101
|
Qin X, Tian J, Zhang P, Fan Y, Chen L, Guan Y, Fu Y, Zhu Y, Chien S, Wang N. Laminar shear stress up-regulates the expression of stearoyl-CoA desaturase-1 in vascular endothelial cells. Cardiovasc Res 2007; 74:506-14. [PMID: 17368438 PMCID: PMC2791953 DOI: 10.1016/j.cardiores.2007.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 01/28/2007] [Accepted: 02/13/2007] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Laminar shear stress plays critical roles in vascular homeostasis and exerts various metabolic effects on endothelial cells (ECs). Stearoyl-CoA desaturase-1 (SCD1), which catalyzes the biosynthesis of monounsaturated fatty acids, affects the lipid composition and fluidity of the cell membrane. Thus, we examined the effect of laminar flow on SCD1 expression in ECs. METHODS A flow chamber was used to impose a laminar shear stress on a confluent monolayer of human vascular ECs. The expression of SCD1 was examined using real-time RT-PCR and Northern and Western blotting. Immunohistochemical staining was used to assess the expression of SCD1 in Sprague-Dawley rat arteries, including the sites of arterial bifurcation. RESULTS Laminar shear stress (12 dyn/cm2, 12 h) markedly increased the gene expression of SCD1 in ECs. The flow-induced SCD1 expression was attenuated by peroxisome proliferator-activated receptor (PPAR)-gamma antagonists both in vitro and in vivo. Troglitazone and rosiglitazone significantly increased the gene expression of SCD1. Furthermore, overexpression of a constitutively active PPARgamma induced the expression of SCD1 in ECs. Immunohistochemical study of cross-sections from rat celiac arteries revealed that endothelial expression of SCD1 was substantially higher on the medial division apex, where the shear stress is high and more laminar, than the lateral aspect, where the shear stress is low and unsteady. CONCLUSION These in vitro and in vivo results demonstrate that laminar flow increased the expression of SCD1 in endothelium through a PPARgamma-specific mechanism, which may contribute to the shear stress-mediated protective roles in ECs.
Collapse
Affiliation(s)
- Xiaomei Qin
- Institute of Cardiovascular Science and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, 100083, P. R. China
| | - Jianwei Tian
- Institute of Cardiovascular Science and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, 100083, P. R. China
| | - Peng Zhang
- Institute of Cardiovascular Science and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, 100083, P. R. China
| | - Yanbo Fan
- Institute of Cardiovascular Science and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, 100083, P. R. China
| | - Li Chen
- Institute of Cardiovascular Science and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, 100083, P. R. China
| | - Youfei Guan
- Institute of Cardiovascular Science and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, 100083, P. R. China
| | - Yi Fu
- Institute of Cardiovascular Science and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, 100083, P. R. China
| | - Yi Zhu
- Institute of Cardiovascular Science and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, 100083, P. R. China
| | - Shu Chien
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nanping Wang
- Institute of Cardiovascular Science and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, 100083, P. R. China
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Please address correspondence to: Nanping Wang, Institute of Cardiovascular Science, Peking University Health Science Center, Beijing 100083, China, Tel: +86-10-82801146, Fax: +86-10-82802769, E-mail:
| |
Collapse
|
102
|
Ferko MC, Bhatnagar A, Garcia MB, Butler PJ. Finite-element stress analysis of a multicomponent model of sheared and focally-adhered endothelial cells. Ann Biomed Eng 2006; 35:208-23. [PMID: 17160699 PMCID: PMC3251212 DOI: 10.1007/s10439-006-9223-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 10/23/2006] [Indexed: 11/25/2022]
Abstract
Hemodynamic forces applied at the apical surface of vascular endothelial cells may be redistributed to and amplified at remote intracellular organelles and protein complexes where they are transduced to biochemical signals. In this study we sought to quantify the effects of cellular material inhomogeneities and discrete attachment points on intracellular stresses resulting from physiological fluid flow. Steady-state shear- and magnetic bead-induced stress, strain, and displacement distributions were determined from finite-element stress analysis of a cell-specific, multicomponent elastic continuum model developed from multimodal fluorescence images of confluent endothelial cell (EC) monolayers and their nuclei. Focal adhesion locations and areas were determined from quantitative total internal reflection fluorescence microscopy and verified using green fluorescence protein-focal adhesion kinase (GFP-FAK). The model predicts that shear stress induces small heterogeneous deformations of the endothelial cell cytoplasm on the order of <100 nm. However, strain and stress were amplified 10-100-fold over apical values in and around the high-modulus nucleus and near focal adhesions (FAs) and stress distributions depended on flow direction. The presence of a 0.4 microm glycocalyx was predicted to increase intracellular stresses by approximately 2-fold. The model of magnetic bead twisting rheometry also predicted heterogeneous stress, strain, and displacement fields resulting from material heterogeneities and FAs. Thus, large differences in moduli between the nucleus and cytoplasm and the juxtaposition of constrained regions (e.g. FAs) and unattached regions provide two mechanisms of stress amplification in sheared endothelial cells. Such phenomena may play a role in subcellular localization of early mechanotransduction events.
Collapse
Affiliation(s)
- Michael C Ferko
- Department of Bioengineering, The Pennsylvania State University, 205 Hallowell Building, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
103
|
Williams DA. Change in shear stress (Deltatau)/hydraulic conductivity (Lp) relationship after pronase treatment of individual capillaries in situ. Microvasc Res 2006; 73:48-57. [PMID: 17030043 PMCID: PMC1941715 DOI: 10.1016/j.mvr.2006.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/31/2006] [Accepted: 08/25/2006] [Indexed: 11/18/2022]
Abstract
A complex glycoprotein meshwork covers the inner wall of blood vessels and is implicated in mechanotransduction of fluid shear stress (tau). A relationship between Deltatau and capillary Lp has been established. The purpose of this study was to evaluate Lp in response to Deltatau after exposing the capillary lumen to a mild, non-specific protease selected to disrupt its inner matrix. We hypothesized that Lp would not correlate with Deltatau after enzyme treatment. Frogs (Rana pipiens, n=69) were pithed and the mesentery was exteriorized. Lp was assessed at 30 cm H2O using the modified Landis technique after an abrupt, square wave Deltatau produced by a physiologically relevant increase in pressure. Perfusate solutions were 10 mg ml-1 BSA/frog Ringer's (Control) or 0.1 mg ml-1 pronase in BSA/Ringer's (1 min) then BSA/Ringer's alone (Test). Mean (+/-SE) control Lp following Deltatau was 2.2+/-0.2 x 10(-7) cm s-1 cm H2O-1 and individual values correlated positively with Deltatau (r=0.85, P<0.0001, n=41). After pronase, mean Test Lp (17.6+/-2.5 x 10(-7) cm s-1 cm H2O-1) was higher compared to control and Deltatau/Lp plots revealed two subsets of capillaries. Lp correlated strongly with Deltatau in capillaries with diameters<or=15 microm (r=0.91, P=0.0006, n=14) and also in a second subset of capillaries with diameters >15 microm (r=0.96, P=0.0001, n=8). Slopes were 3.9- and 8.7-fold higher, respectively, compared to control. These data suggest a protective role for luminal constituents of intact capillaries. Mechanisms involved in capillary responses to flow-induced, mechanical stimuli may be located in the cellular structures that form capillaries.
Collapse
Affiliation(s)
- Donna A Williams
- S314 Sinclair School of Nursing, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
104
|
Abstract
Analysis of cellular mechanotransduction, the mechanism by which cells convert mechanical signals into biochemical responses, has focused on identification of critical mechanosensitive molecules and cellular components. Stretch-activated ion channels, caveolae, integrins, cadherins, growth factor receptors, myosin motors, cytoskeletal filaments, nuclei, extracellular matrix, and numerous other structures and signaling molecules have all been shown to contribute to the mechanotransduction response. However, little is known about how these different molecules function within the structural context of living cells, tissues, and organs to produce the orchestrated cellular behaviors required for mechanosensation, embryogenesis, and physiological control. Recent work from a wide range of fields reveals that organ, tissue, and cell anatomy are as important for mechanotransduction as individual mechanosensitive proteins and that our bodies use structural hierarchies (systems within systems) composed of interconnected networks that span from the macroscale to the nanoscale in order to focus stresses on specific mechanotransducer molecules. The presence of isometric tension (prestress) at all levels of these multiscale networks ensures that various molecular scale mechanochemical transduction mechanisms proceed simultaneously and produce a concerted response. Future research in this area will therefore require analysis, understanding, and modeling of tensionally integrated (tensegrity) systems of mechanochemical control.
