101
|
Abstract
The perinatal age window is characterized by vulnerability to age-specific patterns of injury. Hypoxia/ischemia occurs in a number of settings both in term and preterm neonates, yet the patterns of response appear dependent upon the age of the infant. In the preterm neonate, hypoxic/ischemic insults result in selective white matter injury, termed periventricular leukomalacia (PVL), with little or no cortical pathology. However, in term babies, hypoxic encephalopathy is the most common cause of seizures, and also can result in cortical infarction. Extracellular glutamate accumulates in the setting of hypoxia/ischemia, and excess activation of glutamate receptors has been implicated in hypoxic/ischemic cellular death. Glutamate receptors are developmentally regulated in both neuronal and glial cells within the brain. Using rodent models, we have shown that hypoxia/ischemia results in selective white matter injury in postnatal day (P) seven rat pups, while hypoxia causes seizures in P10-12 rats, but not at younger or older ages. We have further demonstrated that antagonists of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor subtype block white matter injury at P7 and seizures at P10. We have shown that AMPA receptors are relatively overexpressed in oligodendrocytes (OLs) within white matter at P7 and in neurons in cortex and hippocampus at P10. Hence maturational patterns of glutamate receptor expression correlate with age-specific regional susceptibility to injury to hypoxia/ischemia. While glutamate receptor blockade represents a rational strategy in the treatment of perinatal hypoxic/ischemic brain injury, it is unclear what role variations in their expression play in normal development and plasticity. Further investigation of patterns of glutamate receptor subunit expression in human brain and in experimental animal models is necessary to determine potential age specific strategies as well as adverse effects.
Collapse
Affiliation(s)
- Frances E Jensen
- Program in Neuroscience, Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
102
|
Godukhin O, Savin A, Kalemenev S, Levin S. Neuronal hyperexcitability induced by repeated brief episodes of hypoxia in rat hippocampal slices: involvement of ionotropic glutamate receptors and L-type Ca(2+) channels. Neuropharmacology 2002; 42:459-66. [PMID: 11955517 DOI: 10.1016/s0028-3908(02)00005-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Repeated exposures of rat hippocampal slices to short episodes of hypoxia induce a sustained decrease in the threshold of the development of stimulus-evoked epileptiform discharges in CA1 pyramidal neurons. We have previously demonstrated that the K(+)(o)-induced hyperexcitability required functional L-type voltage-dependent Ca(2+) channels and NMDA-receptors, but was independent of AMPA/kainate-receptor activation. As hypoxia/ischaemia can lead to increased K(+)(o), the epileptiform activity observed after exposure to these challenges could also result from high K(+)(o). The purpose of this study was: (i) to determine whether ionotropic glutamate receptors and L-type Ca(2+) channels are involved in the development of epileptiform activity induced by repeated exposures of hippocampal slices to hypoxia; and (ii) to compare the properties of hypoxia- and high K(+)(o)-induced hyperexcitability. Population spike of presynaptic fibres with field excitatory postsynaptic potential from the stratum radiatum, and population spike of CA1 pyramidal neurons from the stratum pyramidale, were recorded simultaneously in the CA1 area of rat hippocampal slices in response to electrical stimulation of the Schaffer collateral/commissural fibres. Repeated, brief hypoxic episodes induced a sustained decrease in the threshold for development of evoked epileptiform discharges that was associated with long-term potentiation of the CA3-CA1 synapses, but without EPSP-spike potentiation (i.e. in contrast to high K(+)(o)-induced hyperexcitability). The selective antagonist of NMDA receptors, D-APV (25 microM), and the selective blocker of L-type Ca(2+) channels, nifedipine (10 microM) depressed the development of hypoxia-induced hyperexcitability. However, in contrast to high K(+)(o)-induced hyperexcitability, hypoxia-induced hyperexcitability was also blocked by the AMPA/kainite-receptor antagonist, CNQX (5 microM). The present findings confirm that repeated, brief episodes of hypoxia, like exposure to high extracellular K(+), can induce a pro-epileptic state in the CA1 neuronal network, but that the mechanisms leading to hyperexcitability are different for the two stimuli.
