101
|
Bose M, Muñoz-Llancao P, Roychowdhury S, Nichols JA, Jakkamsetti V, Porter B, Byrapureddy R, Salgado H, Kilgard MP, Aboitiz F, Dagnino-Subiabre A, Atzori M. Effect of the environment on the dendritic morphology of the rat auditory cortex. Synapse 2010; 64:97-110. [PMID: 19771593 DOI: 10.1002/syn.20710] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The present study aimed to identify morphological correlates of environment-induced changes at excitatory synapses of the primary auditory cortex (A1). We used the Golgi-Cox stain technique to compare pyramidal cells dendritic properties of Sprague-Dawley rats exposed to different environmental manipulations. Sholl analysis, dendritic length measures, and spine density counts were used to monitor the effects of sensory deafness and an auditory version of environmental enrichment (EE). We found that deafness decreased apical dendritic length leaving basal dendritic length unchanged, whereas EE selectively increased basal dendritic length without changing apical dendritic length. On the contrary, deafness decreased while EE increased spine density in both basal and apical dendrites of A1 Layer 2/3 (LII/III) neurons. To determine whether stress contributed to the observed morphological changes in A1, we studied neural morphology in a restraint-induced model that lacked behaviorally relevant acoustic cues. We found that stress selectively decreased apical dendritic length in the auditory but not in the visual primary cortex. Similar to the acoustic manipulation, stress-induced changes in dendritic length possessed a layer-specific pattern displaying LII/III neurons from stressed animals with normal apical dendrites but shorter basal dendrites, while infragranular neurons (Layers V and VI) displayed shorter apical dendrites but normal basal dendrites. The same treatment did not induce similar changes in the visual cortex, demonstrating that the auditory cortex is an exquisitely sensitive target of neocortical plasticity, and that prolonged exposure to different acoustic as well as emotional environmental manipulation may produce specific changes in dendritic shape and spine density.
Collapse
Affiliation(s)
- Mitali Bose
- Laboratory of Cell and Synaptic Physiology, School for Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
So EC, Chen YH, Huang CY, Chen JY, Huang BM, Poon PWF. Sound exposure accelerates reflex emergence and development in young rats. Brain Res Bull 2010; 81:391-7. [DOI: 10.1016/j.brainresbull.2009.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 12/13/2009] [Accepted: 12/14/2009] [Indexed: 11/24/2022]
|
103
|
Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol 2009; 89:369-82. [PMID: 19819293 DOI: 10.1016/j.pneurobio.2009.10.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/16/2009] [Accepted: 10/01/2009] [Indexed: 12/23/2022]
Abstract
The concept of 'cognitive reserve', and a broader theory of 'brain reserve', were originally proposed to help explain epidemiological data indicating that individuals who engaged in higher levels of mental and physical activity via education, occupation and recreation, were at lower risk of developing Alzheimer's disease and other forms of dementia. Subsequently, behavioral, cellular and molecular studies in animals (predominantly mice and rats) have revealed dramatic effects of environmental enrichment, which involves enhanced levels of sensory, cognitive and motor stimulation via housing in novel, complex environments. Furthermore, increasing levels of voluntary physical exercise, via ad libitum access to running wheels, can have significant effects on brain and behavior, thus informing the relative effects of mental and physical activity. More recently, animal models of brain disorders have been compared under environmentally stimulating and standard housing conditions, and this has provided new insights into environmental modulators and gene-environment interactions involved in pathogenesis. Here, we review animal studies that have investigated the effects of modifying mental and physical activity via experimental manipulations, and discuss their relevance to brain and cognitive reserve (BCR). Recent evidence suggests that the concept of BCR is not only relevant to brain aging, neurodegenerative diseases and dementia, but also to other neurological and psychiatric disorders. Understanding the cellular and molecular mechanisms mediating BCR may not only facilitate future strategies aimed at optimising healthy brain aging, but could also identify molecular targets for novel pharmacological approaches aimed at boosting BCR in 'at risk' and symptomatic individuals with various brain disorders.
Collapse
Affiliation(s)
- Jess Nithianantharajah
- Howard Florey Institute, Florey Neuroscience Institutes, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
104
|
Peña Y, Prunell M, Rotllant D, Armario A, Escorihuela RM. Enduring effects of environmental enrichment from weaning to adulthood on pituitary-adrenal function, pre-pulse inhibition and learning in male and female rats. Psychoneuroendocrinology 2009; 34:1390-404. [PMID: 19481873 DOI: 10.1016/j.psyneuen.2009.04.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/26/2022]
Abstract
Environmental enrichment (EE) increases stimulation and provides richer sensory, cognitive and motor opportunities through the interaction with the social and physical environment. EE produces a wide range of neuroanatomical, neurochemical and behavioural effects in several animal species. However, the effects of EE have mainly been studied shortly after the treatment, so its long-lasting effects remain to be elucidated. Thus, we studied in male and female Sprague-Dawley rats the enduring effects of EE on tasks that measured emotional reactivity, social exploration and memory, sensorimotor gating and learning. After weaning, rats reared in EE were housed in single-sex groups of 12-14 in enriched cages during 12 weeks, whereas control rats were housed in single-sex groups of 2-3 animals in standard cages. Then, all rats were housed in pairs and successively exposed to different tests between 4 and 60 weeks post-EE. The results indicated that animals of both sexes reared in EE gained less weight during the enrichment period; differences disappeared in females during the post-EE period, but were maintained intact in males. Rats reared in EE showed an altered daily pattern of corticosterone and a lower hormone response to a novel environment (hole board, HB), although no differences in ACTH were found. EE resulted in more exploratory behaviour in the HB and higher number of entries in the open arms of the elevated plus maze (with no changes in the time spent in the open arms), suggesting a greater motivation to explore. Unexpectedly, rats reared in EE showed reduced pre-pulse inhibition (PPI), a measure of sensorimotor gating, suggesting lower capability to filter non-relevant information compared with control rats. EE increased social exploratory behaviour towards juvenile rats and social discrimination in males, but decreased social discrimination in females. Finally, in the Hebb-Williams maze, rats reared in EE showed better performance in terms of reduced number of errors and shorter distances travelled in the mazes. It is concluded that EE exposure from weaning to adulthood has important and long-lasting consequences on physiological and behavioural variables, most of them similar in both sexes, although sex differences in response to the EE are also reported.