Collapse
Affiliation(s)
- Donald E Ingber
- Vascular Biology Program, Karp Family Research Laboratories 11.127, Department of Pathology, Harvard Medical School and Children's Hospital, 300 Longwood Ave., Boston, Massachusetts 02115, USA.
| |
Collapse
|
105
|
Gov NS. Diffusion in curved fluid membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:041918. [PMID: 16711847 DOI: 10.1103/physreve.73.041918] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 02/01/2006] [Indexed: 05/09/2023]
Abstract
We analyze theoretically the effects of curvature on the diffusion in a fluid membrane, within the Saffman-Delbrück hydrodynamic model. We calculate the effect of curvature on the intrinsic fluidity of a membrane through changes in its thickness, for both static or fluctuating curvature. We treat both thermal curvature fluctuations, and fluctuations due to active processes. Such curvature fluctuations increase the average membrane thickness and diminish the projected area, thereby decreasing the diffusion coefficient. This calculation allows us to predict the effect of shear flow on the membrane diffusion, and to compare to observations on living cells.
Collapse
Affiliation(s)
- Nir S Gov
- Department of Chemical Physics, The Weizmann Institute of Science, P.O. Box 26, Rehovot, Israel 76100
| |
Collapse
|
106
|
Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA. A ratiometric fluorescent viscosity sensor. J Am Chem Soc 2006; 128:398-9. [PMID: 16402812 DOI: 10.1021/ja056370a] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of a dual probe that provides ratiometric measurements of fluid viscosity is described. The design is based on coupling of a primary fluorophore with viscosity-independent fluorescence emission (blue unit) with a secondary fluorophore that exhibits viscosity-sensitive fluorescent emission quantum yield (red unit). Excitation of the secondary fluorophore can be achieved via Resonance Energy Transfer. The ratio of the fluorescence emission of these fluorophores provides an accurate, ratiometric measurement of solvent viscosity.
Collapse
Affiliation(s)
- Mark A Haidekker
- Department of Biological Engineering, University of Missouri--Columbia, 65211, USA.
| | | | | | | |
Collapse
|
107
|
Tarbell JM, Weinbaum S, Kamm RD. Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng 2006; 33:1719-23. [PMID: 16389519 DOI: 10.1007/s10439-005-8775-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Accepted: 06/03/2005] [Indexed: 11/24/2022]
Abstract
Mechanotransduction, the transformation of an applied mechanical force into a cellular biomolecular response, is briefly reviewed focusing on fluid shear stress and endothelial cells. Particular emphasis is placed on recent studies of the surface proteoglycan layer (glycocalyx) as a primary sensor of fluid shear stress that can transmit force to apical structures such as the plasma membrane or the actin cortical web where transduction can take place or to more remote regions of the cell such as intercellular junctions and basal adhesion plaques where transduction can also occur. All of these possibilities are reviewed from an integrated perspective.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | | | | |
Collapse
|
108
|
Bertuglia S, Veronese FM, Pasut G. Polyethylene glycol and a novel developed polyethylene glycol-nitric oxide normalize arteriolar response and oxidative stress in ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2006; 291:H1536-44. [PMID: 16489107 DOI: 10.1152/ajpheart.01114.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polyethylene glycol (PEG) has been shown to repair cell membranes and, thus, inhibit free radical production in in vitro and in vivo models. We hypothesized that PEG and newly developed organic nitrate forms of PEG (PEG-NO) could repair endothelial dysfunction in ischemia-reperfusion (I/R) injury in the hamster cheek pouch visualized by intravital fluorescent microscopy. After treatments, we evaluated diameter and RBC velocity and flow in arterioles, as well as lipid peroxides in the systemic blood, perfused capillary length, vascular permeability, leukocyte adhesion, and amount of von Willebrand factor (vWF) in the blood after I/R injury. A control group was treated with 5,000- or 10,000-Da PEG, and three groups were treated with PG1 (1 NO molecule covalently bound to PEG, 5,170 Da), PG8 (8 NO molecules covalently bound to PEG, 11,860 Da), and PG16 (16 NO molecules covalently bound to PEG, 14,060 Da). All animals received 0.5 mg/0.5 ml. Lipid peroxides increased at 5 and 15 min of reperfusion, whereas diameter, RBC velocity, and blood flow decreased in arterioles after I/R injury. Vascular permeability, leukocyte adhesion, and vWF increased significantly. PEG and PG1 attenuated lipid peroxides and vasoconstriction during reperfusion and decreased leukocyte adhesion and vascular permeability. PG8 maintained lipid peroxides at normal levels, increased arteriolar diameter, flow, and perfused capillary length, and decreased vWF level and leukocyte adhesion (P < 0.05). PG16 was less effective than PG1 and PG8. In conclusion, PEG-NO shows promise as a compound that protects microvascular perfusion by normalizing the balance between NO level and excessive production of free radicals in endothelial cells during I/R injury.
Collapse
Affiliation(s)
- S Bertuglia
- Faculty of Medicine, Univ. of Pisa, Via Trieste 41, 56100 Pisa, Italy.
| | | | | |
Collapse
|
109
|
Barakat AI, Lieu DK, Gojova A. Secrets of the code: Do vascular endothelial cells use ion channels to decipher complex flow signals? Biomaterials 2006; 27:671-8. [PMID: 16112724 DOI: 10.1016/j.biomaterials.2005.07.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
The ability of vascular endothelial cells (ECs) to respond to changes in blood flow is essential for both vasoregulation and arterial wall remodelling, while abnormalities in endothelial responsiveness to flow play an important role in the development of atherosclerosis. Endothelial flow responses also have important implications for the field of vascular tissue engineering. In response to changes in fluid dynamic shear stress, ECs exhibit humoral, metabolic, and structural responses. Significantly, ECs respond differently to different types of shear stress. For instance, steady shear stress elicits a profile of responses that differs drastically from oscillatory shear stress. Although our understanding of flow-induced signaling has advanced greatly over the past two decades, how ECs sense shear forces remains to be established. Furthermore, the mechanisms by which ECs discriminate among different flow waveforms are unknown. Activation of flow-sensitive ion channels is one of the most rapid known responses to flow in ECs. In this paper, we argue in favor of an important role for ion channels in shear stress sensing in ECs and propose that these channels may endow ECs with the ability to resolve components of a complex flow signal and hence distinguish among different types of flow.
Collapse
Affiliation(s)
- Abdul I Barakat
- Department of Mechanical and Aeronautical Engineering, University of California, Davis, One Shields Avenue, CA 95616, USA.
| | | | | |
Collapse
|
110
|
Abstract
Essentially all organisms from bacteria to humans are mechanosensitive. Physical forces regulate a large array of physiological processes, and dysregulation of mechanical responses contributes to major human diseases. A survey of both specialized and widely expressed mechanosensitive systems suggests that physical forces provide a general means of altering protein conformation to generate signals. Specialized systems differ mainly in having acquired efficient mechanisms for transferring forces to the mechanotransducers.
