101
|
Abstract
Purpose: The aim of the current review was to summarize the current applications, the latest advances and importantly, highlight research gaps in the use of quantum dots in the eye. Quantum dots are nanoscale semiconductor crystals with characteristic size and tunable optical properties, which deliver bright and stable fluorescence suitable for bioimaging and labelling. Methods: A systematic search was conducted following the PRISMA guidelines. This review systematically searched published data to summarize the characteristics and applications of quantum dots in ophthalmology. Two hundred and eighty published articles were initially selected for this review following searches using the criteria quantum dots AND nanoparticles AND ophthalmology in the databases PubMed, MEDLINE, Scopus, Embase and Web of Science. Results: After duplicates were removed, a total of 22 eligible articles were included for the review. Quantum dots potentially provide a range of diagnostic and therapeutic applications in ophthalmology. Quantum dots offer visible and near-infrared emission, which is highly desirable for bioimaging, due to reduced light scattering and low tissue absorption. Their applications include in vivo bioimaging, labelling of cells and tissues, delivery of genes or drugs and as antimicrobial composites. Conclusion: Quantum dots have been used in ophthalmology for bioimaging, electrical stimulation and tracking of gene/stems cells, and ocular lymphatics. However, there is no detailed description of their desirable characteristics for use in ophthalmology, and there is limited information about their cytotoxicity to ocular cells and tissues.
Collapse
Affiliation(s)
- Sidra Sarwat
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| | - Maitreyee Roy
- School of Optometry and Vision Science, University of New South Wales (UNSW) , Sydney , Australia
| |
Collapse
|
102
|
Holgado MA, Anguiano-Domínguez A, Martín-Banderas L. Contact lenses as drug-delivery systems: a promising therapeutic tool. ACTA ACUST UNITED AC 2019; 95:24-33. [PMID: 31420118 DOI: 10.1016/j.oftal.2019.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/03/2019] [Accepted: 07/14/2019] [Indexed: 01/07/2023]
Abstract
The ocular administration of drugs using traditional pharmaceutical forms, including eye drops or ointments, results in low bioavailability, as well as requiring multiple administrations per day, with the consequent danger of therapeutic non-compliance. Although, through the use of pharmaceutical technology, attempts have been made to use various solutions in order to increase bioavailability in the most common pharmaceutical forms, it has not been entirely satisfactory. In this context, contact lenses are presented as drug delivery systems that largely remedy these two major problems and offer other additional advantages. Therefore, the use of contact lenses as drug carrying systems has been increasingly investigated in recent years, as they can increase the bioavailability of these drugs, leading to an increase in therapeutic efficacy and compliance. The main techniques used to achieve this goal are included in this review, including immersion in drug solutions, use of vitamin E barriers, molecular printing, colloidal systems, etc. The most interesting results, depending on the different eye pathologies, are presented. Although the use of contact lenses as a vehicle for the release of active ingredients is a relatively novel strategy, there are already many studies and trials that support it. In any case, further research needs to be carried out to finally reach an effective, safe, and stable product that can be marketed.
Collapse
Affiliation(s)
- M A Holgado
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España.
| | - A Anguiano-Domínguez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España
| | - L Martín-Banderas
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España
| |
Collapse
|
103
|
Abstract
Pediatric and geriatric patients experience swallowing difficulties for traditional oral dosage forms, such as tablets. Further, microbial contamination, chemical stability, unpleasant taste and swallowing large volumes of fluids have led to low therapeutic efficacy and patient noncompliance. The emergence of oral thin films has resulted in dramatic improvements in compliance and drug therapy outcomes in pediatric and geriatric patients. Oral thin films do not require water for administration, are readily hydrated upon contact with saliva, adhere to the mucosa and disintegrate ideally under 1 min. This article provides an overview of oral thin films, modern trends in their formulation and characterization, available commercial products, information to fill knowledge gaps and future potential and economic prospects of oral thin film technology, with emphasis on their use in the pediatric and geriatric patient groups.