Collapse
Affiliation(s)
- O Godukhin
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | |
Collapse
|
103
|
Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J Neurosci 2001. [PMID: 11588188 DOI: 10.1523/jneurosci.21-20-08154.2001] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypoxic encephalopathy is the most common cause of neonatal seizures and can lead to chronic epilepsy. In rats at postnatal days 10-12 (P10-12), global hypoxia induces spontaneous seizures and chronically decreases seizure threshold, thus mimicking clinical aspects of neonatal hypoxia. We have shown previously that the acute and chronic epileptogenic effects of hypoxia are age-dependent and require AMPA receptor activation. In this study, we aimed to determine whether hypoxia-induced seizures and epileptogenesis are associated with maturational and seizure-induced changes in AMPA receptor composition and function. Northern and Western blots indicated that glutamate receptor 2 (GluR2) mRNA and protein expression were significantly lower in neocortex and hippocampus at P10-12 compared with adult. After hypoxia-induced seizures at P10, GluR2 mRNA was significantly decreased within 48 hr, and GluR2 protein was significantly decreased within 96 hr. AMPA-induced Co(2+) uptake by neurons in hippocampal slices indicated higher expression of Ca(2+)-permeable AMPA receptors in immature pyramidal neurons compared with adult. In slices obtained 96 hr after hypoxia-induced seizures, AMPA-induced Co(2+) uptake was significantly increased compared with age-matched controls, and field recordings revealed increased tetanus-induced afterdischarges that could be kindled in the absence of NMDA receptor activation. In situ end labeling showed no acute or delayed cell death after hypoxia-induced seizures. Our results indicate that susceptibility to hypoxia-induced seizures occurs during a developmental stage in which the expression of Ca(2+)-permeable AMPA receptors is relatively high. Furthermore, perinatal hypoxia-induced seizures induce increased expression of Ca(2+)-permeable AMPA receptors and an increased capacity for AMPA receptor-mediated epileptogenesis without inducing cell death.
Collapse
|
104
|
Abstract
This study was undertaken to clarify whether seizures in the newborn cause damage to the healthy brain and, more specifically, to determine the extent to which seizures may contribute to the brain-damaging effects of hypoxia-ischemia (HI). Seizures were induced in 10-d-old rat pups with kainic acid (KA). Seizure duration was determined electrographically. HI was induced by common carotid artery ligation followed by exposure to 8% oxygen for either 15 or 30 min. Six groups of animals were assessed: 1) controls [neither KA nor HI (group I)]; 2) group II, KA alone; 3) group III, 15 min HI alone; 4) group IV,15 min HI plus KA; 5) group V, 30 min HI alone; and 6) group VI, 30 min HI plus KA. Animals were assessed neuropathologically at 3 (early) and 20 (late) d of recovery. KA injection without hypoxia resulted in continuous clinical and electrographic seizures lasting a mean of 282 min. No neuropathologic injury was seen in groups I (no HI or KA), II (KA alone), III (15 min HI alone), or IV (15 min HI and KA). Animals in group V (30 min HI alone) displayed brain damage with a mean score of 2.3 and 0.60 at 3 and 20 d of recovery, respectively. Animals in group VI (30 min HI and KA) had a mean score of 12.1 and 3.65 at 3 and 20 d of recovery, respectively. Compared with group V, the increased damage as a result of the seizure activity in group VI occurred exclusively in the hippocampus. Status epilepticus in the otherwise "healthy" neonatal brain does not cause neuropathologic injury. However, seizures superimposed on HI significantly exacerbate brain injury in a topographically specific manner.
