirm the relationship between the deformability of WJ-MSCs and their migration potential and suggest the use of Young's modulus as one of the measures of competency of MSCs with respect to their possible use in therapy.
Collapse
Affiliation(s)
- Renata Szydlak
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland.
| | - Marcin Majka
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Kraków, Poland.
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland.
| | - Marta Kot
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Kraków, Poland.
| | - Piotr Laidler
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland.
| |
Collapse
|
136
|
Human Umbilical Cord Mesenchymal Stem Cells Extricate Bupivacaine-Impaired Skeletal Muscle Function via Mitigating Neutrophil-Mediated Acute Inflammation and Protecting against Fibrosis. Int J Mol Sci 2019; 20:ijms20174312. [PMID: 31484417 PMCID: PMC6747081 DOI: 10.3390/ijms20174312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle injury presents a challenging traumatological dilemma, and current therapeutic options remain mediocre. This study was designed to delineate if engraftment of mesenchymal stem cells derived from umbilical cord Wharton's jelly (uMSCs) could aid in skeletal muscle healing and persuasive molecular mechanisms. We established a skeletal muscle injury model by injection of myotoxin bupivacaine (BPVC) into quadriceps muscles of C57BL/6 mice. Post BPVC injection, neutrophils, the first host defensive line, rapidly invaded injured muscle and induced acute inflammation. Engrafted uMSCs effectively abolished neutrophil infiltration and activation, and diminished neutrophil chemotaxis, including Complement component 5a (C5a), Keratinocyte chemoattractant (KC), Macrophage inflammatory protein (MIP)-2, LPS-induced CXC chemokine (LIX), Fractalkine, Leukotriene B4 (LTB4), and Interferon-γ, as determined using a Quantibody Mouse Cytokine Array assay. Subsequently, uMSCs noticeably prevented BPVC-accelerated collagen deposition and fibrosis, measured by Masson's trichrome staining. Remarkably, uMSCs attenuated BPVC-induced Transforming growth factor (TGF)-β1 expression, a master regulator of fibrosis. Engrafted uMSCs attenuated TGF-β1 transmitting through interrupting the canonical Sma- And Mad-Related Protein (Smad)2/3 dependent pathway and noncanonical Smad-independent Transforming growth factor beta-activated kinase (TAK)-1/p38 mitogen-activated protein kinases signaling. The uMSCs abrogated TGF-β1-induced fibrosis by reducing extracellular matrix components including fibronectin-1, collagen (COL) 1A1, and COL10A1. Most importantly, uMSCs modestly extricated BPVC-impaired gait functions, determined using CatWalk™ XT gait analysis. This work provides several innovative insights into and molecular bases for employing uMSCs to execute therapeutic potential through the elimination of neutrophil-mediated acute inflammation toward protecting against fibrosis, thereby rescuing functional impairments post injury.
Collapse
|
137
|
Pupkaite J, Rosenquist J, Hilborn J, Samanta A. Injectable Shape-Holding Collagen Hydrogel for Cell Encapsulation and Delivery Cross-linked Using Thiol-Michael Addition Click Reaction. Biomacromolecules 2019; 20:3475-3484. [DOI: 10.1021/acs.biomac.9b00769] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Justina Pupkaite
- Polymer Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping 582 25, Sweden
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Ontario, Canada
| | - Jenny Rosenquist
- Polymer Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| | - Jöns Hilborn
- Polymer Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| | - Ayan Samanta
- Polymer Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| |
Collapse
|
138
|
Zou L, Ma X, Lin S, Wu B, Chen Y, Peng C. Bone marrow mesenchymal stem cell-derived exosomes protect against myocardial infarction by promoting autophagy. Exp Ther Med 2019; 18:2574-2582. [PMID: 31555366 PMCID: PMC6755377 DOI: 10.3892/etm.2019.7874] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Exosomes have been demonstrated to be effective in the treatment of a variety of cardiac disorders. However, the effects of mesenchymal stem cell (MSC) exosomes on myocardial infarction is yet to be determined. The current study aimed to investigate the potential therapeutic effects of MSC exosomes on myocardial injuries that are caused by myocardial infarction. MSCs were isolated from rat bone marrow and were used for exosome enrichment using culture medium. Confirmation that MSCs and exosomes had been successfully extracted was performed using flow cytometry, electron microscopy and western blot analysis. A rat myocardial ischemia reperfusion (I/R) model was established by ligation of the left anterior descending coronary artery. Rat myocardial injuries were determined using 2,3,5-triphenyltetrazolium chloride, Masson and TUNEL staining. H9c2 cell proliferation, apoptosis and migration were analyzed using 5-ethynyl-2′-deoxyuridine, Hoechst staining, flow cytometry and Transwell assays. Marker gene expression was evaluated using reverse transcription-quantitative PCR, western blot analysis and immunofluorescence. Rat MSC exosomes were revealed to suppress myocardial injury and the myocardiocyte functions that were induced by I/R. The results also demonstrated decreased apoptotic protease activating factor-1 and increased autophagy-related protein 13 expression. The H9c2 cell proliferation and migration inhibition, as well as cell apoptosis during hypoxia-reoxygenation (H/R), were suppressed by rat MSC exosomes, with an alteration of the expression of apoptotic and autophagic genes also being demonstrated. The application of autophagy inhibitor 3-methyladenine significantly mitigated the effect of exosomes on H9c2 cell proliferation and apoptosis, which were induced by H/R. Rat MSC exosomes inhibited myocardial infarction pathogenesis, possibly by regulating autophagy.
