101
|
Lopez-Perez A, Sebastian R, Ferrero JM. Three-dimensional cardiac computational modelling: methods, features and applications. Biomed Eng Online 2015; 14:35. [PMID: 25928297 PMCID: PMC4424572 DOI: 10.1186/s12938-015-0033-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/02/2015] [Indexed: 01/19/2023] Open
Abstract
The combination of computational models and biophysical simulations can help to interpret an array of experimental data and contribute to the understanding, diagnosis and treatment of complex diseases such as cardiac arrhythmias. For this reason, three-dimensional (3D) cardiac computational modelling is currently a rising field of research. The advance of medical imaging technology over the last decades has allowed the evolution from generic to patient-specific 3D cardiac models that faithfully represent the anatomy and different cardiac features of a given alive subject. Here we analyse sixty representative 3D cardiac computational models developed and published during the last fifty years, describing their information sources, features, development methods and online availability. This paper also reviews the necessary components to build a 3D computational model of the heart aimed at biophysical simulation, paying especial attention to cardiac electrophysiology (EP), and the existing approaches to incorporate those components. We assess the challenges associated to the different steps of the building process, from the processing of raw clinical or biological data to the final application, including image segmentation, inclusion of substructures and meshing among others. We briefly outline the personalisation approaches that are currently available in 3D cardiac computational modelling. Finally, we present examples of several specific applications, mainly related to cardiac EP simulation and model-based image analysis, showing the potential usefulness of 3D cardiac computational modelling into clinical environments as a tool to aid in the prevention, diagnosis and treatment of cardiac diseases.
Collapse
Affiliation(s)
- Alejandro Lopez-Perez
- Centre for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, València, Spain.
| | - Rafael Sebastian
- Computational Multiscale Physiology Lab (CoMMLab), Universitat de València, València, Spain.
| | - Jose M Ferrero
- Centre for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, València, Spain.
| |
Collapse
|
102
|
Sommer G, Haspinger DC, Andrä M, Sacherer M, Viertler C, Regitnig P, Holzapfel GA. Quantification of Shear Deformations and Corresponding Stresses in the Biaxially Tested Human Myocardium. Ann Biomed Eng 2015; 43:2334-48. [PMID: 25707595 DOI: 10.1007/s10439-015-1281-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/11/2015] [Indexed: 11/26/2022]
Abstract
One goal of cardiac research is to perform numerical simulations to describe/reproduce the mechanoelectrical function of the human myocardium in health and disease. Such simulations are based on a complex combination of mathematical models describing the passive mechanical behavior of the myocardium and its electrophysiology, i.e., the activation of cardiac muscle cells. The problem in developing adequate constitutive models is the shortage of experimental data suitable for detailed parameter estimation in specific functional forms. A combination of shear and biaxial extension tests with different loading protocols on different specimen orientations is necessary to capture adequately the direction-dependent (orthotropic) response of the myocardium. In most experimental animal studies, where planar biaxial extension tests on the myocardium have been conducted, the generated shear stresses were neither considered nor discussed. Hence, in this study a method is presented which allows the quantification of shear deformations and related stresses. It demonstrates an approach for experimenters as to how the generation of these shear stresses can be minimized during mechanical testing. Experimental results on 14 passive human myocardial specimens, obtained from nine human hearts, show the efficiency of this newly developed method. Moreover, the influence of the clamping technique of the specimen, i.e., the load transmission between the testing device and the tissue, on the stress response is determined by testing an isotropic material (Latex). We identified that the force transmission between the testing device and the specimen by means of hooks and cords does not influence the performed experiments. We further showed that in-plane shear stresses definitely exist in biaxially tested human ventricular myocardium, but can be reduced to a minimum by preparing the specimens in an appropriate manner. Moreover, we showed whether shear stresses can be neglected when performing planar biaxial extension tests on fiber-reinforced materials. The used method appears to be robust to quantify normal and shear deformations and corresponding stresses in biaxially tested human myocardium. This method can be applied for the mechanical characterization of any fiber-reinforced material using planar biaxial extension tests.
Collapse
Affiliation(s)
- Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Kronesgasse 5/I, 8010, Graz, Austria.
| | - Daniel Ch Haspinger
- Institute of Biomechanics, Graz University of Technology, Kronesgasse 5/I, 8010, Graz, Austria
| | - Michaela Andrä
- Division of Cardiac, Thoracic and Vascular Surgery, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| | - Michael Sacherer
- Department of Cardiology, Medical University Graz, Graz, Austria
| | | | - Peter Regitnig
- Institute of Pathology, Medical University Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Kronesgasse 5/I, 8010, Graz, Austria
| |
Collapse
|
103
|
Zhang X, Haynes P, Campbell KS, Wenk JF. Numerical evaluation of myofiber orientation and transmural contractile strength on left ventricular function. J Biomech Eng 2015; 137:044502. [PMID: 25367232 DOI: 10.1115/1.4028990] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Indexed: 11/08/2022]
Abstract
The left ventricle (LV) of the heart is composed of a complex organization of cardiac muscle fibers, which contract to generate force and pump blood into the body. It has been shown that both the orientation and contractile strength of these myofibers vary across the ventricular wall. The hypothesis of the current study is that the transmural distributions of myofiber orientation and contractile strength interdependently impact LV pump function. In order to quantify these interactions a finite element (FE) model of the LV was generated, which incorporated transmural variations. The influences of myofiber orientation and contractile strength on the Starling relationship and the end-systolic (ES) apex twist of the LV were assessed. The results suggest that reductions in contractile strength within a specific transmural layer amplified the effects of altered myofiber orientation in the same layer, causing greater changes in stroke volume (SV). Furthermore, when the epicardial myofibers contracted the strongest, the twist of the LV apex was greatest, regardless of myofiber orientation. These results demonstrate the important role of transmural distribution of myocardial contractile strength and its interplay with myofiber orientation. The coupling between these two physiologic parameters could play a critical role in the progression of heart failure.
Collapse
|
104
|
Krishnamoorthi S, Perotti LE, Borgstrom NP, Ajijola OA, Frid A, Ponnaluri AV, Weiss JN, Qu Z, Klug WS, Ennis DB, Garfinkel A. Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology. PLoS One 2014; 9:e114494. [PMID: 25493967 PMCID: PMC4262432 DOI: 10.1371/journal.pone.0114494] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/07/2014] [Indexed: 01/24/2023] Open
Abstract
We describe a sequence of methods to produce a partial differential equation model of the electrical activation of the ventricles. In our framework, we incorporate the anatomy and cardiac microstructure obtained from magnetic resonance imaging and diffusion tensor imaging of a New Zealand White rabbit, the Purkinje structure and the Purkinje-muscle junctions, and an electrophysiologically accurate model of the ventricular myocytes and tissue, which includes transmural and apex-to-base gradients of action potential characteristics. We solve the electrophysiology governing equations using the finite element method and compute both a 6-lead precordial electrocardiogram (ECG) and the activation wavefronts over time. We are particularly concerned with the validation of the various methods used in our model and, in this regard, propose a series of validation criteria that we consider essential. These include producing a physiologically accurate ECG, a correct ventricular activation sequence, and the inducibility of ventricular fibrillation. Among other components, we conclude that a Purkinje geometry with a high density of Purkinje muscle junctions covering the right and left ventricular endocardial surfaces as well as transmural and apex-to-base gradients in action potential characteristics are necessary to produce ECGs and time activation plots that agree with physiological observations.
Collapse
Affiliation(s)
- Shankarjee Krishnamoorthi
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Luigi E. Perotti
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Nils P. Borgstrom
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Olujimi A. Ajijola
- Department of Medicine (Cardiology), University of California Los Angeles, Los Angeles, California, United States of America
| | - Anna Frid
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Aditya V. Ponnaluri
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - James N. Weiss
- Department of Medicine (Cardiology), University of California Los Angeles, Los Angeles, California, United States of America
| | - Zhilin Qu
- Department of Medicine (Cardiology), University of California Los Angeles, Los Angeles, California, United States of America
| | - William S. Klug
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Daniel B. Ennis
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California, United States of America
| | - Alan Garfinkel
- Department of Medicine (Cardiology), University of California Los Angeles, Los Angeles, California, United States of America
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
105
|
Axel L, Wedeen VJ, Ennis DB. Probing dynamic myocardial microstructure with cardiac magnetic resonance diffusion tensor imaging. J Cardiovasc Magn Reson 2014; 16:89. [PMID: 25388937 PMCID: PMC4229597 DOI: 10.1186/s12968-014-0089-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 11/30/2022] Open
Abstract
This article is an invited editorial comment on the paper entitled "In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy" by Ferreira et al., and published as Journal of Cardiovascular Magnetic Resonance 2014; 16:87.
Collapse
Affiliation(s)
- Leon Axel
- />Departments of Radiology and Medicine, NYU School of Medicine, New York, NY USA
| | - Van J Wedeen
- />Department of Radiology, Massachusetts General Hospital, Harvard University School of Medicine, Boston, MA USA
| | - Daniel B Ennis
- />Department of Radiological Sciences, University of California, Los Angeles, CA USA
| |
Collapse
|
106
|
Ferreira PF, Kilner PJ, McGill LA, Nielles-Vallespin S, Scott AD, Ho SY, McCarthy KP, Haba MM, Ismail TF, Gatehouse PD, de Silva R, Lyon AR, Prasad SK, Firmin DN, Pennell DJ. In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 2014; 16:87. [PMID: 25388867 PMCID: PMC4229618 DOI: 10.1186/s12968-014-0087-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/24/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cardiac diffusion tensor imaging (cDTI) measures the magnitudes and directions of intramyocardial water diffusion. Assuming the cross-myocyte components to be constrained by the laminar microstructures of myocardium, we hypothesized that cDTI at two cardiac phases might identify any abnormalities of laminar orientation and mobility in hypertrophic cardiomyopathy (HCM). METHODS We performed cDTI in vivo at 3 Tesla at end-systole and late diastole in 11 healthy controls and 11 patients with HCM, as well as late gadolinium enhancement (LGE) for detection of regional fibrosis. RESULTS Voxel-wise analysis of diffusion tensors relative to left ventricular coordinates showed expected transmural changes of myocardial helix-angle, with no significant differences between phases or between HCM and control groups. In controls, the angle of the second eigenvector of diffusion (E2A) relative to the local wall tangent plane was larger in systole than diastole, in accord with previously reported changes of laminar orientation. HCM hearts showed higher than normal global E2A in systole (63.9° vs 56.4° controls, p=0.026) and markedly raised E2A in diastole (46.8° vs 24.0° controls, p<0.001). In hypertrophic regions, E2A retained a high, systole-like angulation even in diastole, independent of LGE, while regions of normal wall thickness did not (LGE present 57.8°, p=0.0028, LGE absent 54.8°, p=0.0022 vs normal thickness 38.1°). CONCLUSIONS In healthy controls, the angles of cross-myocyte components of diffusion were consistent with previously reported transmural orientations of laminar microstructures and their changes with contraction. In HCM, especially in hypertrophic regions, they were consistent with hypercontraction in systole and failure of relaxation in diastole. Further investigation of this finding is required as previously postulated effects of strain might be a confounding factor.