Collapse
Affiliation(s)
- A Wayne Orr
- Cardiovascular Research Center, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
111
|
Abstract
A motile cell, when stimulated, shows a dramatic increase in the activity of its membrane, manifested by the appearance of dynamic membrane structures such as lamellipodia, filopodia, and membrane ruffles. The external stimulus turns on membrane bound activators, like Cdc42 and PIP2, which cause increased branching and polymerization of the actin cytoskeleton in their vicinity leading to a local protrusive force on the membrane. The emergence of the complex membrane structures is a result of the coupling between the dynamics of the membrane, the activators, and the protrusive forces. We present a simple model that treats the dynamics of a membrane under the action of actin polymerization forces that depend on the local density of freely diffusing activators on the membrane. We show that, depending on the spontaneous membrane curvature associated with the activators, the resulting membrane motion can be wavelike, corresponding to membrane ruffling and actin waves, or unstable, indicating the tendency of filopodia to form. Our model also quantitatively explains a variety of related experimental observations and makes several testable predictions.
Collapse
Affiliation(s)
- Nir S Gov
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel 76100.
| | | |
Collapse
|
112
|
Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA. Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg Chem 2005; 33:415-25. [PMID: 16182338 DOI: 10.1016/j.bioorg.2005.07.005] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 07/14/2005] [Indexed: 11/26/2022]
Abstract
Fluorescent molecular rotors belong to a group of twisted intramolecular charge transfer complexes (TICT) whose photophysical characteristics depend on their environment. In this study, the influence of solvent polarity and viscosity on several representative TICT compounds (three Coumarin derivatives, 4,4-dimethylaminobenzonitrile DMABN, 9-(dicyanovinyl)-julolidine DCVJ), was examined. While solvent polarity caused a bathochromic shift of peak emission in all compounds, this shift was lowest in the case of molecular rotors. Peak intensity was influenced strongly by solvent viscosity in DMABN and the molecular rotors, but polarity and viscosity influences cannot be separated with DMABN. Coumarins, on the other hand, did not show viscosity sensitivity. This study shows the unique suitability of molecular rotors as fluorescent viscosity sensors.
Collapse
Affiliation(s)
- M A Haidekker
- Department of Biological Engineering, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
113
|
Kaazempur Mofrad MR, Abdul-Rahim NA, Karcher H, Mack PJ, Yap B, Kamm RD. Exploring the molecular basis for mechanosensation, signal transduction, and cytoskeletal remodeling. Acta Biomater 2005; 1:281-93. [PMID: 16701807 DOI: 10.1016/j.actbio.2005.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/14/2005] [Accepted: 02/15/2005] [Indexed: 11/17/2022]
Abstract
Living cells respond to mechanical stimulation in a variety of ways that affect nearly every aspect of their function. Such responses can range from changes in cell morphology to activation of signaling cascades and changes in cell phenotype. Although the biochemical signaling pathways activated by mechanical stimulus have been extensively studied, little is known of the basic mechanisms by which mechanical force is transduced into a biochemical signal, or how the cell changes its behavior or properties in response to external or internal stresses. One hypothesis is that forces transmitted via individual proteins either at the site of cell adhesion to its surroundings or within the stress-bearing members of the cytoskeleton cause conformational changes that alter their binding affinity to other intracellular molecules. This altered equilibrium state can subsequently either initiate a biochemical signaling cascade or produce more immediate and local structural changes. To understand the phenomena related to mechanotransduction, the mechanics and chemistry of single molecules that form the signal transduction pathways must be examined. This paper presents a range of case studies that seek to explore the molecular basis of mechanical signal sensation and transduction, with particular attention to their macroscopic manifestation in the cell properties, e.g. in focal adhesion remodeling due to local application of force or changes in cytoskeletal rheology and remodeling due to cellular deformation.
Collapse
Affiliation(s)
- M R Kaazempur Mofrad
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Ave, NE47-321, Cambridge, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
114
|
Makino A, Glogauer M, Bokoch GM, Chien S, Schmid-Schönbein GW. Control of neutrophil pseudopods by fluid shear: role of Rho family GTPases. Am J Physiol Cell Physiol 2005; 288:C863-71. [PMID: 15561759 DOI: 10.1152/ajpcell.00358.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood vessels and blood cells are under continuous fluid shear. Studies on vascular endothelium and smooth muscle cells have shown the importance of this mechanical stress in cell signal transduction, gene expression, vascular remodeling, and cell survival. However, in circulating leukocytes, shear-induced signal transduction has not been investigated. Here we examine in vivo and in vitro the control of pseudopods in leukocytes under the influence of fluid shear stress and the role of the Rho family small GTPases. We used a combination of HL-60 cells differentiated into neutrophils (1.4% dimethyl sulfoxide for 5 days) and fresh leukocytes from Rac knockout mice. The cells responded to shear stress (5 dyn/cm2) with retraction of pseudopods and reduction of their projected cell area. The Rac1 and Rac2 activities were decreased by fluid shear in a time- and magnitude-dependent manner, whereas the Cdc42 activity remained unchanged (up to 5 dyn/cm2). The Rho activity was transiently increased and recovered to static levels after 10 min of shear exposure (5 dyn/cm2). Inhibition of either Rac1 or Rac2 slightly but significantly diminished the fluid shear response. Transfection with Rac1-positive mutant enhanced the pseudopod formation during shear. Leukocytes from Rac1-null and Rac2-null mice had an ability to form pseudopods in response to platelet-activating factor but did not respond to fluid shear in vitro. Leukocytes in wild-type mice retracted pseudopods after physiological shear exposure, whereas cells in Rac1-null mice showed no retraction during equal shear. On leukocytes from Rac2-null mice, however, fluid shear exerted a biphasic effect. Leukocytes with extended pseudopods slightly decreased in length, whereas initially round cells increased in length after shear application. The disruption of Rac activity made leukocytes nonresponsive to fluid shear, induced cell adhesion and microvascular stasis, and decreased microvascular density. These results suggest that deactivation of Rac activity by fluid shear plays an important role in stable circulation of leukocytes.
Collapse
Affiliation(s)
- Ayako Makino
- Dept. of Bioengineering, The Whitaker Institute of Biomedical Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
115
|
Bertuglia S, Giusti A. Role of nitric oxide in capillary perfusion and oxygen delivery regulation during systemic hypoxia. Am J Physiol Heart Circ Physiol 2005; 288:H525-31. [PMID: 15650155 DOI: 10.1152/ajpheart.00426.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of nitric oxide (NO) and reactive oxygen species (ROS) in regulating capillary perfusion was studied in the hamster cheek pouch model during normoxia and after 20 min of exposure to 10% O2-90% N2. We measured PO2 by using phosphorescence quenching microscopy and ROS production in systemic blood. Identical experiments were performed after treatment with the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA) and after the reinfusion of the NO donor 2,2'-(hydroxynitrosohydrazono)bis-etanamine (DETA/NO) after treatment with L-NMMA. Hypoxia caused a significant decrease in the systemic PO2. During normoxia, arteriolar intravascular PO2 decreased progressively from 47.0 +/- 3.5 mmHg in the larger arterioles to 28.0 +/- 2.5 mmHg in the terminal arterioles; conversely, intravascular PO2 was 7-14 mmHg and approximately uniform in all arterioles. Tissue PO2 was 85% of baseline. Hypoxia significantly dilated arterioles, reduced blood flow, and increased capillary perfusion (15%) and ROS (72%) relative to baseline. Administration of L-NMMA during hypoxia further reduced capillary perfusion to 47% of baseline and increased ROS to 34% of baseline, both changes being significant. Tissue PO2 was reduced by 33% versus the hypoxic group. Administration of DETA/NO after L-NMMA caused vasodilation, normalized ROS, and increased capillary perfusion and tissue PO2. These results indicate that during normoxia, oxygen is supplied to the tissue mostly by the arterioles, whereas in hypoxia, oxygen is supplied to tissue by capillaries by a NO concentration-dependent mechanism that controls capillary perfusion and tissue PO2, involving capillary endothelial cell responses to the decrease in lipid peroxide formation controlled by NO availability during low PO2 conditions.