Collapse
Affiliation(s)
- Yolanda Peña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
105
|
Zhang H, Cai R, Zhang J, Pan Y, Sun X. Environmental enrichment enhances directional selectivity of primary auditory cortical neurons in rats. Neurosci Lett 2009; 463:162-5. [PMID: 19631723 DOI: 10.1016/j.neulet.2009.07.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/14/2009] [Accepted: 07/17/2009] [Indexed: 11/25/2022]
Abstract
Environment enrichment (EE) has an important role in brain plasticity. Previous research has shown that EE increases the response strength of auditory cortical neurons, but it remains unknown whether EE can affect the directional selectivity of auditory neurons. In this study, rats were exposed to EE conditions during the developmental critical period (EE1) or after the critical period (EE2). By in vivo extracellular recording, we found that EE enhanced the directional selectivity of primary auditory cortical neurons in EE1 rats, which showed a sharper azimuth selectivity curve of auditory cortical neurons compared with normal rats. However, there was no significant difference in directional selectivity between the EE2 rats and age-matched control rats. Our findings indicate that early exposure to EE enhances the directional sensitivity of primary auditory cortical neurons. These results provide an insight into developmental plasticity in the auditory system.
Collapse
Affiliation(s)
- Hao Zhang
- School of Life Science, Institute of Cognitive Neuroscience, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | | | | | | | | |
Collapse
|
106
|
Abstract
Arguably the most important property of neuronal circuits in general, and of cortical circuits in particular, is plasticity--the ability to change in response to past experience. While many studies of plasticity emphasize changes in excitatory transmission, in this issue of Neuron, Galindo-Leon et al. demonstrate the important role that increased inhibition may play in shaping cortical responses to behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Israel Nelken
- Department of Neurobiology, The Silberman Institute of Life Sciences, The Hebrew University, Edmond Safra Campus - Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
107
|
Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability. Pharmacol Biochem Behav 2009; 92:377-82. [PMID: 19463254 PMCID: PMC2687322 DOI: 10.1016/j.pbb.2009.01.016] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/11/2009] [Accepted: 01/25/2009] [Indexed: 11/28/2022]
Abstract
Environmental enrichment during development produces a host of neurobehavioral effects in preclinical models. Early work demonstrated that enrichment enhances learning of a variety of behavioral tasks in rats and these changes are associated with neural changes in various cortical regions. In addition to promoting superior learning, more recent evidence suggests that environmental enrichment also has a protective effect in reducing drug abuse vulnerability. The current review describes some of the most important environment-dependent neural changes in reward-relevant brain structures and summarizes some of the key findings from the extensive literature showing how enrichment decreases the impact of drugs of abuse. Some critical neural mechanisms that may mediate the behavioral changes are postulated, along with some notes of caution about the limitations of the work cited.
Collapse
|
108
|
Cai R, Guo F, Zhang J, Xu J, Cui Y, Sun X. Environmental enrichment improves behavioral performance and auditory spatial representation of primary auditory cortical neurons in rat. Neurobiol Learn Mem 2009; 91:366-76. [DOI: 10.1016/j.nlm.2009.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 12/23/2008] [Accepted: 01/09/2009] [Indexed: 11/24/2022]
|
109
|
Polley DB, Hillock AR, Spankovich C, Popescu MV, Royal DW, Wallace MT. Development and plasticity of intra- and intersensory information processing. J Am Acad Audiol 2009; 19:780-98. [PMID: 19358458 DOI: 10.3766/jaaa.19.10.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The functional architecture of sensory brain regions reflects an ingenious biological solution to the competing demands of a continually changing sensory environment. While they are malleable, they have the constancy necessary to support a stable sensory percept. How does the functional organization of sensory brain regions contend with these antithetical demands? Here we describe the functional organization of auditory and multisensory (i.e., auditory-visual) information processing in three sensory brain structures: (1) a low-level unisensory cortical region, the primary auditory cortex (A1); (2) a higher-order multisensory cortical region, the anterior ectosylvian sulcus (AES); and (3) a multisensory subcortical structure, the superior colliculus (SC). We then present a body of work that characterizes the ontogenic expression of experience-dependent influences on the operations performed by the functional circuits contained within these regions. We will present data to support the hypothesis that the competing demands for plasticity and stability are addressed through a developmental transition in operational properties of functional circuits from an initially labile mode in the early stages of postnatal development to a more stable mode in the mature brain that retains the capacity for plasticity under specific experiential conditions. Finally, we discuss parallels between the central tenets of functional organization and plasticity of sensory brain structures drawn from animal studies and a growing literature on human brain plasticity and the potential applicability of these principles to the audiology clinic.
Collapse
Affiliation(s)
- Daniel B Polley
- Vanderbilt Bill Wilkerson Center for Otolaryngology and Communication Sciences, Department of Hearing and Speech Sciences, Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical School, USA.
| | | | | | | | | | | |
Collapse
|
110
|
A spike-timing code for discriminating conspecific vocalizations in the thalamocortical system of anesthetized and awake guinea pigs. J Neurosci 2009; 29:334-50. [PMID: 19144834 DOI: 10.1523/jneurosci.3269-08.2009] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding how communication sounds are processed and encoded in the central auditory system is critical to understanding the neural bases of acoustic communication. Here, we examined neuronal representations of species-specific vocalizations, which are communication sounds that many species rely on for survival and social interaction. In some species, the evoked responses of auditory cortex neurons are stronger in response to natural conspecific vocalizations than to their time-reversed, spectrally identical, counterparts. We applied information theory-based analyses to single-unit spike trains collected in the auditory cortex (n = 139) and auditory thalamus (n = 135) of anesthetized animals as well as in the auditory cortex (n = 119) of awake guinea pigs during presentation of four conspecific vocalizations. Few thalamic and cortical cells (<10%) displayed a firing rate preference for the natural version of these vocalizations. In contrast, when the information transmitted by the spike trains was quantified with a temporal precision of 10-50 ms, many cells (>75%) displayed a significant amount of information (i.e., >2SD above chance levels), especially in the awake condition. The computed correlation index between spike trains (R(corr), defined by Schreiber et al., 2003) indicated similar spike-timing reliability for both the natural and time-reversed versions of each vocalization, but higher reliability for awake animals compared with anesthetized animals. Based on temporal discharge patterns, even cells that were only weakly responsive to vocalizations displayed a significant level of information. These findings emphasize the importance of temporal discharge patterns as a coding mechanism for natural communication sounds, particularly in awake animals.