Collapse
Affiliation(s)
- Pedro F Ferreira
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Philip J Kilner
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Laura-Ann McGill
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Sonia Nielles-Vallespin
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
- />National Institutes of Health, Bethesda, USA
| | - Andrew D Scott
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Siew Y Ho
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Karen P McCarthy
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Margarita M Haba
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Tevfik F Ismail
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Peter D Gatehouse
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Ranil de Silva
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Alexander R Lyon
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Sanjay K Prasad
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - David N Firmin
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| | - Dudley J Pennell
- />National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital and Imperial College, London, UK
| |
Collapse
|
107
|
Abdullah OM, Drakos SG, Diakos NA, Wever-Pinzon O, Kfoury AG, Stehlik J, Selzman CH, Reid BB, Brunisholz K, Verma DR, Myrick C, Sachse FB, Li DY, Hsu EW. Characterization of diffuse fibrosis in the failing human heart via diffusion tensor imaging and quantitative histological validation. NMR IN BIOMEDICINE 2014; 27:1378-86. [PMID: 25200106 PMCID: PMC4215542 DOI: 10.1002/nbm.3200] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/09/2014] [Accepted: 08/15/2014] [Indexed: 05/16/2023]
Abstract
Non-invasive imaging techniques are highly desirable as an alternative to conventional biopsy for the characterization of the remodeling of tissues associated with disease progression, including end-stage heart failure. Cardiac diffusion tensor imaging (DTI) has become an established method for the characterization of myocardial microstructure. However, the relationships between diffuse myocardial fibrosis, which is a key biomarker for staging and treatment planning of the failing heart, and measured DTI parameters have yet to be investigated systematically. In this study, DTI was performed on left ventricular specimens collected from patients with chronic end-stage heart failure as a result of idiopathic dilated cardiomyopathy (n = 14) and from normal donors (n = 5). Scalar DTI parameters, including fractional anisotropy (FA) and mean (MD), primary (D1 ), secondary (D2 ) and tertiary (D3 ) diffusivities, were correlated with collagen content measured by digital microscopy. Compared with hearts from normal subjects, the FA in failing hearts decreased by 22%, whereas the MD, D2 and D3 increased by 12%, 14% and 24%, respectively (P < 0.01). No significant change was detected for D1 between the two groups. Furthermore, significant correlation was observed between the DTI scalar indices and quantitative histological measurements of collagen (i.e. fibrosis). Pearson's correlation coefficients (r) between collagen content and FA, MD, D2 and D3 were -0.51, 0.59, 0.56 and 0.62 (P < 0.05), respectively. The correlation between D1 and collagen content was not significant (r = 0.46, P = 0.05). Computational modeling analysis indicated that the behaviors of the DTI parameters as a function of the degree of fibrosis were well explained by compartmental exchange between myocardial and collagenous tissues. Combined, these findings suggest that scalar DTI parameters can be used as metrics for the non-invasive assessment of diffuse fibrosis in failing hearts.
Collapse
Affiliation(s)
| | - Stavros G. Drakos
- Molecular Medicine Program, University of Utah
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | | | - Omar Wever-Pinzon
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Abdallah G. Kfoury
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Josef Stehlik
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Craig H. Selzman
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Bruce B. Reid
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Kim Brunisholz
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | - Divya Ratan Verma
- UTAH Cardiac Transplant Program (University of Utah Hospital, Intermountain Medical Center, Salt Lake Veterans Affairs Medical Center)
| | | | - Frank B. Sachse
- Department of Bioengineering, University of Utah
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah
| | - Dean Y. Li
- Molecular Medicine Program, University of Utah
| | | |
Collapse
|
108
|
Angeli S, Befera N, Peyrat JM, Calabrese E, Johnson GA, Constantinides C. A high-resolution cardiovascular magnetic resonance diffusion tensor map from ex-vivo C57BL/6 murine hearts. J Cardiovasc Magn Reson 2014; 16:77. [PMID: 25323636 PMCID: PMC4198699 DOI: 10.1186/s12968-014-0077-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 09/01/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The complex cardiac fiber structural organization and spatial arrangement of cardiomyocytes in laminar sheetlets contributes greatly to cardiac functional and contractile ejection patterns. This study presents the first comprehensive, ultra-high resolution, fully quantitative statistical tensor map of the fixed murine heart at isotropic resolution of 43 μm using diffusion tensor (DT) cardiovascular magnetic resonance (CMR). METHODS Imaging was completed in approximately 12 hours using a six-directional encoding scheme, in five ex vivo healthy C57BL/6 mouse hearts. The tensor map constructed from this data provides an average description of the murine fiber architecture visualized with fiber tractography, and its population variability, using the latest advances in image tensor analysis and statistics. RESULTS Results show that non-normalized cardiac tensor maps are associated with mean fractional anisotropy of 0.25 ± 0.07 and mean diffusivity of 8.9 ± 1.6 × 10⁻⁴mm²/s. Moreover, average mid-ventricular helical angle distributions ranged between -41 ± 3° and +52 ± 5° and were highly correlated with transmural depth, in agreement with prior published results in humans and canines. Calculated variabilities of local myocyte orientations were 2.0° and 1.4°. Laminar sheet orientation variability was found to be less stable at 2.6°. Despite such variations, the murine heart seems to be highly structured, particularly when compared to canines and humans. CONCLUSIONS This tensor map has the potential to yield an accurate mean representation and identification of common or unique features of the cardiac myocyte architecture, to establish a baseline standard reference of DTI indices, and to improve detection of biomarkers, especially in pathological states or post-transgenetic modifications.
Collapse
Affiliation(s)
- Stelios Angeli
- Department of Mechanical and Manufacturing Engineering, Laboratory of Physiology and Biomedical Imaging, School of Engineering, University of Cyprus, 75 Kalipoleos Avenue, Green Park Building, Nicosia, Cyprus.
| | - Nicholas Befera
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA.
| | - Jean-Marc Peyrat
- Qatar Robotic Surgery Centre, Qatar Science & Technology Park, Doha, Qatar.
| | - Evan Calabrese
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA.
| | | | - Christakis Constantinides
- Department of Mechanical and Manufacturing Engineering, Laboratory of Physiology and Biomedical Imaging, School of Engineering, University of Cyprus, 75 Kalipoleos Avenue, Green Park Building, Nicosia, Cyprus.
- Chi-Biomedical Limited, 36 Parthenonos Street, Apartment 303, Strovolos, 2021, Nicosia, Cyprus.
| |
Collapse
|
109
|
Stoeck CT, Kalinowska A, von Deuster C, Harmer J, Chan RW, Niemann M, Manka R, Atkinson D, Sosnovik DE, Mekkaoui C, Kozerke S. Dual-phase cardiac diffusion tensor imaging with strain correction. PLoS One 2014; 9:e107159. [PMID: 25191900 PMCID: PMC4156436 DOI: 10.1371/journal.pone.0107159] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/05/2014] [Indexed: 12/03/2022] Open
Abstract
Purpose In this work we present a dual-phase diffusion tensor imaging (DTI) technique that incorporates a correction scheme for the cardiac material strain, based on 3D myocardial tagging. Methods In vivo dual-phase cardiac DTI with a stimulated echo approach and 3D tagging was performed in 10 healthy volunteers. The time course of material strain was estimated from the tagging data and used to correct for strain effects in the diffusion weighted acquisition. Mean diffusivity, fractional anisotropy, helix, transverse and sheet angles were calculated and compared between systole and diastole, with and without strain correction. Data acquired at the systolic sweet spot, where the effects of strain are eliminated, served as a reference. Results The impact of strain correction on helix angle was small. However, large differences were observed in the transverse and sheet angle values, with and without strain correction. The standard deviation of systolic transverse angles was significantly reduced from 35.9±3.9° to 27.8°±3.5° (p<0.001) upon strain-correction indicating more coherent fiber tracks after correction. Myocyte aggregate structure was aligned more longitudinally in systole compared to diastole as reflected by an increased transmural range of helix angles (71.8°±3.9° systole vs. 55.6°±5.6°, p<0.001 diastole). While diastolic sheet angle histograms had dominant counts at high sheet angle values, systolic histograms showed lower sheet angle values indicating a reorientation of myocyte sheets during contraction. Conclusion An approach for dual-phase cardiac DTI with correction for material strain has been successfully implemented. This technique allows assessing dynamic changes in myofiber architecture between systole and diastole, and emphasizes the need for strain correction when sheet architecture in the heart is imaged with a stimulated echo approach.
Collapse
Affiliation(s)
- Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Aleksandra Kalinowska
- Department of Mechanical and Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Constantin von Deuster
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Jack Harmer
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Rachel W. Chan
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Markus Niemann
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Manka
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | - David Atkinson
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - David E. Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, University Hospital Center of Nîmes, EA 2415, Nîmes, France
- Faculty of Medicine, Montpellier 1 University, Montpellier, France
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
110
|
Images as drivers of progress in cardiac computational modelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:198-212. [PMID: 25117497 PMCID: PMC4210662 DOI: 10.1016/j.pbiomolbio.2014.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/02/2014] [Indexed: 11/28/2022]
Abstract
Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.
