101
|
Han X, Wang Z, Wang J, Li Y, Hu H, Hu Y, Zhao X, Zhan Y, Yuan J, Wei S, Liang Y, Zhang X, Guo H, Yang H, Wu T, Kong W, He M. Metabolic syndrome is associated with hearing loss among a middle-aged and older Chinese population: a cross-sectional study. Ann Med 2018; 50:587-595. [PMID: 29693425 DOI: 10.1080/07853890.2018.1469786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Although the association of metabolic syndrome (MetS) and hearing loss has been evaluated, findings are controversial. This study investigated this association in a Chinese population. METHODS A cross-sectional study including a total of 18,824 middle-aged and older participants from the Dongfeng-Tongji Cohort study was conducted. Hearing loss was defined as the pure-tone average (PTA) of frequencies 0.5, 1.0, 2.0, and 4.0 kHz >25 decibels hearing level (dB HL) in the better ear and graded as mild (PTA 26-40 dB HL), moderate (PTA >40 to ≤60 dB HL), and severe (PTA >60 dB HL). MetS was defined according to the International Diabetes Foundation (IDF) criteria of 2005. Association analysis was performed by logistic regression. RESULTS After adjustment for potential confounders, participants with MetS showed higher OR of hearing loss (OR, 1.11; 95% CI: 1.03-1.19). The MetS components including central obesity (OR, 1.07; 95% CI: 1.01-1.15) and hyperglycemia (OR, 1.12; 95% CI: 1.04-1.20) were also positively associated with hearing loss. Low HDL-C levels were also associated with higher OR of moderate/severe hearing loss (OR, 1.21; 95% CI: 1.07-1.36). CONCLUSIONS The MetS, including its components central obesity, hyperglycemia, and low HDL-C levels were positively associated with hearing loss. Key messages Studies indicated that cardiovascular disease and diabetes might be risk factors of hearing loss. However, few efforts have been made to establish a direct relationship between metabolic syndrome and hearing loss, especially in Chinese population. In the present study, a cross-sectional design using data from the Dongfeng-Tongji Cohort study was conducted to assess the association between metabolic syndrome and hearing loss. The metabolic syndrome, as well as its components central obesity, hyperglycemia, and low HDL-C levels were positively associated with hearing loss.
Collapse
Affiliation(s)
- Xu Han
- a Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health , School of Public Health, Huazhong University of Science and Technology , Wuhan , China
| | - Zhichao Wang
- b Department of Otorhinolaryngology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jing Wang
- a Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health , School of Public Health, Huazhong University of Science and Technology , Wuhan , China
| | - Yaru Li
- a Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health , School of Public Health, Huazhong University of Science and Technology , Wuhan , China
| | - Hua Hu
- a Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health , School of Public Health, Huazhong University of Science and Technology , Wuhan , China
| | - Yujuan Hu
- b Department of Otorhinolaryngology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xueyan Zhao
- b Department of Otorhinolaryngology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Yue Zhan
- b Department of Otorhinolaryngology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jing Yuan
- a Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health , School of Public Health, Huazhong University of Science and Technology , Wuhan , China
| | - Sheng Wei
- a Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health , School of Public Health, Huazhong University of Science and Technology , Wuhan , China
| | - Yuan Liang
- a Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health , School of Public Health, Huazhong University of Science and Technology , Wuhan , China
| | - Xiaomin Zhang
- a Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health , School of Public Health, Huazhong University of Science and Technology , Wuhan , China
| | - Huan Guo
- a Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health , School of Public Health, Huazhong University of Science and Technology , Wuhan , China
| | - Handong Yang
- c Dongfeng Central Hospital , Dongfeng Motor Corporation and Hubei University of Medicine , Shiyan , Hubei , China
| | - Tangchun Wu
- a Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health , School of Public Health, Huazhong University of Science and Technology , Wuhan , China
| | - Weijia Kong
- b Department of Otorhinolaryngology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Meian He
- a Institute of Occupational Medicine and the Ministry of Education Key Lab of Environment and Health , School of Public Health, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
102
|
Uchida Y, Nishita Y, Kato T, Iwata K, Sugiura S, Suzuki H, Sone M, Tange C, Otsuka R, Ando F, Shimokata H, Nakamura A. Smaller Hippocampal Volume and Degraded Peripheral Hearing Among Japanese Community Dwellers. Front Aging Neurosci 2018; 10:319. [PMID: 30386230 PMCID: PMC6198789 DOI: 10.3389/fnagi.2018.00319] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
A growing body of literature has demonstrated that dementia and hearing loss are interrelated. Recent interest in dementia research has expanded to brain imaging analyses with auditory function. The aim of this study was to investigate the link between hearing ability, which was assessed using pure-tone audiometry, and the volume of brain regions, specifically the hippocampus, entorhinal cortex, Heschl's gyrus, and total gray matter, using Freesurfer software and T1-weighted brain magnetic resonance imaging. The data for 2082 samples (age range = 40-89 years) were extracted from a population-based cohort of community dwellers. Hearing-impaired individuals showed significantly smaller hippocampal volumes compared with their non-hearing-impaired counterparts for all auditory frequency ranges. In addition, a correlational analysis showed a significant dose-response relationship for hearing ability and hippocampal volume after adjusting for potential confounding factors so that the more degraded the peripheral hearing was, the smaller the hippocampal volume was. This association was consistent through the auditory frequency range. The volume of the entorhinal cortex, right Heschl's gyrus and total gray matter did not correlate with hearing level at any frequency. The volume of the left Heschl's gyrus showed a significant relationship with the hearing levels for some auditory frequencies. The current results suggested that the presence of hearing loss after middle age could be a modifier of hippocampal atrophy.
Collapse
Affiliation(s)
- Yasue Uchida
- Department of Otolaryngology, Aichi Medical University, Nagakute, Japan.,Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yukiko Nishita
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kaori Iwata
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Saiko Sugiura
- Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hirokazu Suzuki
- Department of Otorhinolaryngology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chikako Tange
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Rei Otsuka
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Fujiko Ando
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Health and Medical Sciences, Aichi Shukutoku University, Nagakute, Japan
| | - Hiroshi Shimokata
- Section of NILS-LSA, National Center for Geriatrics and Gerontology, Obu, Japan.,Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
103
|
Fu X, Sun X, Zhang L, Jin Y, Chai R, Yang L, Zhang A, Liu X, Bai X, Li J, Wang H, Gao J. Tuberous sclerosis complex-mediated mTORC1 overactivation promotes age-related hearing loss. J Clin Invest 2018; 128:4938-4955. [PMID: 30247156 DOI: 10.1172/jci98058] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 08/08/2018] [Indexed: 12/29/2022] Open
Abstract
The underlying molecular mechanisms of age-related hearing loss (ARHL) in humans and many strains of mice have not been fully characterized. This common age-related disorder is assumed to be closely associated with oxidative stress. Here, we demonstrate that mTORC1 signaling is highly and specifically activated in the cochlear neurosensory epithelium (NSE) in aging mice, and rapamycin injection prevents ARHL. To further examine the specific role of mTORC1 signaling in ARHL, we generated murine models with NSE-specific deletions of Raptor or Tsc1, regulators of mTORC1 signaling. Raptor-cKO mice developed hearing loss considerably more slowly than WT littermates. Conversely, Tsc1 loss led to the early-onset death of cochlear hair cells and consequently accelerated hearing loss. Tsc1-cKO cochleae showed features of oxidative stress and impaired antioxidant defenses. Treatment with rapamycin and the antioxidant N-acetylcysteine rescued Tsc1-cKO hair cells from injury in vivo. In addition, we identified the peroxisome as the initial signaling organelle involved in the regulation of mTORC1 signaling in cochlear hair cells. In summary, our findings identify overactive mTORC1 signaling as one of the critical causes of ARHL and suggest that reduction of mTORC1 activity in cochlear hair cells may be a potential strategy to prevent ARHL.
Collapse
Affiliation(s)
- Xiaolong Fu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Xiaoyang Sun
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Linqing Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Yecheng Jin
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Renjie Chai
- Key Laboratory for Development Genes and Human Disease, Southeast University, Nanjing, China
| | - Lili Yang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China.,Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiangguo Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| |
Collapse
|
104
|
Morgan A, Vuckovic D, Krishnamoorthy N, Rubinato E, Ambrosetti U, Castorina P, Franzè A, Vozzi D, La Bianca M, Cappellani S, Di Stazio M, Gasparini P, Girotto G. Next-generation sequencing identified SPATC1L as a possible candidate gene for both early-onset and age-related hearing loss. Eur J Hum Genet 2018; 27:70-79. [PMID: 30177775 PMCID: PMC6303261 DOI: 10.1038/s41431-018-0229-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 11/09/2022] Open
Abstract
Hereditary hearing loss (HHL) and age-related hearing loss (ARHL) are two major sensory diseases affecting millions of people worldwide. Despite many efforts, additional HHL-genes and ARHL genetic risk factors still need to be identified. To fill this gap a large genomic screening based on next-generation sequencing technologies was performed. Whole exome sequencing in a 3-generation Italian HHL family and targeted re-sequencing in 464 ARHL patients were performed. We detected three variants in SPATC1L: a nonsense allele in an HHL family and a frameshift insertion and a missense variation in two unrelated ARHL patients. In silico molecular modelling of all variants suggested a significant impact on the structural stability of the protein itself, likely leading to deleterious effects and resulting in truncated isoforms. After demonstrating Spatc1l expression in mice inner ear, in vitro functional experiments were performed confirming the results of the molecular modelling studies. Finally, a candidate-gene population-based statistical study in cohorts from Caucasus and Central Asia revealed a statistically significant association of SPATC1L with normal hearing function at low and medium hearing frequencies. Overall, the amount of different genetic data presented here (variants with early-onset and late-onset hearing loss in addition to genetic association with normal hearing function), together with relevant functional evidence, likely suggest a role of SPATC1L in hearing function and loss.
