101
|
Wang J, Chen Y, Chen Z, Xiang Z, Ding J, Han X. Microcystin-leucine arginine inhibits gonadotropin-releasing hormone synthesis in mice hypothalamus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:391-399. [PMID: 30064084 DOI: 10.1016/j.ecoenv.2018.07.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Microcystin-leucine arginine (MC-LR) causes serum testosterone declines and male reproductive disorders. However, the molecular mechanisms underlying the pathological changes are still unclear. In the present study, we aimed to investigate the toxic effects of MC-LR on gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus. Our results demonstrated that MC-LR could enter GnRH neurons and inhibit GnRH synthesis, resulting in the decrease of serum GnRH and testosterone levels. The inhibitory effects of MC-LR on GnRH synthesis were identified to be associated with activation of the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP response element-binding protein (CREB)/c-Fos signaling pathway. With miRNA microarray analyses, we found that miR-329-3p was down-regulated most dramatically in MC-LR-treated GT1-7 cells. We then further identified that miR-329-3p regulated PRKAR1A and PRKACB expression and thus influenced GnRH synthesis. This is the first study to explore the molecular mechanism underlying the inhibitory effects of MC-LR on GnRH synthesis in the hypothalamus. Our data have provided a new perspective in the development of diagnosis and treatment strategies for male infertility as a result of dysfunction of the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zhangpeng Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
102
|
Balta EA, Schäffner I, Wittmann MT, Sock E, von Zweydorf F, von Wittgenstein J, Steib K, Heim B, Kremmer E, Häberle BM, Ueffing M, Lie DC, Gloeckner CJ. Phosphorylation of the neurogenic transcription factor SOX11 on serine 133 modulates neuronal morphogenesis. Sci Rep 2018; 8:16196. [PMID: 30385877 PMCID: PMC6212486 DOI: 10.1038/s41598-018-34480-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
The intellectual disability gene, Sox11, encodes for a critical neurodevelopmental transcription factor with functions in precursor survival, neuronal fate determination, migration and morphogenesis. The mechanisms regulating SOX11’s activity remain largely unknown. Mass spectrometric analysis uncovered that SOX11 can be post-translationally modified by phosphorylation. Here, we report that phosphorylatable serines surrounding the high-mobility group box modulate SOX11’s transcriptional activity. Through Mass Spectrometry (MS), co-immunoprecipitation assays and in vitro phosphorylation assays followed by MS we verified that protein kinase A (PKA) interacts with SOX11 and phosphorylates it on S133. In vivo replacement of SoxC factors in developing adult-generated hippocampal neurons with SOX11 S133 phospho-mutants indicated that phosphorylation on S133 modulates dendrite development of adult-born dentate granule neurons, while reporter assays suggested that S133 phosphorylation fine-tunes the activation of select target genes. These data provide novel insight into the control of the critical neurodevelopmental regulator SOX11 and imply SOX11 as a mediator of PKA-regulated neuronal development.
Collapse
Affiliation(s)
- Elli-Anna Balta
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Iris Schäffner
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Marie-Theres Wittmann
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Elisabeth Sock
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Felix von Zweydorf
- DZNE-German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany
| | - Julia von Wittgenstein
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Kathrin Steib
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Birgit Heim
- University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Elisabeth Kremmer
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Benjamin Martin Häberle
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Marius Ueffing
- University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, 72076, Tübingen, Germany
| | - Dieter Chichung Lie
- Institute of Biochemistry, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| | - Christian Johannes Gloeckner
- DZNE-German Center for Neurodegenerative Diseases, 72076, Tübingen, Germany. .,University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology, 72076, Tübingen, Germany.
| |
Collapse
|
103
|
Ideno N, Yamaguchi H, Ghosh B, Gupta S, Okumura T, Steffen DJ, Fisher CG, Wood LD, Singhi AD, Nakamura M, Gutkind JS, Maitra A. GNAS R201C Induces Pancreatic Cystic Neoplasms in Mice That Express Activated KRAS by Inhibiting YAP1 Signaling. Gastroenterology 2018; 155:1593-1607.e12. [PMID: 30142336 PMCID: PMC6219919 DOI: 10.1053/j.gastro.2018.08.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Mutations at hotspots in GNAS, which encodes stimulatory G-protein, α subunits, are detected in approximately 60% of intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. We generated mice with KRAS-induced IPMNs that also express a constitutively active form of GNAS in pancreas and studied tumor development. METHODS We generated p48-Cre; LSL-KrasG12D; Rosa26R-LSL-rtTA-TetO-GnasR201C mice (Kras;Gnas mice); pancreatic tissues of these mice express activated KRAS and also express a mutant form of GNAS (GNASR201C) upon doxycycline administration. Mice that were not given doxycycline were used as controls, and survival times were compared by Kaplan-Meier analysis. Pancreata were collected at different time points after doxycycline administration and analyzed by histology. Pancreatic ductal adenocarcinomas (PDACs) were isolated from mice and used to generate cell lines, which were analyzed by reverse transcription polymerase chain reaction, immunoblotting, immunohistochemistry, and colony formation and invasion assays. Full-length and mutant forms of yes-associated protein (YAP) were expressed in PDAC cells. IPMN specimens were obtained from 13 patients with IPMN undergoing surgery and analyzed by immunohistochemistry. RESULTS All Kras;Gnas mice developed pancreatic cystic lesions that resemble human IPMNs; the grade of epithelial dysplasia increased with time. None of the control mice developed cystic lesions. Approximately one third of Kras;Gnas mice developed PDACs at a median of 30 weeks after doxycycline administration, whereas 33% of control mice developed PDACs. Expression of GNASR201C did not accelerate the development of PDACs compared with control mice. However, the neoplasms observed in Kras;Gnas mice were more differentiated, and expressed more genes associated with ductal phenotypes, than in control mice. PDACs isolated from Kras;Gnas mice had activation of the Hippo pathway; in cells from these tumors, phosphorylated YAP1 was sequestered in the cytoplasm, and this was also observed in human IPMNs with GNAS mutations. Sequestration of YAP1 was not observed in PDAC cells from control mice. CONCLUSIONS In mice that express activated KRAS in the pancreas, we found expression of GNASR201C to cause development of more differentiated tumors, with gene expression pattern associated with the ductal phenotype. Expression of mutant GNAS caused phosphorylated YAP1 to be sequestered in the cytoplasm, altering tumor progression.
Collapse
Affiliation(s)
- Noboru Ideno
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas.
| | - Hiroshi Yamaguchi
- Department of Translational Molecular Pathology, Houston, Texas 77030, USA,Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas 77030, USA
| | - Bidyut Ghosh
- Department of Translational Molecular Pathology, Houston, Texas 77030, USA,Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas 77030, USA
| | - Sonal Gupta
- Department of Translational Molecular Pathology, Houston, Texas 77030, USA,Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas 77030, USA
| | - Takashi Okumura
- Department of Translational Molecular Pathology, Houston, Texas 77030, USA,Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas 77030, USA
| | - Dana J Steffen
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Catherine G Fisher
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Baltimore 21287, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Baltimore 21287, USA,Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Baltimore 21287, USA
| | - Aatur D. Singhi
- Department of Anatomic Pathology, University of Pittsburgh, Pittsburgh 15260, USA
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - J Silvio Gutkind
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Houston, Texas 77030, USA,Sheikh Ahmed Center for Pancreatic Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
104
|
Russo I, Di Benedetto G, Kaganovich A, Ding J, Mercatelli D, Morari M, Cookson MR, Bubacco L, Greggio E. Leucine-rich repeat kinase 2 controls protein kinase A activation state through phosphodiesterase 4. J Neuroinflammation 2018; 15:297. [PMID: 30368241 PMCID: PMC6204045 DOI: 10.1186/s12974-018-1337-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evidence indicates a cross-regulation between two kinases, leucine-rich repeat kinase 2 (LRRK2) and protein kinase A (PKA). In neurons, LRRK2 negatively regulates PKA activity in spiny projecting neurons during synaptogenesis and in response to dopamine D1 receptor activation acting as an A-anchoring kinase protein (AKAP). In microglia cells, we showed that LRRK2 kinase activity negatively regulates PKA, impacting NF-κB p50 signaling and the inflammatory response. Here, we explore the molecular mechanism underlying the functional interaction between LRRK2 and PKA in microglia. METHODS To understand which step of PKA signaling is modulated by LRRK2, we used a combination of in vitro and ex vivo systems with hyperactive or inactive LRRK2 as well as different readouts of PKA signaling. RESULTS We confirmed that LRRK2 kinase activity acts as a negative regulator of PKA activation state in microglia. Specifically, we found that LRRK2 controls PKA by affecting phosphodiesterase 4 (PDE4) activity, modulating cAMP degradation, content, and its dependent signaling. Moreover, we showed that LRRK2 carrying the G2019S pathological mutation downregulates PKA activation causing a reduction of PKA-mediated NF-κB inhibitory signaling, which results, in turn, in increased inflammation in LRRK2 G2019S primary microglia upon α-synuclein pre-formed fibrils priming. CONCLUSIONS Overall, our findings indicate that LRRK2 kinase activity is a key regulator of PKA signaling and suggest PDE4 as a putative LRRK2 effector in microglia. In addition, our observations suggest that LRRK2 G2019S may favor the transition of microglia toward an overactive state, which could widely contribute to the progression of the pathology in LRRK2-related PD.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Biology, University of Padova, Padua, Italy
- Present Address: Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | | | - Alice Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Daniela Mercatelli
- Department of Medical Sciences, National Institute for Neuroscience, University of Ferrara, Ferrara, Italy
| | - Michele Morari
- Department of Medical Sciences, National Institute for Neuroscience, University of Ferrara, Ferrara, Italy
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD USA
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padua, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
105
|
PDE3 Inhibitors Repurposed as Treatments for Age-Related Cognitive Impairment. Mol Neurobiol 2018; 56:4306-4316. [PMID: 30311144 DOI: 10.1007/s12035-018-1374-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
As the population of older individuals grows worldwide, researchers have increasingly focused their attention on identifying key molecular targets of age-related cognitive impairments, with the aim of developing possible therapeutic interventions. Two such molecules are the intracellular cyclic nucleotides, cAMP and cGMP. These second messengers mediate fundamental aspects of brain function relevant to memory, learning, and cognitive function. Consequently, phosphodiesterases (PDEs), which hydrolyze cAMP and cGMP, are promising targets for the development of cognition-enhancing drugs. Inhibitors that target PDEs work by elevating intracellular cAMP. In this review, we provide an overview of different PDE inhibitors, and then we focus on pharmacological and physiological effects of PDE3 inhibitors in the CNS and peripheral tissues. Finally, we discuss findings from experimental and preliminary clinical studies and the potential beneficial effects of the PDE3 inhibitor cilostazol on age-related cognitive impairments. In the innovation pipeline of pharmaceutical development, the antiplatelet agent cilostazol has come into the spotlight as a novel treatment for mild cognitive impairment. Overall, the repurposing of cilostazol may represent a potentially promising way to treat mild cognitive impairment, Alzheimer's disease, and vascular dementia. In this review, we present a brief summary of cAMP signaling and different PDE inhibitors, followed by a discussion of the pharmacological and physiological role of PDE3 inhibitors. In this context, we discuss the repurposing of a PDE3 inhibitor, cilostazol, as a potential treatment for age-related cognitive impairment based on recent research.