Collapse
|
111
|
Lohezic M, Teh I, Bollensdorff C, Peyronnet R, Hales PW, Grau V, Kohl P, Schneider JE. Interrogation of living myocardium in multiple static deformation states with diffusion tensor and diffusion spectrum imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:213-25. [PMID: 25117498 PMCID: PMC4210665 DOI: 10.1016/j.pbiomolbio.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/02/2014] [Indexed: 11/27/2022]
Abstract
Diffusion tensor magnetic resonance imaging (MRI) reveals valuable insights into tissue histo-anatomy and microstructure, and has steadily gained traction in the cardiac community. Its wider use in small animal cardiac imaging in vivo has been constrained by its extreme sensitivity to motion, exaggerated by the high heart rates usually seen in rodents. Imaging of the isolated heart eliminates respiratory motion and, if conducted on arrested hearts, cardiac pulsation. This serves as an important intermediate step for basic and translational studies. However, investigating the micro-structural basis of cardiac deformation in the same heart requires observations in different deformation states. Here, we illustrate the imaging of isolated rat hearts in three mechanical states mimicking diastole (cardioplegic arrest), left-ventricular (LV) volume overload (cardioplegic arrest plus LV balloon inflation), and peak systole (lithium-induced contracture). An optimised MRI-compatible Langendorff perfusion setup with the radio-frequency (RF) coil integrated into the wet chamber was developed for use in a 9.4T horizontal bore scanner. Signal-to-noise ratio improved significantly, by 75% compared to a previous design with external RF coil, and stability tests showed no significant changes in mean T1, T2 or LV wall thickness over a 170 min period. In contracture, we observed a significant reduction in mean fractional anisotropy from 0.32 ± 0.02 to 0.28 ± 0.02, as well as a significant rightward shift in helix angles with a decrease in the proportion of left-handed fibres, as referring to the locally prevailing cell orientation in the heart, from 24.9% to 23.3%, and an increase in the proportion of right-handed fibres from 25.5% to 28.4%. LV overload, in contrast, gave rise to a decrease in the proportion of left-handed fibres from 24.9% to 21.4% and an increase in the proportion of right-handed fibres from 25.5% to 26.0%. The modified perfusion and coil setup offers better performance and control over cardiac contraction states. We subsequently performed high-resolution diffusion spectrum imaging (DSI) and 3D whole heart fibre tracking in fixed ex vivo rat hearts in slack state and contracture. As a model-free method, DSI augmented the measurements of water diffusion by also informing on multiple intra-voxel diffusion orientations and non-Gaussian diffusion. This enabled us to identify the transition from right- to left-handed fibres from the subendocardium to the subepicardium, as well as voxels in apical regions that were traversed by multiple fibres. We observed that both the mean generalised fractional anisotropy and mean kurtosis were lower in hearts in contracture compared to the slack state, by 23% and 9.3%, respectively. While its heavy acquisition burden currently limits the application of DSI in vivo, ongoing work in acceleration techniques may enable its use in live animals and patients. This would provide access to the as yet unexplored dimension of non-Gaussian diffusion that could serve as a highly sensitive marker of cardiac micro-structural integrity.
Collapse
Affiliation(s)
- Maelene Lohezic
- British Heart Foundation Experimental Magnetic Resonance Unit, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Irvin Teh
- British Heart Foundation Experimental Magnetic Resonance Unit, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Bollensdorff
- National Heart and Lung Institute, Imperial College London, London, UK; Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
| | - Rémi Peyronnet
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patrick W Hales
- Imaging and Biophysics Unit, Institute of Child Health, University College London, London, UK
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College London, London, UK; Department of Computer Science, University of Oxford, Oxford, UK
| | - Jürgen E Schneider
- British Heart Foundation Experimental Magnetic Resonance Unit, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
112
|
Sosnovik DE, Mekkaoui C, Huang S, Chen HH, Dai G, Stoeck CT, Ngoy S, Guan J, Wang R, Kostis WJ, Jackowski MP, Wedeen VJ, Kozerke S, Liao R. Microstructural impact of ischemia and bone marrow-derived cell therapy revealed with diffusion tensor magnetic resonance imaging tractography of the heart in vivo. Circulation 2014; 129:1731-41. [PMID: 24619466 PMCID: PMC4034455 DOI: 10.1161/circulationaha.113.005841] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/31/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The arrangement of myofibers in the heart is highly complex and must be replicated by injected cells to produce functional myocardium. A novel approach to characterize the microstructural response of the myocardium to ischemia and cell therapy, with the use of serial diffusion tensor magnetic resonance imaging tractography of the heart in vivo, is presented. METHODS AND RESULTS Validation of the approach was performed in normal (n=6) and infarcted mice (n=6) as well as healthy human volunteers. Mice (n=12) were then injected with bone marrow mononuclear cells 3 weeks after coronary ligation. In half of the mice the donor and recipient strains were identical, and in half the strains were different. A positive response to cell injection was defined by a decrease in mean diffusivity, an increase in fractional anisotropy, and the appearance of new myofiber tracts with the correct orientation. A positive response to bone marrow mononuclear cell injection was seen in 1 mouse. The response of the majority of mice to bone marrow mononuclear cell injection was neutral (9/12) or negative (2/12). The in vivo tractography findings were confirmed with histology. CONCLUSIONS Diffusion tensor magnetic resonance imaging tractography was able to directly resolve the ability of injected cells to generate new myofiber tracts and provided a fundamental readout of their regenerative capacity. A highly novel and translatable approach to assess the efficacy of cell therapy in the heart is thus presented.
Collapse
Affiliation(s)
- David E. Sosnovik
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Choukri Mekkaoui
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Shuning Huang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Howard H. Chen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Guangping Dai
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Soeun Ngoy
- Cardiac Muscle Research Laboratory, Divisions of Cardiology and Genetics, Brigham and Woman’s Hospital, Harvard Medical School, Boston MA
| | - Jian Guan
- Cardiac Muscle Research Laboratory, Divisions of Cardiology and Genetics, Brigham and Woman’s Hospital, Harvard Medical School, Boston MA
| | - Ruopeng Wang
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - William J. Kostis
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Marcel P. Jackowski
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - Van J. Wedeen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Ronglih Liao
- Cardiac Muscle Research Laboratory, Divisions of Cardiology and Genetics, Brigham and Woman’s Hospital, Harvard Medical School, Boston MA
| |
Collapse
|
113
|
Quantitative study of the effect of tissue microstructure on contraction in a computational model of rat left ventricle. PLoS One 2014; 9:e92792. [PMID: 24695115 PMCID: PMC3973660 DOI: 10.1371/journal.pone.0092792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/26/2014] [Indexed: 12/03/2022] Open
Abstract
Tissue microstructure, in particular the alignment of myocytes (fibre direction) and their lateral organisation into sheets, is fundamental to cardiac function. We studied the effect of microstructure on contraction in a computational model of rat left ventricular electromechanics. Different fibre models, globally rule-based or locally optimised to DT-MRI data, were compared, in order to understand whether a subject-specific fibre model would enhance the predictive power of our model with respect to the global ones. We also studied the impact of sheets on ventricular deformation by comparing: (a) a transversely isotropic versus an orthotropic material law and (b) a linear model with a bimodal model of sheet transmural variation. We estimated ejection fraction, wall thickening and base-to-apex shortening and compared them with measures from cine-MRI. We also evaluated Lagrangian strains as local metrics of cardiac deformation. Our results show that the subject-specific fibre model provides little improvement in the metric predictions with respect to global fibre models while material orthotropy allows closer agreement with measures than transverse isotropy. Nonetheless, the impact of sheets in our model is smaller than that of fibres. We conclude that further investigation of the modelling of sheet dynamics is necessary to fully understand the impact of tissue structure on cardiac deformation.
Collapse
|
114
|
|
115
|
Chen Y, Ye L, Zhong J, Li X, Yan C, Chandler MP, Calvin S, Xiao F, Negia M, Low WC, Zhang J, Yu X. The Structural Basis of Functional Improvement in Response to Human Umbilical Cord Blood Stem Cell Transplantation in Hearts With Postinfarct LV Remodeling. Cell Transplant 2013; 24:971-83. [PMID: 24332083 DOI: 10.3727/096368913x675746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cellular therapy for myocardial repair has been one of the most intensely investigated interventional strategies for acute myocardial infarction. Although the therapeutic potential of stem cells has been demonstrated in various studies, the underlying mechanisms for such improvements are poorly understood. In the present study, we investigated the long-term effects of stem cell therapy on both myocardial fiber organization and regional contractile function using a rat model of postinfarct remodeling. Human nonhematopoietic umbilical cord blood stem cells (nh-UCBSCs) were administered via tail vein to rats 2 days after infarct surgery. Animals were maintained without immunosuppressive therapy. In vivo and ex vivo MR imaging was performed on infarct hearts 10 months after cell transplantation. Compared to the age-matched rats exposed to the identical surgery, both global and regional cardiac functions of the nh-UCBSC-treated hearts, such as ejection fraction, ventricular strain, and torsion, were significantly improved. More importantly, the treated hearts exhibited preserved fiber orientation and water diffusivities that were similar to those in sham-operated control hearts. These data provide the first evidence that nh-UCBSC treatment may prevent/delay untoward structural remodeling in postinfarct hearts, which supports the improved LV function observed in vivo in the absence of immunosuppression, suggesting a beneficial paracrine effect occurred with the cellular therapy.