Collapse
Affiliation(s)
- Liyuan Zou
- Department of Prevention and Health Care, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaokun Ma
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Shuo Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Bingyuan Wu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yang Chen
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Chaoquan Peng
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
139
|
Chen CE, Chiang NJ, Perng CK, Ma H, Lin CH. Review of preclinical and clinical studies of using cell-based therapy for secondary lymphedema. J Surg Oncol 2019; 121:109-120. [PMID: 31385308 DOI: 10.1002/jso.25661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Secondary lymphedema is associated with impaired lymph fluid drainage and remains incurable. Alternatively, cell-based therapy may pave the way for lymphedema treatment. We found 11 animal and seven human studies had been conducted from 2008 to 2018. Most studies showed great potential for this treatment modality. Emerging studies have focused on novel techniques, such as coupling cell therapy with lymph node transfer, or adding growth factors to cell therapy.
Collapse
Affiliation(s)
- Ching-En Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Nai-Jung Chiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Department of Internal Medicine, Cheng Kung University Medical Center, Tainan, Taiwan
| | - Cherng-Kang Perng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hsun Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
140
|
Günay KA, Ceccato TL, Silver JS, Bannister KL, Bednarski OJ, Leinwand LA, Anseth KS. PEG-Anthracene Hydrogels as an On-Demand Stiffening Matrix To Study Mechanobiology. Angew Chem Int Ed Engl 2019; 58:9912-9916. [PMID: 31119851 PMCID: PMC6660351 DOI: 10.1002/anie.201901989] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/26/2019] [Indexed: 12/11/2022]
Abstract
There is a growing interest in materials that can dynamically change their properties in the presence of cells to study mechanobiology. Herein, we exploit the 365 nm light mediated [4+4] photodimerization of anthracene groups to develop cytocompatible PEG-based hydrogels with tailorable initial moduli that can be further stiffened. A hydrogel formulation that can stiffen from 10 to 50 kPa, corresponding to the stiffness of a healthy and fibrotic heart, respectively, was prepared. This system was used to monitor the stiffness-dependent localization of NFAT, a downstream target of intracellular calcium signaling using a reporter in live cardiac fibroblasts (CFbs). NFAT translocates to the nucleus of CFbs on stiffening hydrogels within 6 h, whereas it remains cytoplasmic when the CFbs are cultured on either 10 or 50 kPa static hydrogels. This finding demonstrates how dynamic changes in the mechanical properties of a material can reveal the kinetics of mechanoresponsive cell signaling pathways that may otherwise be missed in cells cultured on static substrates.