Collapse
|
106
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
107
|
Remifentanil suppresses increase in interleukin-6 mRNA in the brain by inhibiting cyclic AMP synthesis. J Anesth 2018; 32:731-739. [PMID: 30167784 DOI: 10.1007/s00540-018-2548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/23/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Neuronal inflammation is caused by systemic inflammation and induces cognitive dysfunction. IL-6 plays a crucial role in therapies for neuronal inflammation and cognitive dysfunction. Remifentanil, an ultra-short-acting opioid, controls inflammatory reactions in the periphery, but not in the brain. Therefore, the anti-inflammatory effects of remifentanil in neuronal tissue and the involvement of cAMP in these effects were investigated in the present study. METHODS Mice were divided into 4 groups: control, remifentanil, LPS, and LPS + remifentanil. Brain levels of pro-inflammatory cytokine mRNA, and serum levels of corticosterone, catecholamine and IL-6 were measured in the 4 groups. The co-localization of IL-6 and astrocytes in the mouse brain after the LPS injection was validated by immunostaining. LPS and/or remifentanil-induced changes in intracellular cAMP levels in cultured glial cells were measured, and the effects of cAMP on LPS-induced IL-6 mRNA expression levels were evaluated. RESULTS Remifentanil suppressed increase in IL-6 mRNA levels in the mouse brain, and also inhibited the responses of plasma IL-6, corticosterone, and noradrenaline in an inflammatory state. In the hypothalamus, IL-6 was localized in the median eminence, at which GFAP immunoreactivity was specifically detected. In cultured cells, remifentanil suppressed increase in IL-6 mRNA levels and intracellular cAMP levels after the administration of LPS, and this enhanced IL-6 mRNA expression in response to LPS. CONCLUSION Remifentanil suppressed increase in IL-6 mRNA levels in the brain in an inflammatory state, and this effect may be attributed to its direct action on neuronal cells through the inhibition of intracellular cAMP rather than corticosterone.
Collapse
|
108
|
van Strijp D, de Witz C, Vos PC, den Biezen-Timmermans E, van Brussel A, Wrobel J, Baillie GS, Tennstedt P, Schlomm T, Heitkötter B, Huss S, Bögemann M, Houslay MD, Bangma C, Semjonow A, Hoffmann R. The Prognostic PDE4D7 Score in a Diagnostic Biopsy Prostate Cancer Patient Cohort with Longitudinal Biological Outcomes. Prostate Cancer 2018; 2018:5821616. [PMID: 30147955 PMCID: PMC6083737 DOI: 10.1155/2018/5821616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose. To further validate the prognostic power of the biomarker PDE4D7, we investigated the correlation of PDE4D7 scores adjusted for presurgical clinical variables with longitudinal postsurgical biological outcomes. Methods. RNA was extracted from biopsy punches of resected tumors (550 patients; RP cohort) and diagnostic needle biopsies (168 patients; DB cohort). Cox regression and survival were applied to correlate PDE4D7 scores with patient outcomes. Logistic regression was used to combine the clinical CAPRA score with PDE4D7. Results. In univariate analysis, the PDE4D7 score was significantly associated with PSA recurrence after prostatectomy in both studied patient cohorts' analysis (HR 0.53; 95% CI 0.41-0.67; p<1.0E-04 and HR 0.47; 95% CI 0.33-0.65; p<1.0E-04, respectively). After adjustment for the presurgical clinical variables preoperative PSA, PSA density, biopsy Gleason, clinical stage, percentage tumor in the biopsy (data only available for RP cohort), and percentage of positive biopsies, the HR was 0.49 (95% CI 0.38-0.64; p<1.0E-04) and 0.43 (95% CI 0.29-0.63; p<1.0E-04), respectively. The addition of the PDE4D7 to the clinical CAPRA score increased the AUC by 5% over the CAPRA score alone (0.82 versus 0.77; p=0.004). This combination model stratified 14.6% patients of the DB cohort to no risk of biochemical relapse (NPV 100%) over a follow-up period of up to 15 years. Conclusions. The PDE4D7 score provides independent risk information for pretreatment risk stratification. Combining CAPRA with PDE4D7 scores significantly improved the clinical risk stratification before surgery.
Collapse
Affiliation(s)
- Dianne van Strijp
- Philips Research Europe, High Tech Campus 34, 5656AE Eindhoven, Netherlands
| | - Christiane de Witz
- Philips Research Europe, High Tech Campus 34, 5656AE Eindhoven, Netherlands
| | - Pieter C. Vos
- Philips Research Europe, High Tech Campus 34, 5656AE Eindhoven, Netherlands
| | | | - Anne van Brussel
- Philips Research Europe, High Tech Campus 34, 5656AE Eindhoven, Netherlands
| | - Janneke Wrobel
- Philips Research Europe, High Tech Campus 34, 5656AE Eindhoven, Netherlands
| | - George S. Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, G12 8TA Glasgow, Scotland, UK
| | - Pierre Tennstedt
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thorsten Schlomm
- Klinik für Urologie, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Birthe Heitkötter
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, 48149 Münster, Germany
| | - Sebastian Huss
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, 48149 Münster, Germany
| | - Martin Bögemann
- Prostate Center, University Hospital Münster, 48149 Münster, Germany
| | - Miles D. Houslay
- Institute of Pharmaceutical Science, King's College London, WC2R 2LS London, UK
- Mironid Ltd, BioCity Scotland, ML1 5UH Newhouse, Scotland, UK
| | - Chris Bangma
- Department of Urology, 3000CA Erasmus Medical Center, Rotterdam, Netherlands
| | - Axel Semjonow
- Prostate Center, University Hospital Münster, 48149 Münster, Germany
| | - Ralf Hoffmann
- Philips Research Europe, High Tech Campus 34, 5656AE Eindhoven, Netherlands
- Institute of Cardiovascular and Medical Science, University of Glasgow, G12 8TA Glasgow, Scotland, UK
| |
Collapse
|
109
|
Byrne CJ, Khurana S, Kumar A, Tai TC. Inflammatory Signaling in Hypertension: Regulation of Adrenal Catecholamine Biosynthesis. Front Endocrinol (Lausanne) 2018; 9:343. [PMID: 30013513 PMCID: PMC6036303 DOI: 10.3389/fendo.2018.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/07/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system is increasingly recognized for its role in the genesis and progression of hypertension. The adrenal gland is a major site that coordinates the stress response via the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal system. Catecholamines released from the adrenal medulla function in the neuro-hormonal regulation of blood pressure and have a well-established link to hypertension. The immune system has an active role in the progression of hypertension and cytokines are powerful modulators of adrenal cell function. Adrenal medullary cells integrate neural, hormonal, and immune signals. Changes in adrenal cytokines during the progression of hypertension may promote blood pressure elevation by influencing catecholamine biosynthesis. This review highlights the potential interactions of cytokine signaling networks with those of catecholamine biosynthesis within the adrenal, and discusses the role of cytokines in the coordination of blood pressure regulation and the stress response.
Collapse
Affiliation(s)
- Collin J. Byrne
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Sandhya Khurana
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Aseem Kumar
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - T. C. Tai
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
110
|
Muñoz-Pérez VM, Ortiz MI, Ponce-Monter HA, Monter-Pérez V, Barragán-Ramírez G. Anti-inflammatory and utero-relaxant effect of α-bisabolol on the pregnant human uterus. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:391-398. [PMID: 29962853 PMCID: PMC6019870 DOI: 10.4196/kjpp.2018.22.4.391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/09/2018] [Indexed: 12/16/2022]
Abstract
The aim of this study was to evaluate the in vitro anti-inflammatory and utero-relaxant effect of α-bisabolol on the pregnant human myometrium. Samples from the pregnant human myometrium were used in functional tests to evaluate the inhibitory effect of α-bisabolol (560, 860, 1,200 and 1,860 µM) on spontaneous myometrial contractions. The intracellular cyclic adenosine monophosphate (cAMP) levels generated in response to α-bisabolol in human myometrial homogenates were measured by ELISA. The anti-inflammatory effect of α-bisabolol was determined through the measurement of two pro-inflammatory cytokines, tumor necrosis factor-α (TNFα) and interleukin (IL)-1β, and the anti-inflammatory cytokine IL-10, in pregnant human myometrial explants stimulated with lipopolysaccharide (LPS). Forskolin was used as a positive control to evaluate the cAMP and cytokine levels. α-Bisabolol was found to induce a significant inhibition of spontaneous myometrial contractions at the highest concentration level (p<0.05). α-Bisabolol caused a concentration-dependent decrease in myometrial cAMP levels (p<0.05) and a concentration-dependent decrease in LPS-induced TNFα and IL-1β production, while IL-10 production did not increase significantly (p>0.05). The anti-inflammatory and utero-relaxant effects induced by α-bisabolol were not associated with an increase in cAMP levels in pregnant human myometrial samples. These properties place α-bisabolol as a potentially safe and effective adjuvant agent in cases of preterm birth, an area of pharmacological treatment that requires urgent improvement.