Collapse
Affiliation(s)
- Silvia Bertuglia
- Consiglio Nazionale delle Ricerca Institute of Clinical Physiology, Faculty of Medicine, University of Pisa, Pisa, Italy.
| | | |
Collapse
|
116
|
Gojova A, Barakat AI. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol (1985) 2005; 98:2355-62. [PMID: 15705727 DOI: 10.1152/japplphysiol.01136.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Recent work suggests that fluid dynamic shear stress regulates endothelial cell (EC) wound closure. Changes in membrane fluidity and activation of flow-sensitive ion channels are among the most rapid endothelial responses to flow and are thought to play an important role in EC responsiveness to shear stress. The goal of the present study was to probe the role of these responses in bovine aortic EC (BAEC) wound closure under shear stress. BAEC monolayers were mechanically wounded and subsequently subjected to either "high" (19 dyn/cm(2)) or "low" (3 dyn/cm(2)) levels of steady shear stress. Image analysis was used to quantify cell migration and spreading under both flow and static control conditions. Our results demonstrate that, under static conditions, BAECs along both wound edges migrate at similar velocities to cover the wounded area. Low shear stress leads to significantly lower BAEC migration velocities, whereas high shear stress results in cells along the upstream edge of the wound migrating significantly more rapidly than those downstream. The data also show that reducing BAEC membrane fluidity by enriching the cell membrane with exogenous cholesterol significantly slows down both cell spreading and migration under flow and hence retards wound closure. Blocking flow-sensitive K and Cl channels reduces cell spreading under flow but has no impact on cell migration. These findings provide evidence that membrane fluidity and flow-sensitive ion channels play distinct roles in regulating EC wound closure under flow.
Collapse
Affiliation(s)
- Andrea Gojova
- Dept. of Mechanical and Aeronautical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
117
|
Abstract
Major experimental and theoretical studies on microcirculation and hemorheology are reviewed with the focus on mechanics of blood flow and the vascular wall. Flow of the blood formed elements (red blood cells (RBCs), white blood cells or leukocytes (WBCs) and platelets) in individual arterioles, capillaries and venules, and in microvascular networks is discussed. Mechanical and rheological properties of the formed elements and their interactions with the vascular wall are reviewed. Short-term and long-term regulation of the microvasculature is discussed; the modes of regulation include metabolic, myogenic and shear-stress-dependent mechanisms as well as vascular adaptation such as angiogenesis and vascular remodeling.
Collapse
Affiliation(s)
- Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205;
| | | |
Collapse
|
118
|
Dancu MB, Berardi DE, Vanden Heuvel JP, Tarbell JM. Asynchronous Shear Stress and Circumferential Strain Reduces Endothelial NO Synthase and Cyclooxygenase-2 but Induces Endothelin-1 Gene Expression in Endothelial Cells. Arterioscler Thromb Vasc Biol 2004; 24:2088-94. [PMID: 15345505 DOI: 10.1161/01.atv.0000143855.85343.0e] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelium-derived vasoactive agents NO, endothelin-1 (ET-1), and prostacyclin (PGI2) not only regulate vascular tone but also influence atherogenic processes, including smooth muscle migration and proliferation, as well as monocyte and platelet adhesion. Complex hemodynamics characterized by the temporal phase angle between mechanical factors circumferential strain and wall shear stress (stress phase angle [SPA]) have been implicated in regions prone to pathologic development, such as atherosclerosis and intimal hyperplasia, in coronary and peripheral arteries where the mechanical forces are highly asynchronous (SPA=-180 degrees ). We determined the gene expression of endothelial NO synthase (eNOS), ET-1, and cyclooxygenase-2 (COX-2) affected by asynchronous hemodynamics (SPA=-180 degrees ) relative to normal hemodynamics (SPA=0 degrees ) in bovine aortic endothelial cells. METHODS AND RESULTS Quantitative competitive RT-PCR analysis showed that eNOS production (at 5 and 12 hours) and COX-2 production (at 5 hours) were reduced at the gene expression level by asynchronous hemodynamics (SPA=-180 degrees) compared with synchronous hemodynamics (SPA=0 degrees ), whereas ET-1 exhibited an opposite trend (at 5 and 12 hours). NO, ET-1, and PGI2 secretion followed their respective gene expression profiles after 5 and 12 hours. CONCLUSIONS Together, these data suggest that highly asynchronous mechanical force patterns (SPA=-180 degrees ) can elicit proatherogenic vasoactive responses in endothelial cells at the gene expression level, indicating a novel mechanism that induces cardiovascular pathology.
Collapse
Affiliation(s)
- Michael B Dancu
- Biomolecular Transport Dynamics Laboratory, Department of Bioengineering, The Pennsylvania State University, Fenske Lab, University Park, USA.
| | | | | | | |
Collapse
|
119
|
Haidekker MA, Brady TP, Chalian SH, Akers W, Lichlyter D, Theodorakis EA. Hydrophilic molecular rotor derivatives—synthesis and characterization. Bioorg Chem 2004; 32:274-89. [PMID: 15210341 DOI: 10.1016/j.bioorg.2004.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Indexed: 11/26/2022]
Abstract
Recent research shows high potential for some p-N,N-dialkylaminobenzylidenecyanoacetates, part of a group known as fluorescent molecular rotors, to serve as fluorescent, non-mechanical viscosity sensors. Of particular interest are molecules compatible with aqueous environments. In this study, we present the synthesis and physical characterization of derivatives from 9-(2-carboxy-2-cyanovinyl)-julolidine and related molecules. All compounds show a power-law relationship of fluorescence emission with the viscosity of the solvent, different mixtures of ethylene glycol and glycerol to modulate viscosity. Compounds with high water solubility exhibit the same behavior in aqueous solutions of dextran, where the dextran concentration was varied to modulate viscosity. In addition, some compounds have been found to have low sensitivity towards changes in the pH in the physiological range. The compounds presented show promise to be used in biofluids, such as blood plasma or lymphatic fluid, to rapidly and non-mechanically determine viscosity.
Collapse
Affiliation(s)
- Mark A Haidekker
- Department of Biological Engineering, University of Missouri-Columbia, Columbia, MO, USA.
| | | | | | | | | | | |
Collapse
|
120
|
Huang H, Kamm RD, Lee RT. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 2004; 287:C1-11. [PMID: 15189819 DOI: 10.1152/ajpcell.00559.2003] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells face not only a complex biochemical environment but also a diverse biomechanical environment. How cells respond to variations in mechanical forces is critical in homeostasis and many diseases. The mechanisms by which mechanical forces lead to eventual biochemical and molecular responses remain undefined, and unraveling this mystery will undoubtedly provide new insight into strengthening bone, growing cartilage, improving cardiac contractility, and constructing tissues for artificial organs. In this article we review the physical bases underlying the mechanotransduction process, techniques used to apply controlled mechanical stresses on living cells and tissues to probe mechanotransduction, and some of the important lessons that we are learning from mechanical stimulation of cells with precisely controlled forces.
Collapse
Affiliation(s)
- Hayden Huang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA.
| | | | | |
Collapse
|
121
|
Abstract
Background: Molecular rotors exhibit viscosity-dependent quantum yield, allowing non-mechanical determination of fluid viscosity. We analyzed fluorescence in the presence of viscosity-modulating macromolecules several orders of magnitude larger than the rotor molecule. Method of approach: Fluorescence of aqueous starch solutions with a molecular rotor in solution was related to viscosity obtained in a cone-and-plate viscometer. Results: In dextran solutions, emission intensity was found to follow a power-law relationship with viscosity. Fluorescence in hydroxyethylstarch solutions showed biexponential behavior with different exponents at viscosities above and below 1.5 mPa s. Quantum yield was generally higher in hydroxyethylstarch than in dextran solutions. The power-law relationship was used to backcalculate viscosity from intensity with an average precision of 2.2% (range of −5.5% to 5.1%). Conclusions: This study indicates that hydrophilic molecular rotors are suitable as colloid solution viscosity probes after colloid-dependent calibration.