Collapse
Affiliation(s)
- Kemal Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, 80309, CO, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Boulder, 80309, CO, USA
| | - Tova L. Ceccato
- The BioFrontiers Institute, University of Colorado, Boulder, Boulder, 80309, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, 80309, CO, USA
| | - Jason S. Silver
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, 80309, CO, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Boulder, 80309, CO, USA
| | - Kendra L. Bannister
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, 80309, CO, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Boulder, 80309, CO, USA
| | - Olivia J. Bednarski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, 80309, CO, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Boulder, 80309, CO, USA
| | - Leslie A. Leinwand
- The BioFrontiers Institute, University of Colorado, Boulder, Boulder, 80309, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, 80309, CO, USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, 80309, CO, USA
- The BioFrontiers Institute, University of Colorado, Boulder, Boulder, 80309, CO, USA
| |
Collapse
|
141
|
Schroer A, Pardon G, Castillo E, Blair C, Pruitt B. Engineering hiPSC cardiomyocyte in vitro model systems for functional and structural assessment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:3-15. [PMID: 30579630 PMCID: PMC6919215 DOI: 10.1016/j.pbiomolbio.2018.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/24/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
The study of human cardiomyopathies and the development and testing of new therapies has long been limited by the availability of appropriate in vitro model systems. Cardiomyocytes are highly specialized cells whose internal structure and contractile function are sensitive to the local microenvironment and the combination of mechanical and biochemical cues they receive. The complementary technologies of human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) and microphysiological systems (MPS) allow for precise control of the genetics and microenvironment of human cells in in vitro contexts. These combined systems also enable quantitative measurement of mechanical function and intracellular organization. This review describes relevant factors in the myocardium microenvironment that affect CM structure and mechanical function and demonstrates the application of several engineered microphysiological systems for studying development, disease, and drug discovery.
Collapse
Affiliation(s)
- Alison Schroer
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Gaspard Pardon
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Erica Castillo
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Cheavar Blair
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| | - Beth Pruitt
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Mechanical Engineering, University of California at Santa Barbara, USA
| |
Collapse
|
142
|
Goldfracht I, Efraim Y, Shinnawi R, Kovalev E, Huber I, Gepstein A, Arbel G, Shaheen N, Tiburcy M, Zimmermann WH, Machluf M, Gepstein L. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications. Acta Biomater 2019; 92:145-159. [PMID: 31075518 DOI: 10.1016/j.actbio.2019.05.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Cardiac tissue engineering provides unique opportunities for cardiovascular disease modeling, drug testing, and regenerative medicine applications. To recapitulate human heart tissue, we combined human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with a chitosan-enhanced extracellular-matrix (ECM) hydrogel, derived from decellularized pig hearts. Ultrastructural characterization of the ECM-derived engineered heart tissues (ECM-EHTs) revealed an anisotropic muscle structure, with embedded cardiomyocytes showing more mature properties than 2D-cultured hiPSC-CMs. Force measurements confirmed typical force-length relationships, sensitivity to extracellular calcium, and adequate ionotropic responses to contractility modulators. By combining genetically-encoded calcium and voltage indicators with laser-confocal microscopy and optical mapping, the electrophysiological and calcium-handling properties of the ECM-EHTs could be studied at the cellular and tissue resolutions. This allowed to detect drug-induced changes in contraction rate (isoproterenol, carbamylcholine), optical signal morphology (E-4031, ATX2, isoproterenol, ouabin and quinidine), cellular arrhythmogenicity (E-4031 and ouabin) and alterations in tissue conduction properties (lidocaine, carbenoxolone and quinidine). Similar assays in ECM-EHTs derived from patient-specific hiPSC-CMs recapitulated the abnormal phenotype of the long QT syndrome and catecholaminergic polymorphic ventricular tachycardia. Finally, programmed electrical stimulation and drug-induced pro-arrhythmia led to the development of reentrant arrhythmias in the ECM-EHTs. In conclusion, a novel ECM-EHT model was established, which can be subjected to high-resolution long-term serial functional phenotyping, with important implications for cardiac disease modeling, drug testing and precision medicine. STATEMENT OF SIGNIFICANCE: One of the main objectives of cardiac tissue engineering is to create an in-vitro muscle tissue surrogate of human heart tissue. To this end, we combined a chitosan-enforced cardiac-specific ECM hydrogel derived from decellularized pig hearts with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from healthy-controls and patients with inherited cardiac disorders. We then utilized genetically-encoded calcium and voltage fluorescent indicators coupled with unique optical imaging techniques and force-measurements to study the functional properties of the generated engineered heart tissues (EHTs). These studies demonstrate the unique potential of the new model for physiological and pathophysiological studies (assessing contractility, conduction and reentrant arrhythmias), novel disease modeling strategies ("disease-in-a-dish" approach) for studying inherited arrhythmogenic disorders, and for drug testing applications (safety pharmacology).