Collapse
Affiliation(s)
- Victor Manuel Muñoz-Pérez
- Área Académica de Medicina del Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, México
| | - Mario I Ortiz
- Área Académica de Medicina del Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, México
| | - Héctor A Ponce-Monter
- Área Académica de Medicina del Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, México
| | | | | |
Collapse
|
111
|
Garrido F, Pacheco M, Vargas-Martínez R, Velasco-García R, Jorge I, Serrano H, Portillo F, Vázquez J, Pajares MÁ. Identification of hepatic protein-protein interaction targets for betaine homocysteine S-methyltransferase. PLoS One 2018; 13:e0199472. [PMID: 29924862 PMCID: PMC6010280 DOI: 10.1371/journal.pone.0199472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/07/2018] [Indexed: 01/01/2023] Open
Abstract
Protein-protein interactions are an important mechanism for the regulation of enzyme function allowing metabolite channeling, crosstalk between pathways or the introduction of post-translational modifications. Therefore, a number of high-throughput studies have been carried out to shed light on the protein networks established under different pathophysiological settings. Surprisingly, this type of information is quite limited for enzymes of intermediary metabolism such as betaine homocysteine S-methyltransferase, despite its high hepatic abundancy and its role in homocysteine metabolism. Here, we have taken advantage of two approaches, affinity purification combined with mass spectrometry and yeast two-hybrid, to further uncover the array of interactions of betaine homocysteine S-methyltransferase in normal liver of Rattus norvegicus. A total of 131 non-redundant putative interaction targets were identified, out of which 20 were selected for further validation by coimmunoprecipitation. Interaction targets validated by two different methods include: S-methylmethionine homocysteine methyltransferase or betaine homocysteine methyltransferase 2, methionine adenosyltransferases α1 and α2, cAMP-dependent protein kinase catalytic subunit alpha, 4-hydroxyphenylpyruvic acid dioxygenase and aldolase b. Network analysis identified 122 nodes and 165 edges, as well as a limited number of KEGG pathways that comprise: the biosynthesis of amino acids, cysteine and methionine metabolism, the spliceosome and metabolic pathways. These results further expand the connections within the hepatic methionine cycle and suggest putative cross-talks with additional metabolic pathways that deserve additional research.
Collapse
Affiliation(s)
- Francisco Garrido
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - María Pacheco
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - Rocío Vargas-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - Roberto Velasco-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - Inmaculada Jorge
- Cardiovascular Proteomics Group, Spanish National Center for Cardiovascular Research (CNIC) and CIBERCV, Melchor Fernández de Almagro 3, Madrid, Spain
| | - Horacio Serrano
- Department of Internal Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Francisco Portillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana 261, Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Group, Spanish National Center for Cardiovascular Research (CNIC) and CIBERCV, Melchor Fernández de Almagro 3, Madrid, Spain
| | - María Ángeles Pajares
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana 261, Madrid, Spain
- Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid, Spain
- * E-mail:
| |
Collapse
|
112
|
Shim DW, Lee KH. Posttranslational Regulation of the NLR Family Pyrin Domain-Containing 3 Inflammasome. Front Immunol 2018; 9:1054. [PMID: 29868015 PMCID: PMC5968104 DOI: 10.3389/fimmu.2018.01054] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multi-protein complex that can be activated by a variety of pathogen-associated molecular patterns or damage-associated molecular patterns. Inappropriate NLRP3 inflammasome activation can induce autoinflammatory, autoimmune, or metabolic disorders. Therefore, NLRP3 is an attractive target against NLRP3 inflammasome activation, and specific targeting of NLRP3 might be an intriguing approach to the development of drugs for the treatment of NLRP3 inflammasome-related diseases. Although many studies with varied mechanistic approaches were reported in inhibition of NLRP3 inflammasome activation, mechanisms related to regulation of posttranslational modification (PTM) of NLRP3, as a focal point has not been thoroughly addressed. Recently, extensive investigations of PTMs of NLRP3 have led to partial understanding of the mechanisms involved in NLRP3 inflammasome activation. In this review, we focused on the role of PTMs regulating NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Do-Wan Shim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea
| | - Kwang-Ho Lee
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea.,Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease, Konkuk University, Chungju, South Korea
| |
Collapse
|
113
|
Li YS, Liu XY, Zhao DS, Liao YX, Zhang LH, Zhang FZ, Song GP, Cui ZN. Tetrahydroquinoline and tetrahydroisoquinoline derivatives as potential selective PDE4B inhibitors. Bioorg Med Chem Lett 2018; 28:3271-3275. [PMID: 30131242 DOI: 10.1016/j.bmcl.2018.04.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 12/29/2022]
Abstract
Tetrahydroquinoline and tetrahydroisoquinoline derivatives containing 2-phenyl-5-furan moiety were designed and synthesized as phosphodiesterase type 4 (PDE4) inhibitors. The bioassay results showed that title compounds showed good inhibitory activity against PDE4B and blockade of LPS (lipopolysaccharide) induced TNF-α release, which also exhibited considerable in vivo activity in animal models of asthma/COPD (chronic obstructive pulmonary disease) and sepsis induced by LPS. The bioactivity of compounds containing tetrahydroquinoline (series 4) was higher than that of tetrahydroisoquinoline derivatives (series 3). Compound 4 m with 4-methoxybenzene moiety exhibited the best potential selective activity against PDE4B. The primary structure-activity relationship study and docking results showed that the tetrahydroquinoline moiety of compound 4 m played a key role to form hydrogen bonds and π-π stacking interaction with PDE4B protein while the rest part of the molecule extended into the catalytic domain to block the access of cAMP and formed the foundation for inhibition of PDE4B. Based on LPS induced sepsis model for the measurement of TNF-α inhibition in Swiss Albino mice and neutrophilia inhibition for asthma and COPD in Sprague Dawley rats with the potential molecules, compound 4 m would be great promise as a hit inhibitor in the future study.
Collapse
Affiliation(s)
- Ya-Sheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xing-Yu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Dong-Sheng Zhao
- Department of Pharmacy, Quanzhou Medical College, Quanzhou 362100, China
| | - Yi-Xian Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Feng-Zhi Zhang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gao-Peng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
114
|
Rogne M, Chu DT, Küntziger TM, Mylonakou MN, Collas P, Tasken K. OPA1-anchored PKA phosphorylates perilipin 1 on S522 and S497 in adipocytes differentiated from human adipose stem cells. Mol Biol Cell 2018; 29:1487-1501. [PMID: 29688805 PMCID: PMC6014102 DOI: 10.1091/mbc.e17-09-0538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Optic atrophy 1 (OPA1) is the A-kinase anchoring protein targeting the pool of protein kinase A (PKA) responsible for perilipin 1 phosphorylation, a gatekeeper for lipolysis. However, the involvement of OPA1-bound PKA in the downstream regulation of lipolysis is unknown. Here we show up-regulation and relocation of OPA1 from mitochondria to lipid droplets during adipocytic differentiation of human adipose stem cells. We employed various biochemical and immunological approaches to demonstrate that OPA1-bound PKA phosphorylates perilipin 1 at S522 and S497 on lipolytic stimulation. We show that the first 30 amino acids of OPA1 are essential for its lipid droplet localization as is OMA1-dependent processing. Finally, our results indicate that presence of OPA1 is necessary for lipolytic phosphorylation of downstream targets. Our results show for the first time, to our knowledge, how OPA1 mediates adrenergic control of lipolysis in human adipocytes by regulating phosphorylation of perilipin 1.
Collapse
Affiliation(s)
- Marie Rogne
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Dinh-Toi Chu
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | | | - Maria-Niki Mylonakou
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway.,Norewegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kjetil Tasken
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway.,Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| |
Collapse
|
115
|
Agarwal SR, Gratwohl J, Cozad M, Yang PC, Clancy CE, Harvey RD. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes. Front Pharmacol 2018; 9:332. [PMID: 29740315 PMCID: PMC5925456 DOI: 10.3389/fphar.2018.00332] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 11/23/2022] Open
Abstract
Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane domains contribute to the formation of distinct pools of cAMP under basal conditions as well as following receptor stimulation in adult ventricular myocytes.
Collapse
Affiliation(s)
- Shailesh R Agarwal
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Jackson Gratwohl
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Mia Cozad
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| | - Pei-Chi Yang
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
116
|
Mitochondrial cAMP-PKA signaling: What do we really know? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:868-877. [PMID: 29694829 DOI: 10.1016/j.bbabio.2018.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Mitochondria are key organelles for cellular homeostasis. They generate the most part of ATP that is used by cells through oxidative phosphorylation. They also produce reactive oxygen species, neurotransmitters and other signaling molecules. They are important for calcium homeostasis and apoptosis. Considering the role of this organelle, it is not surprising that most mitochondrial dysfunctions are linked to the development of pathologies. Various mechanisms adjust mitochondrial activity according to physiological needs. The cAMP-PKA signaling emerged in recent years as a direct and powerful mean to regulate mitochondrial functions. Multiple evidence demonstrates that such pathway can be triggered from cytosol or directly within mitochondria. Notably, specific anchor proteins target PKA to mitochondria whereas enzymes necessary for generation and degradation of cAMP are found directly in these organelles. Mitochondrial PKA targets proteins localized in different compartments of mitochondria, and related to various functions. Alterations of mitochondrial cAMP-PKA signaling affect the development of several physiopathological conditions, including neurodegenerative diseases. It is however difficult to discriminate between the effects of cAMP-PKA signaling triggered from cytosol or directly in mitochondria. The specific roles of PKA localized in different mitochondrial compartments are also not completely understood. The aim of this work is to review the role of cAMP-PKA signaling in mitochondrial (patho)physiology.