Collapse
Affiliation(s)
- Anna Morgan
- Department of Medical Sciences, University of Trieste, Trieste, Italy.
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Navaneethakrishnan Krishnamoorthy
- Sidra Medical and Research Center, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, UK
| | - Elisa Rubinato
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Umberto Ambrosetti
- UO Audiology, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy.,Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Pierangela Castorina
- UO Audiology, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milan, Italy
| | - Annamaria Franzè
- Ceinge Biotecnologie Avanzate, Naples, Italy; Istituto di Audiologia, Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Università di Napoli "Federico II", Naples, Italy
| | - Diego Vozzi
- Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Martina La Bianca
- Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Stefania Cappellani
- Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | | | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy.,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy.,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
105
|
Kantar Gok D, Hidisoglu E, Er H, Acun AD, Yargıcoglu P. Decrease of Auditory Evoked Delta, Alpha and Beta Oscillatory Responses in d-galactose Induced Aging Model: Effects of Rosmarinic Acid. INT J GERONTOL 2018. [DOI: 10.1016/j.ijge.2018.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
106
|
Marie A, Meunier J, Brun E, Malmstrom S, Baudoux V, Flaszka E, Naert G, Roman F, Cosnier-Pucheu S, Gonzalez-Gonzalez S. N-acetylcysteine Treatment Reduces Age-related Hearing Loss and Memory Impairment in the Senescence-Accelerated Prone 8 (SAMP8) Mouse Model. Aging Dis 2018; 9:664-673. [PMID: 30090654 PMCID: PMC6065287 DOI: 10.14336/ad.2017.0930] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/30/2017] [Indexed: 11/10/2022] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory disorder in the elderly population. SAMP8 mouse model presents accelerated senescence and has been identified as a model of gerontological research. SAMP8 displays a progressive age-related decline in brain function associated with a progressive hearing loss mimicking human aging memory deficits and ARHL. The molecular mechanisms associated with SAMP8 senescence process involve oxidative stress leading to chronic inflammation and apoptosis. Here, we studied the effect of N-acetylcysteine (NAC), an antioxidant, on SAMP8 hearing loss and memory to determine the potential interest of this model in the study of new antioxidant therapies. We observed a strong decrease of auditory brainstem response thresholds from 45 to 75 days of age and an increase of distortion product amplitudes from 60 to 75 days in NAC treated group compared to vehicle. Moreover, NAC treated group presented also an increase of memory performance at 60 and 105 days of age. These results confirm that NAC delays the senescence process by slowing the age-related hearing loss, protecting the cochlear hair cells and improving memory, suggesting that antioxidants could be a pharmacological target for age-related hearing and memory loss.
Collapse
Affiliation(s)
- Aurore Marie
- 1CILcare, Parc Scientifique Agropolis, Montpellier, France
| | | | - Emilie Brun
- 3Correlative Microscopy and Electron Tomography Platform, Hopital Saint Eloi, Montpellier, France
| | | | | | - Elodie Flaszka
- 1CILcare, Parc Scientifique Agropolis, Montpellier, France
| | - Gaëlle Naert
- 1CILcare, Parc Scientifique Agropolis, Montpellier, France
| | | | | | | |
Collapse
|
107
|
|
108
|
Alvarado JC, Fuentes-Santamaría V, Gabaldón-Ull MC, Juiz JM. An Oral Combination of Vitamins A, C, E, and Mg ++ Improves Auditory Thresholds in Age-Related Hearing Loss. Front Neurosci 2018; 12:527. [PMID: 30108480 PMCID: PMC6079267 DOI: 10.3389/fnins.2018.00527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/13/2018] [Indexed: 12/02/2022] Open
Abstract
The increasing rate of age-related hearing loss (ARHL), with its subsequent reduction in quality of life and increase in health care costs, requires new therapeutic strategies to reduce and delay its impact. The goal of this study was to determine if ARHL could be reduced in a rat model by administering a combination of antioxidant vitamins A, C, and E acting as free radical scavengers along with Mg++, a known powerful cochlear vasodilator (ACEMg). Toward this goal, young adult, 3 month-old Wistar rats were divided into two groups: one was fed with a diet composed of regular chow (“normal diet,” ND); the other received a diet based on chow enriched in ACEMg (“enhanced diet,” ED). The ED feeding began 10 days before the noise stimulation. Auditory brainstem recordings (ABR) were performed at 0.5, 1, 2, 4, 8, 16, and 32 kHz at 3, 6–8, and 12–14 months of age. No differences were observed at 3 months of age, in both ND and ED animals. At 6–8 and 12–14 months of age there were significant increases in auditory thresholds and a reduction in the wave amplitudes at all frequencies tested, compatible with progressive development of ARHL. However, at 6–8 months threshold shifts in ED rats were significantly lower in low and medium frequencies, and wave amplitudes were significantly larger at all frequencies when compared to ND rats. In the oldest animals, differences in the threshold shift persisted, as well as in the amplitude of the wave II, suggesting a protective effect of ACEMg on auditory function during aging. These findings indicate that oral ACEMg may provide an effective adjuvant therapeutic intervention for the treatment of ARHL, delaying the progression of hearing impairment associated with age.
Collapse
Affiliation(s)
- Juan C Alvarado
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - María C Gabaldón-Ull
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - José M Juiz
- Instituto de Investigación en Discapacidades Neurológicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
109
|
Tavanai E, Mohammadkhani G, Farahani S, Jalaie S. Protective Effects of Silymarin Against Age-Related Hearing Loss in an Aging Rat Model. Indian J Otolaryngol Head Neck Surg 2018; 71:1248-1257. [PMID: 31750160 DOI: 10.1007/s12070-018-1294-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/07/2018] [Indexed: 01/21/2023] Open
Abstract
Age-related hearing loss (ARHL) is one of the most common chronic degenerative disorders. Several studies have indicated that supplementation with some antioxidants can slow down the progression of ARHL. Despite several lines of evidence about the potent antioxidant and anti-aging effects of silymarin, its protective effect against ARHL has not evaluated yet. The aim of the current study was to investigate the effects of silymarin in prevention of ARHL in a d-Galactose-induced aging rat model for the first time. 45 male wistar rats aged 3-month old were divided into 5 groups: group 1, 2 and 3 received 500 mg/kg/day d-Gal plus 100, 200 and 300 mg/kg/day silymarin respectively for 8 weeks, placebo group received 500 mg/kg/day d-Gal plus propylene glycol as placebo, and control group received normal saline during this period of time. Auditory brainstem responses were measured at several frequencies (4, 6, 8, 12 and 16 kHz) before and after the intervention. Placebo group and group 3 showed significant ABR threshold increase across frequencies of 4, 6, 16 kHz compared with the other groups (P < 0.05). However, rats treated with silymarin 100 and 200 mg/kg/day plus d-Gal did not show any significant ABR threshold shifts. Similarly, ABR amplitude of P2 at 4, 8 kHz and P1, P4 at 4 kHz in the placebo group and group 3 were decreased significantly compared with other groups (P < 0.05). However, no significant differences are found in ABR absolute and inter-peak latencies between groups (P > 0.05). The findings indicates that silymarin with doses of 100 and 200 mg/kg/day has protective effect against ARHL and it can be supplemented into the diet of older people to slow down the progression of age-related hearing loss.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Saeid Farahani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Shohreh Jalaie
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| |
Collapse
|
110
|
Self-protection of type III fibrocytes against severe 3-nitropropionic-acid-induced cochlear damage in mice. Neuroreport 2018; 29:252-258. [PMID: 29280748 DOI: 10.1097/wnr.0000000000000927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
After intense sound exposure, the lack of obvious degeneration in type III fibrocytes suggests that they might protect themselves against acoustic trauma. However, it is unknown whether and how type III fibrocytes play this role in other cochlear damage models. In this study, we investigated the self-protection of type III fibrocytes against severe cochlear energy failure induced by local administration of 3-nitropropionic acid to the inner ear. We detected that the type III fibrocytes did not degenerate significantly after 500 mM 3-nitropropionic acid application, and showed increased expression of proliferation marker Ki67. Moreover, low immunoreactivity for inducible nitric oxide synthase and cleaved caspase-3 was observed in type III fibrocytes 2 days after damage. These results indicate that after severe cochlear energy failure type III fibrocytes possess obvious proliferation activity, as well as strong antioxidant and antiapoptotic capacity, which can protect them from degeneration.