Collapse
Affiliation(s)
- E C Wirrell
- Division of Neurosciences, Department of Pediatrics, University of Saskatchewan, Royal University Hospital, Saskatoon, Saskatchewan S7N 0W8, Canada
| | | | | | | |
Collapse
|
105
|
Abstract
Neonatal seizures caused by hypoxia can be refractory to conventional anticonvulsants. Currently, there is no effective postnatal intervention for newborn infants with hypoxic encephalopathy to prevent brain injury and long-term neurologic sequelae. We previously developed a rat model of perinatal hypoxia-induced seizures with subsequent long-term increases in seizure susceptibility and showed that these epileptogenic effects are selectively blocked by the alpha-amino-3-hydoxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist 6-nitro-7-sulfamoylbenzo(f)quinoxaline-2,3-dione. Using this model of perinatal seizures, we evaluated the efficacy of topiramate, a structurally novel anticonvulsant drug recently shown to attenuate AMPA/kainate currents. Topiramate effectively suppressed acute seizures induced by perinatal hypoxia in a dose-related manner with a calculated ED50 of 2.1 mg/kg, i.p. Furthermore, in animals that had seizures suppressed by topiramate during acute hypoxia, there were no long-term increases in susceptibility to kainate-induced seizures and seizure-induced neuronal injury. Our results suggest that topiramate may have clinical potential as a therapeutic agent for refractory seizures in human neonates.
Collapse
Affiliation(s)
- S Koh
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
106
|
Abstract
A diversity of animal models are available for the study of epilepsy and these models have a proven history in advancing our understanding of basic mechanisms underlying epileptogenesis and have been instrumental in the screening of novel antiepileptic drugs. This review addresses the criteria that should be met in a valid animal model and provides an overview of current animal models that are relevant to human conditions. In addition, models not specific for any one human condition but rather exhibiting partial or generalized seizures are discussed. While most human disorders are without any animal model, those models that are clinically relevant have strengths and weaknesses. Finally, although few relevant, well-characterized animal models have been added to the list over recent years, major advancements in molecular genetics are contributing to the discovery of novel pathways involved in epileptogenesis.
Collapse
|
107
|
Sanchez RM, Jensen FE. Maturational aspects of epilepsy mechanisms and consequences for the immature brain. Epilepsia 2001; 42:577-85. [PMID: 11380563 DOI: 10.1046/j.1528-1157.2001.12000.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- R M Sanchez
- Children's Hospital, Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
108
|
Villeneuve N, Ben-Ari Y, Holmes GL, Gaiarsa JL. Neonatal seizures induced persistent changes in intrinsic properties of CA1 rat hippocampal cells. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200006)47:6<729::aid-ana5>3.0.co;2-c] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
109
|
Dzhala V, Desfreres L, Melyan Z, Ben-Ari Y, Khazipov R. Epileptogenic action of caffeine during anoxia in the neonatal rat hippocampus. Ann Neurol 2001. [DOI: 10.1002/1531-8249(199907)46:1<95::aid-ana14>3.0.co;2-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
110
|
Orozco-Suarez S, Brunson KL, Feria-Velasco A, Ribak CE. Increased expression of gamma-aminobutyric acid transporter-1 in the forebrain of infant rats with corticotropin-releasing hormone-induced seizures but not in those with hyperthermia-induced seizures. Epilepsy Res 2000; 42:141-57. [PMID: 11074187 DOI: 10.1016/s0920-1211(00)00174-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High affinity, gamma-aminobutyric acid (GABA) plasma membrane transporters (GATs) influence the availability of GABA, the main inhibitory neurotransmitter in the brain. Recent studies suggest a crucial role for GATs in maintaining levels of synaptic GABA in normal as well as abnormal (i.e., epileptic) adult brain. However, the role of GATs during development and specifically changes in their expression in response to developmental seizures are unknown. The present study examined GAT-1-immunolabeling in infant rats with two types of developmental seizures, one induced by corticotropin-releasing hormone (CRH) lasting about 2 h and the other by hyperthermia (a model of febrile seizures) lasting only 20 min. The number of GAT-1-immunoreactive (ir) neurons was increased in several forebrain regions 24 h after induction of seizures by CRH as compared to the control group. Increased numbers of detectable GAT-1-ir cell bodies were found in the hippocampal formation including the dentate gyrus and CA1, and in the neocortex, piriform cortex and amygdala. In contrast, hyperthermia-induced seizures did not cause significant changes in the number of detectable GAT-1-ir somata. The increase in GAT-1-ir somata in the CRH model and not in the hyperthermia model may reflect the difference in the duration of seizures. The brain regions where this increase occurs correlate with the occurrence of argyrophyllic neurons in the CRH model.