Collapse
|
117
|
Ramirez-Sarmiento CA, Komives EA. Hydrogen-deuterium exchange mass spectrometry reveals folding and allostery in protein-protein interactions. Methods 2018; 144:43-52. [PMID: 29627358 DOI: 10.1016/j.ymeth.2018.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022] Open
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDXMS) has emerged as a powerful approach for revealing folding and allostery in protein-protein interactions. The advent of higher resolution mass spectrometers combined with ion mobility separation and ultra performance liquid chromatographic separations have allowed the complete coverage of large protein sequences and multi-protein complexes. Liquid-handling robots have improved the reproducibility and accurate temperature control of the sample preparation. Many researchers are also appreciating the power of combining biophysical approaches such as stopped-flow fluorescence, single molecule FRET, and molecular dynamics simulations with HDXMS. In this review, we focus on studies that have used a combination of approaches to reveal (re)folding of proteins as well as on long-distance allosteric changes upon interaction.
Collapse
Affiliation(s)
- Cesar A Ramirez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, United States.
| |
Collapse
|
118
|
Leiphrakpam PD, Brattain MG, Black JD, Wang J. TGFβ and IGF1R signaling activates protein kinase A through differential regulation of ezrin phosphorylation in colon cancer cells. J Biol Chem 2018; 293:8242-8254. [PMID: 29599290 DOI: 10.1074/jbc.ra117.001299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/14/2018] [Indexed: 01/30/2023] Open
Abstract
Aberrant cell survival plays a critical role in cancer progression and metastasis. We have previously shown that ezrin, a cAMP-dependent protein kinase A-anchoring protein (AKAP), is up-regulated in colorectal cancer (CRC) liver metastasis. Phosphorylation of ezrin at Thr-567 activates ezrin and plays an important role in CRC cell survival associated with XIAP and survivin up-regulation. In this study, we demonstrate that in FET and GEO colon cancer cells, knockdown of ezrin expression or inhibition of ezrin phosphorylation at Thr-567 increases apoptosis through protein kinase A (PKA) activation in a cAMP-independent manner. Transforming growth factor (TGF) β signaling inhibits ezrin phosphorylation in a Smad3-dependent and Smad2-independent manner and regulates pro-apoptotic function through ezrin-mediated PKA activation. On the other hand, ezrin phosphorylation at Thr-567 by insulin-like growth factor 1 receptor (IGF1R) signaling leads to cAMP-dependent PKA activation and enhances cell survival. Further studies indicate that phosphorylated ezrin forms a complex with PKA RII, and dephosphorylated ezrin dissociates from the complex and facilitates the association of PKA RII with AKAP149, both of which activate PKA yet lead to either cell survival or apoptosis. Thus, our studies reveal a novel mechanism of differential PKA activation mediated by TGFβ and IGF1R signaling through regulation of ezrin phosphorylation in CRC, resulting in different cell fates. This is of significance because TGFβ and IGF1R signaling pathways are well-characterized tumor suppressor and oncogenic pathways, respectively, with important roles in CRC tumorigenesis and metastasis. Our studies indicate that they cross-talk and antagonize each other's function through regulation of ezrin activation. Therefore, ezrin may be a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Premila D Leiphrakpam
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Michael G Brattain
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jing Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198; Departments of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
119
|
Hu DK, Zhao DS, He M, Jin HW, Tang YM, Zhang LH, Song GP, Cui ZN. Synthesis and bioactivity of 3,5-dimethylpyrazole derivatives as potential PDE4 inhibitors. Bioorg Med Chem Lett 2018; 28:3276-3280. [PMID: 30131240 DOI: 10.1016/j.bmcl.2018.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
A series of 3,5-dimethylpyrazole derivatives containing 5-phenyl-2-furan moiety were designed and synthesized as phosphodiesterase type 4 (PDE4) inhibitors. Bioassay results showed that the title compounds exhibited considerable inhibitory activity against PDE4B and blockade of LPS-induced TNFα release. Among the designed compounds, compound If showed the best inhibitory activity against PDE4B with the IC50 value of 1.7 μM, which also showed good in vivo activity in animal models of asthma/COPD and sepsis induced by LPS. The primary structure-activity relationship (SAR) study and docking results suggested that introduction of the substituent groups to the phenyl ring at the para-position, especially methoxy group, was helpful to enhance inhibitory activity against PDE4B.
Collapse
Affiliation(s)
- De-Kun Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Dong-Sheng Zhao
- Department of Pharmacy, Quanzhou Medical College, Quanzhou 362100, China
| | - Min He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Wei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong-Mei Tang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Gao-Peng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
120
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|
121
|
Mathematical Modelling of Nitric Oxide/Cyclic GMP/Cyclic AMP Signalling in Platelets. Int J Mol Sci 2018; 19:ijms19020612. [PMID: 29462984 PMCID: PMC5855834 DOI: 10.3390/ijms19020612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 02/04/2023] Open
Abstract
Platelet activation contributes to normal haemostasis but also to pathologic conditions like stroke and cardiac infarction. Signalling by cGMP and cAMP inhibit platelet activation and are therefore attractive targets for thrombosis prevention. However, extensive cross-talk between the cGMP and cAMP signalling pathways in multiple tissues complicates the selective targeting of their activities. We have used mathematical modelling based on experimental data from the literature to quantify the steady state behaviour of nitric oxide (NO)/cGMP/cAMP signalling in platelets. The analysis provides an assessment of NO-induced cGMP synthesis and PKG activation as well as cGMP-mediated cAMP and PKA activation though modulation of phosphodiesterase (PDE2 and 3) activities. Both one- and two-compartment models of platelet cyclic nucleotide signalling are presented. The models provide new insight for understanding how NO signalling to cGMP and indirectly cAMP, can inhibit platelet shape-change, the initial step of platelet activation. Only the two-compartment models could account for the experimental observation that NO-mediated PKA activation can occur when the bulk platelet cAMP level is unchanged. The models revealed also a potential for hierarchical interplay between the different platelet phosphodiesterases. Specifically, the models predict, unexpectedly, a strong effect of pharmacological inhibitors of cGMP-specific PDE5 on the cGMP/cAMP cross-talk. This may explain the successful use of weak PDE5-inhibitors, such as dipyridamole, in anti-platelet therapy. In conclusion, increased NO signalling or PDE5 inhibition are attractive ways of increasing cGMP-cAMP cross-talk selectively in platelets.
Collapse
|
122
|
Ezrin-anchored PKA phosphorylates serine 369 and 373 on connexin 43 to enhance gap junction assembly, communication, and cell fusion. Biochem J 2018; 475:455-476. [PMID: 29259079 DOI: 10.1042/bcj20170529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022]
Abstract
A limited number of human cells can fuse to form multinucleated syncytia. In the differentiation of human placenta, mononuclear cytotrophoblasts fuse to form an endocrinologically active, non-proliferative, multinucleated syncytium. This syncytium covers the placenta and manages the exchange of nutrients and gases between maternal and fetal circulation. We recently reported protein kinase A (PKA) to be part of a macromolecular signaling complex with ezrin and gap junction protein connexin 43 (Cx43) that provides cAMP-mediated control of gap junction communication. Here, we examined the associated phosphorylation events. Inhibition of PKA activity resulted in decreased Cx43 phosphorylation, which was associated with reduced trophoblast fusion and differentiation. In vitro studies using peptide arrays, together with mass spectrometry, pointed to serine 369 and 373 of Cx43 as the major PKA phosphorylation sites that increases gap junction assembly at the plasmalemma. A combination of knockdown and reconstitution experiments and gap-fluorescence loss in photobleaching assays with mutant Cx43 containing single or double phosphoserine-mimicking amino acid substitutions in putative PKA phosphorylation sites demonstrated that phosphorylation of S369 and S373 mediated gap junction communication, trophoblast differentiation, and cell fusion.
Collapse
|
123
|
Bieluszewska A, Weglewska M, Bieluszewski T, Lesniewicz K, Poreba E. PKA
‐binding domain of
AKAP
8 is essential for direct interaction with
DPY
30 protein. FEBS J 2018; 285:947-964. [DOI: 10.1111/febs.14378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/01/2017] [Accepted: 12/22/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Anna Bieluszewska
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Martyna Weglewska
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Tomasz Bieluszewski
- Department of Genome Biology Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| | - Elzbieta Poreba
- Department of Molecular Virology Institute of Experimental Biology Faculty of Biology Adam Mickiewicz University in Poznan Poland
| |
Collapse
|
124
|
Zhang YX, Zhao W, Tang YJ. Multilevel induction of apoptosis by microtubule-interfering inhibitors 4β-S-aromatic heterocyclic podophyllum derivatives causing multi-fold mitochondrial depolarization and PKA signaling pathways in HeLa cells. Oncotarget 2018; 7:24303-13. [PMID: 27007151 PMCID: PMC5029702 DOI: 10.18632/oncotarget.8147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/28/2016] [Indexed: 11/25/2022] Open
Abstract
Herein is a first effort to study effect of carbon-sulfur (C-S) and carbon-nitrogen (C-N) bonds modification on the antitumor activity of the podophyllum derivatives in HeLa cells. Compared with the derivative modified by the C-N bond, the C-S bond modification exhibited superior antitumor activity by further causing significant mitochondria depolarization from three signaling pathway. First, a large number of microtubules were depolymerized by 4β-S-heterocyclic substituted podophyllum derivatives. The increasing free tubulin bond with voltage-dependent anion-selective channel (VDAC). Second, cAMP-dependent protein kinase A (PKA) was activated by 4β-S-heterocyclic substituted podophyllum derivatives. And then the activated PKA further caused significantly mitochondria depolarization. Third, the activated PKA also activated c-Jun N-terminal kinase (JNK) and further deceased MMP by improving the level of reactive oxygen species. Understanding the molecular events that contribute to drug-induced tumors apoptosis should provide a paradigm for a more rational approach to antitumor drug design.