Collapse
|
111
|
Di Stadio A, Pegoraro V, Giaretta L, Dipietro L, Marozzo R, Angelini C. Hearing impairment in MELAS: new prospective in clinical use of microRNA, a systematic review. Orphanet J Rare Dis 2018; 13:35. [PMID: 29466997 PMCID: PMC5822652 DOI: 10.1186/s13023-018-0770-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022] Open
Abstract
AIM To evaluate the feasibility of microRNAs (miR) in clinical use to fill in the gap of current methodology commonly used to test hearing impairment in MELAS patients. MATERIAL AND METHOD A literature review was performed using the following keywords, i.e., MELAS, Hearing Loss, Hearing Impairment, Temporal Bone, Otoacustic Emission (OTOAE), Auditory Brain Response (ABR), and microRNA. We reviewed the literature and focused on the aspect of the temporal bone, the results of electrophysiological tests in human clinical studies, and the use of miR for detecting lesions in the cochlea in patients with MELAS. RESULTS In patients with MELAS, Spiral Ganglions (SG), stria vascularis (SV), and hair cells are damaged, and these damages affect in different ways various structures of the temporal bone. The function of these cells is typically investigated using OTOAE and ABR, but in patients with MELAS these tests provide inconsistent results, since OTOAE response is absent and ABR is normal. The normal ABR responses are unexpected given the SG loss in the temporal bone. Recent studies in humans and animals have shown that miRs, and in particular miRs 34a, 29b, 76, 96, and 431, can detect damage in the cells of the cochlea with high sensitivity. Studies that focus on the temporal bone aspects have reported that miRs increase is correlated with the death of specific cells of the inner ear. MiR - 9/9* was identified as a biomarker of human brain damage, miRs levels increase might be related to damage in the central auditory pathways and these increased levels could identify the damage with higher sensitivity and several months before than electrophysiological testing. CONCLUSION We suggest that due to their accuracy and sensitivity, miRs might help monitor the progression of SNHL in patients with MELAS.
Collapse
Affiliation(s)
| | | | - Laura Giaretta
- San Camillo Hospital IRCCS, Via Alberoni, 70, Venice, Italy
| | | | | | | |
Collapse
|
112
|
Shi X, Qiu S, Zhuang W, Yuan N, Wang C, Zhang S, Sun T, Guo W, Gao F, Yang S, Qiao Y. NLRP3-inflammasomes are triggered by age-related hearing loss in the inner ear of mice. Am J Transl Res 2017; 9:5611-5618. [PMID: 29312513 PMCID: PMC5752911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Age-related hearing loss (ARHL) or presbyacusis is a progressive loss of hearing sensitivity that is predominately associated with sensory or transduction neuro-cell degeneration in the peripheral and central auditory systems. Increased production of reactive oxygen species (ROS) and inflammatory response were frequently found in aging cochleae. In addition, inflammasomes are likely responsible for the accumulation of ROS in immune cells, although whether they are in fact involved in the development of ARHL is unknown. In this study, Q-PCR, WB and ELASA demonstrated significantly increased levels of activated Caspase-1, interleukin-1β and interleukin-18 and even NLRP3 in the inner ears of aging mice compared to younger one. In addition, NLRP3, as a sensor protein of ROS, may contribute to inflammasome assembly and subsequent inflammation in the cochleae. In conclusion, inflammation triggered by the activation of inflammasomes in the cochleae of aging mice appears to be playing an important role in the pathological process of ARHL and may be a potential cause of presbyacusis.
Collapse
Affiliation(s)
- Xi Shi
- The Institute of Audiology and Balance Science of Xuzhou Medical UniversityXuzhou 221004, China
| | - Shiwei Qiu
- The Institute of Audiology and Balance Science of Xuzhou Medical UniversityXuzhou 221004, China
- Department of Otolaryngology-Head & Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General HospitalBeijing 100853, China
| | - Wei Zhuang
- The Institute of Audiology and Balance Science of Xuzhou Medical UniversityXuzhou 221004, China
- Clinical Hearing Center of Affliated Hospital of Xuzhou Medical UniversityXuzhou 221006, China
| | - Na Yuan
- The Institute of Audiology and Balance Science of Xuzhou Medical UniversityXuzhou 221004, China
| | - Caiji Wang
- The Institute of Audiology and Balance Science of Xuzhou Medical UniversityXuzhou 221004, China
| | - Shili Zhang
- The Institute of Audiology and Balance Science of Xuzhou Medical UniversityXuzhou 221004, China
| | - Tiantian Sun
- The Institute of Audiology and Balance Science of Xuzhou Medical UniversityXuzhou 221004, China
- Department of Otolaryngology-Head & Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General HospitalBeijing 100853, China
| | - Weiwei Guo
- Department of Otolaryngology-Head & Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General HospitalBeijing 100853, China
| | - Fenglei Gao
- The Institute of Audiology and Balance Science of Xuzhou Medical UniversityXuzhou 221004, China
| | - Shiming Yang
- Department of Otolaryngology-Head & Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General HospitalBeijing 100853, China
| | - Yuehua Qiao
- Clinical Hearing Center of Affliated Hospital of Xuzhou Medical UniversityXuzhou 221006, China
| |
Collapse
|
113
|
Haider HF, Flook M, Aparicio M, Ribeiro D, Antunes M, Szczepek AJ, Hoare DJ, Fialho G, Paço JC, Caria H. Biomarkers of Presbycusis and Tinnitus in a Portuguese Older Population. Front Aging Neurosci 2017; 9:346. [PMID: 29163129 PMCID: PMC5672025 DOI: 10.3389/fnagi.2017.00346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022] Open
Abstract
Introduction: Presbycusis or age-related hearing loss (ARHL) is a ubiquitous health problem. It is estimated that it will affect up to 1.5 billion people by 2025. In addition, tinnitus occurs in a large majority of cases with presbycusis. Glutamate metabotropic receptor 7 (GRM7) and N-acetyltransferase 2 (NAT2) are some of the genetic markers for presbycusis. Objectives: To explore patterns of hearing loss and the role of GRM7 and NAT2 as possible markers of presbycusis and tinnitus in a Portuguese population sample. Materials and Methods: Tonal and speech audiometry, tinnitus assessment, clinical interview, and DNA samples were obtained from patients aged from 55 to 75 with or without tinnitus. GRM7 analysis was performed by qPCR. Genotyping of single nucleotide polymorphisms (SNPs) in NAT2 was performed by PCR amplification followed by Sanger sequencing or by qPCR. Results: We screened samples from 78 individuals (33 men and 45 women). T allele at GRM7 gene was the most observed (60.3% T/T and 33.3% A/T). Individuals with a T/T genotype have a higher risk for ARHL and 33% lower risk for tinnitus, compared to individuals with A/A and A/T genotype, respectively. Being a slow acetylator (53%) was the most common NAT2 phenotype, more common in men (55.8%). Intermediate acetylator was the second most common phenotype (35.9%) also more frequent in men (82.6%). Noise exposed individuals and individuals with ‘high frequency’ hearing loss seem to have a higher risk for tinnitus. Our data suggests that allele AT of GRM7 can have a statistically significant influence toward the severity of tinnitus. Conclusion: For each increasing year of age the chance of HL increases by 9%. The risk for ARHL was not significantly associated with GRM7 neither NAT2. However, we cannot conclude from our data whether the presence of T allele at GRM7 increases the odds for ARHL or whether the A allele has a protective effect. Genotype A/T at GRM7 could potentially be considered a biomarker of tinnitus severity. This is the first study evaluating the effect of GRM7 and NAT2 gene in tinnitus.
Collapse
Affiliation(s)
- Haúla F Haider
- ENT Department, Hospital Cuf Infante Santo, NOVA Medical School, Lisbon, Portugal
| | - Marisa Flook
- Deafness Research Group, BTR Unit, BioISI, Faculty of Sciences, University of Lisbon (FCUL), Lisbon, Portugal
| | | | - Diogo Ribeiro
- ENT Department, Hospital Cuf Infante Santo, NOVA Medical School, Lisbon, Portugal
| | - Marilia Antunes
- Centro de Estatística e Aplicações, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Derek J Hoare
- NIHR Nottingham Biomedical Research Centre, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Graça Fialho
- Deafness Research Group, BTR Unit, BioISI, Faculty of Sciences, University of Lisbon (FCUL), Lisbon, Portugal
| | - João C Paço
- ENT Department, Hospital Cuf Infante Santo, NOVA Medical School, Lisbon, Portugal
| | - Helena Caria
- Deafness Research Group, BTR Unit, BioISI, Faculty of Sciences, University of Lisbon (FCUL), Lisbon, Portugal.,ESS/IPS- Biomedical Sciences Department, School of Health, Polytechnic Institute of Setubal, Setubal, Portugal
| |
Collapse
|
114
|
Tan WJT, Song L, Graham M, Schettino A, Navaratnam D, Yarbrough WG, Santos-Sacchi J, Ivanova AV. Novel Role of the Mitochondrial Protein Fus1 in Protection from Premature Hearing Loss via Regulation of Oxidative Stress and Nutrient and Energy Sensing Pathways in the Inner Ear. Antioxid Redox Signal 2017; 27:489-509. [PMID: 28135838 PMCID: PMC5564041 DOI: 10.1089/ars.2016.6851] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS Acquired hearing loss is a worldwide epidemic that affects all ages. It is multifactorial in etiology with poorly characterized molecular mechanisms. Mitochondria are critical components in hearing. Here, we aimed to identify the mechanisms of mitochondria-dependent hearing loss using Fus1 KO mice, our novel model of mitochondrial dysfunction/oxidative stress. RESULTS Using auditory brainstem responses (ABRs), we characterized the Fus1 KO mouse as a novel, clinically relevant model of age-related hearing loss (ARHL) of metabolic etiology. We demonstrated early decline of the endocochlear potential (EP) that may occur due to severe mitochondrial and vascular pathologies in the Fus1 KO cochlear stria vascularis. We showed that pathological alterations in antioxidant (AO) and nutrient and energy sensing pathways (mTOR and PTEN/AKT) occur in cochleae of young Fus1 KO mice before major hearing loss. Importantly, short-term AO treatment corrected pathological molecular changes, while longer AO treatment restored EP, improved ABR parameters, restored mitochondrial structure, and delayed the development of hearing loss in the aging mouse. INNOVATION Currently, no molecular mechanisms linked to metabolic ARHL have been identified. We established pathological and molecular mechanisms that link the disease to mitochondrial dysfunction and oxidative stress. CONCLUSION Since chronic mitochondrial dysfunction is common in many patients, it could lead to developing hearing loss that can be alleviated/rescued by AO treatment. Our study creates a framework for clinical trials and introduces the Fus1 KO model as a powerful platform for developing novel therapeutic strategies to prevent/delay hearing loss associated with mitochondrial dysfunction. Antioxid. Redox Signal. 27, 489-509.