Collapse
Affiliation(s)
- Yong Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Diffusion MRI tractography of the developing human fetal heart. PLoS One 2013; 8:e72795. [PMID: 23991152 PMCID: PMC3753231 DOI: 10.1371/journal.pone.0072795] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/15/2013] [Indexed: 11/19/2022] Open
Abstract
Objective Human myocardium has a complex and anisotropic 3D fiber pattern. It remains unknown, however, when in fetal life this anisotropic pattern develops and whether the human heart is structurally fully mature at birth. We aimed here to use diffusion tensor MRI (DTI) tractography to characterize the evolution of fiber architecture in the developing human fetal heart. Methods Human fetal hearts (n = 5) between 10–19 weeks of gestation were studied. The heart from a 6-day old neonate and an adult human heart served as controls. The degree of myocardial anisotropy was measured by calculating the fractional anisotropy (FA) index. In addition, fiber tracts were created by numerically integrating the primary eigenvector field in the heart into coherent streamlines. Results At 10–14 weeks the fetal hearts were highly isotropic and few tracts could be resolved. Between 14–19 weeks the anisotropy seen in the adult heart began to develop. Coherent fiber tracts were well resolved by 19 weeks. The 19-week myocardium, however, remained weakly anisotropic with a low FA and no discernable sheet structure. Conclusions The human fetal heart remains highly isotropic until 14–19 weeks, at which time cardiomyocytes self-align into coherent tracts. This process lags 2–3 months behind the onset of cardiac contraction, which may be a prerequisite for cardiomyocyte maturation and alignment. No evidence of a connective tissue scaffold guiding this process could be identified by DTI. Maturation of the heart’s sheet structure occurs late in gestation and evolves further after birth.
Collapse
|
117
|
Young AA, Prince JL. Cardiovascular magnetic resonance: deeper insights through bioengineering. Annu Rev Biomed Eng 2013; 15:433-61. [PMID: 23662778 DOI: 10.1146/annurev-bioeng-071812-152346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heart disease is the main cause of morbidity and mortality worldwide, with coronary artery disease, diabetes, and obesity being major contributing factors. Cardiovascular magnetic resonance (CMR) can provide a wealth of quantitative information on the performance of the heart, without risk to the patient. Quantitative analyses of these data can substantially augment the diagnostic quality of CMR examinations and can lead to more effective characterization of disease and quantification of treatment benefit. This review provides an overview of the current state of the art in CMR with particular regard to the quantification of motion, both microscopic and macroscopic, and the application of bioengineering analysis for the evaluation of cardiac mechanics. We discuss the current clinical practice and the likely advances in the next 5-10 years, as well as the ways in which clinical examinations can be augmented by bioengineering analysis of strain, compliance, and stress.
Collapse
Affiliation(s)
- A A Young
- Department of Anatomy with Radiology, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
| | | |
Collapse
|
118
|
Vadakkumpadan F, Arevalo H, Trayanova NA. Patient-specific modeling of the heart: estimation of ventricular fiber orientations. J Vis Exp 2013:50125. [PMID: 23329052 DOI: 10.3791/50125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Patient-specific simulations of heart (dys)function aimed at personalizing cardiac therapy are hampered by the absence of in vivo imaging technology for clinically acquiring myocardial fiber orientations. The objective of this project was to develop a methodology to estimate cardiac fiber orientations from in vivo images of patient heart geometries. An accurate representation of ventricular geometry and fiber orientations was reconstructed, respectively, from high-resolution ex vivo structural magnetic resonance (MR) and diffusion tensor (DT) MR images of a normal human heart, referred to as the atlas. Ventricular geometry of a patient heart was extracted, via semiautomatic segmentation, from an in vivo computed tomography (CT) image. Using image transformation algorithms, the atlas ventricular geometry was deformed to match that of the patient. Finally, the deformation field was applied to the atlas fiber orientations to obtain an estimate of patient fiber orientations. The accuracy of the fiber estimates was assessed using six normal and three failing canine hearts. The mean absolute difference between inclination angles of acquired and estimated fiber orientations was 15.4 °. Computational simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and ventricular tachycardia indicated that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.The new insights obtained from the project will pave the way for the development of patient-specific models of the heart that can aid physicians in personalized diagnosis and decisions regarding electrophysiological interventions.
Collapse
Affiliation(s)
- Fijoy Vadakkumpadan
- Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University, USA.
| | | | | |
Collapse
|
119
|
Personalization of Cardiac Fiber Orientations from Image Data Using the Unscented Kalman Filter. FUNCTIONAL IMAGING AND MODELING OF THE HEART 2013. [DOI: 10.1007/978-3-642-38899-6_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
120
|
Zhang L, Allen J, Hu L, Caruthers SD, Wickline SA, Chen J. Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 2012; 304:H246-52. [PMID: 23161881 DOI: 10.1152/ajpheart.00129.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiomyocyte organization is a critical determinant of coordinated cardiac contractile function. Because of the acute opening of the pulmonary circulation, the relative workload of the left ventricle (LV) and right ventricle (RV) changes substantially immediately after birth. We hypothesized that three-dimensional cardiomyocyte architecture might be required to adapt rapidly to accommodate programmed perinatal changes of cardiac function. Isolated fixed hearts from pig fetuses or pigs at midgestation, preborn, postnatal day 1 (P1), postnatal day 5, postnatal day 14 (P14), and adulthood (n = 5 for each group) were acquired for diffusion-weighted magnetic resonance imaging. Cardiomyocyte architecture was visualized by three-dimensional fiber tracking and was quantitatively evaluated by the measured helix angle (α(h)). Upon the completion of MRI, hearts were sectioned and stained with hematoxylin/eosin (H&E) to evaluate cardiomyocyte alignment, with picrosirius red to evaluate collagen content, and with anti-Ki67 to evaluate postnatal cell proliferation. The helical architecture of cardiomyocyte was observed as early as the midgestational period. Postnatal changes of cardiomyocyte architecture were observed from P1 to P14, which primary occurred in the septum and RV free wall (RVFW). In the septum, the volume ratio of LV- vs. RV-associated cardiomyocytes rapidly changed from RV-LV balanced pattern at birth to LV dominant pattern by P14. In the RVFW, subendocardial α(h) decreased by ~30° from P1 to P14. These findings indicate that the helical architecture of cardiomyocyte is developed as early as the midgestation period. Substantial and rapid adaptive changes in cardiac microarchitecture suggested considerable developmental plasticity of cardiomyocyte form and function in the postnatal period in response to altered cardiac mechanical function.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medicine, Washington University, Saint Louis, MO 63108, USA
| | | | | | | | | | | |
Collapse
|
121
|
Mekkaoui C, Huang S, Chen HH, Dai G, Reese TG, Kostis WJ, Thiagalingam A, Maurovich-Horvat P, Ruskin JN, Hoffmann U, Jackowski MP, Sosnovik DE. Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework and histological validation. J Cardiovasc Magn Reson 2012; 14:70. [PMID: 23061749 PMCID: PMC3506570 DOI: 10.1186/1532-429x-14-70] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of myofiber reorganization in the remote zone after myocardial infarction has been performed in 2D. Microstructural reorganization in remodeled hearts, however, can only be fully appreciated by considering myofibers as continuous 3D entities. The aim of this study was therefore to develop a technique for quantitative 3D diffusion CMR tractography of the heart, and to apply this method to quantify fiber architecture in the remote zone of remodeled hearts. METHODS Diffusion Tensor CMR of normal human, sheep, and rat hearts, as well as infarcted sheep hearts was performed ex vivo. Fiber tracts were generated with a fourth-order Runge-Kutta integration technique and classified statistically by the median, mean, maximum, or minimum helix angle (HA) along the tract. An index of tract coherence was derived from the relationship between these HA statistics. Histological validation was performed using phase-contrast microscopy. RESULTS In normal hearts, the subendocardial and subepicardial myofibers had a positive and negative HA, respectively, forming a symmetric distribution around the midmyocardium. However, in the remote zone of the infarcted hearts, a significant positive shift in HA was observed. The ratio between negative and positive HA variance was reduced from 0.96 ± 0.16 in normal hearts to 0.22 ± 0.08 in the remote zone of the remodeled hearts (p < 0.05). This was confirmed histologically by the reduction of HA in the subepicardium from -52.03° ± 2.94° in normal hearts to -37.48° ± 4.05° in the remote zone of the remodeled hearts (p < 0.05). CONCLUSIONS A significant reorganization of the 3D fiber continuum is observed in the remote zone of remodeled hearts. The positive (rightward) shift in HA in the remote zone is greatest in the subepicardium, but involves all layers of the myocardium. Tractography-based quantification, performed here for the first time in remodeled hearts, may provide a framework for assessing regional changes in the left ventricle following infarction.
Collapse
Affiliation(s)
- Choukri Mekkaoui
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuning Huang
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard H Chen
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guangping Dai
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William J Kostis
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aravinda Thiagalingam
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pal Maurovich-Horvat
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeremy N Ruskin
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcel P Jackowski
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - David E Sosnovik
- Athinoula A. Martinos Center For Biomedical Imaging, Boston, MA, USA
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Athinoula A. Martinos Center For Biomedical Imaging, 149 13th Street, Charlestown, MA, 02129, USA
| |
Collapse
|
122
|
Nielles-Vallespin S, Mekkaoui C, Gatehouse P, Reese TG, Keegan J, Ferreira PF, Collins S, Speier P, Feiweier T, de Silva R, Jackowski MP, Pennell DJ, Sosnovik DE, Firmin D. In vivo diffusion tensor MRI of the human heart: reproducibility of breath-hold and navigator-based approaches. Magn Reson Med 2012; 70:454-65. [PMID: 23001828 DOI: 10.1002/mrm.24488] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 11/11/2022]
Abstract
The aim of this study was to implement a quantitative in vivo cardiac diffusion tensor imaging (DTI) technique that was robust, reproducible, and feasible to perform in patients with cardiovascular disease. A stimulated-echo single-shot echo-planar imaging (EPI) sequence with zonal excitation and parallel imaging was implemented, together with a novel modification of the prospective navigator (NAV) technique combined with a biofeedback mechanism. Ten volunteers were scanned on two different days, each time with both multiple breath-hold (MBH) and NAV multislice protocols. Fractional anisotropy (FA), mean diffusivity (MD), and helix angle (HA) fiber maps were created. Comparison of initial and repeat scans showed good reproducibility for both MBH and NAV techniques for FA (P > 0.22), MD (P > 0.15), and HA (P > 0.28). Comparison of MBH and NAV FA (FAMBHday1 = 0.60 ± 0.04, FANAVday1 = 0.60 ± 0.03, P = 0.57) and MD (MDMBHday1 = 0.8 ± 0.2 × 10(-3) mm(2) /s, MDNAVday1 = 0.9 ± 0.2 × 10(-3) mm(2) /s, P = 0.07) values showed no significant differences, while HA values (HAMBHday1Endo = 22 ± 10°, HAMBHday1Mid-Endo = 20 ± 6°, HAMBHday1Mid-Epi = -1 ± 6°, HAMBHday1Epi = -17 ± 6°, HANAVday1Endo = 7 ± 7°, HANAVday1Mid-Endo = 13 ± 8°, HANAVday1Mid-Epi = -2 ± 7°, HANAVday1Epi = -14 ± 6°) were significantly different. The scan duration was 20% longer with the NAV approach. Currently, the MBH approach is the more robust in normal volunteers. While the NAV technique still requires resolution of some bulk motion sensitivity issues, these preliminary experiments show its potential for in vivo clinical cardiac diffusion tensor imaging and for delivering high-resolution in vivo 3D DTI tractography of the heart.