Collapse
|
104
|
Evaluating the potential of drug eluting contact lenses for treatment of bacterial keratitis using an ex vivo corneal model. Int J Pharm 2019; 565:499-508. [DOI: 10.1016/j.ijpharm.2019.05.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 01/10/2023]
|
105
|
Khames A, Khaleel MA, El-Badawy MF, El-Nezhawy AOH. Natamycin solid lipid nanoparticles - sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization. Int J Nanomedicine 2019; 14:2515-2531. [PMID: 31040672 PMCID: PMC6459158 DOI: 10.2147/ijn.s190502] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Fungal keratitis (FK) is a serious pathogenic condition usually associated with significant ocular morbidity. Natamycin (NAT) is the first-line and only medication approved by the Food and Drug Administration for the treatment of FK. However, NAT suffers from poor corneal penetration, which limits its efficacy for treating deep keratitis. Purpose The objective of this work was to prepare NAT solid lipid nanoparticles (NAT-SLNs) to achieve sustained drug release and increased corneal penetration. Methods NAT-SLNs were prepared using the emulsification-ultrasonication technique. Box– Behnken experimental design was applied to optimize the effects of independent processing variables (lipid concentration [X1], surfactant concentration [X2], and sonication frequency [X3]) on particle size (R1), zeta potential (ZP; R2), and drug entrapment efficiency (EE%) (R3) as responses. Drug release profile, ex vivo corneal permeation, antifungal susceptibility, and cytotoxicity of the optimized formula were evaluated. Results The optimized formula had a mean particle size of 42 r.nm (radius in nanometers), ZP of 26 mV, and EE% reached ~85%. NAT-SLNs showed an extended drug release profile of 10 hours, with enhanced corneal permeation in which the apparent permeability coefficient (Papp) and steady-state flux (Jss) reached 11.59×10−2 cm h−1 and 3.94 mol h−1, respectively, in comparison with 7.28×10−2 cm h−1 and 2.48 mol h−1 for the unformulated drug, respectively. Antifungal activity was significantly improved, as indicated by increases in the inhibition zone of 8 and 6 mm against Aspergillus fumigatus ATCC 1022 and a Candida albicans clinical isolate, respectively, and minimum inhibitory concentration values that were decreased 2.5-times against both of these pathogenic strains. NAT-SLNs were found to be non-irritating to corneal tissue. NAT-SLNs had a prolonged drug release rate, that improved corneal penetration, and increased antifungal activity without cytotoxic effects on corneal tissues. Conclusion Thus, NAT-SLNs represent a promising ocular delivery system for treatment of deep corneal keratitis.
Collapse
Affiliation(s)
- Ahmed Khames
- Department of Pharmaceutics and Industrial pharmacy, College of Pharmacy, Taif University, Taif 21974, Saudi Arabia, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt,
| | - Mohammad A Khaleel
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Mohamed F El-Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt.,Department of Pharmaceutical Microbiology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmed O H El-Nezhawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia.,Department of Chemistry of Natural and Microbial Products, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
106
|
Kelbsch C, Strasser T, Chen Y, Feigl B, Gamlin PD, Kardon R, Peters T, Roecklein KA, Steinhauer SR, Szabadi E, Zele AJ, Wilhelm H, Wilhelm BJ. Standards in Pupillography. Front Neurol 2019; 10:129. [PMID: 30853933 PMCID: PMC6395400 DOI: 10.3389/fneur.2019.00129] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/31/2019] [Indexed: 12/31/2022] Open
Abstract
The number of research groups studying the pupil is increasing, as is the number of publications. Consequently, new standards in pupillography are needed to formalize the methodology including recording conditions, stimulus characteristics, as well as suitable parameters of evaluation. Since the description of intrinsically photosensitive retinal ganglion cells (ipRGCs) there has been an increased interest and broader application of pupillography in ophthalmology as well as other fields including psychology and chronobiology. Color pupillography plays an important role not only in research but also in clinical observational and therapy studies like gene therapy of hereditary retinal degenerations and psychopathology. Stimuli can vary in size, brightness, duration, and wavelength. Stimulus paradigms determine whether rhodopsin-driven rod responses, opsin-driven cone responses, or melanopsin-driven ipRGC responses are primarily elicited. Background illumination, adaptation state, and instruction for the participants will furthermore influence the results. This standard recommends a minimum set of variables to be used for pupillography and specified in the publication methodologies. Initiated at the 32nd International Pupil Colloquium 2017 in Morges, Switzerland, the aim of this manuscript is to outline standards in pupillography based on current knowledge and experience of pupil experts in order to achieve greater comparability of pupillographic studies. Such standards will particularly facilitate the proper application of pupillography by researchers new to the field. First we describe general standards, followed by specific suggestions concerning the demands of different targets of pupil research: the afferent and efferent reflex arc, pharmacology, psychology, sleepiness-related research and animal studies.