Collapse
Affiliation(s)
- Winston J T Tan
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut
| | - Lei Song
- 2 Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China .,3 Ear Institute, Shanghai Jiao Tong University School of Medicine , Shanghai, China .,4 Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases , Shanghai, China
| | - Morven Graham
- 5 CCMI EM Core Facility, Yale University School of Medicine , New Haven, Connecticut
| | | | - Dhasakumar Navaratnam
- 7 Department of Neurology, Yale University School of Medicine , New Haven, Connecticut.,8 Department of Neuroscience, Yale University School of Medicine , New Haven, Connecticut
| | - Wendell G Yarbrough
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut.,9 Department of Pathology, Yale University School of Medicine , New Haven, Connecticut
| | - Joseph Santos-Sacchi
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut.,8 Department of Neuroscience, Yale University School of Medicine , New Haven, Connecticut.,10 Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, Connecticut
| | - Alla V Ivanova
- 1 Department of Surgery, Section of Otolaryngology, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
115
|
Souza MEDCAD, Costa KVTD, Vitorino PA, Bueno NB, Menezes PDL. Effect of antioxidant supplementation on the auditory threshold in sensorineural hearing loss: a meta-analysis. Braz J Otorhinolaryngol 2017; 84:368-380. [PMID: 28888754 PMCID: PMC9449190 DOI: 10.1016/j.bjorl.2017.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/12/2017] [Accepted: 07/18/2017] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Hearing loss is conceptualized as any impairment of the ability to hear and/or detect speech or environment sounds, regardless of cause, type, or degree. It may occur at different stages of life; during pregnancy or childbirth, in childhood, adulthood or old age. It should be noted that aging is the most common cause of sensorineural hearing loss followed by noise-induced hearing loss, and both are closely related to the formation of reactive oxygen species. Dietary antioxidant supplementation has been employed as a therapeutic strategy to prevent and/or delay the risks of major human diseases. OBJECTIVE To assess randomized clinical trials to determine the effect of antioxidant supplementation on the auditory thresholds in patients of different age groups with sensorineural hearing loss. METHODS This systematic review consisted of a search in the following databases: MEDLINE, CENTRAL, ScienceDirect, Scopus, Web of Science, LILACS, SciELO and ClinicalTrials.gov. Additionally, the gray literature was also searched. The search strategy included terms related to the intervention (antioxidant supplementation), primary outcome (sensorineural hearing loss), as well as terms related to randomized clinical trials to improve search sensitivity. RESULTS Based on 977 potentially relevant records identified through the search in the databases, ten full-text publications were retrieved for further evaluation. The increase in threshold at the 4kHz frequency was statistically higher in the control group (1.89 [1.01-2.78], p<0.0001) when compared to the NAC group and the ginseng group, whereas at 6kHz, the threshold increase was higher in the control group (1.42 [-1.14-3.97], p=0.28), but no statistically significant differences were found between groups. CONCLUSION Ginseng was the antioxidant agent that showed the best effect in preventing auditory threshold worsening at the frequency of 4kHz, but not at 6kHz in patients with sensorineural hearing loss caused by exposure to high sound pressure levels. There was no improvement in the thresholds with vitamin E supplementation.
Collapse
Affiliation(s)
| | | | - Paulo Augusto Vitorino
- Universidade Estadual de Ciências da Saúde de Alagoas (UNCISAL), Laboratório de Audição e Tecnologia (LATEC), Maceió, AL, Brazil
| | | | | |
Collapse
|
116
|
Wang W, Li D, Ding X, Zhao Q, Chen J, Tian K, Qiu Y, Lu L. N-Acetylcysteine protects inner ear hair cells and spiral ganglion neurons from manganese exposure by regulating ROS levels. Toxicol Lett 2017; 279:77-86. [PMID: 28778520 DOI: 10.1016/j.toxlet.2017.07.903] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Manganese (Mn) is an indispensable cofactor for many enzymes and a basic factor for many reproductive and metabolic pathways. However, exposure to high concentrations of Mn can result in deleterious effects on the central nervous system and peripheral nerves, including nerves associated with the auditory system. Based on our studies of cochlear organotypic cultures, Mn exposure induces a significant loss of hair cells (HCs), auditory nerve fibers (ANFs) and spiral ganglion neurons (SGNs) in a concentration-dependent manner. Additionally, N-acetylcysteine (NAC), a glutathione (GSH) provider and a direct scavenger of reactive oxygen species (ROS), clearly decreases Mn-induced ROS accumulation, caspase-3 activation and TUNEL staining, which indicate increased cell survival. Based on these results, Mn exposure exerts ototoxic and neurotoxic effects on the auditory system. Furthermore, 20mM NAC may prevent 1mM Mn-induced hair cell loss and axonal degeneration, indicating that NAC could be a promising drug for clinical applications.
Collapse
Affiliation(s)
- Weilong Wang
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Dan Li
- Department of Otorhinolaryngology, Hu County People's Hospital, Xi'an 710300, China
| | - Xuerui Ding
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Qianqian Zhao
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jiawei Chen
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Keyong Tian
- Department of Otolaryngology Head & Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Qiu
- Department of Otolaryngology Head & Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lianjun Lu
- Department of Otolaryngology Head & Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
117
|
Liu S, Xu T, Wu X, Lin Y, Bao D, Di Y, Ma T, Dang Y, Jia P, Xian J, Wang A, Liu Y. Pomegranate peel extract attenuates D-galactose-induced oxidative stress and hearing loss by regulating PNUTS/PP1 activity in the mouse cochlea. Neurobiol Aging 2017; 59:30-40. [PMID: 28837860 DOI: 10.1016/j.neurobiolaging.2017.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/11/2017] [Accepted: 07/15/2017] [Indexed: 01/20/2023]
Abstract
Oxidative stress is considered to be a major contributor to age-related hearing loss (ARHL). Here, we investigated whether pomegranate peel extract (PPE) protected against hearing loss by decreased oxidative stress in the cochlea of D-galactose-induced accelerated aging mice. The aging mice exhibited an increase in hearing threshold shifts and hair cells loss, which were improved in the PPE-treated aging mice. The aging mice also exhibited an increase in 4-hydroxynonenal, the expression of protein phosphatase 1 nuclear targeting subunit (PNUTS), p53 and caspase-3, and a decrease in protein phosphatase 1 (PP1) and MDM2 in the cochlea. PPE treatment reversed the changes in aforementioned molecules. Our results suggested that PPE can protect against ARHL, the underlying mechanisms may involve in the inhibition of oxidative damage of cochlea, possibly by regulating PNUTS/PP1 pathway. The results from the present study provide a new therapeutic strategy to use PPE for prevention of ARHL.
Collapse
Affiliation(s)
- Shuangyue Liu
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou, P.R. China
| | - Xidi Wu
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yuhan Lin
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Dongyan Bao
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yang Di
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Tingting Ma
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yan Dang
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Peili Jia
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Jianqiao Xian
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, P.R. China.
| | - Yongxin Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Hospital of Jinzhou Medical University, Jinzhou, P.R. China.
| |
Collapse
|
118
|
Finelli MJ, Oliver PL. TLDc proteins: new players in the oxidative stress response and neurological disease. Mamm Genome 2017; 28:395-406. [PMID: 28707022 PMCID: PMC5614904 DOI: 10.1007/s00335-017-9706-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) arises from an imbalance in the cellular redox state, which can lead to intracellular damage and ultimately cell death. OS occurs as a result of normal ageing, but it is also implicated as a common etiological factor in neurological disease; thus identifying novel proteins that modulate the OS response may facilitate the design of new therapeutic approaches applicable to many disorders. In this review, we describe the recent progress that has been made using a range of genetic approaches to understand a family of proteins that share the highly conserved TLDc domain. We highlight their shared ability to prevent OS-related cell death and their unique functional characteristics, as well as discussing their potential application as new neuroprotective factors. Furthermore, with an increasing number of pathogenic mutations leading to epilepsy and hearing loss being discovered in the TLDc protein TBC1D24, understanding the function of this family has important implications for a range of inherited neurological diseases.