Collapse
|
111
|
Chaudhury S, Nag TC, Wadhwa S. Effect of prenatal auditory stimulation on numerical synaptic density and mean synaptic height in the posthatch Day 1 chick hippocampus. Synapse 2009; 63:152-9. [PMID: 19021205 DOI: 10.1002/syn.20585] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous studies on prenatal auditory stimulation by species-specific sound or sitar music showed enhanced morphological and biochemical changes in chick hippocampus, which plays an important role in learning and memory. Changes in the efficiency of synapses, synaptic morphology and de novo synapse formation affects learning and memory. Therefore, in the present study, we set out to investigate the mean synaptic density and mean synaptic height at posthatch Day 1 in dorsal and ventral part of chick hippocampus following prenatal auditory stimulation. Fertilized 0 day eggs of domestic chick incubated under normal conditions were exposed to patterned sounds of species-specific and sitar music at 65 dB levels for 15 min/h round the clock (frequency range: 100-6300 Hz) from embryonic Day 10 till hatching. The synapses identified under transmission electron microscope were estimated for their numerical density by physical disector method and also the mean synaptic height calculated. Our results demonstrate a significant increase in mean synaptic density with no alterations in the mean synaptic height following both types of auditory stimulation in the dorsal as well as ventral part of the hippocampus. The observed increase in mean synaptic density suggests enhanced synaptic substrate to strengthen hippocampal function.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | |
Collapse
|
112
|
Xu J, Yu L, Cai R, Zhang J, Sun X. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex. Behav Brain Res 2009; 196:49-54. [DOI: 10.1016/j.bbr.2008.07.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/10/2008] [Accepted: 07/13/2008] [Indexed: 10/21/2022]
|
113
|
David-Jürgens M, Churs L, Berkefeld T, Zepka RF, Dinse HR. Differential effects of aging on fore- and hindpaw maps of rat somatosensory cortex. PLoS One 2008; 3:e3399. [PMID: 18852896 PMCID: PMC2561003 DOI: 10.1371/journal.pone.0003399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/15/2008] [Indexed: 12/04/2022] Open
Abstract
Getting older is associated with a decline of cognitive and sensorimotor abilities, but it remains elusive whether age-related changes are due to accumulating degenerational processes, rendering them largely irreversible, or whether they reflect plastic, adaptational and presumably compensatory changes. Using aged rats as a model we studied how aging affects neural processing in somatosensory cortex. By multi-unit recordings in the fore- and hindpaw cortical maps we compared the effects of aging on receptive field size and response latencies. While in aged animals response latencies of neurons of both cortical representations were lengthened by approximately the same amount, only RFs of hindpaw neurons showed severe expansion with only little changes of forepaw RFs. To obtain insight into parallel changes of walking behavior, we recorded footprints in young and old animals which revealed a general age-related impairment of walking. In addition we found evidence for a limb-specific deterioration of the hindlimbs that was not observed in the forelimbs. Our results show that age-related changes of somatosensory cortical neurons display a complex pattern of regional specificity and parameter-dependence indicating that aging acts rather selectively on cortical processing of sensory information. The fact that RFs of the fore- and hindpaws do not co-vary in aged animals argues against degenerational processes on a global scale. We therefore conclude that age-related alterations are composed of plastic-adaptive alterations in response to modified use and degenerational changes developing with age. As a consequence, age-related changes need not be irreversible but can be subject to amelioration through training and stimulation.
Collapse
Affiliation(s)
- Marianne David-Jürgens
- Institute for Neuroinformatics, Department of Theoretical Biology, Neural Plasticity Lab, Ruhr-University Bochum, Bochum, Germany
| | - Lydia Churs
- Institute for Neuroinformatics, Department of Theoretical Biology, Neural Plasticity Lab, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Berkefeld
- Institute for Neuroinformatics, Department of Theoretical Biology, Neural Plasticity Lab, Ruhr-University Bochum, Bochum, Germany
| | - Roberto F. Zepka
- Institute for Neuroinformatics, Department of Theoretical Biology, Neural Plasticity Lab, Ruhr-University Bochum, Bochum, Germany
| | - Hubert R. Dinse
- Institute for Neuroinformatics, Department of Theoretical Biology, Neural Plasticity Lab, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
114
|
Xerri C. Imprinting of idyosyncratic experience in cortical sensory maps: Neural substrates of representational remodeling and correlative perceptual changes. Behav Brain Res 2008; 192:26-41. [DOI: 10.1016/j.bbr.2008.02.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 11/25/2022]
|
115
|
Leon MI, Poytress BS, Weinberger NM. Avoidance learning facilitates temporal processing in the primary auditory cortex. Neurobiol Learn Mem 2008; 90:347-57. [PMID: 18603453 DOI: 10.1016/j.nlm.2008.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 05/08/2008] [Accepted: 05/10/2008] [Indexed: 10/21/2022]
Abstract
The primary auditory cortex is now known to be involved in learning and memory, as well as auditory perception. For example, spectral tuning often shifts toward or to the frequency of the conditioned stimulus during associative learning. As previous research has focused on tonal frequency, less is known about how learning might alter temporal parameters of response in the auditory cortex. This study addressed the effects of learning on the fidelity of temporal processing. Adult male rats were trained to avoid shock that was signaled by an 8.0 kHz tone. A novel control group received non-contingent tone and shock with shock probability decreasing over days to match the reduced number of shocks received by the avoidance group as they mastered the task. An untrained (nai ve) group served as a baseline. Following training, neuronal responses to white noise and a broad spectrum of tones were determined across the primary auditory cortex in a terminal experiment with subjects under general anesthesia. Avoidance conditioning significantly improved the precision of spike-timing: the coefficient of variation of 1st spike latency was significantly reduced in avoidance animals compared to controls and nai ves, both for tones and for noise. Additionally, avoidance learning was accompanied by a reduction of the latency of peak response, by 2.0-2.5 ms relative to nai ves and approximately 1.0 ms relative to controls. The shock-matched controls also exhibited significantly shorter peak latency of response than nai ves, demonstrating the importance of this non-avoidance control. Plasticity of temporal processing showed no evidence of frequency specificity and developed independently of the non-temporal parameters magnitude of response, frequency tuning and neural threshold, none of which were facilitated. The facilitation of temporal processing suggests that avoidance learning may increase synaptic strength either within the auditory cortex, in the subcortical auditory system, or both.