Collapse
Affiliation(s)
- Carina Kelbsch
- Pupil Research Group, Centre for Ophthalmology, University Hospitals Tübingen, Tübingen, Germany
| | - Torsten Strasser
- Pupil Research Group, Centre for Ophthalmology, University Hospitals Tübingen, Tübingen, Germany
| | - Yanjun Chen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, AL, United States
| | - Beatrix Feigl
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland Eye Institute, Brisbane, QLD, Australia
| | - Paul D. Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Randy Kardon
- Neuro-Ophthalmology Division, University of Iowa and Iowa City VA Healthcare System, Iowa City, LA, United States
| | - Tobias Peters
- Pupil Research Group, Centre for Ophthalmology, University Hospitals Tübingen, Tübingen, Germany
| | - Kathryn A. Roecklein
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stuart R. Steinhauer
- VA Pittsburgh Healthcare System, VISN 4 MIRECC, University Drive C, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Elemer Szabadi
- Developmental Psychiatry, University of Nottingham, Nottingham, United Kingdom
| | - Andrew J. Zele
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Helmut Wilhelm
- Pupil Research Group, Centre for Ophthalmology, University Hospitals Tübingen, Tübingen, Germany
| | - Barbara J. Wilhelm
- Pupil Research Group, Centre for Ophthalmology, University Hospitals Tübingen, Tübingen, Germany
| |
Collapse
|
107
|
Üstündağ Okur N, Yozgatlı V, Okur ME, Yoltaş A, Siafaka PI. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
108
|
Corneal-PAMPA: A novel, non-cell-based assay for prediction of corneal drug permeability. Eur J Pharm Sci 2019; 128:232-239. [DOI: 10.1016/j.ejps.2018.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/19/2018] [Accepted: 12/13/2018] [Indexed: 11/15/2022]
|
109
|
Gayathri D, Jayakumari LS. Evaluation of commercial arrowroot starch/CMC film for buccal drug delivery of glipizide. POLIMEROS 2019. [DOI: 10.1590/0104-1428.06619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
110
|
Desbrieres J, Peptu C, Ochiuz L, Savin C, Popa M, Vasiliu S. Application of Chitosan-Based Formulations in Controlled Drug Delivery. SUSTAINABLE AGRICULTURE REVIEWS 36 2019. [DOI: 10.1007/978-3-030-16581-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
111
|
Mo Z, Ban J, Zhang Y, Du Y, Wen Y, Huang X, Xie Q, Shen L, Zhang S, Deng H, Hou D, Chen Y, Lu Z. Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained delivery of dexamethasone. Nanomedicine (Lond) 2018; 13:1239-1253. [PMID: 29949466 DOI: 10.2217/nnm-2017-0318] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Nanostructured lipid carriers in-gel (NLCs-gel) were prepared to enhance and improve the ocular delivery of dexamethasone. Materials & methods: NLCs containing dexamethasone prepared by high-pressure homogenization were characterized and dispersed into thermosensitive gels (Pluronic F127 and F68 as gels material). In vitro drug release studies, ocular irritation tests, ex vivo corneal penetration and drug dynamics of NLCs and NLCs-gel were evaluated in aqueous humor. RESULTS NLCs-gel exhibited a rapid sol-gel transition at 34.4°C and presented nano-sized, narrowly distributed particles. Corneal penetration studies revealed steady sustained drug release (Ritger-Peppas); NLCs-gel increased ocular bioavailability by prolonging precorneal retention time and improving corneal permeation. CONCLUSION These findings suggest developing NLCs-gel for potential treatment of posterior segment eye diseases.
Collapse
Affiliation(s)
- Zhenjie Mo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Youyun Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yifeng Wen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xin Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Qingchun Xie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lou Shen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Shu Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Hong Deng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Dongzhi Hou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yanzhong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zhufen Lu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, PR China.,R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
112
|
Cyclosporine-loaded cross-linked inserts of sodium hyaluronan and hydroxypropyl-β-cyclodextrin for ocular administration. Carbohydr Polym 2018; 201:308-316. [DOI: 10.1016/j.carbpol.2018.08.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022]
|
113
|
Harigaya Y, Jiang X, Zhang H, Chandaroy P, Stier EM, Pan Y. Bioequivalence Study Methods with Pharmacokinetic Endpoints for Topical Ophthalmic Corticosteroid Suspensions and Effects of Subject Demographics. Pharm Res 2018; 36:13. [PMID: 30443681 DOI: 10.1007/s11095-018-2537-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/08/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE To establish bioequivalence for topical ophthalmic corticosteroid suspensions, some of U.S. product-specific guidances (PSGs) for generic drug products recommend evaluation of aqueous humor (AH) pharmacokinetics (PK). However, the AH PK study is complex because the relationships among AH PK, subject demographics, ocular anatomy, physiology and the compounds' physicochemical characteristics are not well understood. The objective of this research is to provide an overview of the in vivo human AH studies submitted to the U.S. Food and Drug Administration (FDA) for ophthalmic corticosteroid suspensions and to investigate the impact of subject demographics on the human AH PK. METHODS We summarized demographic data, sampling time points, sample size per time point and PK parameters to investigate correlations in the studies submitted to the FDA. RESULTS In the evaluation of subject-specific covariates, the area under the concentration-time curves (AUC) and maximum concentrations (Cmax) were significantly different among ethnicities and age groups. Gender was not primarily associated with differences in AH PK. CONCLUSIONS Our results suggest that the difference in ethnicity and age of the study population play an important role in the AH PK profiles of topical ophthalmic corticosteroid suspensions. Considering the subject-specific covariate effects in designing bioequivalence studies with AH PK endpoints could reduce bias from covariate imbalance and help identify true effects of formulation differences.