Collapse
Affiliation(s)
- W Akers
- University of Missouri-Columbia, Department of Biological Engineering, Columbia, MO 65211, USA
| | | |
Collapse
|
122
|
Delanoë-Ayari H, Al Kurdi R, Vallade M, Gulino-Debrac D, Riveline D. Membrane and acto-myosin tension promote clustering of adhesion proteins. Proc Natl Acad Sci U S A 2004; 101:2229-34. [PMID: 14982992 PMCID: PMC356933 DOI: 10.1073/pnas.0304297101] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Physicists have studied the aggregation of adhesive proteins, giving a central role to the elastic properties of membranes, whereas cell biologists have put the emphasis on the cytoskeleton. However, there is a dramatic lack of experimental studies probing both contributions on cellular systems. Here, we tested both mechanisms on living cells. We compared, for the same cell line, the growth of cadherin-GFP patterns on recombinant cadherin-coated surfaces, with the growth of vinculin-GFP patterns on extracellular matrix protein-coated surfaces by using evanescent wave microscopy. In our setup, cadherins are not linked to actin, whereas vinculins are. This property allows us to compare formation of clusters with proteins linked or not to the cytoskeleton and thus study the role of membrane versus cytoskeleton in protein aggregation. Strikingly, the motifs we obtained on both surfaces share common features: they are both elongated and located at the cell edges. We showed that a local force application can impose this symmetry breaking in both cases. However, the origin of the force is different as demonstrated by drug treatment (butanedione monoxime) and hypotonic swelling. Cadherins aggregate when membrane tension is increased, whereas vinculins (cytoplasmic proteins of focal contacts) aggregate when acto-myosin stress fibers are pulling. We propose a mechanism by which membrane tension is localized at cell edges, imposing flattening of membrane and enabling aggregation of cadherins by diffusion. In contrast, cytoplasmic proteins of focal contacts aggregate by opening cryptic sites in focal contacts under acto-myosin contractility.
Collapse
Affiliation(s)
- H Delanoë-Ayari
- Laboratoire de Spectrométrie Physique, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5588, Université Joseph Fourier, 38402 Saint-Martin d'Hères, France
| | | | | | | | | |
Collapse
|
123
|
Abstract
Bone represents a porous tissue containing a fluid phase, a solid matrix, and cells. Movement of the fluid phase within the pores or spaces of the solid matrix translates endogenous and exogenous mechanobiological, biochemical and electromechanical signals from the system that is exposed to the dynamic external environment to the cells that have the machinery to remodel the tissue from within. Hence, bone fluid serves as a coupling medium, providing an elegant feedback mechanism for functional adaptation. Until recently relatively little has been known about bone fluid per se or the influences governing the characteristics of its flow. This work is designed to review the current state of this emerging field. The structure of bone, as an environment for fluid flow, is discussed in terms of the properties of the spaces and channel walls through which the fluid flows and the influences on flow under physiological conditions. In particular, the development of the bone cell syncytium and lacunocanalicular system are presented, and pathways for fluid flow are described from the systemic to the organ, tissue, cellular and subcellular levels. Finally, exogenous and endogenous mechanisms for pressure-induced fluid movement through bone, including mechanical loading, vascular derived pressure gradients, and osmotic pressure gradients are discussed. The objective of this review is to survey the current understanding of the means by which fluid flow in bone is regulated, from the level of the skeletal system down to the level of osteocyte, and to provide impetus for future research in this area of signal transduction and coupling. An understanding of this important aspect of bone physiology has profound implications for restoration of function through innovative treatment modalities on Earth and in space, as well as for engineering of biomimetic replacement tissue.
Collapse
Affiliation(s)
- Melissa L Knothe Tate
- Department of Biomedical Engineering, ND 20, The Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
124
|
Chien S. Molecular and mechanical bases of focal lipid accumulation in arterial wall. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 83:131-51. [PMID: 12865076 DOI: 10.1016/s0079-6107(03)00053-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanical forces such as shear stress can modulate gene and protein expressions and hence cellular functions by activating membrane sensors and intracellular signaling. Using cultured endothelial cells, we have shown that laminar shear stress causes a transient increase in monocyte chemotactic protein-1 (MCP-1) expression, which involves the Ras-MAP kinase signaling pathway. We have demonstrated that integrins and the vascular endothelial growth factor receptor Flk-1 can sense shear stress, with integrins being upstream to Flk-1. Other possible membrane components involved in the sensing of shear stress include G-protein coupled receptors, intercellular junction proteins, membrane glycocalyx, and the lipid bilayer. Mechano-transduction involves the participation of a multitude of sensors, signaling molecules, and genes. Microarray analysis has demonstrated that shear stress can upregulate and downregulate different genes. Sustained shear stress downregulates atherogenic genes (e.g., MCP-1 and the genes that facilitate lipid accumulation) and upregulates growth-arrest genes. In contrast, disturbed flow observed at branch points and simulated in step-flow channels causes sustained activation of MCP-1 and the genes facilitating cell turnover and lipid accumulation. These findings provide a molecular basis for the explanation of the preferential localization of atherosclerotic lesions at regions of disturbed flow, such as the arterial branch points. The combination of mechanics and biology (from molecules-cells to organs-systems) can help to elucidate the physiological processes of mechano-chemical transduction and improving the methods of the management of important clinical conditions such as coronary artery disease.
Collapse
Affiliation(s)
- Shu Chien
- Department of Bioengineering and Medicine, The Whitaker Institute for Biomedical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0427, SERF Room 221, La Jolla, CA 92093-0427, USA.
| |
Collapse
|
125
|
Liu SQ, Tieche C, Tang D, Alkema P. Pattern formation of vascular smooth muscle cells subject to nonuniform fluid shear stress: role of PDGF-beta receptor and Src. Am J Physiol Heart Circ Physiol 2003; 285:H1081-90. [PMID: 12738619 DOI: 10.1152/ajpheart.00434.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood vessels are subject to fluid shear stress, a hemodynamic factor that inhibits the mitogenic activities of vascular cells. The presence of nonuniform shear stress has been shown to exert graded suppression of cell proliferation and induces the formation of cell density gradients, which in turn regulate the direction of smooth muscle cell (SMC) migration and alignment. Here, we investigated the role of platelet-derived growth factor (PDGF)-beta receptor and Src in the regulation of such processes. In experimental models with vascular polymer implants, SMCs migrated from the vessel media into the neointima of the implant under defined fluid shear stress. In a nonuniform shear model, blood shear stress suppressed the expression of PDGF-beta receptor and the phosphorylation of Src in a shear level-dependent manner, resulting in the formation of mitogen gradients, which were consistent with the gradient of cell density as well as the alignment of SMCs. In contrast, uniform shear stress in a control model elicited an even influence on the activity of mitogenic molecules without modulating the uniformity of cell density and did not significantly influence the direction of SMC alignment. The suppression of the PDGF-beta receptor tyrosine kinase and Src with pharmacological substances diminished the gradients of mitogens and cell density and reduced the influence of nonuniform shear stress on SMC alignment. These observations suggest that PDGF-beta receptor and Src possibly serve as mediating factors in nonuniform shear-induced formation of cell density gradients and alignment of SMCs in the neointima of vascular polymer implants.
Collapse
Affiliation(s)
- Shu Q Liu
- Biomedical Engineering Department, E334, Technology Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3107, USA.
| | | | | | | |
Collapse
|
126
|
Mochizuki S, Vink H, Hiramatsu O, Kajita T, Shigeto F, Spaan JAE, Kajiya F. Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am J Physiol Heart Circ Physiol 2003; 285:H722-6. [PMID: 12730059 DOI: 10.1152/ajpheart.00691.2002] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-derived nitric oxide (NO) is synthesized in response to chemical and physical stimuli. Here, we investigated a possible role of the endothelial cell glycocalyx as a biomechanical sensor that triggers endothelial NO production by transmitting flow-related shear forces to the endothelial membrane. Isolated canine femoral arteries were perfused with a Krebs-Henseleit solution at a wide range of perfusion rates with and without pretreatment with hyaluronidase to degrade hyaluronic acid glycosaminoglycans within the glycocalyx layer. NO production rate was evaluated as the product of nitrite concentration in the perfusate and steady-state perfusion rate. The slope that correlates the linear relation between perfusion rate and NO production rate was taken as a measure for flow-induced NO production. Hyaluronidase treatment significantly decreased flow-induced NO production to 19 +/- 9% of control (mean +/- SD; P < 0.0001 vs. control; n = 11), whereas it did not affect acetylcholine-induced NO production (88 +/- 17% of pretreatment level, P = not significant; n = 10). We conclude that hyaluronic acid glycosaminoglycans within the glycocalyx play a pivotal role in detecting and amplifying the shear force of flowing blood that triggers endothelium-derived NO production in isolated canine femoral arteries.