Collapse
|
123
|
Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:319-30. [PMID: 23043978 PMCID: PMC3526796 DOI: 10.1016/j.pbiomolbio.2012.07.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 11/21/2022]
Abstract
Deformation and wall-thickening of ventricular myocardium are essential for cardiac pump function. However, insight into the histo-anatomical basis for cardiac tissue re-arrangement during contraction is limited. In this report, we describe dynamic changes in regionally prevailing cardiomyocyte (fibre) and myolaminar (sheet) orientations, using Diffusion Tensor Imaging (DTI) of ventricles in the same living heart in two different mechanical states. Hearts, isolated from Sprague–Dawley rats, were Langendorff-perfused and imaged, initially in their slack state during cardioplegic arrest, then during lithium-induced contracture. Regional fibre- and sheet-orientations were derived from DTI-data on a voxel-wise basis. Contraction was accompanied with a decrease in left-handed helical fibres (handedness relative to the baso-apical direction) in basal, equatorial, and apical sub-epicardium (by 14.0%, 17.3%, 15.8% respectively; p < 0.001), and an increase in right-handed helical fibres of the sub-endocardium (by 11.0%, 12.1% and 16.1%, respectively; p < 0.001). Two predominant sheet-populations were observed, with sheet-angles of either positive (β+) or negative (β−) polarity relative to a ‘chamber-horizontal plane’ (defined as normal to the left ventricular long-axis). In contracture, mean ‘intersection’-angle (geometrically quantifiable intersection of sheet-angle projections) between β+ and β− sheet-populations increased from 86.2 ± 5.5° (slack) to 108.3 ± 5.4° (p < 0.001). Subsequent high-resolution DTI of fixed myocardium, and histological sectioning, reconfirmed the existence of alternating sheet-plane populations. Our results suggest that myocardial tissue layers in alternating sheet-populations align into a more chamber-horizontal orientation during contraction. This re-arrangement occurs via an accordion-like mechanism that, combined with inter-sheet slippage, can significantly contribute to ventricular deformation, including wall-thickening in a predominantly centripetal direction and baso-apical shortening.
Collapse
|
124
|
Lee WN, Larrat B, Pernot M, Tanter M. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium. Phys Med Biol 2012; 57:5075-95. [DOI: 10.1088/0031-9155/57/16/5075] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
125
|
Cheng YJ, Lang D, Caruthers SD, Efimov IR, Chen J, Wickline SA. Focal but reversible diastolic sheet dysfunction reflects regional calcium mishandling in dystrophic mdx mouse hearts. Am J Physiol Heart Circ Physiol 2012; 303:H559-68. [PMID: 22777417 DOI: 10.1152/ajpheart.00321.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cardiac dysfunction is a primary cause of patient mortality in Duchenne muscular dystrophy, potentially related to elevated cytosolic calcium. However, the regional versus global functional consequences of cellular calcium mishandling have not been defined in the whole heart. Here we sought for the first time to elucidate potential regional dependencies between calcium mishandling and myocardial fiber/sheet function as a manifestation of dystrophin-deficient (mdx) cardiomyopathy. Isolated-perfused hearts from 16-mo-old mdx (N = 10) and wild-type (WT; N = 10) were arrested sequentially in diastole and systole for diffusion tensor MRI quantification of myocardial sheet architecture and function. When compared with WT hearts, mdx hearts exhibited normal systolic sheet architecture but a lower diastolic sheet angle magnitude (|β|) in the basal region. The regional diastolic sheet dysfunction was normalized by reducing perfusate calcium concentrations. Optical mapping of calcium transients in isolated hearts (3 mdx and 4 WT) revealed a stretch-inducible regional defect of intracellular calcium reuptake, reflected by a 25% increase of decay times (T(50)) and decay constants, at the base of mdx hearts. The basal region of mdx hearts also exhibited greater fibrosis than did the apex, which matched the regional sheet dysfunction. We conclude that myocardial diastolic sheet dysfunction is observed initially in basal segments along with calcium mishandling, ultimately culminating in increased fibrosis. The preservation of relatively normal calcium reuptake and diastolic/systolic sheet mechanics throughout the rest of the heart, together with the rapid reversibility of functional defects by reducing cytosolic calcium, points to the significance of regional mechanical factors in the progression of the disease.
Collapse
Affiliation(s)
- Ya-Jian Cheng
- Cardiovascular Division, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
126
|
Benoist D, Stones R, Drinkhill MJ, Benson AP, Yang Z, Cassan C, Gilbert SH, Saint DA, Cazorla O, Steele DS, Bernus O, White E. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension. Am J Physiol Heart Circ Physiol 2012; 302:H2381-95. [PMID: 22427523 PMCID: PMC3378302 DOI: 10.1152/ajpheart.01084.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/15/2012] [Indexed: 12/22/2022]
Abstract
Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca(2+) handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca(2+) transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca(2+)-ATPase activity, increased sarcoplasmic reticular Ca(2+)-release fraction, and increased Ca(2+) spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca(2+) handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs.
Collapse
Affiliation(s)
- David Benoist
- Institute of Membrane and Systems Biology, University of Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Zhang C, Cheng YJ, Chen J, Wickline S, Wang LV. Label-free photoacoustic microscopy of myocardial sheet architecture. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:060506. [PMID: 22734729 PMCID: PMC3379726 DOI: 10.1117/1.jbo.17.6.060506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 05/04/2023]
Abstract
Cardiac myofibers are organized into sheet architectures, which contribute to up to 40% of the heart wall thickening for ejection of blood for circulation. It is important to delineate the sheet architecture for a better understanding of cardiac mechanisms. However, current sheet imaging technologies are limited by fixation-induced dehydration/deformation and low spatial resolution. Here we implemented high-resolution label-free photoacoustic microscopy (PAM) of the myocardial sheet architecture. With high endogenous optical-absorption contrast originating mainly from cytochrome, myoglobin, and melanin, PAM can image the unfixed, unstained and unsliced heart without introducing deformation artifacts. A fresh blood-free mouse heart was imaged by PAM ex vivo. The three-dimensional branching sheets were clearly identified within 150 [micro sign]m depth. Various morphological parameters were derived from the PAM image. The sheet thickness (80 ± 10 μm) and the cleavage height (11 ± 1 μm) were derived from an undehydrated heart for the first time. Therefore, PAM has the potential for the functional imaging of sheet architecture in ex vivo perfused and viable hearts.
Collapse
Affiliation(s)
- Chi Zhang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130
| | - Ya-Jian Cheng
- Washington University School of Medicine, Cardiovascular Division, Campus Box 8215, 4320 Forest Park Avenue, St. Louis, Missouri 63108
| | - Junjie Chen
- Washington University School of Medicine, Cardiovascular Division, Campus Box 8215, 4320 Forest Park Avenue, St. Louis, Missouri 63108
| | - Samuel Wickline
- Washington University School of Medicine, Cardiovascular Division, Campus Box 8215, 4320 Forest Park Avenue, St. Louis, Missouri 63108
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130
| |
Collapse
|
128
|
Bayer JD, Blake RC, Plank G, Trayanova NA. A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann Biomed Eng 2012; 40:2243-54. [PMID: 22648575 DOI: 10.1007/s10439-012-0593-5] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/10/2012] [Indexed: 12/15/2022]
Abstract
Electrical waves traveling throughout the myocardium elicit muscle contractions responsible for pumping blood throughout the body. The shape and direction of these waves depend on the spatial arrangement of ventricular myocytes, termed fiber orientation. In computational studies simulating electrical wave propagation or mechanical contraction in the heart, accurately representing fiber orientation is critical so that model predictions corroborate with experimental data. Typically, fiber orientation is assigned to heart models based on Diffusion Tensor Imaging (DTI) data, yet few alternative methodologies exist if DTI data is noisy or absent. Here we present a novel Laplace-Dirichlet Rule-Based (LDRB) algorithm to perform this task with speed, precision, and high usability. We demonstrate the application of the LDRB algorithm in an image-based computational model of the canine ventricles. Simulations of electrical activation in this model are compared to those in the same geometrical model but with DTI-derived fiber orientation. The results demonstrate that activation patterns from simulations with LDRB and DTI-derived fiber orientations are nearly indistinguishable, with relative differences ≤6%, absolute mean differences in activation times ≤3.15 ms, and positive correlations ≥0.99. These results convincingly show that the LDRB algorithm is a robust alternative to DTI for assigning fiber orientation to computational heart models.