Collapse
Affiliation(s)
- Ya-Xuan Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Wei Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
125
|
Søberg K, Skålhegg BS. The Molecular Basis for Specificity at the Level of the Protein Kinase a Catalytic Subunit. Front Endocrinol (Lausanne) 2018; 9:538. [PMID: 30258407 PMCID: PMC6143667 DOI: 10.3389/fendo.2018.00538] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Assembly of multi enzyme complexes at subcellular localizations by anchoring- and scaffolding proteins represents a pivotal mechanism for achieving spatiotemporal regulation of cellular signaling after hormone receptor targeting [for review, see (1)]. In the 3' 5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) signaling pathway it is generally accepted that specificity is secured at several levels. This includes at the first level stimulation of receptors coupled to heterotrimeric G proteins which through stimulation of adenylyl cyclase (AC) forms the second messenger cAMP. Cyclic AMP has several receptors including PKA. PKA is a tetrameric holoenzyme consisting of a regulatory (R) subunit dimer and two catalytic (C) subunits. The R subunit is the receptor for cAMP and compartmentalizes cAMP signals through binding to cell and tissue-specifically expressed A kinase anchoring proteins (AKAPs). The current dogma tells that in the presence of cAMP, PKA dissociates into an R subunit dimer and two C subunits which are free to phosphorylate relevant substrates in the cytosol and nucleus. The release of the C subunit has raised the question how specificity of the cAMP and PKA signaling pathway is maintained when the C subunit no longer is attached to the R subunit-AKAP complex. An increasing body of evidence points toward a regulatory role of the cAMP and PKA signaling pathway by targeting the C subunits to various C subunit binding proteins in the cytosol and nucleus. Moreover, recent identification of isoform specific amino acid sequences, motifs and three dimensional structures have together provided new insight into how PKA at the level of the C subunit may act in a highly isoform-specific fashion. Here we discuss recent understanding of specificity of the cAMP and PKA signaling pathway based on C subunit subcellular targeting as well as evolution of the C subunit structure that may contribute to the dynamic regulation of C subunit activity.
Collapse
Affiliation(s)
- Kristoffer Søberg
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Section for Molecular Nutrition, University of Oslo, Oslo, Norway
- *Correspondence: Bjørn Steen Skålhegg
| |
Collapse
|
126
|
Wild AR, Dell'Acqua ML. Potential for therapeutic targeting of AKAP signaling complexes in nervous system disorders. Pharmacol Ther 2017; 185:99-121. [PMID: 29262295 DOI: 10.1016/j.pharmthera.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A common feature of neurological and neuropsychiatric disorders is a breakdown in the integrity of intracellular signal transduction pathways. Dysregulation of ion channels and receptors in the cell membrane and the enzymatic mediators that link them to intracellular effectors can lead to synaptic dysfunction and neuronal death. However, therapeutic targeting of these ubiquitous signaling elements can lead to off-target side effects due to their widespread expression in multiple systems of the body. A-kinase anchoring proteins (AKAPs) are multivalent scaffolding proteins that compartmentalize a diverse range of receptor and effector proteins to streamline signaling within nanodomain signalosomes. A number of essential neurological processes are known to critically depend on AKAP-directed signaling and an understanding of the role AKAPs play in nervous system disorders has emerged in recent years. Selective targeting of AKAP protein-protein interactions may be a means to uncouple pathologically active signaling pathways in neurological disorders with a greater degree of specificity. In this review we will discuss the role of AKAPs in both regulating normal nervous system function and dysfunction associated with disease, and the potential for therapeutic targeting of AKAP signaling complexes.
Collapse
Affiliation(s)
- Angela R Wild
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
127
|
Dawar FU, Hu X, Zhao L, Dong X, Xiong Y, Zhou M, Liang R, Sarath Babu V, Li J, Mei J, Lin L. Transcriptomic analysis reveals differentially expressed genes and a unique apoptosis pathway in channel catfish ovary cells after infection with the channel catfish virus. FISH & SHELLFISH IMMUNOLOGY 2017; 71:58-68. [PMID: 28970047 DOI: 10.1016/j.fsi.2017.09.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/16/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
The channel catfish virus (CCV) can cause lethal hemorrhagic infection in juvenile channel catfish, thereby resulting in a huge economic loss to the fish industry. The genome of the CCV has been fully sequenced, and its prevalence is well documented. However, less is known about the molecular mechanisms and pathogenesis of the CCV. Herein, the channel catfish ovary cells (CCO) were infected with CCV and their transcriptomic sketches were analyzed using an RNA sequencing technique. In total, 72,686,438 clean reads were obtained from 73,231,128 sequence reads, which were further grouped into 747,168 contigs. These contigs were assembled into 49,119 unigenes, of which 20,912 and 18,333 unigenes were found in Nr and SwissProt databases and matched 15,911 and 14,625 distinctive proteins, respectively. From these, 3641 differentially expressed genes (DEGs), comprising 260 up-regulated and 3381 down-regulated genes, were found compared with the control (non-infected) cells. For verification, 16 DEGs were analyzed using qRT-PCR. The analysis of the DEGs and their related cellular signaling pathways revealed a substantial number of DEGs that were involved in the apoptosis pathway induced by CCV infection. The apoptosis pathways were further elucidated using standard apoptosis assays. The results showed that CCV could induce extrinsic apoptosis pathway (instead of a mitochondrial intrinsic apoptosis pathway) in CCO cells. This study helps our understanding of the pathogenesis of CCV and contributes to the prevention of CCV infection in channel catfish.
Collapse
Affiliation(s)
- Farman Ullah Dawar
- Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Xianqin Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; School of Animal Sciences and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Xingxing Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yang Xiong
- Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Meng Zhou
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Rishen Liang
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - V Sarath Babu
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China
| | - Jie Mei
- Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China; Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China.
| |
Collapse
|
128
|
Huang J, Liao N, Li H. Linoleic acid enhance the production of moncolin K and red pigments in Monascus ruber by activating mokH and mokA, and by accelerating cAMP-PkA pathway. Int J Biol Macromol 2017; 109:950-954. [PMID: 29162465 DOI: 10.1016/j.ijbiomac.2017.11.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
Abstract
Monacolin K, an inhibitor of HMG-CoA reductase, is a secondary metabolite synthesized by polyketide synthases (PKS) from Monascus ruber. The mokH gene encoding Zn(II)2Cys6 binding protein and mokA gene encoding polyketide synthase are presumed to activate monacolin K production. In this study, linoleic acid could be a quorum sensing signaling molecule to increase monacolin K production in the cyclic AMP(cAMP)-protein kinase A(PKA) signaling pathway. Analysis of the PKA activity and the cAMP concentration shows that linoleic acid could increase cAMP concentration and activate PKA. Analysis of the RT-qPCR products demonstrates that 256μM and 512μM linoleic acid can up-regulate mokH and mokA gene transcript levels. Especially with 512μM linoleic acid addition, linoleic acid increase 1.35 folds of monacolin K production, but 64μM linoleic acid increase 1.94 folds of red pigment production in Monascus ruber. These results show the cAMP-PkA pathway activity can up-regulate mokA and mokH gene, which enhance the yield of Monacolin K.
Collapse
Affiliation(s)
- Jing Huang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - NanQing Liao
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - HaoMing Li
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
129
|
Kang JH, Cho KH. A novel interaction perturbation analysis reveals a comprehensive regulatory principle underlying various biochemical oscillators. BMC SYSTEMS BIOLOGY 2017; 11:95. [PMID: 29017496 PMCID: PMC5635494 DOI: 10.1186/s12918-017-0472-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/02/2017] [Indexed: 02/05/2023]
Abstract
Background Biochemical oscillations play an important role in maintaining physiological and cellular homeostasis in biological systems. The frequency and amplitude of oscillations are regulated to properly adapt to environments by numerous interactions within biomolecular networks. Despite the advances in our understanding of biochemical oscillators, the relationship between the network structure of an oscillator and its regulatory function still remains unclear. To investigate such a relationship in a systematic way, we have developed a novel analysis method called interaction perturbation analysis that enables direct modulation of the strength of every interaction and evaluates its consequence on the regulatory function. We have applied this new method to the analysis of three representative types of oscillators. Results The results of interaction perturbation analysis showed different regulatory features according to the network structure of the oscillator: (1) both frequency and amplitude were seldom modulated in simple negative feedback oscillators; (2) frequency could be tuned in amplified negative feedback oscillators; (3) amplitude could be modulated in the incoherently amplified negative feedback oscillators. A further analysis of naturally-occurring biochemical oscillator models supported such different regulatory features according to their network structures. Conclusions Our results provide a clear evidence that different network structures have different regulatory features in modulating the oscillation frequency and amplitude. Our findings may help to elucidate the fundamental regulatory roles of network structures in biochemical oscillations. Electronic supplementary material The online version of this article (10.1186/s12918-017-0472-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Hyuk Kang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
130
|
Nedvetsky PI, Zhao X, Mathivet T, Aspalter IM, Stanchi F, Metzger RJ, Mostov KE, Gerhardt H. cAMP-dependent protein kinase A (PKA) regulates angiogenesis by modulating tip cell behavior in a Notch-independent manner. Development 2017; 143:3582-3590. [PMID: 27702786 DOI: 10.1242/dev.134767] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/08/2016] [Indexed: 01/06/2023]
Abstract
cAMP-dependent protein kinase A (PKA) is a ubiquitously expressed serine/threonine kinase that regulates a variety of cellular functions. Here, we demonstrate that endothelial PKA activity is essential for vascular development, specifically regulating the transition from sprouting to stabilization of nascent vessels. Inhibition of endothelial PKA by endothelial cell-specific expression of dominant-negative PKA in mice led to perturbed vascular development, hemorrhage and embryonic lethality at mid-gestation. During perinatal retinal angiogenesis, inhibition of PKA resulted in hypersprouting as a result of increased numbers of tip cells. In zebrafish, cell autonomous PKA inhibition also increased and sustained endothelial cell motility, driving cells to become tip cells. Although these effects of PKA inhibition were highly reminiscent of Notch inhibition effects, our data demonstrate that PKA and Notch independently regulate tip and stalk cell formation and behavior.