Collapse
Affiliation(s)
- Seiichi Mochizuki
- Department of Medical Engineering, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | | | | | | | | | | | | |
Collapse
|
127
|
Mazzag BM, Tamaresis JS, Barakat AI. A model for shear stress sensing and transmission in vascular endothelial cells. Biophys J 2003; 84:4087-101. [PMID: 12770912 PMCID: PMC1302988 DOI: 10.1016/s0006-3495(03)75134-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Arterial endothelial cell (EC) responsiveness to flow is essential for normal vascular function and plays a role in the development of atherosclerosis. EC flow responses may involve sensing of the mechanical stimulus at the cell surface with subsequent transmission via cytoskeleton to intracellular transduction sites. We had previously modeled flow-induced deformation of EC-surface flow sensors represented as viscoelastic materials with standard linear solid behavior (Kelvin bodies). In the present article, we extend the analysis to arbitrary networks of viscoelastic structures connected in series and/or parallel. Application of the model to a system of two Kelvin bodies in parallel reveals that flow induces an instantaneous deformation followed by creeping to the asymptotic response. The force divides equally between the two bodies when they have identical viscoelastic properties. When one body is stiffer than the other, a larger fraction of the applied force is directed to the stiffer body. We have also probed the impact of steady and oscillatory flow on simple sensor-cytoskeleton-nucleus networks. The results demonstrated that, consistent with the experimentally observed temporal chronology of EC flow responses, the flow sensor attains its peak deformation faster than intracellular structures and the nucleus deforms more rapidly than cytoskeletal elements. The results have also revealed that a 1-Hz oscillatory flow induces significantly smaller deformations than steady flow. These results may provide insight into the mechanisms behind the experimental observations that a number of EC responses induced by steady flow are not induced by oscillatory flow.
Collapse
Affiliation(s)
- Bori M Mazzag
- Department of Mechanical and Aeronautical Engineering, University of California, Davis 95616, USA
| | | | | |
Collapse
|
128
|
Abstract
The focal pattern of atherosclerotic lesions in arterial vessels suggests that local blood flow patterns are important factors in atherosclerosis. Although disturbed flows in the branches and curved regions are proatherogenic, laminar flows in the straight parts are atheroprotective. Results from in vitro studies on cultured vascular endothelial cells with the use of flow channels suggest that integrins and the associated RhoA small GTPase play important roles in the mechanotransduction mechanism by which shear stress is converted to cascades of molecular signaling to modulate gene expression. By interacting dynamically with extracellular matrix proteins, the mechanosensitive integrins activate RhoA and many signaling molecules in the focal adhesions and cytoplasm. Through such mechanotransduction mechanisms, laminar shear stress upregulates genes involved in antiapoptosis, cell cycle arrest, morphological remodeling, and NO production, thus contributing to the atheroprotective effects. This review summarizes some of the recent findings relevant to these mechanotransduction mechanisms. These studies show that integrins play an important role in mechanosensing in addition to their involvement in cell attachment and migration.
Collapse
Affiliation(s)
- John Y-J Shyy
- Division of Biomedical Sciences, University of California-Riverside, Riverside, Calif 92521-0121, USA.
| | | |
Collapse
|
129
|
Haidekker MA, Brady T, Wen K, Okada C, Stevens HY, Snell JM, Frangos JA, Theodorakis EA. Phospholipid-bound molecular rotors: synthesis and characterization. Bioorg Med Chem 2002; 10:3627-36. [PMID: 12213479 DOI: 10.1016/s0968-0896(02)00240-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular rotors are fluorescent molecules with a viscosity-sensitive quantum yield that are often used to measure viscosity changes in cell membranes and liposomes. However, commercially available molecular rotors, such as DCVJ (1) do not localize in cell membranes but rapidly migrate into the cytoplasm leading to unreliable measurements of cell membrane viscosity. To overcome this problem, we synthesized molecular rotors covalently attached to a phospholipid scaffold. Attaching the rotor group to the hydrophobic end of phosphatidylcholine (PC) did not affect the rotor's viscosity sensitivity and allowed adequate integration into artificial bilayers as well as complete localization in the plasma membrane of an endothelial cell line. Moreover, these new rotors enabled the monitoring of phospholipid transition temperature. However, attachment of the rotor groups to the hydrophilic head of the phospholipid led to a partial loss of viscosity sensitivity. The improved sensitivity and exclusive localization in the cell plasma membrane exhibited by the phospholipid-bound molecular rotors suggest that these probes can be used for the study of membrane microviscosity.
Collapse
Affiliation(s)
- Mark A Haidekker
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Cucullo L, McAllister MS, Kight K, Krizanac-Bengez L, Marroni M, Mayberg MR, Stanness KA, Janigro D. A new dynamic in vitro model for the multidimensional study of astrocyte–endothelial cell interactions at the blood–brain barrier. Brain Res 2002; 951:243-54. [PMID: 12270503 DOI: 10.1016/s0006-8993(02)03167-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blood-brain barrier endothelial cells are characterized by the presence of tight intercellular junctions, the absence of fenestrations, and a paucity of pinocytotic vesicles. The in vitro study of the BBB has progressed rapidly over the past several years as new cell culture techniques and improved technologies to monitor BBB function became available. Studies carried out on viable in vitro models are set to accelerate the design of drugs that selectively and aggressively can target the CNS. Several systems in vitro attempt to reproduce the physical and biochemical behavior of intact BBB, but most fail to reproduce the three-dimensional nature of the in vivo barrier and do not allow concomitant exposure of endothelial cells to abluminal (glia) and lumenal (flow) influences. For this purpose, we have developed a new dynamic in vitro BBB model (NDIV-BBB) designed to allow for extensive pharmacological, morphological and physiological studies. Bovine aortic endothelial cells (BAEC) developed robust growth and differentiation when co-cultured alone. In the presence of glial cells, BAEC developed elevated Trans-Endothelial Electrical Resistance (TEER). Excision of individual capillaries proportionally decreased TEER; the remaining bundles were populated with healthy cells. Flow played an essential role in EC differentiation by decreasing cell division. In conclusion, this new dynamic model of the BBB allows for longitudinal studies of the effects of flow and co-culture in a controlled and fully recyclable environment that also permits visual inspection of the abluminal compartment and manipulation of individual capillaries.
Collapse
Affiliation(s)
- Luca Cucullo
- Department of Neurological Surgery, Cerebrovascular Research Center, Cleveland Clinic Foundation, NB20, 9500 Euclid Avenue/NB20, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Blackman BR, García-Cardeña G, Gimbrone MA. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J Biomech Eng 2002; 124:397-407. [PMID: 12188206 DOI: 10.1115/1.1486468] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the circulation, flow-responsive endothelial cells (ECs) lining the lumen of blood vessels are continuously exposed to complex hemodynamic forces. To increase our understanding of EC response to these dynamic shearing forces, a novel in vitro flow model was developed to simulate pulsatile shear stress waveforms encountered by the endothelium in the arterial circulation. A modified waveform modeled after flow patterns in the human abdominal aorta was used to evaluate the biological responsiveness of human umbilical vein ECs to this new type of stimulus. Arterial pulsatile flow for 24 hours was compared to an equivalent time-average steady laminar shear stress, using no flow (static) culture conditions as a baseline. While both flow stimuli induced comparable changes in cell shape and alignment, distinct patterns of responses were observed in the distribution of actin stress fibers and vinculin-associated adhesion complexes, intrinsic migratory characteristics, and the expression of eNOS mRNA and protein. These results thus reveal a unique responsiveness of ECs to an arterial waveform and begin to elucidate the complex sensing capabilities of the endothelium to the dynamic characteristics of flows throughout the human vascular tree.