Collapse
Affiliation(s)
- Yoriko Harigaya
- Division of Bioequivalence II, Office of Bioequivalence, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Xiaojian Jiang
- Division of Bioequivalence II, Office of Bioequivalence, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Hongling Zhang
- Division of Bioequivalence II, Office of Bioequivalence, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Parthapratim Chandaroy
- Division of Bioequivalence II, Office of Bioequivalence, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Ethan M Stier
- Division of Bioequivalence II, Office of Bioequivalence, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Yuzhuo Pan
- Division of Bioequivalence II, Office of Bioequivalence, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
114
|
Irimia T, Ghica MV, Popa L, Anuţa V, Arsene AL, Dinu-Pîrvu CE. Strategies for Improving Ocular Drug Bioavailability and Corneal Wound Healing with Chitosan-Based Delivery Systems. Polymers (Basel) 2018; 10:E1221. [PMID: 30961146 PMCID: PMC6290606 DOI: 10.3390/polym10111221] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/30/2023] Open
Abstract
The main inconvenience of conventional eye drops is the rapid washout of the drugs due to nasolacrimal drainage or ophthalmic barriers. The ocular drug bioavailability can be improved by either prolonging retention time in the cul-de-sac or by increasing the ocular permeability. The focus of this review is to highlight some chitosan-based drug delivery approaches that proved to have good clinical efficacy and high potential for use in ophthalmology. They are exemplified by recent studies exploring in-depth the techniques and mechanisms in order to improve ocular bioavailability of the active substances. Used alone or in combination with other compounds with synergistic action, chitosan enables ocular retention time and corneal permeability. Associated with other stimuli-responsive polymers, it enhances the mechanical strength of the gels. Chitosan and its derivatives increase drug permeability through the cornea by temporarily opening tight junctions between epithelial cells. Different types of chitosan-based colloidal systems have the potential to overcome the ocular barriers without disturbing the vision process. Chitosan also plays a key role in improving corneal wound healing by stimulating the migration of keratinocytes when it is used alone or in combination with other compounds with synergistic action.
Collapse
Affiliation(s)
- Teodora Irimia
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Andreea-Letiţia Arsene
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| |
Collapse
|
115
|
Irimia T, Dinu-Pîrvu CE, Ghica MV, Lupuleasa D, Muntean DL, Udeanu DI, Popa L. Chitosan-Based In Situ Gels for Ocular Delivery of Therapeutics: A State-of-the-Art Review. Mar Drugs 2018; 16:E373. [PMID: 30304825 PMCID: PMC6212818 DOI: 10.3390/md16100373] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 11/16/2022] Open
Abstract
Ocular in situ gels are a promising alternative to overcome drawbacks of conventional eye drops because they associate the advantages of solutions such as accuracy and reproducibility of dosing, or ease of administration with prolonged contact time of ointments. Chitosan is a natural polymer suitable for use in ophthalmic formulations due to its biocompatibility, biodegradability, mucoadhesive character, antibacterial and antifungal properties, permeation enhancement and corneal wound healing effects. The combination of chitosan, pH-sensitive polymer, with other stimuli-responsive polymers leads to increased mechanical strength of formulations and an improved therapeutic effect due to prolonged ocular contact time. This review describes in situ gelling systems resulting from the association of chitosan with various stimuli-responsive polymers with emphasis on the mechanism of gel formation and application in ophthalmology. It also comprises the main techniques for evaluation of chitosan in situ gels, along with requirements of safety and ocular tolerability.
Collapse
Affiliation(s)
- Teodora Irimia
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Dumitru Lupuleasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Daniela-Lucia Muntean
- Department of Analytical Chemistry and Analysis of Medicines, Faculty of Pharmacy, University of Medicine and Pharmacy of Târgu Mureş, Târgu Mureş 540138, Romania.