Collapse
Affiliation(s)
- Pavel I Nedvetsky
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Xiaocheng Zhao
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Thomas Mathivet
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Irene M Aspalter
- Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Fabio Stanchi
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ross J Metzger
- Department of Anatomy, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, CA 94143-2140, USA
| | - Keith E Mostov
- Department of Anatomy, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, CA 94143-2140, USA
| | - Holger Gerhardt
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany DZHK (German Center for Cardiovascular Research), partner site Berlin Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
131
|
Regulation of P450-mediated permethrin resistance in Culex quinquefasciatus by the GPCR/Gαs/AC/cAMP/PKA signaling cascade. Biochem Biophys Rep 2017; 12:12-19. [PMID: 28955787 PMCID: PMC5613228 DOI: 10.1016/j.bbrep.2017.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 11/28/2022] Open
Abstract
This study explores the role of G-protein-coupled receptor-intracellular signaling in the development of P450-mediated insecticide resistance in mosquitoes, Culex quinquefasciatus, focusing on the essential function of the GPCRs and their downstream effectors of Gs alpha subunit protein (Gαs) and adenylyl cyclase (ACs) in P450-mediated insecticide resistance of Culex mosquitoes. Our RNAi-mediated functional study showed that knockdown of Gαs caused the decreased expression of the downstream effectors of ACs and PKAs in the GPCR signaling pathway and resistance P450 genes, whereas knockdown of ACs decreased the expression of PKAs and resistance P450 genes. Knockdown of either Gαs or ACs resulted in an increased susceptibility of mosquitoes to permethrin. These results add significantly to our understanding of the molecular basis of resistance P450 gene regulation through GPCR/Gαs/AC/cAMP-PKA signaling pathways in the insecticide resistance of mosquitoes. The temporal and spatial dynamic analyses of GPCRs, Gαs, ACs, PKAs, and P450s in two insecticide resistant mosquito strains revealed that all the GPCR signaling pathway components tested, namely GPCRs, Gαs, ACs and PKAs, were most highly expressed in the brain for both resistant strains, suggesting the role played by these genes in signaling transduction and regulation. The resistance P450 genes were mainly expressed in the brain, midgut and malpighian tubules (MTs), suggesting their critical function in the central nervous system and importance for detoxification. The temporal dynamics analysis for the gene expression showed a diverse expression profile during mosquito development, indicating their initially functional importance in response to exposure to insecticides during their life stages. GPCR, Gs alpha subunit protein (Gαs), adenylyl cyclase (ACs), and protein kinase A (PKAs) regulates resistance P450 gene expression and the development of insecticide resistance in mosquitoes, Culex quinquefasciatus. GPCR, Gαs, ACs, and PKAs, are highly expressed in the brain of mosquitoes, corresponding their role in signaling transduction, and regulation. GPCR, Gαs, ACs, PKAs, and P450s are expressed in the different life stages of mosquitoes, revealing their functional importance in response to exposure to insecticides during mosquito life stages.
Collapse
|
132
|
Stefan E, Troppmair J, Bister K. Targeting the Architecture of Deregulated Protein Complexes in Cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 111:101-132. [PMID: 29459029 DOI: 10.1016/bs.apcsb.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The architectures of central signaling hubs are precisely organized by static and dynamic protein-protein interactions (PPIs). Upon deregulation, these PPI platforms are capable to propagate or initiate pathophysiological signaling events. This causes the acquisition of molecular features contributing to the etiology or progression of many diseases, including cancer, where deregulated molecular interactions of signaling proteins have been best studied. The reasons for PPI-dependent reprogramming of cancer-initiating cells are manifold; in many cases, mutations perturb PPIs, enzyme activities, protein abundance, or protein localization. Consequently, the pharmaceutical targeting of PPIs promises to be of remarkable therapeutic value. For this review we have selected three key players of oncogenic signaling which are differently affected by PPI deregulation: two (the small G proteins of the RAS family and the transcription factor MYC) are considered "undruggable" using classical drug discovery approaches and in the case of the third protein discussed here, PKA, standard kinase inhibitors, may be unsuitable in the clinic. These circumstances require alternative strategies, which may lie in pharmaceutical drug interference of critical PPIs accountable for oncogenic signaling.
Collapse
Affiliation(s)
- Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
133
|
DDX3 Modulates Neurite Development via Translationally Activating an RNA Regulon Involved in Rac1 Activation. J Neurosci 2017; 36:9792-804. [PMID: 27656019 DOI: 10.1523/jneurosci.4603-15.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/01/2016] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED The RNA helicase DDX3 is a component of neuronal granules, and its gene mutations are linked to intellectual disability (ID). Here we demonstrate that DDX3 depletion in neurons impairs neurite development by downregulating Rac1 level and activation. Moreover, DDX3 activates the translation of functionally coherent mRNAs involved in Rac1 activation including Rac1 Among the DDX3 regulon, Prkaca encodes the catalytic subunit of PKA, a potential activator of Rac1 in neurons. DDX3-modulated PKAcα and Rac1 expression tunes the strength of PKA-Rac1 signaling and thereby contributes to neurite outgrowth and dendritic spine formation. Inhibition of DDX3 activity or expression in neonatal mice impaired dendritic outgrowth and spine formation of hippocampal neurons, echoing neuronal deficits underling DDX3 mutation-associated ID. Finally, we provide evidence that DDX3 activates local protein synthesis through a 5' UTR-dependent mechanism in neurons. The novel DDX3 regulon may conduct a spatial and temporal control of Rac1 signaling to regulate neurite development. SIGNIFICANCE STATEMENT DDX3X mutations are linked to intellectual disability (ID). We provide first evidence that DDX3 is required for neurite outgrowth and dendritic spine formation in vitro and in vivo We identified a DDX3 regulon constituting functionally cohesive mRNAs involved in Rac1 signaling, which contributes to DDX3-modulated neurite development. Inhibition or ablation of DDX3 in vivo shortened neurite lengths and impaired dendritic spine formation in hippocampal neurons, reflecting the prevalence of ID-associated DDX3X mutations in the helicase domain. Mechanistically, DDX3 activates local protein synthesis of mRNAs sharing similar 5' UTR structures and therefore controls Rac1 signaling strength in neurites.
Collapse
|
134
|
Regulation of the phosphatase PP2B by protein-protein interactions. Biochem Soc Trans 2017; 44:1313-1319. [PMID: 27911714 DOI: 10.1042/bst20160150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023]
Abstract
Protein dephosphorylation is important for regulating cellular signaling in a variety of contexts. Protein phosphatase-2B (PP2B), or calcineurin, is a widely expressed serine/threonine phosphatase that acts on a large cross section of potential protein substrates when activated by increased levels of intracellular calcium in concert with calmodulin. PxIxIT and LxVP targeting motifs are important for maintaining specificity in response to elevated calcium. In the present study, we describe the mechanism of PP2B activation, discuss its targeting by conserved binding motifs and review recent advances in the understanding of an A-kinase anchoring protein 79/PP2B/protein kinase A complex's role in synaptic long-term depression. Finally, we discuss potential for targeting PP2B anchoring motifs for therapeutic benefit.
Collapse
|
135
|
Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations. Int J Mol Sci 2017; 18:ijms18071425. [PMID: 28671614 PMCID: PMC5535916 DOI: 10.3390/ijms18071425] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
Several studies highlight a key involvement of endocannabinoid (EC) system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. In addition to autism, the EC system is also involved in several other psychiatric disorders (i.e., anxiety, major depression, bipolar disorder and schizophrenia). This system is a key regulator of metabolic and cellular pathways involved in autism, such as food intake, energy metabolism and immune system control. Early studies in autism animal models have demonstrated alterations in the brain's EC system. Autism is also characterized by immune system dysregulation. This alteration includes differential monocyte and macrophage responses, and abnormal cytokine and T cell levels. EC system dysfunction in a monocyte and macrophagic cellular model of autism has been demonstrated by showing that the mRNA and protein for CB2 receptor and EC enzymes were significantly dysregulated, further indicating the involvement of the EC system in autism-associated immunological disruptions. Taken together, these new findings offer a novel perspective in autism research and indicate that the EC system could represent a novel target option for autism pharmacotherapy.
Collapse
|
136
|
Ca v1.2 channel current block by the PKA inhibitor H-89 in rat tail artery myocytes via a PKA-independent mechanism: Electrophysiological, functional, and molecular docking studies. Biochem Pharmacol 2017; 140:53-63. [PMID: 28583845 DOI: 10.1016/j.bcp.2017.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
Abstract
To characterize the role of cAMP-dependent protein kinase (PKA) in regulating vascular Ca2+ current through Cav1.2 channels [ICa1.2], we have documented a marked capacity of the isoquinoline H-89, widely used as a PKA inhibitor, to reduce current amplitude. We hypothesized that the ICa1.2 inhibitory activity of H-89 was mediated by mechanisms unrelated to PKA inhibition. To support this, an in-depth analysis of H-89 vascular effects on both ICa1.2 and contractility was undertaken by performing whole-cell patch-clamp recordings and functional experiments in rat tail main artery single myocytes and rings, respectively. H-89 inhibited ICa1.2 with a pIC50 (M) value of about 5.5, even under conditions where PKA activity was either abolished by both the PKA antagonists KT5720 and protein kinase inhibitor fragment 6-22 amide or enhanced by the PKA stimulators 6-Bnz-cAMP and 8-Br-cAMP. Inhibition of ICa1.2 by H-89 appeared almost irreversible upon washout, was charge carrier- and voltage-dependent, and antagonised by the Cav1.2 channel agonist (S)-(-)-Bay K 8644. H-89 did not alter both potency and efficacy of verapamil, did not affect current kinetics or voltage-dependent activation, while shifting to the left the 50% voltage of inactivation in a concentration-dependent manner. H-89 docked at the α1C subunit in a pocket region close to that of (S)-(-)-Bay K 8644 docking, forming a hydrogen bond with the same, key amino acid residue Tyr-1489. Finally, both high K+- and (S)-(-)-Bay K 8644-induced contractions of rings were fully reverted by H-89. In conclusion, these results indicate that H-89 inhibited vascular ICa1.2 and, consequently, the contractile function through a PKA-independent mechanism. Therefore, caution is recommended when interpreting experiments where H-89 is used to inhibit vascular smooth muscle PKA.