Collapse
Affiliation(s)
- Idit Goldfracht
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Israel; Interdisciplinarry Biotechnology Program. Technion - Israel Institute of Technology, Israel
| | - Yael Efraim
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Israel
| | - Rami Shinnawi
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Israel
| | - Ekaterina Kovalev
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Israel
| | - Irit Huber
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Israel
| | - Amira Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Israel
| | - Gil Arbel
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Israel
| | - Naim Shaheen
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Israel
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Goettingen, Germany
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center, Goettingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Goettingen, Germany
| | - Marcelle Machluf
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Israel
| | - Lior Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Israel; Cardiology Department, Rambam Health Care Campus, Israel.
| |
Collapse
|
143
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
144
|
Günay KA, Ceccato TL, Silver JS, Bannister KL, Bednarski OJ, Leinwand LA, Anseth KS. PEG–Anthracene Hydrogels as an On‐Demand Stiffening Matrix To Study Mechanobiology. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901989] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kemal Arda Günay
- Department of Chemical and Biological EngineeringUniversity of Colorado, Boulder Boulder CO 80309 USA
- The BioFrontiers InstituteUniversity of Colorado, Boulder Boulder CO 80309 USA
| | - Tova L. Ceccato
- The BioFrontiers InstituteUniversity of Colorado, Boulder Boulder CO 80309 USA
- Department of Molecular, Cellular and Developmental BiologyUniversity of Colorado, Boulder Boulder CO 80309 USA
| | - Jason S. Silver
- Department of Chemical and Biological EngineeringUniversity of Colorado, Boulder Boulder CO 80309 USA
- The BioFrontiers InstituteUniversity of Colorado, Boulder Boulder CO 80309 USA
| | - Kendra L. Bannister
- Department of Chemical and Biological EngineeringUniversity of Colorado, Boulder Boulder CO 80309 USA
- The BioFrontiers InstituteUniversity of Colorado, Boulder Boulder CO 80309 USA
| | - Olivia J. Bednarski
- Department of Chemical and Biological EngineeringUniversity of Colorado, Boulder Boulder CO 80309 USA
- The BioFrontiers InstituteUniversity of Colorado, Boulder Boulder CO 80309 USA
| | - Leslie A. Leinwand
- The BioFrontiers InstituteUniversity of Colorado, Boulder Boulder CO 80309 USA
- Department of Molecular, Cellular and Developmental BiologyUniversity of Colorado, Boulder Boulder CO 80309 USA
| | - Kristi S. Anseth
- Department of Chemical and Biological EngineeringUniversity of Colorado, Boulder Boulder CO 80309 USA
- The BioFrontiers InstituteUniversity of Colorado, Boulder Boulder CO 80309 USA
| |
Collapse
|
145
|
Chin IL, Hool L, Choi YS. A Review of in vitro Platforms for Understanding Cardiomyocyte Mechanobiology. Front Bioeng Biotechnol 2019; 7:133. [PMID: 31231644 PMCID: PMC6560053 DOI: 10.3389/fbioe.2019.00133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Mechanobiology—a cell's interaction with its physical environment—can influence a myriad of cellular processes including how cells migrate, differentiate and proliferate. In many diseases, remodeling of the extracellular matrix (ECM) is observed such as tissue stiffening in rigid scar formation after myocardial infarct. Utilizing knowledge of cell mechanobiology in relation to ECM remodeling during pathogenesis, elucidating the role of the ECM in the progression—and perhaps regression—of disease is a primary focus of the field. Although the importance of mechanical signaling in the cardiac cell is well-appreciated, our understanding of how these signals are sensed and transduced by cardiomyocytes is limited. To overcome this limitation, recently developed tools and resources have provided exciting opportunities to further our understandings by better recapitulating pathological spatiotemporal ECM stiffness changes in an in vitro setting. In this review, we provide an overview of a conventional model of mechanotransduction and present understandings of cardiomyocyte mechanobiology, followed by a review of emerging tools and resources that can be used to expand our knowledge of cardiomyocyte mechanobiology toward more clinically relevant applications.