Collapse
Affiliation(s)
- Mattéa J Finelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
119
|
Kim TS, Kim EH, Chung JW. The Association Between Age-Related Hearing Impairment and Metabolic Syndrome in Korean Women: 5-Year Follow-Up Observational Study. Metab Syndr Relat Disord 2017; 15:240-245. [PMID: 28318405 DOI: 10.1089/met.2016.0153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although several observational studies showed a relationship between various conditions of metabolic syndrome (MetS) and hearing threshold, there are no studies about longitudinal audiometric results related MetS. The aim of this study was to investigate the association between MetS and age-related hearing impairment (ARHI) through a large, average 5-year longitudinal follow-up, clinical comparative analysis. MATERIALS AND METHODS We recruited 1381 women older than 50 years who were enrolled in 2007 and reevaluated in 2012. They had normal or symmetrical sensorineural hearing loss. For the evaluation of the independent impact of MetS on hearing, multivariate analysis was used. RESULTS The average follow-up period was 5.0 ± 0.2 years. Subjects with MetS had higher hearing thresholds than subjects without MetS. The loss in high-frequency hearing (≥2000 Hz) progressed more rapidly in women with MetS over a 5-year period. CONCLUSION Our analysis using longitudinal and large data revealed that MetS is associated with ARHI in women 50 years and older. High-frequency hearing loss tended to be greater in women with MetS than in those without MetS at the 5-year follow-up. Therefore, older women with MetS should be followed up closely for hearing evaluation.
Collapse
Affiliation(s)
- Tae Su Kim
- 1 Department of Otolaryngology, School of Medicine, Kangwon National University , Chuncheon, Korea
| | - Eun Hui Kim
- 2 Department of Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jong Woo Chung
- 3 Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| |
Collapse
|
120
|
Falah M, Farhadi M, Kamrava SK, Mahmoudian S, Daneshi A, Balali M, Asghari A, Houshmand M. Association of genetic variations in the mitochondrial DNA control region with presbycusis. Clin Interv Aging 2017; 12:459-465. [PMID: 28424544 PMCID: PMC5344408 DOI: 10.2147/cia.s123278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background The prominent role of mitochondria in the generation of reactive oxygen species, cell death, and energy production contributes to the importance of this organelle in the intracellular mechanism underlying the progression of the common sensory disorder of the elderly, presbycusis. Reduced mitochondrial DNA (mtDNA) gene expression and coding region variation have frequently been reported as being associated with the development of presbycusis. The mtDNA control region regulates gene expression and replication of the genome of this organelle. To comprehensively understand of the role of mitochondria in the progression of presbycusis, we compared variations in the mtDNA control region between subjects with presbycusis and controls. Methods A total of 58 presbycusis patients and 220 control subjects were enrolled in the study after examination by the otolaryngologist and audiology tests. Variations in the mtDNA control region were investigated by polymerase chain reaction and Sanger sequencing. Results A total of 113 sequence variants were observed in mtDNA, and variants were detected in 100% of patients, with 84% located in hypervariable regions. The frequencies of the variants, 16,223 C>T, 16,311 T>C, 16,249 T>C, and 15,954 A>C, were significantly different between presbycusis and control subjects. Conclusion The statistically significant difference in the frequencies of four nucleotide variants in the mtDNA control region of presbycusis patients and controls is in agreement with previous experimental evidence and supports the role of mitochondria in the intracellular mechanism underlying presbycusis development. Moreover, these variants have potential as diagnostic markers for individuals at a high risk of developing presbycusis. The data also suggest the possible presence of changes in the mtDNA control region in presbycusis, which could alter regulatory factor binding sites and influence mtDNA gene expression and copy number.
Collapse
Affiliation(s)
- Masoumeh Falah
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Daneshi
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Balali
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
121
|
Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. ENVIRONMENT INTERNATIONAL 2017; 99:43-54. [PMID: 27871799 DOI: 10.1016/j.envint.2016.11.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 05/22/2023]
Abstract
As an emerging persistent organic pollutant (POP), perfluorooctanoate (PFOA) is one of the most abundant perfluorinated compounds (PFCs) in the environment. This review summarized the molecular mechanisms and signaling pathways of PFOA-induced toxicity in animals and humans as well as their implications for health risks in humans. Traditional PFOA-induced signal pathways such as peroxisome proliferating receptor alpha (PPARα), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), and pregnane-X receptor (PXR) may not be important for PFOA-induced health effects on humans. Instead, pathways including p53/mitochondrial pathway, nuclear lipid hyperaccumulation, phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT), and tumor necrosis factor-α/nuclear factor κB (TNF-α/NF-κB) may play an important role for PFOA-induced health risks in humans. Both in vivo and in vitro studies are needed to better understand the PFOA-induced toxicity mechanisms as well as the associated health risk in humans.
Collapse
Affiliation(s)
- Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Peng Gao
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
122
|
Effects of Intratympanic Dexamethasone on High-Dose Radiation Ototoxicity In Vivo. Otol Neurotol 2017; 38:180-186. [DOI: 10.1097/mao.0000000000001289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
123
|
Functionally and morphologically damaged mitochondria observed in auditory cells under senescence-inducing stress. NPJ Aging Mech Dis 2017. [PMID: 28649420 PMCID: PMC5445612 DOI: 10.1038/s41514-017-0002-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We aimed at determining the mitochondrial function in premature senescence model of auditory cells. Short exposure to H2O2 (1 h, 0.1 mM) induced premature cellular senescence in House Ear Institute-Organ of Corti 1 auditory cells. The transmission electron microscopy analysis revealed that damaged mitochondria and autophagosomes containing dense organelles appeared in the auditory cells after short exposure to H2O2. The branch and junction parameters of the skeletonized image of the mitochondria were found to decrease significantly in H2O2-treated cells. A branched reticulum of tubules was poorly formed, featuring coexistence of numerous tiny clusters along with few relatively large entities in the H2O2-treated cells. In terms of bioenergetics, H2O2-treatment led to the dose-dependent decrease in mitochondrial membrane potential in the auditory cells. The fragmented mitochondria (fusion < fission) were in a low potential. In addition, the potential of hyperfused mitochondria (fusion > fission) was slightly lower than the control cells. The short-time exposure of live auditory cells to H2O2 damaged the mitochondrial respiratory capacity without any effect on the baseline ATP production rates. The vulnerability of the mitochondrial membrane potential to the uncoupling reagent was increased after H2O2 treatment. Our findings indicated that the mitochondrial dysfunction due to the decline in the O2 consumption rate should be the first event of premature senescence process in the auditory cells, resulting in the imbalance of mitochondrial fusion/fission and the collapse of the mitochondrial network.
Collapse
|
124
|
Bartos A, Grondin Y, Bortoni ME, Ghelfi E, Sepulveda R, Carroll J, Rogers RA. Pre-conditioning with near infrared photobiomodulation reduces inflammatory cytokines and markers of oxidative stress in cochlear hair cells. JOURNAL OF BIOPHOTONICS 2016; 9:1125-1135. [PMID: 26790619 DOI: 10.1002/jbio.201500209] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Hearing loss is a serious occupational health problem worldwide. Noise, aminoglycoside antibiotics and chemotherapeutic drugs induce hearing loss through changes in metabolic functions resulting in sensory cell death in the cochlea. Metabolic sequelae from noise exposure increase production of nitric oxide (NO) and Reactive Oxygen Species (ROS) contributing to higher levels of oxidative stress beyond the physiologic threshold levels of intracellular repair. Photobiomodulation (PBM) therapy is a light treatment involving endogenous chromophores commonly used to reduce inflammation and promote tissue repair. Near infrared light (NIR) from Light Emitting Diodes (LED) at 810 nm wavelength were used as a biochemical modulator of cytokine response in cultured HEI-OC1 auditory cells placed under oxidative stress. Results reported here show that NIR PBM at 810 nm, 30 mW/cm2 , 100 seconds, 1.0 J, 3 J/cm2 altered mitochondrial metabolism and oxidative stress response for up to 24 hours post treatment. We report a decrease of inflammatory cytokines and stress levels resulting from NIR applied to HEI-OC1 auditory cells before treatment with gentamicin or lipopolysaccharide. These results show that cells pretreated with NIR exhibit reduction of proinflammatory markers that correlate with inhibition of mitochondrial superoxide, ROS and NO in response to continuous oxidative stress challenges. Non-invasive biomolecular down regulation of proinflammatory intracellular metabolic pathways and suppression of oxidative stress via NIR may have the potential to develop novel therapeutic approaches to address noise exposure and ototoxic compounds associated with hearing loss.