Collapse
Affiliation(s)
- S Orozco-Suarez
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697-1275, USA
| | | | | | | |
Collapse
|
111
|
Abstract
Redox-active compounds modulate NMDA receptors (NMDARs) such that reduction of NMDAR redox sites increases, and oxidation decreases, NMDAR-mediated activity. Because NMDARs contribute to the pathophysiology of seizures, redox-active compounds also may modulate seizure activity. We report that the oxidant 5, 5'-dithio-bis(2-nitrobenzoic acid) (DTNB) and the redox cofactor pyrroloquinoline quinone (PQQ) suppressed low Mg(2+)-induced hippocampal epileptiform activity in vitro. Additionally, in slices exposed to 4-7 microM bicuculline, DTNB and PQQ reversed the potentiation of evoked epileptiform responses by the reductants dithiothreitol and Tris(2-carboxyethyl)phosphine (TCEP). NMDA-evoked whole-cell currents in CA1 neurons in slices were increased by TCEP and subsequently decreased by DTNB or PQQ at the same concentrations that modulated epileptiform activity. However, DTNB and PQQ had little effect on baseline NMDA-evoked currents in control medium, and PQQ did not alter NMDAR-dependent long-term potentiation. In contrast, in slices returned to control medium after low Mg(2+)-induced ictal activity, DTNB significantly inhibited NMDAR-mediated currents, indicating endogenous reduction of NMDAR redox sites under this epileptogenic condition. These data suggested that PQQ and DTNB suppressed spontaneous ictal activity by reversing pathological NMDAR redox potentiation without inhibiting physiological NMDAR function. In vivo, PQQ decreased the duration of chemoconvulsant-induced seizures in rat pups with no effect on baseline behavior. Our results reveal endogenous potentiation of NMDAR function via mass reduction of redox sites as a novel mechanism that may enhance epileptogenesis and facilitate the transition to status epilepticus. The results further suggest that redox-active compounds may have therapeutic use by reversing NMDAR-mediated pathophysiology without blocking physiological NMDAR function.
Collapse
|
112
|
Congar P, Gaïarsa JL, Popovici T, Ben-Ari Y, Crépel V. Permanent reduction of seizure threshold in post-ischemic CA3 pyramidal neurons. J Neurophysiol 2000; 83:2040-6. [PMID: 10758114 DOI: 10.1152/jn.2000.83.4.2040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of ischemia were examined on CA3 pyramidal neurons recorded in hippocampal slices 2-4 mo after a global forebrain insult. With intracellular recordings, CA3 post-ischemic neurons had a more depolarized resting membrane potential but no change of the input resistance, spike threshold and amplitude, fast and slow afterhyperpolarization (AHP) or ADP, and firing properties in response to depolarizing pulses. With both field and whole-cell recordings, synaptic responses were similar in control and post-ischemic neurons. Although there were no spontaneous network-driven discharges, the post-ischemic synaptic network had a smaller threshold to generate evoked and spontaneous synchronized burst discharges. Thus lower concentrations of convulsive agents (kainate, high K(+)) triggered all-or-none network-driven synaptic events in post-ischemic neurons more readily than in control ones. Also, paired-pulse protocol generates, in post-ischemics but not controls, synchronized field burst discharges when interpulse intervals ranged from 60 to 100 ms. In conclusion, 2-4 mo after the insult, the post-ischemic CA3 pyramidal cells are permanently depolarized and have a reduced threshold to generate synchronized bursts. This may explain some neuropathological and behavioral consequences of ischemia as epileptic syndromes observed several months to several years after the ischemic insult.