| | - Denisa Ioana Udeanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| |
Collapse
|
116
|
Gade SK, Shivshetty N, Sharma N, Bhatnagar S, Garg P, Venuganti VVK. Effect of Mucoadhesive Polymeric Formulation on Corneal Permeation of Fluoroquinolones. J Ocul Pharmacol Ther 2018; 34:570-578. [DOI: 10.1089/jop.2018.0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Sudeep Kumar Gade
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
- Tej Kohli Cornea Institute, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Nagaveni Shivshetty
- Tej Kohli Cornea Institute, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Natalia Sharma
- Tej Kohli Cornea Institute, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | - Shubhmita Bhatnagar
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, India
| | - Prashant Garg
- Tej Kohli Cornea Institute, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, India
| | | |
Collapse
|
117
|
|
118
|
Shelley H, Rodriguez-Galarza RM, Duran SH, Abarca EM, Babu RJ. In Situ Gel Formulation for Enhanced Ocular Delivery of Nepafenac. J Pharm Sci 2018; 107:3089-3097. [PMID: 30170009 DOI: 10.1016/j.xphs.2018.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 01/05/2023]
Abstract
Nepafenac is a water-insoluble nonsteroidal antiinflammatory drug that is available as an ophthalmic suspension (Nevanac®). Suspensions are undesirable for 2 reasons: they tend to cause foreign body sensation and lacrimation, which could limit residence time and drug bioavailability. This decreases the amount of time the drug has to reach the site of action, the cornea. Previously, we improved the solubility and ocular permeability of nepafenac by complexing the drug with hydroxypropyl-β-cyclodextrin. In this study, we used the complex to formulate an ion-activated in situ gel system using sodium alginate, Protanal PH 1033, to increase the residence time and to reduce repeat eye drop instillation. Rheological properties of the formulations revealed that the viscosity of the optimized formulation was increased 30-fold when exposed to the simulated tear fluid (35°C). Permeation studies showed that the drug concentration of the in situ formulations were approximately 10 times higher than the commercial product, Nevanac® (p < 0.001). In addition, the in situ gel formulations had 5-fold higher concentrations of nepafenac retained in the cornea when compared to Nevanac® (p <0.001). Finally, ex vivo drug distribution studies in the porcine eye perfusion model revealed a higher drug retention in various ocular tissues such as cornea, sclera, retina, as compared to Nevanac®.
Collapse
Affiliation(s)
- Haley Shelley
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama 36849
| | | | - Sue H Duran
- Department of Clinical Sciences, Auburn University, Auburn, Alabama 36849
| | - Eva M Abarca
- Abteilung Ophtalmologie, University of Bern, Länggassstrasse 128, Bern CH-3012, Switzerland
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama 36849.
| |
Collapse
|
119
|
Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0404-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
120
|
Yamaguchi H, Takezawa T. Fabrication of a Corneal Model Composed of Corneal Epithelial and Endothelial Cells via a Collagen Vitrigel Membrane Functioned as an Acellular Stroma and Its Application to the Corneal Permeability Test of Chemicals. Drug Metab Dispos 2018; 46:1684-1691. [PMID: 29844140 DOI: 10.1124/dmd.118.080820] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/21/2018] [Indexed: 11/22/2022] Open
Abstract
A collagen vitrigel membrane (CVM) we developed can function as both a scaffold for cells and a pathway for chemicals. To extrapolate the corneal permeability of chemicals in vivo, we proposed six corneal models using the CVM. Thin and thick CVMs were used as models for Bowman's membrane (BM) and an acellular stroma (AS), respectively. Models for a corneal epithelium (CEpi), a CEpi-AS, a CEpi-endothelium (Endo), and a CEpi-AS-Endo were fabricated by culturing corneal epithelial cells and/or corneal endothelial cells on the surface of CVMs. Subsequently, the permeability coefficient (Papp) value of each model was calculated using five chemicals with different molecular radii; cyanocobalamin and four fluorescein isothiocyanate-dextrans (FD) (FD-4, FD-10, FD-20, and FD-40). The slopes of Papp versus molecular radii of those chemicals in the both BM and AS models were almost similar to data using an excised rabbit corneal stroma. The ratios of Papp values in models for BM, CEpi, and CEpi-Endo against those in data using an excised rabbit cornea were calculated as 75.4-fold, 6.4-fold, and 4.5-fold for FD-4, and 38.7-fold, 10.0-fold, and 4.2-fold for FD-10, respectively. Similarly, those in models for AS, CEpi-AS, and CEpi-AS-Endo were calculated as 26.1-fold, 2.5-fold, and 0.6-fold for FD-4, and 26.1-fold, 1.5-fold, and 0.6-fold for FD-10, respectively. These results suggest that the CEpi-AS-Endo model with both the barrier function of corneal cell layers and the diffusion capacity of chemicals in thick CVM is most appropriate for extrapolating the corneal permeability of chemicals in vivo.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan (H.Y., T.T.); and Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Kanagawa, Japan (H.Y.)
| | - Toshiaki Takezawa
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan (H.Y., T.T.); and Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Isehara, Kanagawa, Japan (H.Y.)