Collapse
Affiliation(s)
- J D Bayer
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
129
|
Rantner LJ, Arevalo HJ, Constantino JL, Efimov IR, Plank G, Trayanova NA. Three-dimensional mechanisms of increased vulnerability to electric shocks in myocardial infarction: altered virtual electrode polarizations and conduction delay in the peri-infarct zone. J Physiol 2012; 590:4537-51. [PMID: 22586222 DOI: 10.1113/jphysiol.2012.229088] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Defibrillation efficacy is decreased in infarcted hearts, but the mechanisms by which infarcted hearts are more vulnerable to electric shocks than healthy hearts remain poorly understood. The goal of this study was to provide insight into the 3D mechanisms for the increased vulnerability to electric shocks in infarcted hearts. We hypothesized that changes in virtual electrode polarizations (VEPs) and propagation delay through the peri-infarct zone (PZ) were responsible. We developed a micro anatomically detailed rabbit ventricular model with chronic myocardial infarction from magnetic resonance imaging and enriched the model with data from optical mapping experiments. We further developed a control model without the infarct. The simulation protocol involved apical pacing followed by biphasic shocks. Simulation results from both models were compared.The upper limit of vulnerability(ULV) was 8 V cm(-1) in the infarction model and 4 V cm(-1) in the control model. VEPs were less pronounced in the infarction model, providing a larger excitable area for postshock propagation but smaller transmembrane potential gradients to initiate new wavefronts. Initial post-shock transmural activation occurred at a later time in the infarction model, and the PZ served to delay propagation in subsequent beats. The presence of the PZ was found to be responsible for the increased vulnerability.
Collapse
Affiliation(s)
- Lukas J Rantner
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
130
|
Vadakkumpadan F, Arevalo H, Ceritoglu C, Miller M, Trayanova N. Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:1051-60. [PMID: 22271833 PMCID: PMC3518051 DOI: 10.1109/tmi.2012.2184799] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Technological limitations pose a major challenge to acquisition of myocardial fiber orientations for patient-specific modeling of cardiac (dys)function and assessment of therapy. The objective of this project was to develop a methodology to estimate cardiac fiber orientations from in vivo images of patient heart geometries. An accurate representation of ventricular geometry and fiber orientations was reconstructed, respectively, from high-resolution ex vivo structural magnetic resonance (MR) and diffusion tensor (DT) MR images of a normal human heart, referred to as the atlas. Ventricular geometry of a patient heart was extracted, via semiautomatic segmentation, from an in vivo computed tomography (CT) image. Using image transformation algorithms, the atlas ventricular geometry was deformed to match that of the patient. Finally, the deformation field was applied to the atlas fiber orientations to obtain an estimate of patient fiber orientations. The accuracy of the fiber estimates was assessed using six normal and three failing canine hearts. The mean absolute difference between inclination angles of acquired and estimated fiber orientations was 15.4°. Computational simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and ventricular tachycardia indicated that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.
Collapse
Affiliation(s)
- Fijoy Vadakkumpadan
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
131
|
Lee WN, Pernot M, Couade M, Messas E, Bruneval P, Bel A, Hagège AA, Fink M, Tanter M. Mapping myocardial fiber orientation using echocardiography-based shear wave imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:554-62. [PMID: 22020673 DOI: 10.1109/tmi.2011.2172690] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied. Known in physics, shear wave propagates faster along than across the fiber direction. SWI is a technique that can generate shear waves travelling in different directions with respect to each myocardial layer. SWI further analyzed the shear wave velocity across the entire left-ventricular (LV) myocardial thickness, ranging between 10 (diastole) and 25 mm (systole), with a resolution of 0.2 mm in the middle segment of the LV anterior wall region. The fiber angle at each myocardial layer was thus estimated by finding the maximum shear wave speed. In the in vitro porcine myocardium (n=5) , the SWI-estimated fiber angles gradually changed from +80° ± 7° (endocardium) to +30° ± 13° (midwall) and -40° ± 10° (epicardium) with 0° aligning with the circumference of the heart. This transmural fiber orientation was well correlated with histology findings. SWI further succeeded in mapping the transmural fiber orientation in three beating ovine hearts in vivo. At midsystole, the average fiber orientation exhibited 71° ± 13° (endocardium), 27° ± 8° (midwall), and -26° ± 30° (epicardium). We demonstrated the capability of SWI in mapping myocardial fiber orientation in vitro and in vivo. SWI may serve as a new tool for the noninvasive characterization of myocardial fiber structure.
Collapse
Affiliation(s)
- Wei-Ning Lee
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Cooper LL, Odening KE, Hwang MS, Chaves L, Schofield L, Taylor CA, Gemignani AS, Mitchell GF, Forder JR, Choi BR, Koren G. Electromechanical and structural alterations in the aging rabbit heart and aorta. Am J Physiol Heart Circ Physiol 2012; 302:H1625-35. [PMID: 22307668 DOI: 10.1152/ajpheart.00960.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aging increases the risk for arrhythmias and sudden cardiac death (SCD). We aimed at elucidating aging-related electrical, functional, and structural changes in the heart and vasculature that account for this heightened arrhythmogenic risk. Young (5-9 mo) and old (3.5-6 yr) female New Zealand White (NZW) rabbits were subjected to in vivo hemodynamic, electrophysiological, and echocardiographic studies as well as ex vivo optical mapping, high-field magnetic resonance imaging (MRI), and histochemical experiments. Aging increased aortic stiffness (baseline pulse wave velocity: young, 3.54 ± 0.36 vs. old, 4.35 ± 0.28 m/s, P < 0.002) and diastolic (end diastolic pressure-volume relations: 3.28 ± 0.5 vs. 4.95 ± 1.5 mmHg/ml, P < 0.05) and systolic (end systolic pressure-volume relations: 20.56 ± 4.2 vs. 33.14 ± 8.4 mmHg/ml, P < 0.01) myocardial elastances in old rabbits. Electrophysiological and optical mapping studies revealed age-related slowing of ventricular and His-Purkinje conduction (His-to-ventricle interval: 23 ± 2.5 vs. 31.9 ± 2.9 ms, P < 0.0001), altered conduction anisotropy, and a greater inducibility of ventricular fibrillation (VF, 3/12 vs. 7/9, P < 0.05) in old rabbits. Histochemical studies confirmed an aging-related increased fibrosis in the ventricles. MRI showed a deterioration of the free-running Purkinje fiber network in ventricular and septal walls in old hearts as well as aging-related alterations of the myofibrillar orientation and myocardial sheet structure that may account for this slowed conduction velocity. Aging leads to parallel stiffening of the aorta and the heart, including an increase in systolic stiffness and contractility and diastolic stiffness. Increasingly, anisotropic conduction velocity due to fibrosis and altered myofibrillar orientation and myocardial sheet structure may contribute to the pathogenesis of VF in old hearts. The aging rabbit model represents a useful tool for elucidating age-related changes that predispose the aging heart to arrhythmias and SCD.
Collapse
Affiliation(s)
- Leroy L Cooper
- Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Vadakkumpadan F, Arevalo H, Ceritoglu C, Miller M, Trayanova N. Image-based estimation of ventricular fiber orientations for patient-specific simulations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:1672-5. [PMID: 22254646 DOI: 10.1109/iembs.2011.6090481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Patient-specific simulation of heart (dys)function aimed at personalizing cardiac therapy are hampered by the absence of in vivo imaging technology for clinically acquiring myocardial fiber orientations. In this research, we develop a methodology to predict ventricular fiber orientations of a patient heart, given the geometry of the heart and an atlas. We test the methodology by comparing the estimated fiber orientations with measured ones, and by quantifying the effect of the estimation error on outcomes of electrophysiological simulations, in normal and failing canine hearts. The new insights obtained from the project will pave the way for the development of patient-specific models of the heart that can aid physicians in personalized diagnosis and decisions regarding electrophysiological interventions.
Collapse
Affiliation(s)
- Fijoy Vadakkumpadan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | | | |
Collapse
|
134
|
Colli Franzone P, Pavarino L, Scacchi S. Cardiac excitation mechanisms, wavefront dynamics and strength–interval curves predicted by 3D orthotropic bidomain simulations. Math Biosci 2012; 235:66-84. [DOI: 10.1016/j.mbs.2011.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/12/2011] [Accepted: 10/21/2011] [Indexed: 11/15/2022]
|
135
|
Bartsch H, Maechler P, Annese J. Automated determination of axonal orientation in the deep white matter of the human brain. Brain Connect 2012; 2:284-90. [PMID: 23030312 PMCID: PMC3621296 DOI: 10.1089/brain.2012.0096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The wide-spread utilization of diffusion-weighted imaging in the clinical neurosciences to assess white-matter (WM) integrity and architecture calls for robust validation strategies applied to the data that are acquired with noninvasive imaging. However, the pathology and detailed fiber architecture of WM tissue can only be observed postmortem. With these considerations in mind, we designed an automated method for the determination of axonal orientation in high-resolution microscope images. The algorithm was tested on tissue that was stained using a silver impregnation technique that was optimized to resolve axonal fibers against very low levels of background. The orientation of individual nerve fibers was detected using spatial filtering and a template-matching algorithm, and the results are displayed as color-coded overlays. Quantitative models of WM fiber architecture at the microscopic level can lead to improved interpretation of low-resolution neuroimaging data and to more accurate mapping of fiber pathways in the human brain.
Collapse
|
136
|
Damon BM, Buck AKW, Ding Z. Diffusion-Tensor MRI Based Skeletal Muscle Fiber Tracking. ACTA ACUST UNITED AC 2011; 3:675-687. [PMID: 25429308 DOI: 10.2217/iim.11.60] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A skeletal muscle's function is strongly influenced by the internal organization and geometric properties of its fibers, a property known as muscle architecture. Diffusion-tensor magnetic resonance imaging-based fiber tracking provides a powerful tool for non-invasive muscle architecture studies, has three-dimensional sensitivity, and uses a fixed frame of reference. Significant advances have been made in muscle fiber tracking technology, including defining seed points for fiber tracking, quantitatively characterizing muscle architecture, implementing denoising procedures, and testing validity and repeatability. Some examples exist of how these data can be integrated with those from other advanced MRI and computational methods to provide novel insights into muscle function. Perspectives are offered regarding future directions in muscle diffusion-tensor imaging, including needs to develop an improved understanding for the microstructural basis for reduced and anisotropic diffusion, establish the best practices for data acquisition and analysis, and integrate fiber tracking with other physiological data.