Collapse
Affiliation(s)
- P Congar
- Institut National de la Santé et de la Recherche Médicale U 29, INMED, 13273 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
113
|
Koh S, Ward SL, Lin M, Chen LS. Sleep apnea treatment improves seizure control in children with neurodevelopmental disorders. Pediatr Neurol 2000; 22:36-9. [PMID: 10669203 DOI: 10.1016/s0887-8994(99)00114-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Seizure disorder and sleep apnea are common chronic disorders in children, but the relationship between sleep apnea and seizure control has not been studied in the pediatric population. This retrospective review included nine children with neurodevelopmental disorders who had well-documented sleep apneic episodes and seizure disorders. Seizure frequency was reduced in five patients (56%) in the first 12 months after sleep apnea treatment without changes in their antiepileptic medications. Sleep apnea can be one of the seizure precipitants in children with epilepsy. This study indicates the importance of identifying sleep apnea when treating children with intractable epilepsy, particularly in those who are at high risk.
Collapse
Affiliation(s)
- S Koh
- Division of Neurology, University of Southern California, Los Angeles, USA
| | | | | | | |
Collapse
|
114
|
Jensen FE, Baram TZ. Developmental seizures induced by common early-life insults: short- and long-term effects on seizure susceptibility. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2000; 6:253-7. [PMID: 11107190 PMCID: PMC3186350 DOI: 10.1002/1098-2779(2000)6:4<253::aid-mrdd4>3.0.co;2-p] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The immature brain is highly susceptible to seizures induced by a variety of insults, including hypoxia, fever, and trauma. Unlike early life epilepsy associated with congenital dysplasias or genetic abnormalities, insults induce a hyperexcitable state in a previously normal brain. Here we evaluate the epileptogenic effects of seizure-inducing stimuli on the developing brain, and the age and regional specificity of these effects.
Collapse
MESH Headings
- Age Factors
- Brain/growth & development
- Brain/pathology
- Brain/physiopathology
- Brain Injuries/complications
- Brain Injuries/pathology
- Brain Injuries/physiopathology
- Causality
- Child
- Child, Preschool
- Disease Models, Animal
- Epilepsy/etiology
- Epilepsy/pathology
- Epilepsy/physiopathology
- Epilepsy, Temporal Lobe/etiology
- Epilepsy, Temporal Lobe/pathology
- Epilepsy, Temporal Lobe/physiopathology
- Humans
- Hypoxia, Brain/complications
- Hypoxia, Brain/pathology
- Hypoxia, Brain/physiopathology
- Infant
- Infant, Newborn
- Seizures/complications
- Seizures/etiology
- Seizures/pathology
- Seizures/physiopathology
- Seizures, Febrile/complications
- Seizures, Febrile/etiology
- Seizures, Febrile/pathology
- Seizures, Febrile/physiopathology
Collapse
Affiliation(s)
- F E Jensen
- Children's Hospital, Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
115
|
Chen K, Baram TZ, Soltesz I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 1999; 5:888-94. [PMID: 10426311 PMCID: PMC3382971 DOI: 10.1038/11330] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Febrile (fever-induced) seizures affect 3-5% of infants and young children. Despite the high incidence of febrile seizures, their contribution to the development of epilepsy later in life has remained controversial. Combining a new rat model of complex febrile seizures and patch clamp techniques, we determined that hyperthermia-induced seizures in the immature rat cause a selective presynaptic increase in inhibitory synaptic transmission in the hippocampus that lasts into adulthood. The long-lasting nature of these potent alterations in synaptic communication after febrile seizures does not support the prevalent view of the 'benign' nature of early-life febrile convulsions.