Collapse
Affiliation(s)
- Adam Bartos
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Yohann Grondin
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Magda E Bortoni
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Elisa Ghelfi
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Rosalinda Sepulveda
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| | - James Carroll
- THOR Photomedicine Ltd, Chesham, HP5 1LF, United Kingdom
| | - Rick A Rogers
- Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences - Department of Environmental Health, Building 1, 665 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
125
|
Tavanai E, Mohammadkhani G. Role of antioxidants in prevention of age-related hearing loss: a review of literature. Eur Arch Otorhinolaryngol 2016; 274:1821-1834. [PMID: 27858145 DOI: 10.1007/s00405-016-4378-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/08/2016] [Indexed: 01/21/2023]
Abstract
Age-related hearing loss (ARHL), also known as presbycusis, is one of the most prevalent chronic degenerative conditions. It is characterized by a decline in auditory function. ARHL is caused by the interaction of multiple factors, including cochlear aging, environment, genetic predisposition, and health comorbidities. The primary pathology of ARHL includes the hair cells loss, stria vascularis atrophy, and loss of spiral ganglion neurons as well as the changes in central auditory pathways. The research to date suggests that oxidative stress and mitochondrial DNA deletion (mtDNA) play a major role in pathophysiology of ARHL. Therefore, similar to other otological conditions, several studies have also showed that antioxidants can slow ARHL, but some also indicate that antioxidant therapy is not a magic elixir that will prevent or treat hearing loss associated with aging completely, but why? All available clinical trials, including animal and human studies, in English language that examined the protective effects of antioxidants against ARHL were reviewed. Materials were obtained by searching ELSEVIER, PubMed, Scopus, Web of knowledge, Google Scholar databases, Clinical trials, and Cochrane database of systematic reviews. Although ARHL has been shown to be slowed by supplementation with antioxidants, particularly in laboratory animals, a few studies have investigated the effect of interventions against ARHL in humans. High-quality clinical trials are needed to investigate if ARHL can be delayed or prevented in humans. However, it seems that targeting several cell-death pathways is better than targeting the only oxidative stress pathway.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Piche-Shemiran, Enghelab Ave, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Piche-Shemiran, Enghelab Ave, Tehran, Iran.
| |
Collapse
|
126
|
Falah M, Houshmand M, Najafi M, Balali M, Mahmoudian S, Asghari A, Emamdjomeh H, Farhadi M. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis. Ther Clin Risk Manag 2016; 12:1573-1578. [PMID: 27799778 PMCID: PMC5077262 DOI: 10.2147/tcrm.s117491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined. METHODS Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction. RESULTS Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant (P=0.007). Mitochondrial DNA copy number was also significantly associated with degree of hearing impairment (P=0.025) and audiogram configuration (P=0.022). CONCLUSION The findings of this study suggest that lower mitochondrial DNA copy number is responsible for presbycusis through alteration of mitochondrial function. Moreover, the significant association of mitochondrial DNA copy number in peripheral blood samples with the degree of hearing impairment and audiogram configuration has potential for use as a standard test for presbycusis, providing the possibility of the development of an easy-to-use biomarker for the early detection of this condition.
Collapse
Affiliation(s)
- Masoumeh Falah
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Najafi
- Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Balali
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Mahmoudian
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- Skull base research center, Iran University of Medical Sciences, Tehran, Iran
| | - Hessamaldin Emamdjomeh
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
127
|
Recovery of endocochlear potential after severe damage to lateral wall fibrocytes following acute cochlear energy failure. Neuroreport 2016; 27:1159-66. [DOI: 10.1097/wnr.0000000000000673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
128
|
The expression of NLRX1 in C57BL/6 mice cochlear hair cells: Possible relation to aging- and neomycin-induced deafness. Neurosci Lett 2016; 616:138-46. [PMID: 26836140 DOI: 10.1016/j.neulet.2015.11.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Abstract
Nucleotide-binding domain and leucine-rich-repeat-containing family member X1 (NLRX1) is a cytoplasmic pattern recognition receptor that is predominantly located in mitochondria, which is tightly related to mitochondrial damage, reactive oxygen species (ROS) production, inflammation and apoptosis. The present study was designed to explore whether NLRX1 expresses in C57BL/6 mice cochlear hair cells and, if so, to investigate the possible correlations between NLRX1 and hearing. The location and dynamic expression of NLRX1 were investigated by immunofluorescence, real-time PCR and Western blotting. Hearing thresholds of C57BL/6 mice were measured by auditory brainstem response (ABR). Moreover, the downstream inflammatory and apoptotic pathways regulated by NLRX1 were examined in age-related and neomycin-induced hair cell damage. Data showed that NLRX1 expressed in cytoplasm of C57BL/6 cochlear hair cells, especially in the cilia, which were essential for sound sensation. The expression of NLRX1 in hair cells increased as the mice grew up, and, decreased as they aged. Additionally, the activated apoptotic JNK pathway was detected in 9-month old mice with worse-hearing and 3-month old mice treated with neomycin. Overall, results indicate that NLRX1 may relate to hair cell maturity, hearing formation and maintenance, and promote hair cell apoptosis through JNK pathway induced by aging and neomycin.
Collapse
|
129
|
Wang C, Wang B. Ginkgo Biloba Extract Attenuates Oxidative Stress and Apoptosis in Mouse Cochlear Neural Stem Cells. Phytother Res 2016; 30:774-80. [PMID: 26799058 DOI: 10.1002/ptr.5572] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 01/23/2023]
Abstract
In the organ or Corti, oxidative stress could result in damage to the hearing, and neural stem cells (NSCs) hold great therapeutic potential in treating hearing loss. Ginkgo biloba extract (GBE) has been widely shown to exhibit anti-oxidative and anti-apoptotic effects in treatments of neural damage and disorder. Using hydrogen peroxide to induced oxidative stress as a model, we investigated the anti-oxidative role of GBE in isolated mouse cochlear NSCs. GBE treatment was found to significantly promote viability of NSCs, by markedly attenuating hydrogen peroxide induced oxidative stress. In addition, this anti-oxidative function of GBE was also able to prevent mitochondrial depolarization and subsequent apoptosis. Moreover, the anti-apoptotic role of GBE was mediated by antagonizing the intrinsic mitochondrial apoptotic pathway, where GBE could reverse the changes in key intrinsic apoptosis pathway factors including Bcl-2, Bax, and Caspase-3. Our data provided the first report on the beneficial role of GBE in protecting cochlear NSCs, by attenuating oxidative stress triggered intrinsic apoptosis, therefore supporting the potential therapeutic value of GBE in preventing oxidative stress-related hearing loss. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Congpin Wang
- Department of Pharmacy, Eye and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Bin Wang
- Department of Pharmacy, Eye and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| |
Collapse
|
130
|
Prestin-Dependence of Outer Hair Cell Survival and Partial Rescue of Outer Hair Cell Loss in PrestinV499G/Y501H Knockin Mice. PLoS One 2015; 10:e0145428. [PMID: 26682723 PMCID: PMC4684303 DOI: 10.1371/journal.pone.0145428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/23/2015] [Indexed: 12/23/2022] Open
Abstract
A knockin (KI) mouse expressing mutated prestinV499G/Y501H (499 prestin) was created to study cochlear amplification. Recordings from isolated outer hair cells (OHC) in this mutant showed vastly reduced electromotility and, as a consequence, reduced hearing sensitivity. Although 499 prestin OHCs were normal in stiffness and longer than OHCs lacking prestin, accelerated OHC death was unexpectedly observed relative to that documented in prestin knockout (KO) mice. These observations imply an additional role of prestin in OHC maintenance besides its known requirement for mammalian cochlear amplification. In order to gain mechanistic insights into prestin-associated OHC loss, we implemented several interventions to improve survival. First, 499 prestin KI’s were backcrossed to Bak KO mice, which lack the mitochondrial pro-apoptotic gene Bak. Because oxidative stress is implicated in OHC death, another group of 499 prestin KI mice was fed the antioxidant diet, Protandim. 499 KI mice were also backcrossed onto the FVB murine strain, which retains excellent high-frequency hearing well into adulthood, to reduce the compounding effect of age-related hearing loss associated with the original 499 prestin KIs. Finally, a compound heterozygous (chet) mouse expressing one copy of 499 prestin and one copy of KO prestin was also created to reduce quantities of 499 prestin protein. Results show reduction in OHC death in chets, and in 499 prestin KIs on the FVB background, but only a slight improvement in OHC survival for mice receiving Protandim. We also report that improved OHC survival in 499 prestin KIs had little effect on hearing phenotype, reaffirming the original contention about the essential role of prestin’s motor function in cochlear amplification.
Collapse
|
131
|
Molina SJ, Miceli M, Guelman LR. Noise exposure and oxidative balance in auditory and extra-auditory structures in adult and developing animals. Pharmacological approaches aimed to minimize its effects. Pharmacol Res 2015; 109:86-91. [PMID: 26657417 DOI: 10.1016/j.phrs.2015.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
Noise coming from urban traffic, household appliances or discotheques might be as hazardous to the health of exposed people as occupational noise, because may likewise cause hearing loss, changes in hormonal, cardiovascular and immune systems and behavioral alterations. Besides, noise can affect sleep, work performance and productivity as well as communication skills. Moreover, exposure to noise can trigger an oxidative imbalance between reactive oxygen species (ROS) and the activity of antioxidant enzymes in different structures, which can contribute to tissue damage. In this review we systematized the information from reports concerning noise effects on cell oxidative balance in different tissues, focusing on auditory and non-auditory structures. We paid specific attention to in vivo studies, including results obtained in adult and developing subjects. Finally, we discussed the pharmacological strategies tested by different authors aimed to minimize the damaging effects of noise on living beings.