Collapse
Affiliation(s)
- Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Livia Hool
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
146
|
Pathophysiology of Fibrosis in the Vocal Fold: Current Research, Future Treatment Strategies, and Obstacles to Restoring Vocal Fold Pliability. Int J Mol Sci 2019; 20:ijms20102551. [PMID: 31137626 PMCID: PMC6567075 DOI: 10.3390/ijms20102551] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Communication by voice depends on symmetrical vibrations within the vocal folds (VFs) and is indispensable for various occupations. VF scarring is one of the main reasons for permanent dysphonia and results from injury to the unique layered structure of the VFs. The increased collagen and decreased hyaluronic acid within VF scars lead to a loss of pliability of the VFs and significantly decreases their capacity to vibrate. As there is currently no definitive treatment for VF scarring, regenerative medicine and tissue engineering have become increasingly important research areas within otolaryngology. Several recent reviews have described the problem of VF scarring and various possible solutions, including tissue engineered cells and tissues, biomaterial implants, stem cells, growth factors, anti-inflammatory cytokines antifibrotic agents. Despite considerable research progress, these technical advances have not been established as routine clinical procedures. This review focuses on emerging techniques for restoring VF pliability using various approaches. We discuss our studies on interactions among adipose-derived stem/stromal cells, antifibrotic agents, and VF fibroblasts using an in vitro model. We also identify some obstacles to advances in research.
Collapse
|
147
|
Rubiano A, Galitz C, Simmons CS. Mechanical Characterization by Mesoscale Indentation: Advantages and Pitfalls for Tissue and Scaffolds. Tissue Eng Part C Methods 2019; 25:619-629. [PMID: 30848168 DOI: 10.1089/ten.tec.2018.0372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Regenerative medicine and tissue engineering are hindered by the lack of consistent measurements and standards for the mechanical characterization of tissue and scaffolds. Indentation methods for soft matter are favored because of their compatibility with small, arbitrarily shaped samples, but contact mechanics models required to interpret data are often inappropriate for soft, viscous materials. In this study, we demonstrate indentation experiments on a variety of human biopsies, animal tissue, and engineered scaffolds, and we explore the complexities of fitting analytical models to these data. Although objections exist to using Hertz contact models for soft, viscoelastic biological materials since soft matter violates their original assumptions, we demonstrate the experimental conditions that enable consistency and comparability (regardless of arguable misappropriation). Appropriate experimental conditions involving sample hydration, the indentation depth, and the ratio of the probe size to sample thickness enable repeatable metrics that are valuable when comparing synthetic scaffolds and host tissue, and bounds on these parameters are carefully described and discussed. We have also identified a reliable quasistatic parameter that can be derived from indentation data to help researchers compare results across materials and experiments. Although Hertz contact mechanics and linear viscoelastic models may constitute oversimplification for biological materials, the reporting of such simple metrics alongside more complex models is expected to support researchers in tissue engineering and regenerative medicine by providing consistency across efforts to characterize soft matter. Impact Statement To engineer replacement tissue requires a deep understanding of its biomechanical properties. Mesoscale indentation (between micron and millimeter length scales) is well-suited to characterize tissue and engineered replacements as it accommodates small, oddly shaped samples. However, it is easy to run afoul of the assumptions for common contact models when working with biological materials. In this study, we describe experimental procedures and modeling approaches that allow researchers to take advantage of indentation for biomechanical characterization while minimizing its weaknesses.