| |
Collapse
|
121
|
Carlson E, Kao WW, Ogundele A. Impact of Hyaluronic Acid-Containing Artificial Tear Products on Reepithelialization in an In Vivo Corneal Wound Model. J Ocul Pharmacol Ther 2018; 34:360-364. [PMID: 29394128 PMCID: PMC5952336 DOI: 10.1089/jop.2017.0080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/20/2017] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To evaluate the effect of 6 commercially available hyaluronic acid (HA)-containing topical artificial tear products on corneal reepithelialization following injury, in an in vivo mouse model. METHODS Ninety-six C57Bl/6 mice (16 per treatment group; male to female ratio, 1:1 per group) were anesthetized. Epithelial debridement was performed on 1 cornea per animal, and the debrided eye was imaged. A 30 μL masked test solution containing 1 of 6 artificial tear products was instilled, immediately on debridement, and subsequently, every 2 h, for a total of 4 administrations. At 24 h post debridement, corneas were stained with fluorescein and imaged to calculate corneal healing rate (number of fluorescein-negative corneas). RESULTS All 6 artificial tear products used in this study permitted the initial process of corneal wound healing. However, the corneal reepithelialization rate after 24 h was higher with Hydroxypropyl guar (HPG)/HA (53.33%) compared with other HA-containing artificial tear products [HA1 (12.5%), HA2 (26.67%), HA3 (31.25%), HA4 (6.25%), and HA5 (43.75%)]. The average area and percentage area of reepithelialization after 24 h were also higher with HPG/HA compared with other treatment groups. CONCLUSIONS Percentage of eyes with complete corneal reepithelialization 24 h post debridement was highest with HPG/HA compared with other HA-containing artificial tear products tested. The results of this study provide additional evidence on the potential benefits of HPG/HA in the management of dry eye and its role in the rapid restoration of a healthy ocular epithelium. However, further studies are required to confirm the effects on human corneal wounds.
Collapse
Affiliation(s)
- Eric Carlson
- Novartis Pharmaceuticals Corporation, Fort Worth, Texas
| | - Winston W.Y. Kao
- Department of Ophthalmology, College of Medicine at the University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
122
|
In vitro stabilization and in vivo improvement of ocular pharmacokinetics of the multi-therapeutic agent baicalin: Delineating the most suitable vesicular systems. Int J Pharm 2018; 539:83-94. [DOI: 10.1016/j.ijpharm.2018.01.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
|
123
|
Dubald M, Bourgeois S, Andrieu V, Fessi H. Ophthalmic Drug Delivery Systems for Antibiotherapy-A Review. Pharmaceutics 2018; 10:E10. [PMID: 29342879 PMCID: PMC5874823 DOI: 10.3390/pharmaceutics10010010] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022] Open
Abstract
The last fifty years, ophthalmic drug delivery research has made much progress, challenging scientists about the advantages and limitations of this drug delivery approach. Topical eye drops are the most commonly used formulation in ocular drug delivery. Despite the good tolerance for patients, this topical administration is only focus on the anterior ocular diseases and had a high precorneal loss of drugs due to the tears production and ocular barriers. Antibiotics are popularly used in solution or in ointment for the ophthalmic route. However, their local bioavailability needs to be improved in order to decrease the frequency of administrations and the side effects and to increase their therapeutic efficiency. For this purpose, sustained release forms for ophthalmic delivery of antibiotics were developed. This review briefly describes the ocular administration with the ocular barriers and the currently topical forms. It focuses on experimental results to bypass the limitations of ocular antibiotic delivery with new ocular technology as colloidal and in situ gelling systems or with the improvement of existing forms as implants and contact lenses. Nanotechnology is presently a promising drug delivery way to provide protection of antibiotics and improve pathway through ocular barriers and deliver drugs to specific target sites.
Collapse
Affiliation(s)
- Marion Dubald
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Automatique et de GEnie des Procédés (LAGEP) Unité Mixte de Recherche UMR 5007, 43 boulevard du 11 novembre 1918, F-69100, Villeurbanne, France.
- Horus Pharma, Cap Var, 148 avenue Georges Guynemer, F-06700 Saint Laurent du Var, France.
| | - Sandrine Bourgeois
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Automatique et de GEnie des Procédés (LAGEP) Unité Mixte de Recherche UMR 5007, 43 boulevard du 11 novembre 1918, F-69100, Villeurbanne, France.
- Univ Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques (ISPB) - Faculté de Pharmacie de Lyon, 8 avenue Rockefeller, F-69008, Lyon, France.
| | - Véronique Andrieu
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), Unité Mixte de Recherche 6236 Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université, Faculté de Médecine et de Pharmacie, F-13005 Marseille, France.
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Automatique et de GEnie des Procédés (LAGEP) Unité Mixte de Recherche UMR 5007, 43 boulevard du 11 novembre 1918, F-69100, Villeurbanne, France.