Collapse
Affiliation(s)
- S J Molina
- Cátedra de Farmacología, Facultad de Medicina, UBA and Centro de Estudios Farmacológicos y Botánicos, UBA-CEFYBO-CONICET, Buenos Aires, Argentina
| | - M Miceli
- Cátedra de Farmacología, Facultad de Medicina, UBA and Centro de Estudios Farmacológicos y Botánicos, UBA-CEFYBO-CONICET, Buenos Aires, Argentina
| | - L R Guelman
- Cátedra de Farmacología, Facultad de Medicina, UBA and Centro de Estudios Farmacológicos y Botánicos, UBA-CEFYBO-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
132
|
Sisto R, Moleti A, Palkovičová Murínová Ľ, Wimmerová S, Lancz K, Tihányi J, Čonka K, Šovčíková E, Hertz-Picciotto I, Jusko TA, Trnovec T. Environmental exposure to organochlorine pesticides and deficits in cochlear status in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14570-8. [PMID: 25989860 PMCID: PMC4592791 DOI: 10.1007/s11356-015-4690-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/11/2015] [Indexed: 05/24/2023]
Abstract
The aim of this study was to examine the hypothesis that organochlorine pesticides (OCPs), hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH), and 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT) and its metabolite 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (p,p'- DDE) are ototoxic to humans. A multivariate general linear model was designed, in which the statistical relation between blood serum concentrations of HCB, β-HCH, p,p'-DDT, or p,p'-DDE at different ages (at birth, 6, 16, and 45 months) and the distortion product otoacoustic emissions (DPOAEs) was treated as multivariate outcome variables. Polychlorinated biphenyl (PCB) congeners and OCPs were strongly correlated in serum of children from our cohort. To ascertain that the association between DPOAEs at a given frequency and concentration of a pesticide is not influenced by PCBs or other OCP also present in serum, we calculated benchmark concentrations (BMCs) relating DPOAEs to a serum pesticide alone and in presence of confounding PCB-153 or other OCPs. We found that BMCs relating DPOAEs to serum pesticides are not affected by confounders. DPOAE amplitudes were associated with serum OCPs at all investigated time intervals, however, in a positive way with prenatal exposure and in a negative way with all postnatal exposures. We observed tonotopicity in the association of pesticides with amplitude of DPOAEs as its strength was frequency dependent. We conclude that exposure to OCPs in infancy at environmental concentrations may be associated with hearing deficits.
Collapse
Affiliation(s)
- Renata Sisto
- Department of Occupational Hygiene, INAIL, Monte Porzio Catone, Italy
| | - Arturo Moleti
- Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | | | - Soňa Wimmerová
- Institute of Biophysics, Informatics and Biostatistics, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Kinga Lancz
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Juraj Tihányi
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Kamil Čonka
- Department of Toxic Organic Pollutants, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Eva Šovčíková
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Irva Hertz-Picciotto
- Division of Environmental and Occupational Health, Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA
| | - Todd A Jusko
- Division of Epidemiology, Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, 265 Crittenden Blvd, CU420644, Rochester, NY, 14642, USA
| | - Tomáš Trnovec
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia.
| |
Collapse
|
133
|
Tanigawa T, Shibata R, Kondo K, Katahira N, Kambara T, Inoue Y, Nonoyama H, Horibe Y, Ueda H, Murohara T. Soybean β-Conglycinin Prevents Age-Related Hearing Impairment. PLoS One 2015; 10:e0137493. [PMID: 26348726 PMCID: PMC4562634 DOI: 10.1371/journal.pone.0137493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/18/2015] [Indexed: 11/19/2022] Open
Abstract
Obesity-related complications are associated with the development of age-related hearing impairment. β-Conglycinin (β-CG), one of the main storage proteins in soy, offers multiple health benefits, including anti-obesity and anti-atherosclerotic effects. Here, to elucidate the potential therapeutic application of β-CG, we investigated the effect of β-CG on age-related hearing impairment. Male wild-type mice (age 6 months) were randomly divided into β-CG-fed and control groups. Six months later, the body weight was significantly lower in β-CG-fed mice than in the controls. Consumption of β-CG rescued the hearing impairment observed in control mice. Cochlear blood flow also increased in β-CG-fed mice, as did the expression of eNOS in the stria vascularis (SV), which protects vasculature. β-CG consumption also ameliorated oxidative status as assessed by 4-HNE staining. In the SV, lipofuscin granules of marginal cells and vacuolar degeneration of microvascular pericytes were decreased in β-CG-fed mice, as shown by transmission electron microscopy. β-CG consumption prevented loss of spiral ganglion cells and reduced the frequencies of lipofuscin granules, nuclear invaginations, and myelin vacuolation. Our observations indicate that β-CG ameliorates age-related hearing impairment by preserving cochlear blood flow and suppressing oxidative stress.
Collapse
Affiliation(s)
- Tohru Tanigawa
- Department of Otolaryngology, Aichi Medical University, Aichi, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhisa Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuyuki Katahira
- Department of Otolaryngology, Aichi Medical University, Aichi, Japan
| | - Takahiro Kambara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoko Inoue
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Nonoyama
- Department of Otolaryngology, Aichi Medical University, Aichi, Japan
| | - Yuichiro Horibe
- Department of Otolaryngology, Aichi Medical University, Aichi, Japan
| | - Hiromi Ueda
- Department of Otolaryngology, Aichi Medical University, Aichi, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
134
|
Tower J. Programmed cell death in aging. Ageing Res Rev 2015; 23:90-100. [PMID: 25862945 DOI: 10.1016/j.arr.2015.04.002] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/15/2015] [Accepted: 04/01/2015] [Indexed: 02/08/2023]
Abstract
Programmed cell death (PCD) pathways, including apoptosis and regulated necrosis, are required for normal cell turnover and tissue homeostasis. Mis-regulation of PCD is increasingly implicated in aging and aging-related disease. During aging the cell turnover rate declines for several highly-mitotic tissues. Aging-associated disruptions in systemic and inter-cell signaling combined with cell-autonomous damage and mitochondrial malfunction result in increased PCD in some cell types, and decreased PCD in other cell types. Increased PCD during aging is implicated in immune system decline, skeletal muscle wasting (sarcopenia), loss of cells in the heart, and neurodegenerative disease. In contrast, cancer cells and senescent cells are resistant to PCD, enabling them to increase in abundance during aging. PCD pathways limit life span in fungi, but whether PCD pathways normally limit adult metazoan life span is not yet clear. PCD is regulated by a balance of negative and positive factors, including the mitochondria, which are particularly subject to aging-associated malfunction.
Collapse
|
135
|
Sun YS, Fang WH, Kao TW, Yang HF, Peng TC, Wu LW, Chang YW, Chou CY, Chen WL. Components of Metabolic Syndrome as Risk Factors for Hearing Threshold Shifts. PLoS One 2015; 10:e0134388. [PMID: 26247614 PMCID: PMC4527724 DOI: 10.1371/journal.pone.0134388] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/09/2015] [Indexed: 01/02/2023] Open
Abstract
Background Hearing loss was a common, chronically disabling condition in the general population and had been associated with several inflammatory diseases. Metabolic syndrome, which was associated with insulin resistance and visceral obesity, was considered a chronic inflammatory disease. To date, few attempts had been made to establish a direct relationship between hearing loss and metabolic syndrome. The aim of the present study was to investigate the relationship between metabolic syndrome and hearing loss by analyzing the data in the reports of the National Health and Nutrition Examination Survey 1999–2004. Methods This study included 2100 participants aged ≤ 65 years who enrolled in the National Health and Nutrition Examination Survey (1999–2004). We examined the relationship between the presence of different features of metabolic syndrome in the participants and their pure-tone air-conduction hearing thresholds, including low-frequency and high-frequency thresholds. Results After adjusting for potential confounders, such as age, medical conditions, and smoking status, the participants with more components of metabolic syndrome were found to have higher hearing thresholds than those with fewer components of metabolic syndrome (p < 0.05 for a trend). The low-frequency hearing threshold was associated with individual components of metabolic syndrome, such as abdominal obesity, high blood pressure, elevated triglycerides, and a low level of high-density lipoprotein cholesterol (HDL-C) (p < 0.05 for all parameters). Conclusions The results indicated that the presence of a greater number of components of metabolic syndrome was significantly associated with the hearing threshold in the US adult population. Among the components of metabolic syndrome, the most apparent association was observed between low HDL and hearing loss.
Collapse
Affiliation(s)
- Yu-Shan Sun
- Department of Family and Community Medicine, Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wen-Hui Fang
- Department of Family and Community Medicine, Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tung-Wei Kao
- Department of Family and Community Medicine, Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Family and Community Medicine, Division of Geriatric Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Clinical Medical, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Hui-Fang Yang
- Department of Family and Community Medicine, Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Family and Community Medicine, Division of Geriatric Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tao-Chun Peng
- Department of Family and Community Medicine, Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Li-Wei Wu
- Department of Family and Community Medicine, Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Family and Community Medicine, Division of Geriatric Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yaw-Wen Chang
- Department of Family and Community Medicine, Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Family and Community Medicine, Division of Geriatric Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chang-Yi Chou
- Department of surgery, Division of plastic surgery, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Department of Family and Community Medicine, Division of Family Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Family and Community Medicine, Division of Geriatric Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
136
|
Archer T, Kostrzewa RM. Physical Exercise Alleviates Health Defects, Symptoms, and Biomarkers in Schizophrenia Spectrum Disorder. Neurotox Res 2015; 28:268-80. [PMID: 26174041 DOI: 10.1007/s12640-015-9543-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/08/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023]
Abstract
Schizophrenia spectrum disorders are characterized by symptom profiles consisting of positive and negative symptoms, cognitive impairment, and a plethora of genetic, epigenetic, and phenotypic biomarkers. Assorted animal models of these disorders and clinical neurodevelopmental indicators have implicated neurodegeneration as an element in the underlying pathophysiology. Physical exercise or activity regimes--whether aerobic, resistance, or endurance--ameliorate regional brain and functional deficits not only in affected individuals but also in animal models of the disorder. Cognitive deficits, often linked to regional deficits, were alleviated by exercise, as were quality-of-life, independent of disorder staging and risk level. Apoptotic processes intricate to the etiopathogenesis of schizophrenia were likewise attenuated by physical exercise. There is also evidence of manifest benefits endowed by physical exercise in preserving telomere length and integrity. Not least, exercise improves overall health and quality-of-life. The notion of scaffolding as the outcome of physical exercise implies the "buttressing" of regional network circuits, neurocognitive domains, anti-inflammatory defenses, maintenance of telomeric integrity, and neuro-reparative and regenerative processes.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, 405 30, Gothenburg, Sweden,
| | | |
Collapse
|
137
|
Wang W, Sun Y, Chen S, Zhou X, Wu X, Kong W, Kong W. Impaired unfolded protein response in the degeneration of cochlea cells in a mouse model of age-related hearing loss. Exp Gerontol 2015; 70:61-70. [PMID: 26173054 DOI: 10.1016/j.exger.2015.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/03/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress triggers the unfolded protein response (UPR) to prevent the accumulation of proteins in an aberrant conformation. The UPR can restore homeostasis by upregulating ER chaperones, such as glucose-regulated protein 78kD (GRP78), to refold the incorrectly handled protein, and by degrading the misfolded proteins via the ubiquitin-proteasome and autophagy-lysosome system. ER stress was recently demonstrated to be involved in the pathogenesis of age-related diseases. In this study, we measured the expression levels of GRP78 and ubiquitinated proteins in the cochleae of young C57BL/6 mice and aged mice to assess the capacity of the UPR. The lower expression of GRP78 and the increased number of ubiquitinated proteins observed in the cochleae of aged mice suggested that the capacity of the UPR was impaired and that the cell death pathway was activated. We found a markedly increased expression of the ER-related pro-apoptotic factor C/EBP homologous protein (CHOP) in the cochleae of aged mice, whereas the level of cleaved caspase-12 did not differ between the two groups. In addition, the cleavage of caspase-9, caspase-3 and poly [ADP-ribose] polymerase 1 was significantly increased in the aged cochleae, suggesting the activation of apoptosis in the cochleae resulting from the cross-talk between the ER and mitochondria through CHOP. These results indicated that impaired UPR in the cochleae of aged C57BL/6 mice resulting in ER stress may lead to apoptosis that is dependent on the mitochondrial pathway and that ER stress induced apoptosis may not be mediated by caspase-12.