Collapse
Affiliation(s)
- Matthew I Leon
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, 309 Qureshey Research Laboratory, University of California, Irvine, CA 92697-3800, USA
| | | | | |
Collapse
|
116
|
Burn CC. What is it like to be a rat? Rat sensory perception and its implications for experimental design and rat welfare. Appl Anim Behav Sci 2008. [DOI: 10.1016/j.applanim.2008.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
117
|
Engineer CT, Perez CA, Chen YH, Carraway RS, Reed AC, Shetake JA, Jakkamsetti V, Chang KQ, Kilgard MP. Cortical activity patterns predict speech discrimination ability. Nat Neurosci 2008; 11:603-8. [PMID: 18425123 DOI: 10.1038/nn.2109] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 03/17/2008] [Indexed: 11/09/2022]
Abstract
Neural activity in the cerebral cortex can explain many aspects of sensory perception. Extensive psychophysical and neurophysiological studies of visual motion and vibrotactile processing show that the firing rate of cortical neurons averaged across 50-500 ms is well correlated with discrimination ability. In this study, we tested the hypothesis that primary auditory cortex (A1) neurons use temporal precision on the order of 1-10 ms to represent speech sounds shifted into the rat hearing range. Neural discrimination was highly correlated with behavioral performance on 11 consonant-discrimination tasks when spike timing was preserved and was not correlated when spike timing was eliminated. This result suggests that spike timing contributes to the auditory cortex representation of consonant sounds.
Collapse
Affiliation(s)
- Crystal T Engineer
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Effects of an NMDA-receptor antagonist MK-801 on an MMN-like response recorded in anesthetized rats. Brain Res 2008; 1203:97-102. [DOI: 10.1016/j.brainres.2008.02.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/08/2008] [Accepted: 02/03/2008] [Indexed: 11/21/2022]
|
119
|
Chaudhury S, Nag TC, Wadhwa S. Calbindin D-28K and parvalbumin expression in embryonic chick hippocampus is enhanced by prenatal auditory stimulation. Brain Res 2007; 1191:96-106. [PMID: 18096144 DOI: 10.1016/j.brainres.2007.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/28/2007] [Accepted: 11/12/2007] [Indexed: 12/20/2022]
Abstract
Calcium-binding proteins (CaBPs) buffer excess of cytosolic Ca(2+), which accompanies neuronal activity following external stimuli. Prenatal auditory stimulation by species-specific sound and music influences early maturation of the auditory pathway and the behavioral responses in chicks. In this study, we determined the volume, total number of neurons, proportion of calbindin D-28K and parvalbumin-positive neurons along with their levels of expression in the developing chick hippocampus following prenatal auditory stimulation. Fertilized eggs of domestic chicks were exposed to sounds of either species-specific calls or sitar music at 65 dB for 15 min/h round the clock from embryonic day (E) 10 until hatching. Hippocampi of developmental stages (E12, E16 and E20) were examined. With an increase in embryonic age during normal development, the hippocampus showed an increase in its volume, total number of neurons as well as in the neuron proportions and levels of expression of calbindin D-28K and parvalbumin. A significant increase of volume at E20 was noted only in the music-stimulated group compared to that of their age-matched control (p<0.05). On the other hand, both auditory-stimulated groups showed a significant increase in the proportion of immunopositive neurons and the levels of expression of calbindin D-28K and parvalbumin as compared to the control at all developmental stages studied (p<0.003). The increase in proportions of CaBP neurons during development and in the sound-enriched groups suggests an activity-dependent increase in Ca(2+) influx. The enhanced expression of CaBPs may help in cell survival by preventing excitotoxic death of neurons during development and may also be involved in long-term potentiation.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | |
Collapse
|
120
|
What's to lose and what's to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. ACTA ACUST UNITED AC 2007; 56:259-69. [DOI: 10.1016/j.brainresrev.2007.07.021] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/03/2007] [Accepted: 07/03/2007] [Indexed: 11/18/2022]
|
121
|
Distributed representation of perceptual categories in the auditory cortex. J Comput Neurosci 2007; 24:277-90. [PMID: 17917802 DOI: 10.1007/s10827-007-0055-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 07/26/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Categorical perception is a process by which a continuous stimulus space is partitioned to represent discrete sensory events. Early experience has been shown to shape categorical perception and enlarge cortical representations of experienced stimuli in the sensory cortex. The present study examines the hypothesis that enlargement in cortical stimulus representations is a mechanism of categorical perception. Perceptual discrimination and identification behaviors were analyzed in model auditory cortices that incorporated sound exposure-induced plasticity effects. The model auditory cortex with over-representations of specific stimuli exhibited categorical perception behaviors for those specific stimuli. These results indicate that enlarged stimulus representations in the sensory cortex may be a mechanism for categorical perceptual learning.
Collapse
|
122
|
Percaccio CR, Pruette AL, Mistry ST, Chen YH, Kilgard MP. Sensory experience determines enrichment-induced plasticity in rat auditory cortex. Brain Res 2007; 1174:76-91. [PMID: 17854780 DOI: 10.1016/j.brainres.2007.07.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 07/25/2007] [Accepted: 07/31/2007] [Indexed: 10/23/2022]
Abstract
Our previous studies demonstrated that only a few days of housing in an enriched environment increases response strength and paired-pulse depression in the auditory cortex of awake and anesthetized rats [Engineer, N.D., Percaccio, C.R., Pandya, P.K., Moucha, R., Rathbun, D.L., Kilgard, M.P., 2004. Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons. J Neurophysiol. 92, 73-82 and Percaccio, C.R., Engineer, N.D., Pruette, A.L., Pandya, P.K., Moucha, R., Rathbun, D.L., Kilgard, M.P., 2005. Environmental enrichment increases paired-pulse depression in rat auditory cortex. J Neurophysiol. 94, 3590-3600]. Multiple environmental and neurochemical factors likely contribute to the expression of this plasticity. In the current study, we examined the contribution of social stimulation, exercise, auditory exposure, and cholinergic modulation to enrichment-induced plasticity. We recorded epidural evoked potentials from awake rats in response to tone pairs and noise bursts. Auditory evoked responses were not altered by social stimulation or exercise. Rats that could hear the enriched environment, but not interact with it, exhibited enhanced responses to tones and increased paired-pulse depression. The degree to which enrichment increased response strength and forward masking was not reduced after a ventricular injection of 192 IgG-saporin. These results indicate that rich auditory experience stimulates physiological plasticity in the auditory cortex, despite persistent deficits in cholinergic activity. This conclusion may be beneficial to clinical populations with sensory gating and cholinergic abnormalities, including individuals with autism, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Cherie R Percaccio
- Neuroscience Program, School of Behavioral and Brain Sciences, GR 41, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75083-0688, USA.