Collapse
Key Words
- (S)-(-)-Bay K 8644 ((S)-(-)-methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)pyridine-5-carboxylate) (PubChem CID: 6603728)
- 8-Bromoadenosine 3′,5′-cyclic monophosphate (PubChem CID: 32014)
- Ca(V)1.2 channel
- H-89
- H-89 (N-[2-[[3-(4-bromophenyl)-2-propen-1-yl]amino]ethyl]-5-isoquinolinesulfonamide) (PubChem CID: 449241)
- KT5720 ((9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3′,2′,1′-kl]pyrrolo[3,4-][1,6]benzodiazocine-10-carboxylic acid, hexyl ester) (PubChem CID: 3844)
- Molecular docking
- N(6)-Benzoyladenosine-3′,5′-cyclic monophosphate (PubChem CID: 17757210)
- PKA
- PKA inhibitor fragment 6-22 (PubChem CID: 16155227)
- Patch-clamp
- Rat tail artery
- Verapamil (PubChem CID: 62969)
- nifedipine (PubChem CID: 4485)
Collapse
|
137
|
Torres-Quesada O, Mayrhofer JE, Stefan E. The many faces of compartmentalized PKA signalosomes. Cell Signal 2017; 37:1-11. [PMID: 28528970 DOI: 10.1016/j.cellsig.2017.05.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023]
Abstract
Cellular signal transmission requires the dynamic formation of spatiotemporally controlled molecular interactions. At the cell surface information is received by receptor complexes and relayed through intracellular signaling platforms which organize the actions of functionally interacting signaling enzymes and substrates. The list of hormone or neurotransmitter pathways that utilize the ubiquitous cAMP-sensing protein kinase A (PKA) system is expansive. This requires that the specificity, duration, and intensity of PKA responses are spatially and temporally restricted. Hereby, scaffolding proteins take the center stage for ensuring proper signal transmission. They unite second messenger sensors, activators, effectors, and kinase substrates within cellular micro-domains to precisely control and route signal propagation. A-kinase anchoring proteins (AKAPs) organize such subcellular signalosomes by tethering the PKA holoenzyme to distinct cell compartments. AKAPs differ in their modular organization showing pathway specific arrangements of interaction motifs or domains. This enables the cell- and compartment- guided assembly of signalosomes with unique enzyme composition and function. The AKAP-mediated clustering of cAMP and other second messenger sensing and interacting signaling components along with functional successive enzymes facilitates the rapid and precise dissemination of incoming signals. This review article delineates examples for different means of PKA regulation and for snapshots of compartmentalized PKA signalosomes.
Collapse
Affiliation(s)
- Omar Torres-Quesada
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Johanna E Mayrhofer
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
138
|
Monterisi S, Lobo MJ, Livie C, Castle JC, Weinberger M, Baillie G, Surdo NC, Musheshe N, Stangherlin A, Gottlieb E, Maizels R, Bortolozzi M, Micaroni M, Zaccolo M. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling. eLife 2017; 6:e21374. [PMID: 28463107 PMCID: PMC5423767 DOI: 10.7554/elife.21374] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 04/29/2017] [Indexed: 01/31/2023] Open
Abstract
cAMP/PKA signalling is compartmentalised with tight spatial and temporal control of signal propagation underpinning specificity of response. The cAMP-degrading enzymes, phosphodiesterases (PDEs), localise to specific subcellular domains within which they control local cAMP levels and are key regulators of signal compartmentalisation. Several components of the cAMP/PKA cascade are located to different mitochondrial sub-compartments, suggesting the presence of multiple cAMP/PKA signalling domains within the organelle. The function and regulation of these domains remain largely unknown. Here, we describe a novel cAMP/PKA signalling domain localised at mitochondrial membranes and regulated by PDE2A2. Using pharmacological and genetic approaches combined with real-time FRET imaging and high resolution microscopy, we demonstrate that in rat cardiac myocytes and other cell types mitochondrial PDE2A2 regulates local cAMP levels and PKA-dependent phosphorylation of Drp1. We further demonstrate that inhibition of PDE2A, by enhancing the hormone-dependent cAMP response locally, affects mitochondria dynamics and protects from apoptotic cell death.
Collapse
Affiliation(s)
- Stefania Monterisi
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Craig Livie
- Institute of Neuroscioence and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - John C Castle
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Michael Weinberger
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - George Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, United Kingdom
| | - Nicoletta C Surdo
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Alessandra Stangherlin
- Institute of Neuroscioence and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Eyal Gottlieb
- Beatson Institute, University of Glasgow, Glasgow, United Kingdom
| | - Rory Maizels
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, University of Padova, Padova, Italy
| | - Massimo Micaroni
- Swedish National Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manuela Zaccolo
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
139
|
Lohse C, Bock A, Maiellaro I, Hannawacker A, Schad LR, Lohse MJ, Bauer WR. Experimental and mathematical analysis of cAMP nanodomains. PLoS One 2017; 12:e0174856. [PMID: 28406920 PMCID: PMC5391016 DOI: 10.1371/journal.pone.0174856] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
In their role as second messengers, cyclic nucleotides such as cAMP have a variety of intracellular effects. These complex tasks demand a highly organized orchestration of spatially and temporally confined cAMP action which should be best achieved by compartmentalization of the latter. A great body of evidence suggests that cAMP compartments may be established and maintained by cAMP degrading enzymes, e.g. phosphodiesterases (PDEs). However, the molecular and biophysical details of how PDEs can orchestrate cAMP gradients are entirely unclear. In this paper, using fusion proteins of cAMP FRET-sensors and PDEs in living cells, we provide direct experimental evidence that the cAMP concentration in the vicinity of an individual PDE molecule is below the detection limit of our FRET sensors (<100nM). This cAMP gradient persists in crude cytosol preparations. We developed mathematical models based on diffusion-reaction equations which describe the creation of nanocompartments around a single PDE molecule and more complex spatial PDE arrangements. The analytically solvable equations derived here explicitly determine how the capability of a single PDE, or PDE complexes, to create a nanocompartment depend on the cAMP degradation rate, the diffusive mobility of cAMP, and geometrical and topological parameters. We apply these generic models to our experimental data and determine the diffusive mobility and degradation rate of cAMP. The results obtained for these parameters differ by far from data in literature for free soluble cAMP interacting with PDE. Hence, restricted cAMP diffusion in the vincinity of PDE is necessary to create cAMP nanocompartments in cells.
Collapse
Affiliation(s)
- Christian Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Computer Assisted Clinical Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas Bock
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Isabella Maiellaro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Annette Hannawacker
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Lothar R. Schad
- Computer Assisted Clinical Medicine, University of Heidelberg, Heidelberg, Germany
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Wolfgang R. Bauer
- Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
- Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
140
|
|
141
|
The cAMP-PKA pathway-mediated fat mobilization is required for cold tolerance in C. elegans. Sci Rep 2017; 7:638. [PMID: 28377576 PMCID: PMC5428847 DOI: 10.1038/s41598-017-00630-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 03/07/2017] [Indexed: 02/04/2023] Open
Abstract
Low temperature has a great impact on animal life. Homoiotherms such as mammals increase their energy expenditure to produce heat by activating the cAMP-protein kinase A (PKA)-hormone-sensitive lipase (HSL) pathway under cold stress. Although poikilothermic animals do not have the ability to regulate body temperature, whether this pathway is required for cold tolerance remains unknown. We have now achieved this using the genetically tractable model animal Caenorhabditis elegans. We demonstrate that cold stress activates PKA signaling, which in turn up-regulates the expression of a hormone-sensitive lipase hosl-1. The lipase induces fat mobilization, leading to glycerol accumulation, thereby protecting worms against cold stress. Our findings provide an example of an evolutionarily conserved mechanism for cold tolerance that has persisted in both poikilothermic and homoeothermic animals.
Collapse
|
142
|
Qin X, Liu S, Lu Q, Zhang M, Jiang X, Hu S, Li J, Zhang C, Gao J, Zhu MS, Feil R, Li H, Chen M, Weinstein LS, Zhang Y, Zhang W. Heterotrimeric G Stimulatory Protein α Subunit Is Required for Intestinal Smooth Muscle Contraction in Mice. Gastroenterology 2017; 152:1114-1125.e5. [PMID: 28043906 PMCID: PMC7430528 DOI: 10.1053/j.gastro.2016.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The α subunit of the heterotrimeric G stimulatory protein (Gsa), encoded by the guanine nucleotide binding protein, α-stimulating gene (Gnas, in mice), is expressed ubiquitously and mediates receptor-stimulated production of cyclic adenosine monophosphate and activation of the protein kinase A signaling pathway. We investigated the roles of Gsa in vivo in smooth muscle cells of mice. METHODS We performed studies of mice with Cre recombinase-mediated disruption of Gnas in smooth muscle cells (GsaSMKO and SM22-CreERT2, induced in adult mice by tamoxifen). Intestinal tissues were collected for histologic, biochemical, molecular, cell biology, and physiology analyses. Intestinal function was assessed in mice using the whole-gut transit time test. We compared gene expression patterns of intestinal smooth muscle from mice with vs without disruption of Gnas. Biopsy specimens from ileum of patients with chronic intestinal pseudo-obstruction and age-matched control biopsies were analyzed by immunohistochemistry. RESULTS Disruption of Gnas in smooth muscle of mice reduced intestinal motility and led to death within 4 weeks. Tamoxifen-induced disruption of Gnas in adult mice impaired contraction of intestinal smooth muscle and peristalsis. More than 80% of these died within 3 months of tamoxifen exposure, with features of intestinal pseudo-obstruction characterized by chronic intestinal dilation and dysmotility. Gsa deficiency reduced intestinal levels of cyclic adenosine monophosphate and transcriptional activity of the cyclic adenosine monophosphate response element binding protein 1 (CREB1); this resulted in decreased expression of the forkhead box F1 gene (Foxf1) and protein, and contractile proteins, such as myosin heavy chain 11; actin, α2, smooth muscle, aorta; calponin 1; and myosin light chain kinase. We found decreased levels of Gsa, FOXF1, CREB1, and phosphorylated CREB1 proteins in intestinal muscle layers of patients with chronic intestinal pseudo-obstruction, compared with tissues from controls. CONCLUSIONS Gsa is required for intestinal smooth muscle contraction in mice, and its levels are reduced in ileum biopsies of patients with chronic intestinal pseudo-obstruction. Mice with disruption of Gnas might be used to study human chronic intestinal pseudo-obstruction.