Collapse
Affiliation(s)
- Brett R Blackman
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
132
|
Goligorsky MS, Li H, Brodsky S, Chen J. Relationships between caveolae and eNOS: everything in proximity and the proximity of everything. Am J Physiol Renal Physiol 2002; 283:F1-10. [PMID: 12060581 DOI: 10.1152/ajprenal.00377.2001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Caveolae, flask-shaped invaginations of the plasma membrane occupying up to 30% of cell surface in capillaries, represent a predominant location of endothelial nitric oxide synthase (eNOS) in endothelial cells. The caveolar coat protein caveolin forms high-molecular-weight, Triton-insoluble complexes through oligomerization mediated by interactions between NH2-terminal residues 61-101. eNOS is targeted to caveolae by cotranslational N-myristoylation and posttranslational palmitoylation. Caveolin-1 coimmunoprecipitates with eNOS; interaction with eNOS occurs via the caveolin-1 scaffolding domain and appears to result in the inhibition of NOS activity. The inhibitory conformation of eNOS is reversed by the addition of excess Ca2+/calmodulin and by Akt-induced phosphorylation of eNOS. Here, we shall dissect the system using the classic paradigm of a reflex loop: 1) the action of afferent elements, such as fluid shear stress and its putative caveolar sensor, on caveolae; 2) the ways in which afferent signals may affect the central element, the activation of the eNOS-nitric oxide system; and 3) several resultant well-established and novel physiologically important effector mechanisms, i.e., vasorelaxation, angiogenesis, membrane fluidity, endothelial permeability, deterrance of inflammatory cells, and prevention of platelet aggregation.
Collapse
Affiliation(s)
- Michael S Goligorsky
- Department of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794-8152, USA.
| | | | | | | |
Collapse
|
133
|
Palestini P, Calvi C, Conforti E, Botto L, Fenoglio C, Miserocchi G. Composition, biophysical properties, and morphometry of plasma membranes in pulmonary interstitial edema. Am J Physiol Lung Cell Mol Physiol 2002; 282:L1382-90. [PMID: 12003796 DOI: 10.1152/ajplung.00447.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated the changes in plasma membrane composition, biophysical properties, and morphology of pulmonary endothelial cells in anesthetized rabbits receiving 0.5 ml. kg(-1). min(-1) saline infusion for 180 min, causing mild interstitial edema. Plasma membrane fractions were obtained from lung homogenates with gradient centrifugation, allowing a sixfold enrichment in caveolin-1. In edematous lungs, cholesterol content and phospholipidic phosphorus increased by 15 and 40%, respectively. These data correlated with morphometric analysis of lungs fixed in situ by vascular perfusion with 2.5% glutaraldehyde, suggesting a relative increase in surface of luminal to interstitial front of the capillary endothelial cells, due to a convoluted luminal profile. In edematous lungs, the fraction of double-bound fatty acids increased in membrane lipids; moreover, the phosphatidylcholine/phosphatidylethanolamine and the cholesterol/phospholipid ratios decreased. These changes were consistent with the increase in fluorescence anisotropy of plasma membrane, indicating an increase in its fluidity. Data suggest that mechanical stimuli elicited by a modest (approximately 4%) increase in extravascular water cause marked changes in plasma membranes that may be of relevance in signal transduction and endothelial cell activation.
Collapse
Affiliation(s)
- Paola Palestini
- Department of Experimental, Environmental Medicine and Biotechnology, University of Milano-Bicocca, Monza 20052, Italy
| | | | | | | | | | | |
Collapse
|
134
|
Li S, Butler P, Wang Y, Hu Y, Han DC, Usami S, Guan JL, Chien S. The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc Natl Acad Sci U S A 2002; 99:3546-51. [PMID: 11891289 PMCID: PMC122560 DOI: 10.1073/pnas.052018099] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The migration of vascular endothelial cells (ECs) is critical in vascular remodeling. We showed that fluid shear stress enhanced EC migration in flow direction and called this "mechanotaxis." To visualize the molecular dynamics of focal adhesion kinase (FAK) at focal adhesions (FAs), FAK tagged with green fluorescence protein (GFP) was expressed in ECs. Within 10 min of shear stress application, lamellipodial protrusion was induced at cell periphery in the flow direction, with the recruitment of FAK at FAs. ECs under flow migrated with polarized formation of new FAs in flow direction, and these newly formed FAs subsequently disassembled after the rear of the cell moved over them. The cells migrating under flow had a decreased number of FAs. In contrast to shear stress, serum did not significantly affect the speed of cell migration. Serum induced lamellipodia and FAK recruitment at FAs without directional preference. FAK(Y397) phosphorylation colocalized with GFP-FAK at FAs in both shear stress and serum experiments. The total level of FAK(Y397) phosphorylation after shear stress was lower than that after serum treatment, suggesting that the polarized change at cell periphery rather than the total level of FAK(Y397) phosphorylation is important for directional migration. Our results demonstrate the dynamics of FAK at FAs during the directional migration of EC in response to mechanical force, and suggest that mechanotaxis is an important mechanism controlling EC migration.
Collapse
Affiliation(s)
- Song Li
- Department of Bioengineering and The Whitaker Institute of Biomedical Engineering, University of California at San Diego, La Jolla, CA 92093-0427, USA
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Butler PJ, Tsou TC, Li JYS, Usami S, Chien S. Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced MAPK activation. FASEB J 2002; 16:216-8. [PMID: 11744620 DOI: 10.1096/fj.01-0434fje] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vascular endothelium transduces the temporal gradients in shear stress (tau) originating from unsteady blood flow into functional responses. We measured the effects of step-tau and ramp-tau (i.e., t with different temporal shear gradients) on the lipid lateral diffusion coefficient (D) in the apical membranes of confluent cultured bovine aortic endothelial cells by using fluorescence recovery after photobleaching. A step-tau of 10 dynes/cm2 elicited a rapid (5 s) increase of D in the portion of the cell upstream of the nucleus and a concomitant decrease in the downstream portion. A ramp-tau with a rate of 20 dynes/cm2 per min elicited a rapid (5 s) decrease of D in both the upstream and the downstream portions. The mitogen-activated protein kinases (MAPKs) ERK and JNK were activated by step-tau but not by ramping to the same tau level. Benzyl alcohol, which increases D, enhanced the activities of both MAPKs; cholesterol, which reduces D, diminished these activities. We conclude that the lipid bilayer can sense the temporal features of the applied tau with spatial discrimination and that the tau-induced membrane perturbations can be transduced into MAPK activation. These results have implications for understanding the role of t in modulating vascular functions in health and disease.
Collapse
Affiliation(s)
- Peter J Butler
- Department of Bioengineering and The Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | |
Collapse
|
136
|
Abstract
"Somatic" angiotensin I-converting enzyme (ACE) appears to be one of the evolutionary advances that made a closed circulation possible, and may have contributed to the Cambrian "explosion" of species approximately 540 million years ago. It also appears to be at the origin of a large number of common human diseases. A model is proposed in which the duplicated form of ACE ("somatic" ACE) functions as a mechanotransducer, defending downstream vessels and tissues from an increase in pressure. In the model, ACE senses shear stress (blood velocity) in regions of turbulent blood flow. An increase in shear stress strips an autoinhibitor tripeptide, FQP, from the N-terminal active site, thereby activating it. The C-terminal domain is constitutively activated by chloride. This model explains the clinical superiority of hydrophobic ACE inhibitors relative to hydrophilic ones.