- Univ Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Pharmaceutiques et Biologiques (ISPB) - Faculté de Pharmacie de Lyon, 8 avenue Rockefeller, F-69008, Lyon, France.
| |
Collapse
|
124
|
Ratay ML, Bellotti E, Gottardi R, Little SR. Modern Therapeutic Approaches for Noninfectious Ocular Diseases Involving Inflammation. Adv Healthc Mater 2017; 6:10.1002/adhm.201700733. [PMID: 29034584 PMCID: PMC5915344 DOI: 10.1002/adhm.201700733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/25/2017] [Indexed: 12/12/2022]
Abstract
Dry eye disease, age-related macular degeneration, and uveitis are ocular diseases that significantly affect the quality of life of millions of people each year. In these diseases, the action of chemokines, proinflammatory cytokines, and immune cells drives a local inflammatory response that results in ocular tissue damage. Multiple therapeutic strategies are developed to either address the symptoms or abate the underlying cause of these diseases. Herein, the challenges to deliver drugs to the relevant location in the eye for each of these diseases are reviewed along with current and innovative therapeutic approaches that attempt to restore homeostasis within the ocular microenvironment.
Collapse
Affiliation(s)
- Michelle L. Ratay
- Department of Bioengineering, University of Pittsburgh, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Elena Bellotti
- Department of Chemical Engineering, University of Pittsburgh, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Riccardo Gottardi
- Department of Chemical Engineering, Department of Orthopedic Surgery, Ri.MED Foundation, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Steven R. Little
- Department of Chemical Engineering, Department of Bioengineering, Department of Ophthalmology, Department of Immunology, Department of Pharmaceutical Sciences, The McGowan Institute for Regenerative Medicine, 940 Benedum Hall 3700 O’Hara Street Pittsburgh Pa 15261
| |
Collapse
|
125
|
Nanogel-based natural polymers as smart carriers for the controlled delivery of Timolol Maleate through the cornea for glaucoma. Int J Biol Macromol 2017; 109:955-962. [PMID: 29154878 DOI: 10.1016/j.ijbiomac.2017.11.090] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 11/22/2022]
Abstract
Despite frequent scientific efforts, efficient ocular drug delivery is a major challenge for pharmaceutical scientists. Poor bioavailability of ophthalmic solutions can be overcome by using smart ophthalmic drug-delivery systems. In this research, loading and delivery of Timolol Maleate (TM) through the cornea by synthesized nanoparticles based on biopolymers (chitosan-alginate) were studied. The physico-chemical properties of these nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). Loading and release were evaluated by a UV-vis spectrometer and the ex vivo permeation study was carried out using the Franz Diffusion Cell and fluorescent microscopy studies. The results indicated that morphology and size of nanoparticles were spherical and in the range of 80-100nm. The loading capacity and encapsulation efficiency were about 42% and 94% respectively. They illustrated a burst release in the first hour followed by a slower and more sustained drug release during the next 24h. Also, the results indicated that the cornea penetration of TM loaded in nanoparticles was twice than that of TM. Hence, this nanocarrier can be considered as a suitable candidate for controlled TM delivery and release through the cornea.
Collapse
|
126
|
Novel oleyl amine-modified polymannuronic acid micelle loading tacrolimus for therapy of allergic conjunctivitis. Int J Biol Macromol 2017; 104:862-873. [DOI: 10.1016/j.ijbiomac.2017.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/29/2016] [Accepted: 06/13/2017] [Indexed: 01/02/2023]
|
127
|
See GL, Sagesaka A, Sugasawa S, Todo H, Sugibayashi K. Eyelid skin as a potential site for drug delivery to conjunctiva and ocular tissues. Int J Pharm 2017; 533:198-205. [PMID: 28965801 DOI: 10.1016/j.ijpharm.2017.09.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/11/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
The feasibility of topical application onto the (lower) eyelid skin to deliver hydrophilic and lipophilic compounds into the conjunctiva and ocular tissues was evaluated by comparing with conventional eye drop application. Skin permeation and the concentration of several model compounds, and skin impedance were determined utilizing eyelid skin from hairless rats, as well as abdominal skin in the same animals for comparison. In vitro static diffusion cells were used to assess the skin permeation in order to provide key insights into the relationship between the skin sites and drugs. The obtained results revealed that drug permeation through the eyelid skin was much higher than that through abdominal skin regardless of the drug lipophilicity. Specifically, diclofenac sodium salt and tranilast exhibited approximately 6-fold and 11-fold higher permeability coefficients, respectively, through eyelid skin compared with abdominal skin. Histomorphological evaluation and in vivo distribution of model fluorescent dyes were also examined in the conjunctiva and skin after eyelid administration by conventional microscope and confocal laser scanning microscope analyses. The result revealed that eyelid skin has a thinner stratum corneum, thereby showing lower impedance, which could be the reason for the higher drug permeation through eyelid skin. Comparative evaluation of lipophilic and hydrophilic model compounds administered via the eyelid skin over 8h revealed stronger fluorescence intensity in the skin and surrounding tissues compared with eye drop administration. These results suggested that the (lower) eyelid skin is valuable as a prospective site for ophthalmic medicines.