| | | | | | | | | |
Collapse
|
123
|
Han YK, Köver H, Insanally MN, Semerdjian JH, Bao S. Early experience impairs perceptual discrimination. Nat Neurosci 2007; 10:1191-7. [PMID: 17660815 DOI: 10.1038/nn1941] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 06/21/2007] [Indexed: 11/08/2022]
Abstract
Sensory experience can reorganize cortical sensory representations in an epoch of early development. During this period, cortical sensory neurons may shift their response selectivity and become tuned to more frequently occurring stimuli. Although this enlarged cortical representation is believed to underlie improved sensory processing of the experienced stimuli, its precise perceptual consequences are still unknown. We show that rearing rats in a single-frequency tonal environment results in enlarged cortical representations of the frequencies near that of the experienced tone, but the animals are impaired in perceptual discrimination of the over-represented frequencies. By contrast, discrimination of the neighboring under-represented frequencies is substantially improved. Computational analysis indicated that the altered perceptual ability could be fully accounted for by the sound exposure-induced reorganization of cortical primary auditory representations. These results indicate that early experience shapes sensory perception. The same plasticity processes may be important in optimizing phonemic representations in humans.
Collapse
Affiliation(s)
- Yoon K Han
- Helen Wills Neuroscience Institute, 210X Barker Hall, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
124
|
Pandya PK, Rathbun DL, Moucha R, Engineer ND, Kilgard MP. Spectral and temporal processing in rat posterior auditory cortex. Cereb Cortex 2007; 18:301-14. [PMID: 17615251 PMCID: PMC2747285 DOI: 10.1093/cercor/bhm055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rat auditory cortex is divided anatomically into several areas, but little is known about the functional differences in information processing between these areas. To determine the filter properties of rat posterior auditory field (PAF) neurons, we compared neurophysiological responses to simple tones, frequency modulated (FM) sweeps, and amplitude modulated noise and tones with responses of primary auditory cortex (A1) neurons. PAF neurons have excitatory receptive fields that are on average 65% broader than A1 neurons. The broader receptive fields of PAF neurons result in responses to narrow and broadband inputs that are stronger than A1. In contrast to A1, we found little evidence for an orderly topographic gradient in PAF based on frequency. These neurons exhibit latencies that are twice as long as A1. In response to modulated tones and noise, PAF neurons adapt to repeated stimuli at significantly slower rates. Unlike A1, neurons in PAF rarely exhibit facilitation to rapidly repeated sounds. Neurons in PAF do not exhibit strong selectivity for rate or direction of narrowband one octave FM sweeps. These results indicate that PAF, like nonprimary visual fields, processes sensory information on larger spectral and longer temporal scales than primary cortex.
Collapse
Affiliation(s)
- Pritesh K Pandya
- Department of Speech and Hearing Science, College of Applied Health Sciences, University of Illinois at Urbana-Champaign, 901 South Sixth Street, Champaign, IL 61820, USA.
| | | | | | | | | |
Collapse
|
125
|
Irvine DRF. Auditory cortical plasticity: does it provide evidence for cognitive processing in the auditory cortex? Hear Res 2007; 229:158-70. [PMID: 17303356 PMCID: PMC2084392 DOI: 10.1016/j.heares.2007.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/21/2006] [Accepted: 01/03/2007] [Indexed: 12/22/2022]
Abstract
The past 20 years have seen substantial changes in our view of the nature of the processing carried out in auditory cortex. Some processing of a cognitive nature, previously attributed to higher-order "association" areas, is now considered to take place in auditory cortex itself. One argument adduced in support of this view is the evidence indicating a remarkable degree of plasticity in the auditory cortex of adult animals. Such plasticity has been demonstrated in a wide range of paradigms, in which auditory input or the behavioural significance of particular inputs is manipulated. Changes over the same time period in our conceptualization of the receptive fields of cortical neurons, and well-established mechanisms for use-related changes in synaptic function, can account for many forms of auditory cortical plasticity. On the basis of a review of auditory cortical plasticity and its probable mechanisms, it is argued that only plasticity associated with learning tasks provides a strong case for cognitive processing in auditory cortex. Even in this case the evidence is indirect, in that it has not yet been established that the changes in auditory cortex are necessary for behavioural learning and memory. Although other lines of evidence provide convincing support for cognitive processing in auditory cortex, that provided by auditory cortical plasticity remains equivocal.
Collapse
Affiliation(s)
- Dexter R F Irvine
- School of Psychology, Psychiatry, and Psychological Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, VIC, Australia.
| |
Collapse
|
126
|
Polley DB, Read HL, Storace DA, Merzenich MM. Multiparametric Auditory Receptive Field Organization Across Five Cortical Fields in the Albino Rat. J Neurophysiol 2007; 97:3621-38. [PMID: 17376842 DOI: 10.1152/jn.01298.2006] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The auditory cortex of the rat is becoming an increasingly popular model system for studies of experience-dependent receptive field plasticity. However, the relative position of various fields within the auditory core and the receptive field organization within each field have yet to be fully described in the normative case. In this study, the macro- and micro-organizational features of the auditory cortex were studied in pentobarbital-anesthetized adult rats with a combination of physiological and anatomical methods. Dense microelectrode mapping procedures were used to identify the relative position of five tonotopically organized fields within the auditory core: primary auditory cortex (AI), the posterior auditory field (PAF), the anterior auditory field (AAF), the ventral auditory field (VAF), and the suprarhinal auditory field (SRAF). AI and AAF both featured short-latency, sharply tuned responses with predominantly monotonic intensity-response functions. SRAF and PAF were both characterized by longer-latency, broadly tuned responses. VAF directly abutted the ventral boundary of AI but was almost exclusively composed of low-threshold nonmonotonic intensity-tuned responses. Dual injection of retrograde tracers into AI and VAF was used to demonstrate that the sources of thalamic input from the medial geniculate body to each area were essentially nonoverlapping. An analysis of receptive field parameters beyond characteristic frequency revealed independent spatially ordered representations for features related to spectral tuning, intensity tuning, and onset response properties in AI, AAF, VAF, and SRAF. These data demonstrate that despite its greatly reduced physical scale, the rat auditory cortex features a surprising degree of organizational complexity and detail.