Collapse
Affiliation(s)
- Andrés Rubiano
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, Gainesville, Florida
| | - Carly Galitz
- Department of Mathematics, College of Liberal Arts and Sciences, Gainesville, Florida
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, Gainesville, Florida.,J. Crayton Pruitt Family Department of Biomedical Engineering Herbert Wertheim College of Engineering, Gainesville, Florida.,Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
148
|
Fibrosis miocárdica: hacia una nueva aproximación. REVISTA COLOMBIANA DE CARDIOLOGÍA 2019. [DOI: 10.1016/j.rccar.2018.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
149
|
Durán-Pastén ML, Cortes D, Valencia-Amaya AE, King S, González-Gómez GH, Hautefeuille M. Cell Culture Platforms with Controllable Stiffness for Chick Embryonic Cardiomyocytes. Biomimetics (Basel) 2019; 4:biomimetics4020033. [PMID: 31105218 PMCID: PMC6630216 DOI: 10.3390/biomimetics4020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
For several years, cell culture techniques have been physiologically relevant to understand living organisms both structurally and functionally, aiming at preserving as carefully as possible the in vivo integrity and function of the cells. However, when studying cardiac cells, glass or plastic Petri dishes and culture-coated plates lack important cues that do not allow to maintain the desired phenotype, especially for primary cell culture. In this work, we show that microscaffolds made with polydimethylsiloxane (PDMS) enable modulating the stiffness of the surface of the culture substrate and this originates different patterns of adhesion, self-organization, and synchronized or propagated activity in the culture of chick embryonic cardiomyocytes. Thanks to the calcium imaging technique, we found that the substrate stiffness affected cardiomyocyte adhesion, as well as the calcium signal propagation in the formed tissue. The patterns of activity shown by the calcium fluorescence variations are reliable clues of the functional organization achieved by the cell layers. We found that PDMS substrates with a stiffness of 25 kPa did not allow the formation of cell layers and therefore the optimal propagation of the intracellular calcium signals, while softer PDMS substrates with Young’s modulus within the physiological in vivo reported range did permit synchronized and coordinated contractility and intracellular calcium activity. This type of methodology allows us to study phenomena such as arrhythmias. For example, the occurrence of synchronized activity or rotors that can initiate or maintain cardiac arrhythmias can be reproduced on different substrates for study, so that replacement tissues or patches can be better designed.
Collapse
Affiliation(s)
- María Luisa Durán-Pastén
- Taller de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Laboratorio Nacional de Canalopatias LaNCa, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
| | - Daniela Cortes
- Taller de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
| | - Alan E Valencia-Amaya
- Taller de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
| | - Santiago King
- Taller de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
| | - Gertrudis Hortensia González-Gómez
- Taller de Biofísica de Sistemas Excitables, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Departamento de Física. Facultad de Ciencias Universidad Nacional Autónoma de México; 04510 México City, Mexico.
| | - Mathieu Hautefeuille
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México City, Mexico.
- Departamento de Física. Facultad de Ciencias Universidad Nacional Autónoma de México; 04510 México City, Mexico.
| |
Collapse
|
150
|
Bracco Gartner TCL, Deddens JC, Mol EA, Magin Ferrer M, van Laake LW, Bouten CVC, Khademhosseini A, Doevendans PA, Suyker WJL, Sluijter JPG, Hjortnaes J. Anti-fibrotic Effects of Cardiac Progenitor Cells in a 3D-Model of Human Cardiac Fibrosis. Front Cardiovasc Med 2019; 6:52. [PMID: 31080805 PMCID: PMC6497755 DOI: 10.3389/fcvm.2019.00052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibroblasts play a key role in chronic heart failure. The conversion from cardiac fibroblast to myofibroblast as a result of cardiac injury, will lead to excessive matrix deposition and a perpetuation of pro-fibrotic signaling. Cardiac cell therapy for chronic heart failure may be able to target fibroblast behavior in a paracrine fashion. However, no reliable human fibrotic tissue model exists to evaluate this potential effect of cardiac cell therapy. Using a gelatin methacryloyl hydrogel and human fetal cardiac fibroblasts (hfCF), we created a 3D in vitro model of human cardiac fibrosis. This model was used to study the possibility to modulate cellular fibrotic responses. Our approach demonstrated paracrine inhibitory effects of cardiac progenitor cells (CPC) on both cardiac fibroblast activation and collagen synthesis in vitro and revealed that continuous cross-talk between hfCF and CPC seems to be indispensable for the observed anti-fibrotic effect.
Collapse
Affiliation(s)
- Tom C L Bracco Gartner
- Division Heart, and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Soft Tissue Engineering and Mechanobiology, Department of Biomedical Technology, Eindhoven University of Technology, Eindhoven, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Janine C Deddens
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Emma A Mol
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Magin Ferrer
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linda W van Laake
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Carlijn V C Bouten
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Technology, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiology, Department of Chemical and Biomolecular Engineering, Director of Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, United States
| | - Pieter A Doevendans
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands.,Central Military Hospital, Utrecht, Netherlands
| | - Willem J L Suyker
- Division Heart, and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands
| | - Jesper Hjortnaes
- Division Heart, and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands
| |
Collapse
|