Collapse
Affiliation(s)
- Bruce M Damon
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA ; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA ; Department of Biomedical Engineering, Vanderbilt University, Nashville TN USA ; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville TN USA ; Program in Chemical and Physical Biology, Vanderbilt University, Nashville TN USA
| | - Amanda K W Buck
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA ; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA
| | - Zhaohua Ding
- Institute of Imaging Science, Vanderbilt University, Nashville TN USA ; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville TN USA ; Department of Biomedical Engineering, Vanderbilt University, Nashville TN USA ; Program in Chemical and Physical Biology, Vanderbilt University, Nashville TN USA ; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN USA
| |
Collapse
|
137
|
Gilbert SH, Benoist D, Benson AP, White E, Tanner SF, Holden AV, Dobrzynski H, Bernus O, Radjenovic A. Visualization and quantification of whole rat heart laminar structure using high-spatial resolution contrast-enhanced MRI. Am J Physiol Heart Circ Physiol 2011; 302:H287-98. [PMID: 22021329 DOI: 10.1152/ajpheart.00824.2011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been shown by histology that cardiac myocytes are organized into laminae and this structure is important in function, both influencing the spread of electrical activation and enabling myocardial thickening in systole by laminar sliding. We have carried out high-spatial resolution three-dimensional MRI of the ventricular myolaminae of the entire volume of the isolated rat heart after contrast perfusion [dimeglumine gadopentate (Gd-DTPA)]. Four ex vivo rat hearts were perfused with Gd-DTPA and fixative and high-spatial resolution MRI was performed on a 9.4T MRI system. After MRI, cryosectioning followed by histology was performed. Images from MRI and histology were aligned, described, and quantitatively compared. In the three-dimensional MR images we directly show the presence of laminae and demonstrate that these are highly branching and are absent from much of the subepicardium. We visualized these MRI volumes to demonstrate laminar architecture and quantitatively demonstrated that the structural features observed are similar to those imaged in histology. We showed qualitatively and quantitatively that laminar architecture is similar in the four hearts. MRI can be used to image the laminar architecture of ex vivo hearts in three dimensions, and the images produced are qualitatively and quantitatively comparable with histology. We have demonstrated in the rat that: 1) laminar architecture is consistent between hearts; 2) myolaminae are absent from much of the subepicardium; and 3) although localized orthotropy is present throughout the myocardium, tracked myolaminae are branching structures and do not have a discrete identity.
Collapse
Affiliation(s)
- Stephen H Gilbert
- Institute of Membrane and Systems Biology, University of Leeds, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Ahn S, Lee SK. Diffusion tensor imaging: exploring the motor networks and clinical applications. Korean J Radiol 2011; 12:651-61. [PMID: 22043146 PMCID: PMC3194768 DOI: 10.3348/kjr.2011.12.6.651] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/03/2011] [Indexed: 01/23/2023] Open
Abstract
With the advances in diffusion magnetic resonance (MR) imaging techniques, diffusion tensor imaging (DTI) has been applied to a number of neurological conditions because DTI can demonstrate microstructures of the brain that are not assessable with conventional MR imaging. Tractography based on DTI offers gross visualization of the white matter fiber architecture in the human brain in vivo. Degradation of restrictive barriers and disruption of the cytoarchitecture result in changes in the diffusion of water molecules in various pathological conditions, and these conditions can also be assessed with DTI. Yet many factors may influence the ability to apply DTI clinically, so these techniques have to be used with a cautious hand.
Collapse
Affiliation(s)
- Sungsoo Ahn
- Department of Radiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | |
Collapse
|
139
|
Kung GL, Nguyen TC, Itoh A, Skare S, Ingels NB, Miller DC, Ennis DB. The presence of two local myocardial sheet populations confirmed by diffusion tensor MRI and histological validation. J Magn Reson Imaging 2011; 34:1080-91. [PMID: 21932362 DOI: 10.1002/jmri.22725] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 06/27/2011] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To establish the correspondence between the two histologically observable and diffusion tensor MRI (DTMRI) measurements of myolaminae orientation for the first time and show that single myolaminar orientations observed in local histology may result from histological artifact. MATERIALS AND METHODS DTMRI was performed on six sheep left ventricles (LV), then corresponding direct histological transmural measurements were made within the anterobasal and lateral-equatorial LV. Secondary and tertiary eigenvectors of the diffusion tensor were compared with each of the two locally observable sheet orientations from histology. Diffusion tensor invariants were calculated to compare differences in microstructural diffusive properties between histological locations with one observable sheet population and two observable sheet populations. RESULTS Mean difference ± 1SD between DTMRI and histology measured sheet angles was 8° ± 27°. Diffusion tensor invariants showed no significant differences between histological locations with one observable sheet population and locations with two observable sheet populations. CONCLUSION DTMRI measurements of myolaminae orientations derived from the secondary and tertiary eigenvectors correspond to each of the two local myolaminae orientations observed in histology. Two local sheet populations may exist throughout LV myocardium, and one local sheet population observed in histology may be a result of preparation artifact.
Collapse
Affiliation(s)
- Geoffrey L Kung
- Department of Radiological Sciences, University of California, Los Angeles, California 90024, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Hamarneh G, McIntosh C, Drew MS. Perception-based visualization of manifold-valued medical images using distance-preserving dimensionality reduction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:1314-1327. [PMID: 21296705 DOI: 10.1109/tmi.2011.2111422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A method for visualizing manifold-valued medical image data is proposed. The method operates on images in which each pixel is assumed to be sampled from an underlying manifold. For example, each pixel may contain a high dimensional vector, such as the time activity curve (TAC) in a dynamic positron emission tomography (dPET) or a dynamic single photon emission computed tomography (dSPECT) image, or the positive semi-definite tensor in a diffusion tensor magnetic resonance image (DTMRI). A nonlinear mapping reduces the dimensionality of the pixel data to achieve two goals: distance preservation and embedding into a perceptual color space. We use multidimensional scaling distance-preserving mapping to render similar pixels (e.g., DT or TAC pixels) with perceptually similar colors. The 3D CIELAB perceptual color space is adopted as the range of the distance preserving mapping, with a final similarity transform mapping colors to a maximum gamut size. Similarity between pixels is either determined analytically as geodesics on the manifold of pixels or is approximated using manifold learning techniques. In particular, dissimilarity between DTMRI pixels is evaluated via a Log-Euclidean Riemannian metric respecting the manifold of the rank 3, second-order positive semi-definite DTs, whereas the dissimilarity between TACs is approximated via ISOMAP. We demonstrate our approach via artificial high-dimensional, manifold-valued data, as well as case studies of normal and pathological clinical brain and heart DTMRI, dPET, and dSPECT images. Our results demonstrate the effectiveness of our approach in capturing, in a perceptually meaningful way, important features in the data.
Collapse
Affiliation(s)
- Ghassan Hamarneh
- Medical Image Analysis Laboratory, School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada.
| | | | | |
Collapse
|
141
|
Gurev V, Lee T, Constantino J, Arevalo H, Trayanova NA. Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart. Biomech Model Mechanobiol 2011; 10:295-306. [PMID: 20589408 PMCID: PMC3166526 DOI: 10.1007/s10237-010-0235-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/15/2010] [Indexed: 10/19/2022]
Abstract
Current multi-scale computational models of ventricular electromechanics describe the full process of cardiac contraction on both the micro- and macro- scales including: the depolarization of cardiac cells, the release of calcium from intracellular stores, tension generation by cardiac myofilaments, and mechanical contraction of the whole heart. Such models are used to reveal basic mechanisms of cardiac contraction as well as the mechanisms of cardiac dysfunction in disease conditions. In this paper, we present a methodology to construct finite element electromechanical models of ventricular contraction with anatomically accurate ventricular geometry based on magnetic resonance and diffusion tensor magnetic resonance imaging of the heart. The electromechanical model couples detailed representations of the cardiac cell membrane, cardiac myofilament dynamics, electrical impulse propagation, ventricular contraction, and circulation to simulate the electrical and mechanical activity of the ventricles. The utility of the model is demonstrated in an example simulation of contraction during sinus rhythm using a model of the normal canine ventricles.
Collapse
Affiliation(s)
- Viatcheslav Gurev
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., CSEB Room 218, Baltimore, MD 21218, USA.
| | | | | | | | | |
Collapse
|
142
|
Okada JI, Washio T, Maehara A, Momomura SI, Sugiura S, Hisada T. Transmural and apicobasal gradients in repolarization contribute to T-wave genesis in human surface ECG. Am J Physiol Heart Circ Physiol 2011; 301:H200-8. [PMID: 21460196 DOI: 10.1152/ajpheart.01241.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cellular basis of the T-wave morphology of surface ECG remains controversial in clinical cardiology. We examined the effect of action potential duration (APD) distribution on T-wave morphology using a realistic model of the human ventricle and torso. We developed a finite-element model of the ventricle consisting of ∼26 million elements, including the conduction system, each implemented with the ion current model of cardiomyocytes. This model was embedded in a torso model with distinct organ structures to obtain the standard ECG leads. The APD distribution was changed in the transmural direction by locating the M cells in either the endocardial or epicardial region. We also introduced apicobasal gradients by modifying the ion channel parameters. Both the transmural gradient (with M cells on the endocardial side) and the apicobasal gradient produced positive T waves, although a very large gradient was required for the apicobasal gradient. By contrast, T waves obtained with the transmural gradient were highly symmetric and, therefore, did not represent the true physiological state. Only combination of the transmural and the moderate apicobasal gradients produced physiological T waves in surface ECG. Positive T waves in surface ECG mainly originated from the transmural distribution of APD with M cells on the endocardial side, although the apicobasal gradient was also required to attain the physiological waveform.