Collapse
Affiliation(s)
- Daniel B Polley
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37232-8548, USA.
| | | | | | | |
Collapse
|
127
|
Piché M, Chabot N, Bronchti G, Miceli D, Lepore F, Guillemot JP. Auditory responses in the visual cortex of neonatally enucleated rats. Neuroscience 2007; 145:1144-56. [PMID: 17276013 DOI: 10.1016/j.neuroscience.2006.12.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 12/18/2006] [Accepted: 12/23/2006] [Indexed: 11/29/2022]
Abstract
A number of studies on humans and animals have demonstrated better auditory abilities in blind with respect to sighted subjects and have tried to define the mechanisms through which this compensation occurs. The aim of the present study, therefore, was to examine the participation of primary visual cortex (V1) to auditory processing in early enucleated rats. Here we show, using gaussian noise bursts, that about a third of the cells in V1 responded to auditory stimulation in blind rats and most of these (78%) had ON-type responses and low spontaneous activity. Moreover, they were distributed throughout visual cortex without any apparent tonotopic organization. Optimal frequencies determined using pure tones were rather high but comparable to those found in auditory cortex of blind and sighted rats. On the other hand, sensory thresholds determined at these frequencies were higher and bandwidths were wider in V1 of the blind animals. Blind and sighted rats were also stimulated for 60 min with gaussian noise, their brains removed and processed for c-Fos immunohistochemistry. Results revealed that c-Fos positive cells were not only present in auditory cortex of both groups of rats but there was a 10-fold increase in labeled cells in V1 and a fivefold increase in secondary visual cortex (V2) of early enucleated rats in comparisons to sighted ones. Also, the pattern of distribution of these labeled cells across layers suggests that the recruitment of V1 could originate at least in part through inputs arising from the thalamus. The ensemble of results appears to indicate that cross-modal compensation leading to improved performance in the blind depends on cell recruitment in V1 but probably also plastic changes in lower- and higher-order visual structures and possibly in the auditory system.
Collapse
Affiliation(s)
- M Piché
- Centre de Recherche en Neuropsychologie et Cognition, Université de Montréal, Canada
| | | | | | | | | | | |
Collapse
|
128
|
Nichols JA, Jakkamsetti VP, Salgado H, Dinh L, Kilgard MP, Atzori M. Environmental enrichment selectively increases glutamatergic responses in layer II/III of the auditory cortex of the rat. Neuroscience 2007; 145:832-40. [PMID: 17291690 PMCID: PMC2824591 DOI: 10.1016/j.neuroscience.2006.12.061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 12/22/2006] [Accepted: 12/27/2006] [Indexed: 11/30/2022]
Abstract
Prolonged exposure to environmental enrichment (EE) induces behavioral adaptation accompanied by detectable morphological and physiological changes. Auditory EE is associated with an increased auditory evoked potential (AEP) and increased auditory gating in the primary auditory cortex. We sought physiological correlates to such changes by comparing synaptic currents in control vs. EE-raised rats, in a primary auditory cortex (AI) slice preparation. Pharmacologically isolated glutamatergic or GABA(A)-receptor-mediated currents were measured using perforated patch whole-cell recordings. Glutamatergic AMPA receptor (AMPAR)-mediated excitatory postsynaptic currents (EPSCs) displayed a large amplitude increase (64+/-11% in EE vs. control) accompanied by a rise-time decrease (-29+/-6% in EE vs. control) and decrease in pair pulse ratio in layer II/III but not in layer V. Changes in glutamatergic signaling were not associated with changes in the ratio between N-methyl-D aspartate-receptor (NMDAR)-mediated vs. AMPAR-mediated components, in amplitude or pair pulse ratio of GABAergic transmission, or in passive neuronal properties. A realistic computational model was used for integrating in vivo and in vitro results, and for determining how EE synapses correct for phase error of the inputs. We found that EE not only increases the mean firing frequency of the responses, but also improves the robustness of auditory processing by decreasing the dependence of the output firing on the phase difference of the input signals. We conclude that behavioral and electrophysiological differences detected in vivo in rats exposed to an auditory EE are accompanied and possibly caused by selective changes in cortical excitatory transmission. Our data suggest that auditory EE selectively enhances excitatory glutamatergic synaptic transmission in layer II/III without greatly altering inhibitory GABAergic transmission.
Collapse
Affiliation(s)
- J A Nichols
- School for Behavioral and Brain Sciences, The University of Texas at Dallas, 2601 North Floyd Road, GR41, Richardson, TX 75080, USA
| | | | | | | | | | | |
Collapse
|
129
|
Kilgard MP, Vazquez JL, Engineer ND, Pandya PK. Experience dependent plasticity alters cortical synchronization. Hear Res 2007; 229:171-9. [PMID: 17317055 PMCID: PMC2258141 DOI: 10.1016/j.heares.2007.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/09/2006] [Accepted: 01/03/2007] [Indexed: 11/29/2022]
Abstract
Theories of temporal coding by cortical neurons are supported by observations that individual neurons can respond to sensory stimulation with millisecond precision and that activity in large populations is often highly correlated. Synchronization is highest between neurons with overlapping receptive fields and modulated by both sensory stimulation and behavioral state. It is not yet clear whether cortical synchronization is an epiphenomenon or a critical component of efficient information transmission. Experimental manipulations that generate receptive field plasticity can be used to test the relationship between synchronization and receptive fields. Here we demonstrate that increasing receptive field size in primary auditory cortex by repeatedly pairing a train of tones with nucleus basalis (NB) stimulation increases synchronization, and decreasing receptive field size by pairing different tone frequencies with NB stimulation decreases synchronization. These observations seem to support the conclusion that neural synchronization is simply an artifact caused by common inputs. However, pairing tone trains of different carrier frequencies with NB stimulation increases receptive field size without increasing synchronization, and environmental enrichment increases synchronization without increasing receptive field size. The observation that receptive fields and synchronization can be manipulated independently suggests that common inputs are only one of many factors shaping the strength and temporal precision of cortical synchronization and supports the hypothesis that precise neural synchronization contributes to sensory information processing.