Collapse
Affiliation(s)
- Wenwen Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xingxing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xia Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
138
|
Alvarado JC, Fuentes-Santamaría V, Melgar-Rojas P, Valero ML, Gabaldón-Ull MC, Miller JM, Juiz JM. Synergistic effects of free radical scavengers and cochlear vasodilators: a new otoprotective strategy for age-related hearing loss. Front Aging Neurosci 2015; 7:86. [PMID: 26029103 PMCID: PMC4432684 DOI: 10.3389/fnagi.2015.00086] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/30/2015] [Indexed: 01/08/2023] Open
Abstract
The growing increase in age-related hearing loss (ARHL), with its dramatic reduction in quality of life and significant increase in health care costs, is a catalyst to develop new therapeutic strategies to prevent or reduce this aging-associated condition. In this regard, there is extensive evidence that excessive free radical formation along with diminished cochlear blood flow are essential factors involved in mechanisms of other stress-related hearing loss, such as that associated with noise or ototoxic drug exposure. The emerging view is that both play key roles in ARHL pathogenesis. Therapeutic targeting of excessive free radical formation and cochlear blood flow regulation may be a useful strategy to prevent onset of ARHL. Supporting this idea, micronutrient-based therapies, in particular those combining antioxidants and vasodilators like magnesium (Mg2+), have proven effective in reducing the impact of noise and ototoxic drugs in the inner ear, therefore improving auditory function. In this review, the synergistic effects of combinations of antioxidant free radicals scavengers and cochlear vasodilators will be discussed as a feasible therapeutic approach for the treatment of ARHL.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Facultad de Medicina, Universidad de Castilla-La Mancha, Instituto de Investigación en Discapacidades Neurológicas (IDINE) Albacete, Spain
| | - Verónica Fuentes-Santamaría
- Facultad de Medicina, Universidad de Castilla-La Mancha, Instituto de Investigación en Discapacidades Neurológicas (IDINE) Albacete, Spain
| | - Pedro Melgar-Rojas
- Facultad de Medicina, Universidad de Castilla-La Mancha, Instituto de Investigación en Discapacidades Neurológicas (IDINE) Albacete, Spain
| | - María Llanos Valero
- Facultad de Medicina, Universidad de Castilla-La Mancha, Instituto de Investigación en Discapacidades Neurológicas (IDINE) Albacete, Spain
| | - María Cruz Gabaldón-Ull
- Facultad de Medicina, Universidad de Castilla-La Mancha, Instituto de Investigación en Discapacidades Neurológicas (IDINE) Albacete, Spain
| | - Josef M Miller
- Karolinska Institutet Stockholm, Sweden ; Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA
| | - José M Juiz
- Facultad de Medicina, Universidad de Castilla-La Mancha, Instituto de Investigación en Discapacidades Neurológicas (IDINE) Albacete, Spain
| |
Collapse
|
139
|
Attenuation of progressive hearing loss in DBA/2J mice by reagents that affect epigenetic modifications is associated with up-regulation of the zinc importer Zip4. PLoS One 2015; 10:e0124301. [PMID: 25875282 PMCID: PMC4397065 DOI: 10.1371/journal.pone.0124301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/21/2023] Open
Abstract
Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac) in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents: <smallcaps>L</smallcaps>-methionine as a methyl donor, valproic acid as a pan-Hdac inhibitor, and folic acid and vitamin B12 as putative factors involved in age-related hearing loss. The mice were treated from ages 4 to 12 weeks (N ≥ 5), and auditory brainstem response (ABR) thresholds were measured at 8, 16, and 32 kHz. Treatment of the mice with a combination of <smallcaps>L</smallcaps>-methionine and valproic acid (M+V) significantly reduced the increase in the ABR threshold at 32 kHz. Treatment with any of these reagents individually produced no such effect. Microarray analyses detected 299 gene probes that were significantly up- or down-regulated in the cochleae of mice treated with M+V compared with the control vehicle-treated mice. Quantitative RT-PCR confirmed significant up-regulation of a zinc importer gene, Zip4, in the cochleae of mice treated with M+V. Immunohistochemistry demonstrated an intense Zip4 signal in cochlear tissues such as the lateral wall, organ of Corti, and spiral ganglion. Finally, mice treated with the Zip4 inducer (–)-epigallocatechin-3-O-gallate showed a significant reduction in the increase of the ABR threshold at 32 kHz and up-regulation of Zip4 expression in the cochlea. This study suggests that epigenetic regulatory pathways can modify auditory function and that zinc intake in the cochlea via Zip4 mediates maintenance of mammalian hearing.
Collapse
|
140
|
Abstract
Mechanisms that lead to the death of hair cells are reviewed. Exposure to noise, the use of ototoxic drugs that damage the cochlea and old age are accompanied by hair cell death. Outer hair cells are often more susceptible than inner hair cells, partly because of an intrinsically greater susceptibility; high frequency cells are also more vulnerable. A common factor in hair cell loss following age-related changes and exposure to ototoxic drugs or high noise levels is the generation of reactive oxygen species, which can trigger intrinsic apoptosis (the mitochondrial pathway). However, hair cell death is sometimes produced via an extracellular signal pathway triggering extrinsic apoptosis. Necrosis and necroptosis also play a role and, in various situations in which cochlear damage occurs, a balance exists between these possible routes of cell death, with no one mechanism being exclusively activated. Finally, the numerous studies on these mechanisms of hair cell death have led to the identification of many potential therapeutic agents, some of which have been used to attempt to treat people exposed to damaging events, although clinical trials are not yet conclusive. Continued work in this area is likely to lead to clinical treatments that could be used to prevent or ameliorate hearing loss.
Collapse
Affiliation(s)
- David N Furness
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK,
| |
Collapse
|
141
|
Yue H, Li W, Liu P, Gao J, Miao J, Zhao J. Inhibition of autophagy promoted sphingosylphosphorylcholine induced cell death in non-small cell lung cancer cells. Biochem Biophys Res Commun 2014; 453:502-7. [PMID: 25285628 DOI: 10.1016/j.bbrc.2014.09.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
Sphingosylphosphorylcholine (SPC) is a bioactive lipid mediated popular cell apoptosis in cancer cells. As a cell-specific sphingolipid, its function in lung cancer cells is unknown. Here we showed that SPC treatment triggered necrosis and autophagy but inhibited apoptosis in two non-small cell lung cancer cell lines: A549 cell line and H157 cell line. Then 3-methyladenine (3-MA), an autophagy inhibitor, was introduced to clarify the relationships between autophagy and necrosis or apoptosis. 3MA suppressed the survival furtherly by promoting apoptosis while had no influence on necrosis. Subsequent studies revealed that activity of AKT and mammalian target of rapamycin (mTOR) complex 1 (mTORC1) were downregulated during autophagy. Furthermore, SPC failed to promote autophagy in p53 deleted cells. Thus SPC induced autophagy in non-small cell lung cancer cells was through AKT/mTORC1 and P53 signal pathway. Besides, SPC reduced both the mitochondria membrane potential and ROS level in A549 cells. These findings provided a molecular basis of SPC-stimulated A549 cell death and support the notion that inhibition of autophagy is likely a novel anticancer mechanism.
Collapse
Affiliation(s)
- Hongwei Yue
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Wenjing Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Pingping Liu
- Department of Cardiology, Affiliated Hospital of Binzhou Medical College, Yantai 264000, China
| | - Jia Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China.
| |
Collapse
|