Collapse
Affiliation(s)
- K Chen
- Department of Anatomy and Neurobiology, University of California, Irvine 92697-1280, USA
| | | | | |
Collapse
|
116
|
Jensen FE. Acute and chronic effects of seizures in the developing brain: experimental models. Epilepsia 1999; 40 Suppl 1:S51-8; discussion S64-6. [PMID: 10421561 DOI: 10.1111/j.1528-1157.1999.tb00879.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clinical experience suggests two major components to the relationship between brain development and epilepsy. First, the maturational state of the immature brain appears to generally decrease seizure threshold and contribute to a different seizure phenotype from the adult. Second, certain forms of seizures, when present during development, may modify brain maturation to result in chronic epilepsy and/or other neurocognitive deficits. Maturational studies in animals suggest there are numerous factors developmentally regulated in such a way as to increase excitability in immature neuronal networks in the forebrain. The developing brain appears to exhibit a transient overexpression of glutamate receptors, glutamate receptor subunit composition permissive of enhanced excitatory neurotransmission, a relative lack of GABAergic inhibitory transmission, and ion channel expression and homeostasis which enhance neuronal excitability. The increased excitatory "drive" that is likely to be critical for normal brain development may share common mechanisms with those responsible for rendering the immature brain more susceptible to seizures, seizure induced plasticity (epileptogenesis), and neuronal injury. Furthermore, the coincidence of seizures during early postnatal brain development may modify many of these parameters, which in turn may promote long term epilepsy.
Collapse
Affiliation(s)
- F E Jensen
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
117
|
Arabadzisz D, Freund TF. Changes in excitatory and inhibitory circuits of the rat hippocampus 12-14 months after complete forebrain ischemia. Neuroscience 1999; 92:27-45. [PMID: 10392828 DOI: 10.1016/s0306-4522(98)00736-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Changes in interneuron distribution and excitatory connectivity have been investigated in animals which had survived 12-14 months after complete forebrain ischemia, induced by four-vessel occlusion. Anterograde tracing with Phaseolus vulgaris leucoagglutinin revealed massive Schaffer collateral input even to those regions of the CA1 subfield where hardly any surviving pyramidal cells were found. Boutons of these Schaffer collaterals formed conventional synaptic contacts on dendritic spines and shafts, many of which likely belong to interneurons. Mossy fibres survived the ischemic challenge, however, large mossy terminals showed altered morphology, namely, the number of filopodiae on these terminals decreased significantly. The entorhinal input to the hippocampus did not show any morphological alterations. The distribution of interneurons was investigated by neurochemical markers known to label functionally distinct GABAergic cell populations. In the hilus, spiny interneurons showed a profound decrease in number. This phenomenon was not as obvious in CA3, but the spiny metabotropic glutamate receptor 1alpha-positive non-pyramidal cells, some of which contain calretinin or substance P receptor, disappeared from stratum lucidum of this area. In the CA1 region, somatostatin immunoreactivity disappeared from stratum oriens/lacunosum-moleculare-associated cells, while in metabotropic glutamate receptor 1alpha-stained sections these cells seemed unaffected in number. Other interneurons did not show an obvious decrease in number. In stratum radiatum of the CA1 subfield, some interneuron types had altered morphology: the substance P receptor-positive dendrites lost their characteristic radial orientation, and the metabotropic glutamate receptor 1alpha-expressing cells became extremely spiny. The loss of inhibitory interneurons at the first two stages of the trisynaptic loop coupled with a well-preserved excitatory connectivity among the subfields suggests that hyperexcitability in the surviving dentate gyrus and CA3 may persist even a year after the ischemic impact. The dorsal CA1 region is lost; nevertheless hyperactivity, if it occurs, may have a route to leave the hippocampus via the longitudinally extensive axon collaterals of CA3 pyramidal cells, which may activate the subiculum and entorhinal cortex with a relay in the surviving ventral hippocampal CA1 region.