Collapse
Affiliation(s)
- M P Kilgard
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, TX 75083, USA.
| | | | | | | |
Collapse
|
130
|
Woo CC, Hingco EE, Johnson BA, Leon M. Broad activation of the glomerular layer enhances subsequent olfactory responses. Chem Senses 2006; 32:51-5. [PMID: 17071941 PMCID: PMC2213453 DOI: 10.1093/chemse/bjl035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Early olfactory experience with a specific odorant enhances the subsequent response of the glomerular layer of the rat olfactory bulb to that same odorant. Because different odorants activate different glomerular layer regions, it seemed plausible that experience with a large number of odorants might result in enhanced glomerular activation during subsequent exposure to both the previously experienced odorants and the novel odorants evoking activity in regions that overlapped with those previously stimulated by different odorants. To this end, 7 odorants were selected using our glomerular response data archive that together stimulated much of the glomerular layer (alpha-phellandrene, benzaldehyde, L-carvone, decanal, pentanol, santalol, and valeric acid). Young rats were exposed to a different odorant each day for 7 days, and this cycle was repeated 3 times from postnatal days 1-21. The [(14)C]2-deoxyglucose technique was used to measure neural activity in response to both previously experienced and novel odorants. The 2 novel odorants (alpha-ionone and L-menthone) activate regions of the glomerular layer that overlap with those stimulated by the 7 enrichment odorants. Our results indicate that early experience with multiple odorants results in increased responsiveness both to previously experienced odorants and to novel odorants that stimulate previously activated regions of the bulb.
Collapse
Affiliation(s)
- Cynthia C Woo
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA.
| | | | | | | |
Collapse
|
131
|
Liu RC, Linden JF, Schreiner CE. Improved cortical entrainment to infant communication calls in mothers compared with virgin mice. Eur J Neurosci 2006; 23:3087-97. [PMID: 16819999 DOI: 10.1111/j.1460-9568.2006.04840.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a growing interest in the use of mice as a model system for species-specific communication. In particular, ultrasonic calls emitted by mouse pups communicate distress, and elicit a search and retrieval response from mothers. Behaviorally, mothers prefer and recognize these calls in two-alternative choice tests, in contrast to pup-naïve females that do not have experience with pups. Here, we explored whether one particular acoustic feature that defines these calls-- the repetition rate of calls within a bout-- is represented differently in the auditory cortex of these two animal groups. Multiunit recordings in anesthetized CBA/CaJ mice revealed that: (i) neural entrainment to repeated stimuli extended up to the natural pup call repetition rate (5 Hz) in mothers; but (ii) neurons in naïve females followed repeated stimuli well only at slower repetition rates; and (iii) entrained responses to repeated pup calls were less sensitive to natural pup call variability in mothers than in pup-naïve females. In the broader context, our data suggest that auditory cortical responses to communication sounds are plastic, and that communicative significance is correlated with an improved cortical representation.
Collapse
Affiliation(s)
- Robert C Liu
- W. M. Keck Center for Integrative Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, USA.
| | | | | |
Collapse
|
132
|
Woo CC, Hingco EE, Taylor GE, Leon M. Exposure to a broad range of odorants decreases cell mortality in the olfactory bulb. Neuroreport 2006; 17:817-21. [PMID: 16708021 PMCID: PMC2231406 DOI: 10.1097/01.wnr.0000215780.84226.2d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Experience with multiple odorants during early postnatal development increases the number of cells in the olfactory bulb of rats. In this study, we asked whether at least part of this increase was due to decreased cell death. We selected 30 natural odorants or synthetic odorant mixtures to stimulate a broad area of the bulb during postnatal days 1-15, and counted the number of cells with DNA damage associated with cell death in both the glomerular and the granule cell layers of the main olfactory bulb. Early olfactory enrichment significantly decreased cell death in both bulbar laminae. Thus, olfactory enrichment can spare bulbar cells during early development, possibly leading to increased efficacy in bulb function and enhanced bulbar responses.
Collapse
Affiliation(s)
- Cynthia C Woo
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550, USA.
| | | | | | | |
Collapse
|
133
|
Olson AK, Eadie BD, Ernst C, Christie BR. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 2006; 16:250-60. [PMID: 16411242 DOI: 10.1002/hipo.20157] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Environmental enrichment (EE) and voluntary exercise (VEx) have consistently been shown to increase adult hippocampal neurogenesis and improve spatial learning ability. Although it appears that these two manipulations are equivalent in this regard, evidence exists that EE and VEx affect different phases of the neurogenic process in distinct ways. We review the data suggesting that EE increases the likelihood of survival of new cells, whereas VEx increases the level of proliferation of progenitor cells. We then outline the factors that may mediate these relationships. Finally, we provide a model showing that VEx leads to the convergence of key somatic and cerebral factors in the dentate gyrus (DG) to induce cell proliferation. Although insufficient evidence exists to provide a similar model for EE, we suggest that EE-induced cell survival in the DG involves cortical restructuring as a means of promoting survival. We conclude that EE and VEx lead to an increase in overall hippocampal neurogenesis via dissociable pathways, and should therefore, be considered distinct interventions with regard to hippocampal plasticity and associated behaviors.
Collapse
Affiliation(s)
- Andrea K Olson
- Department of Psychology, Division of Neuroscience and The Brain Research Centre at UBC Hospital, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | | | | | |
Collapse
|
134
|
Chikahisa S, Sei H, Morishima M, Sano A, Kitaoka K, Nakaya Y, Morita Y. Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults. Behav Brain Res 2006; 169:312-9. [PMID: 16530277 DOI: 10.1016/j.bbr.2006.01.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/23/2006] [Accepted: 01/24/2006] [Indexed: 10/24/2022]
Abstract
Music has been suggested to have a beneficial effect on various types of performance in humans. However, the physiological and molecular mechanism of this effect remains unclear. We examined the effect of music exposure during the perinatal period on learning behavior in adult mice, and measured the levels of brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), which play critical roles in synaptic plasticity. In addition, we measured the levels of 3-phosphoinositide-dependent protein kinase-1 (PDK1) and mitogen-activated protein kinase (MAPK), downstream targets of two main pathways in BDNF/TrkB signaling. Music-exposed mice completed a maze learning task with fewer errors than the white noise-exposed mice and had lower levels of BDNF and higher levels of TrkB and PDK1 in the cortex. MAPK levels were unchanged. Furthermore, TrkB and PDK1 protein levels in the cortex showed a significant negative correlation with the number of errors on the maze. These results suggest that perinatal exposure of mice to music has an influence on BDNF/TrkB signaling and its intracellular signaling pathway targets, including PDK1, and thus may induce improved learning and memory functions.