Collapse
Affiliation(s)
- Jun-Ichi Okada
- #381 Environmental Bldg., Kashiwa Campus, The Univ. of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| | | | | | | | | | | |
Collapse
|
143
|
Englund EK, Elder CP, Xu Q, Ding Z, Damon BM. Combined diffusion and strain tensor MRI reveals a heterogeneous, planar pattern of strain development during isometric muscle contraction. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1079-90. [PMID: 21270344 DOI: 10.1152/ajpregu.00474.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The purposes of this study were to create a three-dimensional representation of strain during isometric contraction in vivo and to interpret it with respect to the muscle fiber direction. Diffusion tensor MRI was used to measure the muscle fiber direction of the tibialis anterior (TA) muscle of seven healthy volunteers. Spatial-tagging MRI was used to measure linear strains in six directions during separate 50% maximal isometric contractions of the TA. The strain tensor (E) was computed in the TA's deep and superficial compartments and compared with the respective diffusion tensors. Diagonalization of E revealed a planar strain pattern, with one nonzero negative strain (ε(N)) and one nonzero positive strain (ε(P)); both strains were larger in magnitude (P < 0.05) in the deep compartment [ε(N) = -40.4 ± 4.3%, ε(P) = 35.1 ± 3.5% (means ± SE)] than in the superficial compartment (ε(N) = -24.3 ± 3.9%, ε(P) = 6.3 ± 4.9%). The principal shortening direction deviated from the fiber direction by 24.0 ± 1.3° and 39.8 ± 6.1° in the deep and superficial compartments, respectively (P < 0.05, deep vs. superficial). The deviation of the shortening direction from the fiber direction was due primarily to the lower angle of elevation of the shortening direction over the axial plane than that of the fiber direction. It is concluded that three-dimensional analyses of strain interpreted with respect to the fiber architecture are necessary to characterize skeletal muscle contraction in vivo. The deviation of the principal shortening direction from the fiber direction may relate to intramuscle variations in fiber length and pennation angle.
Collapse
Affiliation(s)
- Erin K Englund
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
144
|
Vadakkumpadan F, Arevalo H, Prassl AJ, Chen J, Kickinger F, Kohl P, Plank G, Trayanova N. Image-based models of cardiac structure in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 2:489-506. [PMID: 20582162 DOI: 10.1002/wsbm.76] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Computational approaches to investigating the electromechanics of healthy and diseased hearts are becoming essential for the comprehensive understanding of cardiac function. In this article, we first present a brief review of existing image-based computational models of cardiac structure. We then provide a detailed explanation of a processing pipeline which we have recently developed for constructing realistic computational models of the heart from high resolution structural and diffusion tensor (DT) magnetic resonance (MR) images acquired ex vivo. The presentation of the pipeline incorporates a review of the methodologies that can be used to reconstruct models of cardiac structure. In this pipeline, the structural image is segmented to reconstruct the ventricles, normal myocardium, and infarct. A finite element mesh is generated from the segmented structural image, and fiber orientations are assigned to the elements based on DTMR data. The methods were applied to construct seven different models of healthy and diseased hearts. These models contain millions of elements, with spatial resolutions in the order of hundreds of microns, providing unprecedented detail in the representation of cardiac structure for simulation studies.
Collapse
Affiliation(s)
- Fijoy Vadakkumpadan
- Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hermenegild Arevalo
- Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anton J Prassl
- Institute of Biophysics and Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Junjie Chen
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Peter Kohl
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Gernot Plank
- Institute of Biophysics and Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Natalia Trayanova
- Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
145
|
Sinha U, Sinha S, Hodgson JA, Edgerton RV. Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging. J Appl Physiol (1985) 2010; 110:807-19. [PMID: 21164150 DOI: 10.1152/japplphysiol.00923.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The orientation of muscle fibers influences the physiological cross-sectional area, the relationship between fiber shortening and aponeurosis shear, and the total force produced by the muscle. Such architectural parameters are challenging to determine particularly in vivo in multicompartment structures such as the human soleus with a complex arrangement of muscle fibers. The objective of this study was to map the fiber architecture of the human soleus in vivo at rest in both neutral and plantarflexed ankle positions using an MRI-based method of diffusion tensor imaging (DTI). Six subjects were imaged at 3 Tesla with the foot at rest in the two ankle positions. Eigenvalues, fractional anisotropy (FA), and eigenvector orientations of fibers in the different soleus subcompartments were evaluated after denoising of the diffusion tensor. The fiber architecture from DTI was similar to earlier studies based on a 3D fiber model from cadavers. The three eigenvalues of the diffusion tensor increased by ∼14% on increasing the joint plantarflexion angle in all of the soleus subcompartments, whereas FA showed a trend to decrease in the posterior and marginal soleus and to increase in the anterior soleus. The angle change in the lead eigenvector between the two foot positions was significant: ∼41° for the posterior soleus and ∼48° for the anterior soleus. Fibers tracked from the subcompartments support these changes seen in the eigenvector orientations. DTI-derived, subject-specific, muscle morphological data could potentially be used to model a more complete description of muscle performance and changes from disease.
Collapse
Affiliation(s)
- Usha Sinha
- Muscle Imaging & Modeling Laboratory, Dept. of Radiology, Univ. of California San Diego, 3510 Dunhill St., San Diego, CA 92121-0852, USA.
| | | | | | | |
Collapse
|
146
|
Benson AP, Bernus O, Dierckx H, Gilbert SH, Greenwood JP, Holden AV, Mohee K, Plein S, Radjenovic A, Ries ME, Smith GL, Sourbron S, Walton RD. Construction and validation of anisotropic and orthotropic ventricular geometries for quantitative predictive cardiac electrophysiology. Interface Focus 2010; 1:101-16. [PMID: 22419977 DOI: 10.1098/rsfs.2010.0005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/08/2010] [Indexed: 11/12/2022] Open
Abstract
Reaction-diffusion computational models of cardiac electrophysiology require both dynamic excitation models that reconstruct the action potentials of myocytes as well as datasets of cardiac geometry and architecture that provide the electrical diffusion tensor D, which determines how excitation spreads through the tissue. We illustrate an experimental pipeline we have developed in our laboratories for constructing and validating such datasets. The tensor D changes with location in the myocardium, and is determined by tissue architecture. Diffusion tensor magnetic resonance imaging (DT-MRI) provides three eigenvectors e(i) and eigenvalues λ(i) at each voxel throughout the tissue that can be used to reconstruct this architecture. The primary eigenvector e(1) is a histologically validated measure of myocyte orientation (responsible for anisotropic propagation). The secondary and tertiary eigenvectors (e(2) and e(3)) specify the directions of any orthotropic structure if λ(2) is significantly greater than λ(3)-this orthotropy has been identified with sheets or cleavage planes. For simulations, the components of D are scaled in the fibre and cross-fibre directions for anisotropic simulations (or fibre, sheet and sheet normal directions for orthotropic tissues) so that simulated conduction velocities match values from optical imaging or plunge electrode experiments. The simulated pattern of propagation of action potentials in the models is partially validated by optical recordings of spatio-temporal activity on the surfaces of hearts. We also describe several techniques that enhance components of the pipeline, or that allow the pipeline to be applied to different areas of research: Q ball imaging provides evidence for multi-modal orientation distributions within a fraction of voxels, infarcts can be identified by changes in the anisotropic structure-irregularity in myocyte orientation and a decrease in fractional anisotropy, clinical imaging provides human ventricular geometry and can identify ischaemic and infarcted regions, and simulations in human geometries examine the roles of anisotropic and orthotropic architecture in the initiation of arrhythmias.
Collapse
Affiliation(s)
- Alan P Benson
- Institute of Membrane and Systems Biology , University of Leeds , Leeds LS2 9JT , UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Price AN, Cheung KK, Cleary JO, Campbell AE, Riegler J, Lythgoe MF. Cardiovascular magnetic resonance imaging in experimental models. Open Cardiovasc Med J 2010; 4:278-92. [PMID: 21331311 PMCID: PMC3040459 DOI: 10.2174/1874192401004010278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/27/2010] [Accepted: 10/04/2010] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is the modality of choice for clinical studies of the heart and vasculature, offering detailed images of both structure and function with high temporal resolution. Small animals are increasingly used for genetic and translational research, in conjunction with models of common pathologies such as myocardial infarction. In all cases, effective methods for characterising a wide range of functional and anatomical parameters are crucial for robust studies. CMR is the gold-standard for the non-invasive examination of these models, although physiological differences, such as rapid heart rate, make this a greater challenge than conventional clinical imaging. However, with the help of specialised magnetic resonance (MR) systems, novel gating strategies and optimised pulse sequences, high-quality images can be obtained in these animals despite their small size. In this review, we provide an overview of the principal CMR techniques for small animals for example cine, angiography and perfusion imaging, which can provide measures such as ejection fraction, vessel anatomy and local blood flow, respectively. In combination with MR contrast agents, regional dysfunction in the heart can also be identified and assessed. We also discuss optimal methods for analysing CMR data, particularly the use of semi-automated tools for parameter measurement to reduce analysis time. Finally, we describe current and emerging methods for imaging the developing heart, aiding characterisation of congenital cardiovascular defects. Advanced small animal CMR now offers an unparalleled range of cardiovascular assessments. Employing these methods should allow new insights into the structural, functional and molecular basis of the cardiovascular system.
Collapse
Affiliation(s)
- Anthony N Price
- UCL Centre for Advanced Biomedical Imaging, Department of Medicine and UCL Institute of Child Health, University College London, UK
| | | | | | | | | | | |
Collapse
|
148
|
Li X, Kruger JA, Nash MP, Nielsen PMF. Anisotropic effects of the levator ani muscle during childbirth. Biomech Model Mechanobiol 2010; 10:485-94. [DOI: 10.1007/s10237-010-0249-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 08/02/2010] [Indexed: 12/26/2022]
|
149
|
Frindel C, Robini M, Schaerer J, Croisille P, Zhu YM. A graph-based approach for automatic cardiac tractography. Magn Reson Med 2010; 64:1215-29. [DOI: 10.1002/mrm.22443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
150
|
Huang S, Sosnovik DE. Molecular and Microstructural Imaging of the Myocardium. CURRENT CARDIOVASCULAR IMAGING REPORTS 2010; 3:26-33. [PMID: 20689659 DOI: 10.1007/s12410-010-9007-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The past year has witnessed ongoing progress in the field of molecular MRI of the myocardium. In addition, several novel fluorescent agents have been introduced and used to image remodeling in the injured myocardium. New techniques to image myocardial microstructure, such as diffusion spectrum MRI, have also been introduced and have tremendous potential for integration and synergy with molecular MRI. In the current review we focus on these and other advances in the field that have occurred over the past year.
Collapse
Affiliation(s)
- Shuning Huang
- CNY, Massachusetts General Hospital, 5416, 149 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|