Collapse
Affiliation(s)
- D Arabadzisz
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
118
|
Kunimatsu T, Asai S, Kanematsu K, Zhao H, Kohno T, Misaki T, Ishikawa K. Transient in vivo membrane depolarization and glutamate release before anoxic depolarization in rat striatum. Brain Res 1999; 831:273-82. [PMID: 10412006 DOI: 10.1016/s0006-8993(99)01481-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increased extracellular glutamate ([GLU]e), under the condition of cerebral ischemia, anoxia or hypoxia, has been recognized as being associated with neuronal cell damage and death. We performed real-time monitoring of [GLU]e dynamics in vivo in the rat striatum during systemic acute anoxia or hypoxia, as well as monitoring the direct current potential (DC) and cerebral blood flow (CBF). Adult Wistar rats were orotracheally intubated and artificially ventilated with room air. A microdialysis electrode, temperature sensor probe, DC microelectrode and laser Doppler probe were then implanted. The inspired gas was changed to 100% N(2) (anoxia), or to 3, 5 or 8% O(2) (remainder N(2)) (hypoxia). With 100% N(2), distinct biphasic [GLU]e elevations were observed. With 3% O(2), a transient [GLU]e increase was seen before anoxic depolarization (AD). With 5% O(2), however, the start of the transient [GLU]e increase was significantly delayed. Anoxia-induced depolarization started at about 100 s. The 3% O(2)-induced transient depolarization and AD began at nearly the same time as the transient and AD-induced increase in [GLU]e. Similarly, the responses to 5% O(2) showed significant delays in the transient depolarization and AD-induced increase in [GLU]e. CBF during 3 or 5% O(2) hypoxic insult was consistently maintained above the control level, i.e., prior to cardiac arrest. Our new dialysis electrode method employing both GOX and ferrocene-conjugated bovine serum albumin allowed evaluation of transient [GLU]e dynamics in the early phase of severe hypoxia in vivo.
Collapse
Affiliation(s)
- T Kunimatsu
- Department of Pharmacology, Nihon University School of Medicine, Oyaguchi-Kami Machi, Itabashi-ku, Tokyo 173, Japan
| | | | | | | | | | | | | |
Collapse
|
119
|
Affiliation(s)
- G L Holmes
- Center for Research in Pediatric Epilepsy, Children's Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
120
|
Chen HS, Wang YF, Rayudu PV, Edgecomb P, Neill JC, Segal MM, Lipton SA, Jensen FE. Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 1998; 86:1121-32. [PMID: 9697119 DOI: 10.1016/s0306-4522(98)00163-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The potential of most N-methyl-D-aspartate antagonists as neuroprotectants is limited by side effects. We previously reported that memantine is an open-channel N-methyl-D-aspartate blocker with a faster off-rate than many uncompetitive N-methyl-D-aspartate antagonists such as dizocilpine maleate. This parameter correlated with memantine's known clinical tolerability in humans with Parkinson's disease. Memantine is the only N-methyl-D-aspartate antagonist that has been used clinically for excitotoxic disorders at neuroprotective doses. Therefore, we wanted to investigate further the basis of its clinical efficacy, safety, and tolerability. Here we show for the first time for any clinically-tolerated N-methyl-D-aspartate antagonist that memantine significantly reduces infarct size when administered up to 2 h after induction of hypoxia/ischemia in immature and adult rats. We found that at neuroprotective concentrations memantine results in few adverse side effects. Compared to dizocilpine maleate, memantine displayed virtually no effects on Morris water maze performance or on neuronal vacuolation. At concentrations similar to those in brain following clinical administration, memantine (6-10 microM) did not attenuate long-term potentiation in hippocampal slices and substantially spared the N-methyl-D-aspartate component of excitatory postsynaptic currents, while dizocilpine maleate (6-10 microM) or D-2-amino-5-phosphovalerate (50 microM) completely blocked these phenomena. We suggest that the favorable kinetics of memantine interaction with N-methyl-D-aspartate channels may be partly responsible for its high index of therapeutic safety, and make memantine a candidate drug for use in many N-methyl-D-aspartate receptor-mediated human CNS disorders.
Collapse
Affiliation(s)
- H S Chen
- CNS Research Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|