Collapse
Affiliation(s)
- Xiaoteng Qin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shangming Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, China
| | - Qiulun Lu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuxin Jiang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Robert Feil
- Interfakultäres Institut für Biochemie (IFIB), Signaltransduktion - Transgene Modelle, Universität Tübingen, Tübingen, Germany
| | - Huashun Li
- ATCG Cancer Center, ATCG Corporation Ltd, Suzhou, China
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
143
|
Castro L, Yapo C, Vincent P. [Physiopathology of cAMP/PKA signaling in neurons]. Biol Aujourdhui 2017; 210:191-203. [PMID: 28327278 DOI: 10.1051/jbio/2017005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/15/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases.
Collapse
|
144
|
Takii M, Kaneko YK, Akiyama K, Aoyagi Y, Tara Y, Asakawa T, Inai M, Kan T, Nemoto K, Ishikawa T. Insulinotropic and anti-apoptotic effects of nobiletin in INS-1D β-cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
145
|
Bader A, Bintig W, Begandt D, Klett A, Siller IG, Gregor C, Schaarschmidt F, Weksler B, Romero I, Couraud PO, Hell SW, Ngezahayo A. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca 2+ influx through cyclic nucleotide-gated channels. J Physiol 2017; 595:2497-2517. [PMID: 28075020 DOI: 10.1113/jp273150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/16/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. ABSTRACT The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca2+ influx by opening CNG channels in a cAMP-dependent manner. Ca2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier.
Collapse
Affiliation(s)
- Almke Bader
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Willem Bintig
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Begandt
- Walter Brendel Centre of Experimental Medicine, Department of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anne Klett
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Ina G Siller
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Carola Gregor
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Babette Weksler
- Weill Medical College of Cornell University, New York, NY, USA
| | - Ignacio Romero
- Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Pierre-Olivier Couraud
- INSERM, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, Hannover, Germany.,Center for Systems Neuroscience Hannover, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
146
|
Design, synthesis and biological evaluation of 2,4-disubstituted oxazole derivatives as potential PDE4 inhibitors. Bioorg Med Chem 2017; 25:1852-1859. [PMID: 28196708 DOI: 10.1016/j.bmc.2017.01.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/31/2017] [Indexed: 12/17/2022]
Abstract
In this study, a series of pyrazole derivatives containing 4-phenyl-2-oxazole moiety were designed and synthesized in a concise way, some of which exhibited considerable inhibitory activity against PDE4B and blockade of LPS-induced TNF-α release. Compound 4c displayed the strongest inhibition activity (IC50=1.6±0.4μM) and good selectivity against PDE4B. Meanwhile, compound 4c showed good in vivo activity in animal models of asthma/COPD and sepsis induced by LPS. The primary structure-activity relationship study showed the 3,5-dimethylpyrazole residue was essential for the bioactivity, and the substituted group R1 at the benzene ring also affected the activity. Docking results showed that compound 4c played a key role to form integral hydrogen bonds and a π-π stacking interaction, using hydrazide scaffold (CONN) and pyrazole ring respectively, with PDE4B protein. While the rest part of the molecule extended into the catalytic domain to block the access of cAMP and formed the foundation for inhibition of PDE4B. Compound 4c would be great promise as a lead compound for further study based on the preliminary structure-activity relationship and molecular modeling studies.
Collapse
|
147
|
Le Stunff C, Tilotta F, Sadoine J, Le Denmat D, Briet C, Motte E, Clauser E, Bougnères P, Chaussain C, Silve C. Knock-In of the Recurrent R368X Mutation of PRKAR1A that Represses cAMP-Dependent Protein Kinase A Activation: A Model of Type 1 Acrodysostosis. J Bone Miner Res 2017; 32:333-346. [PMID: 27589370 DOI: 10.1002/jbmr.2987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022]
Abstract
In humans, activating mutations in the PRKAR1A gene cause acrodysostosis 1 (ACRDYS1). These mutations result in a reduction in PKA activation caused by an impaired ability of cAMP to dissociate mutant PRKAR1A from catalytic PKA subunits. Two striking features of this rare developmental disease are renal resistance to PTH and chondrodysplasia resulting from the constitutive inhibition of PTHR1/Gsa/AC/cAMP/PKA signaling. We developed a knock-in of the recurrent ACRDYS1 R368X PRKAR1A mutation in the mouse. No litters were obtained from [R368X]/[+] females (thus no homozygous [R368X]/[R368X] mice). In [R368X]/[+] mice, Western blot analysis confirmed mutant allele heterozygous expression. Growth retardation, peripheral acrodysostosis (including brachydactyly affecting all digits), and facial dysostosis were shown in [R368X]/[+] mice by weight curves and skeletal measurements (μCT scan) as a function of time. [R368X]/[+] male and female mice were similarly affected. Unexpected, however, whole-mount skeletal preparations revealed a striking delay in mineralization in newborn mutant mice, accompanied by a decrease in the height of terminal hypertrophic chondrocyte layer, an increase in the height of columnar proliferative prehypertrophic chondrocyte layer, and changes in the number and spatial arrangement of proliferating cell nuclear antigen (PCNA)-positive chondrocytes. Plasma PTH and basal urinary cAMP were significantly higher in [R368X]/[+] compared to WT mice. PTH injection increased urinary cAMP similarly in [R368X]/[+] and WT mice. PRKACA expression was regulated in a tissue (kidney not bone and liver) manner. This model, the first describing the germline expression of a PRKAR1A mutation causing dominant repression of cAMP-dependent PKA, reproduced the main features of ACRDYS1 in humans. It should help decipher the specificity of the cAMP/PKA signaling pathway, crucial for numerous stimuli. In addition, our results indicate that PRKAR1A, by tempering intracellular cAMP levels, is a molecular switch at the crossroads of signaling pathways regulating chondrocyte proliferation and differentiation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Catherine Le Stunff
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Francoise Tilotta
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - Jérémy Sadoine
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - Dominique Le Denmat
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - Claire Briet
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Emmanuelle Motte
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Eric Clauser
- INSERM U970, University Paris Descartes, Paris Centre de Recherche Cardiovasculaire (PARCC), Paris, France
| | - Pierre Bougnères
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Catherine Chaussain
- EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,Assistance Publique-Hôpitaux de Paris (AP-HP) Odontology Department Bretonneau, Louis Mourier, Hôpitaux Universitaires Paris Nord Val de Seine, Paris, France.,Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium and Filière de Santé Maladies Rares OSCAR, AP-HP, Paris, France
| | - Caroline Silve
- INSERM U1169, University Paris Sud, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Centre de Référence des Maladies Rares du Métabolisme du Phosphore et du Calcium and Filière de Santé Maladies Rares OSCAR, AP-HP, Paris, France.,Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, AP-HP, Paris, France
| |
Collapse
|
148
|
Reed M, Crosbie D. Apremilast in the treatment of psoriatic arthritis: a perspective review. Ther Adv Musculoskelet Dis 2017; 9:45-53. [PMID: 28255338 DOI: 10.1177/1759720x16673786] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Apremilast is an orally-active small molecule which inhibits phosphodiesterase-4 (PDE4). Clinical trials have demonstrated its efficacy and safety in psoriatic arthritis (PsA) and psoriasis. Established therapeutic options have variable effectiveness across the different domains of psoriatic disease. Whilst biologic therapies have proven to be of significant benefit to many patients, not all patients respond, and others are not eligible or do not tolerate biologic therapy. We review the mechanism of action, pharmacokinetics and clinical trial data with regards to both efficacy and safety for apremilast and consider where this new treatment may be positioned in the treatment of PsA.
Collapse
Affiliation(s)
- Michael Reed
- Department of Rheumatology, Queen Elizabeth University Hospital, UK
| | - David Crosbie
- Department of Rheumatology, Queen Elizabeth University Hospital, 1345 Govan Road, Glasgow G51 4TF, UK
| |
Collapse
|
149
|
Dukic AR, Haugen LH, Pidoux G, Leithe E, Bakke O, Taskén K. A protein kinase A-ezrin complex regulates connexin 43 gap junction communication in liver epithelial cells. Cell Signal 2017; 32:1-11. [PMID: 28077322 DOI: 10.1016/j.cellsig.2017.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/04/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Communication between adjacent cells can occur via gap junctions (GJ) composed of connexin (Cx) hexamers that allow passage of small molecules. One of the most widely and highly expressed Cxs in human tissues is Cx43, shown to be regulated through phosphorylation by several kinases including PKA. Ezrin is a membrane associated protein that can serve as an A-kinase anchoring protein (AKAP) and hold an anchored pool of PKA. Here, we used the liver epithelial cell line IAR20, which expresses Cx43 as the predominant GJ protein, to test the hypothesis that Ezrin may associate with Cx43 in cell types that form stable GJs and serve as an AKAP. Our biochemical and proteomics data indicate that Ezrin associates with Cx43 in epithelial cells. Analyses by confocal immunofluorescence microscopy and proximity ligation assays demonstrate that Ezrin and Cx43 co-localize, together with zonula occludens-1 (ZO-1) and PKA RIα and RIIα, at the cell membrane. Quantitative gap-FRAP experiments show increased GJ intercellular communication after cAMP stimulation. Moreover, loading of cells with the Ht31 peptide that displaces both PKA RIα and RIIα from the AKAP or a peptide that disrupts the Cx43-Ezrin interaction reverts the effect and reduces the level of communication, supporting the hypothesis that in IAR20 cells Ezrin associates with Cx43 (in complex with ZO-1) which places PKA in proximity to Cx43, enabling its phosphorylation and GJ opening.
Collapse
Affiliation(s)
- Aleksandra R Dukic
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Linda Hofstad Haugen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Guillaume Pidoux
- UMR-S 1180, Inserm, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital HE - Norwegian Radium Hospital, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway; Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
150
|
Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells. J Comp Physiol B 2016; 187:613-623. [PMID: 27915366 DOI: 10.1007/s00360-016-1052-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 01/20/2023]
Abstract
The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.
Collapse
|