Collapse
|
137
|
Shankaran H, Neelamegham S. Nonlinear flow affects hydrodynamic forces and neutrophil adhesion rates in cone-plate viscometers. Biophys J 2001; 80:2631-48. [PMID: 11371440 PMCID: PMC1301451 DOI: 10.1016/s0006-3495(01)76233-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We present a theoretical and experimental analysis of the effects of nonlinear flow in a cone-plate viscometer. The analysis predicts that flow in the viscometer is a function of two parameters, the Reynolds number and the cone angle. Nonlinear flow occurs at high shear rates and causes spatial variations in wall shear stress, collision frequency, interparticle forces and attachment times within the viscometer. We examined the effect of these features on cellular adhesion kinetics. Based on recent data (Taylor, A. D., S. Neelamegham, J. D. Hellums, et al. 1996. Biophys. J. 71:3488-3500), we modeled neutrophil homotypic aggregation as a process that is integrin-limited at low shear and selectin-limited at high shear. Our calculations suggest that selectin and integrin on-rates lie in the order of 10(-2)-10(-4)/s. They also indicate that secondary flow causes positional variations in adhesion efficiency in the viscometer, and that the overall efficiency is dependent not only on the shear rate, but also the sample volume and the cone angle. Experiments performed with isolated neutrophils confirmed these predictions. In these experiments, enhancing secondary flow by increasing the sample volume from 100 to 1000 microl at 1500/s for a 2 degrees cone caused up to an approximately 45% drop in adhesion efficiency. Our results suggest that secondary flow may significantly influence cellular aggregation, platelet activation, and endothelial cell mechanotransduction measurements made in the viscometer over the range of conditions applied in typical biological studies.
Collapse
Affiliation(s)
- H Shankaran
- Bioengineering Laboratory, Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
138
|
Schmid-Schönbein GW, Takase S, Bergan JJ. New advances in the understanding of the pathophysiology of chronic venous insufficiency. Angiology 2001; 52 Suppl 1:S27-34. [PMID: 11510594 DOI: 10.1177/0003319701052001s04] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic venous insufficiency (CVI) is inseparably linked to elevated venous pressure and is accompanied by vascular, dermal, and subcutaneous tissue damage and restructuring. Abundant evidence exists both in humans and in experimental models to suggest that the tissue damage may be initiated by generation of an inflammatory reaction. Inflammatory indicators include elevation of endothelial permeability; attachment of circulating leukocytes to the endothelium; infiltration of monocytes, lymphocytes, and mast cells into the connective tissue; and development of fibrotic tissue infiltrates and several molecular markers, such as growth factor or membrane adhesion molecule generation. Indicators of an inflammatory reaction are already detectable at early stages of CVI and may be involved in the development of primary venous valve dysfunction. One of the important questions is to identify trigger mechanisms for the inflammatory reaction in CVI. Current evidence suggests that, among several possible mechanisms (hypoxia, humoral stimulation), a shift in fluid shear stress from normal physiological levels and endothelial distension under the influence of elevated venous pressure may serve as trigger mechanisms for inflammation.
Collapse
Affiliation(s)
- G W Schmid-Schönbein
- Department of Bioengineering, The Whitaker Institute for Biomedical Engineering, University of California San Diego, La Jolla 92093-0412, USA.
| | | | | |
Collapse
|
139
|
Hill MA, Zou H, Potocnik SJ, Meininger GA, Davis MJ. Invited review: arteriolar smooth muscle mechanotransduction: Ca(2+) signaling pathways underlying myogenic reactivity. J Appl Physiol (1985) 2001; 91:973-83. [PMID: 11457816 DOI: 10.1152/jappl.2001.91.2.973] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The smooth muscle of arterioles responds to an increase in intraluminal pressure with vasoconstriction and with vasodilation when pressure is decreased. Such myogenic vasoconstriction provides a level of basal tone that enables arterioles to appropriately adjust diameter in response to neurohumoral stimuli. Key in this process of mechanotransduction is the role of changes in intracellular Ca(2+). However, it is becoming clear that considerable complexity exists in the spatiotemporal characteristics of the Ca(2+) signal and that changes in intracellular Ca(2+) may play roles other than direct effects on the contractile process via activation of myosin light-chain phosphorylation. The involvement of Ca(2+) may extend to modulation of ion channels and release of Ca(2+) from the sarcoplasmic reticulum, alterations in Ca(2+) sensitivity, and coupling between cells within the vessel wall. The purpose of this brief review is to summarize the current literature relating to Ca(2+) and the arteriolar myogenic response. Consideration is given to coupling of Ca(2+) changes to the mechanical stimuli, sources of Ca(2+), involvement of ion channels, and spatiotemporal aspects of intracellular Ca(2+) signaling.
Collapse
Affiliation(s)
- M A Hill
- Microvascular Biology Group, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | | | | | | | | |
Collapse
|
140
|
Butler PJ, Norwich G, Weinbaum S, Chien S. Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am J Physiol Cell Physiol 2001; 280:C962-9. [PMID: 11245613 DOI: 10.1152/ajpcell.2001.280.4.c962] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood flow-associated shear stress may modulate cellular processes through its action on the plasma membrane. We quantified the spatial and temporal aspects of the effects of shear stress (tau) on the lipid fluidity of 1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate [DiIC(16)(13)]-stained plasma membranes of bovine aortic endothelial cells in a flow chamber. A confocal microscope was used to determine the DiI diffusion coefficient (D) by fluorescence recovery after photobleaching on cells under static conditions, after a step-tau of 10 or 20 dyn/cm(2), and after the cessation of tau. The method allowed the measurements of D on the upstream and downstream sides of the cell taken midway between the respective cell borders and the nucleus. In <10 s after a step-tau of 10 dyn/cm(2), D showed an upstream increase and a downstream decrease, and both changes disappeared rapidly. There was a secondary, larger increase in upstream D, which reached a peak at 7 min and decreased thereafter, despite the maintenance of tau. D returned to near control values within 5 s after cessation of tau. Downstream D showed little secondary changes throughout the 10-min shearing, as well as after its cessation. Further investigations into the early phase, with simultaneous measurements of upstream and downstream D, confirmed that a step-tau of 10 dyn/cm(2) elicited a rapid (5-s) but transient increase in upstream D and a concurrent decrease in downstream D, yielding a significant difference between the two sites. A step-tau of 20 dyn/cm(2) caused D to increase at both sites at 5 s, but by 30 s and 1 min the upstream D became significantly higher than the downstream D. These results demonstrate shear-induced changes in membrane fluidity that are time dependent and spatially heterogeneous. These changes in membrane fluidity may have important implications in shear-induced membrane protein modulation.
Collapse
Affiliation(s)
- P J Butler
- The Whitaker Institute of Biomedical Engineering and Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0427, USA
| | | | | | | |
Collapse
|
141
|
Haidekker MA, Ling T, Anglo M, Stevens HY, Frangos JA, Theodorakis EA. New fluorescent probes for the measurement of cell membrane viscosity. CHEMISTRY & BIOLOGY 2001; 8:123-31. [PMID: 11251287 DOI: 10.1016/s1074-5521(00)90061-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Molecular rotors are fluorescent molecules that exhibit viscosity-dependent fluorescence quantum yield, potentially allowing direct measurements of cell membrane viscosity in cultured cells. Commercially available rotors, however, stain not only the cell membrane, but also bind to tubulin and migrate into the cytoplasm. We synthesized molecules related to 9-(dicyanovinyl)-julolidine (DCVJ), which featured hydrocarbon chains of different length to increase membrane compatibility. RESULTS Longer hydrocarbon chains attached to the fluorescent rotor reduce the migration of the dye into the cytoplasm and internal compartments of the cell. The amplitude of the fluorescence response to fluid shear stress, known to decrease membrane viscosity, is significantly higher than the response obtained from DCVJ. Notably a farnesyl chain showed a more than 20-fold amplitude over DCVJ and allowed detection of membrane viscosity changes at markedly lower shear stresses. CONCLUSIONS The modification of molecular rotors towards increased cell membrane association provides a new research tool for membrane viscosity measurements. The use of these rotors complements established methods such as fluorescence recovery after photobleaching with its limited spatial and temporal resolution and fluorescence anisotropy, which has low sensitivity and may be subject to other effects such as deformation.
Collapse
Affiliation(s)
- M A Haidekker
- Department of Bioengineering, University of California, San Diego, La Jolla 92093-0412, USA
| | | | | | | | | | | |
Collapse
|