Collapse
Affiliation(s)
- Sachiko Chikahisa
- Department of Integrative Physiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | | | | | | | | | |
Collapse
|
135
|
Guéguin M, Le Bouquin-Jeannès R, Faucon G, Chauvel P, Liégeois-Chauvel C. Evidence of functional connectivity between auditory cortical areas revealed by amplitude modulation sound processing. ACTA ACUST UNITED AC 2006; 17:304-13. [PMID: 16514106 PMCID: PMC2111045 DOI: 10.1093/cercor/bhj148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human auditory cortex includes several interconnected areas. A better understanding of the mechanisms involved in auditory cortical functions requires a detailed knowledge of neuronal connectivity between functional cortical regions. In human, it is difficult to track in vivo neuronal connectivity. We investigated the interarea connection in vivo in the auditory cortex using a method of directed coherence (DCOH) applied to depth auditory evoked potentials (AEPs). This paper presents simultaneous AEPs recordings from insular gyrus (IG), primary and secondary cortices (Heschl's gyrus and planum temporale), and associative areas (Brodmann area [BA] 22) with multilead intracerebral electrodes in response to sinusoidal modulated white noises in 4 epileptic patients who underwent invasive monitoring with depth electrodes for epilepsy surgery. DCOH allowed estimation of the causality between 2 signals recorded from different cortical sites. The results showed 1) a predominant auditory stream within the primary auditory cortex from the most medial region to the most lateral one whatever the modulation frequency, 2) unidirectional functional connection from the primary to secondary auditory cortex, 3) a major auditory propagation from the posterior areas to the anterior ones, particularly at 8, 16, and 32 Hz, and 4) a particular role of Heschl's sulcus dispatching information to the different auditory areas. These findings suggest that cortical processing of auditory information is performed in serial and parallel streams. Our data showed that the auditory propagation could not be associated to a unidirectional traveling wave but to a constant interaction between these areas that could reflect the large adaptive and plastic capacities of auditory cortex. The role of the IG is discussed.
Collapse
Affiliation(s)
- Marie Guéguin
- Institut National de la Santé et de la Recherche Médicale, U642, Laboratoire Traitement du Signal et de l'Image, Rennes, France.
| | | | | | | | | |
Collapse
|
136
|
Abstract
The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.
Collapse
Affiliation(s)
- Raluca Moucha
- Neuroscience Program, School of Brain and Behavioral Sciences, University of Texas at Dallas, Dallas, TX, USA
| | | |
Collapse
|
137
|
Abstract
Aging exerts major reorganization and remodeling at all levels of brain structure and function. Studies in aged animals and in human elderly individuals demonstrate that sensorimotor cortical representational maps undergo significant alterations. Because cortical reorganization is paralleled by a decline in perceptual and behavioral performance, this type of cortical remodeling differs from the plastic reorganization observed during learning processes in young individuals where map changes are associated with a gain in performance. It is now clear that brain plasticity is operational into old age; therefore, protocols for interventions such as training, exercising, practicing, and stimulation, which make use of neuroplasticity principles, are effective to ameliorate some forms of cortical and behavioral age-related changes, indicating that aging effects are not irreversible but treatable. However, old individuals cannot be rejuvenated, but restoration of function is possible through the emergence of new processing strategies. This implies that cortical reorganization in the aging brain occurs twice: during aging, and during treatment of age-related changes.
Collapse
Affiliation(s)
- Hubert R Dinse
- Institute for Neuroinformatics, Department of Theoretical Biology, Experimental Neurobiology Laboratory, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
138
|
Percaccio CR, Engineer ND, Pruette AL, Pandya PK, Moucha R, Rathbun DL, Kilgard MP. Environmental Enrichment Increases Paired-Pulse Depression in Rat Auditory Cortex. J Neurophysiol 2005; 94:3590-600. [PMID: 16093336 DOI: 10.1152/jn.00433.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal features are important for the identification of natural sounds. Earlier studies have shown that cortical processing of temporal information can be altered by long-term experience with modulated sounds. In a previous study, we observed that environmental enrichment dramatically increased the response of cortical neurons to single tone and noise burst stimuli in both awake and anesthetized rats. Here, we evaluate how enrichment influences temporal information processing in the auditory cortex. We recorded responses to repeated tones and noise bursts in awake rats using epidural evoked potentials and in anesthetized rats using microelectrodes. Enrichment increased the response of cortical neurons to stimuli presented at slow rates and decreased the response to stimuli presented at fast rates relative to controls. Our observation that enrichment substantially increased response strength and forward masking is consistent with earlier reports that long-term potentiation of cortical synapses is associated with increased paired-pulse depression. Enrichment also increased response synchronization at slow rates and decreased synchronization at fast rates. Paired-pulse depression increased within days of environmental enrichment and was restored to normal levels after return to standard housing conditions. These results are relevant to several clinical disorders characterized by abnormal gating of sensory information, including autism, schizophrenia, and dyslexia.
Collapse
Affiliation(s)
- Cherie R Percaccio
- Neuroscience Program, School of Behavioral and Brain Sciences, GR 41, University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Pandya PK, Moucha R, Engineer ND, Rathbun DL, Vazquez J, Kilgard MP. Asynchronous inputs alter excitability, spike timing, and topography in primary auditory cortex. Hear Res 2005; 203:10-20. [PMID: 15855025 PMCID: PMC2950075 DOI: 10.1016/j.heares.2004.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 11/30/2004] [Indexed: 11/27/2022]
Abstract
Correlation-based synaptic plasticity provides a potential cellular mechanism for learning and memory. Studies in the visual and somatosensory systems have shown that behavioral and surgical manipulation of sensory inputs leads to changes in cortical organization that are consistent with the operation of these learning rules. In this study, we examine how the organization of primary auditory cortex (A1) is altered by tones designed to decrease the average input correlation across the frequency map. After one month of separately pairing nucleus basalis stimulation with 2 and 14 kHz tones, a greater proportion of A1 neurons responded to frequencies below 2 kHz and above 14 kHz. Despite the expanded representation of these tones, cortical excitability was specifically reduced in the high and low frequency regions of A1, as evidenced by increased neural thresholds and decreased response strength. In contrast, in the frequency region between the two paired tones, driven rates were unaffected and spontaneous firing rate was increased. Neural response latencies were increased across the frequency map when nucleus basalis stimulation was associated with asynchronous activation of the high and low frequency regions of A1. This set of changes did not occur when pulsed noise bursts were paired with nucleus basalis stimulation. These results are consistent with earlier observations that sensory input statistics can shape cortical map organization and spike timing.
Collapse
Affiliation(s)
- Pritesh K Pandya
- Neuroscience Program, School of Behavioral and Brain Sciences, PO Box 830688, GR 41, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | | | | | |
Collapse
|
140
|
Dinse HR. Sound Case for Enrichment. Focus on “Environmental Enrichment Improves Response Strength, Threshold, Selectivity, and Latency of Auditory Cortex Neurons”. J Neurophysiol 2004; 92:36-7. [PMID: 15212436 DOI: 10.1152/jn.00213.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|