Collapse
Affiliation(s)
- Gerard Lee See
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; Department of Pharmacy, School of Health Care Professions, University of San Carlos, Nasipit Talamban, Cebu 6000, Philippines
| | - Ayano Sagesaka
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Satoko Sugasawa
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Hiroaki Todo
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Kenji Sugibayashi
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
128
|
Luaces-Rodríguez A, Díaz-Tomé V, González-Barcia M, Silva-Rodríguez J, Herranz M, Gil-Martínez M, Rodríguez-Ares MT, García-Mazás C, Blanco-Mendez J, Lamas MJ, Otero-Espinar FJ, Fernández-Ferreiro A. Cysteamine polysaccharide hydrogels: Study of extended ocular delivery and biopermanence time by PET imaging. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
129
|
Jin SE, Hwang SJ. Ocular delivery systems for the administration of antibody therapeutics. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0336-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
130
|
Bao Q, Jog R, Shen J, Newman B, Wang Y, Choi S, Burgess DJ. Physicochemical attributes and dissolution testing of ophthalmic ointments. Int J Pharm 2017; 523:310-319. [PMID: 28344172 PMCID: PMC6636623 DOI: 10.1016/j.ijpharm.2017.03.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 01/16/2023]
Abstract
The investigation of semisolid ophthalmic ointments is challenging due to their complex physicochemical properties and the unique anatomy of the human eye. Using Lotemax® as a model ophthalmic ointment, three different manufacturing processes and two excipient sources (Fisher® (OWP) and Fougera® (NWP)) were used to prepare loteprednol etabonate ointments that were qualitatively and quantitatively the same across the manufactured formulations. Physicochemical properties including drug content and uniformity, particle size and distribution, as well as rheological parameters (onset point, crossover modulus, storage modulus and Power law consistency index) were investigated. In addition, USP apparatus 2 with enhancer cells was utilized to study the in vitro drug release characteristics of the ophthalmic ointments. Both manufacturing processes and excipient sources had a significant influence on the physicochemical attributes and the in vitro drug release profiles of the prepared ointments. Ointments prepared via the hot melt processes exhibited higher rheological parameters and lower drug release rates compared to ointments prepared without hot melting. Ointments prepared with OWP demonstrated higher rheological parameters and lower in vitro drug release rates compared to ointments prepared with NWP. A strong correlation between the rheological parameters and in vitro drug release rate was shown using logarithmic linear regression. This correlation may be useful in predicting in vitro drug release from measured physicochemical properties, and identifying the critical quality attributes during the development of ointment formulations.
Collapse
Affiliation(s)
- Quanying Bao
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA
| | - Rajan Jog
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA
| | - Jie Shen
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA
| | - Bryan Newman
- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Division of Therapeutic Performance, Silver Spring, MD 20993, USA
| | - Yan Wang
- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Division of Therapeutic Performance, Silver Spring, MD 20993, USA
| | - Stephanie Choi
- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Division of Therapeutic Performance, Silver Spring, MD 20993, USA
| | - Diane J Burgess
- University of Connecticut, School of Pharmacy, Storrs, CT 06269, USA.
| |
Collapse
|
131
|
Pescina S, Macaluso C, Gioia GA, Padula C, Santi P, Nicoli S. Mydriatics release from solid and semi-solid ophthalmic formulations using different in vitro methods. Drug Dev Ind Pharm 2017; 43:1472-1479. [PMID: 28426341 DOI: 10.1080/03639045.2017.1318910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of the present paper was the development of semi-solid (hydrogels) and solid (film) ophthalmic formulations for the controlled release of two mydriatics: phenylephrine and tropicamide. The formulations - based on polyvinylalcohol and hyaluronic acid - were characterized, and release studies were performed with three different in vitro set-ups, i.e. Franz-type diffusion cell, vial method and inclined plane; for comparison, a solution and a commercial insert, both clinically used to induce mydriasis, were evaluated. Both gels and film allowed for a controlled release of drugs, appearing a useful alternative for mydriatics administration. However, the release kinetic was significantly influenced by the method used, highlighting the need for optimization and standardization of in vitro models for the evaluation of drug release from ophthalmic dosage forms.
Collapse
Affiliation(s)
- Silvia Pescina
- a Food and Drug Department , University of Parma , Parma , Italy
| | - Claudio Macaluso
- b Ophthalmology Department, DiMeC , University of Parma , Parma , Italy
| | | | - Cristina Padula
- a Food and Drug Department , University of Parma , Parma , Italy
| | - Patrizia Santi
- a Food and Drug Department , University of Parma , Parma , Italy
| | - Sara Nicoli
- a Food and Drug Department , University of Parma , Parma , Italy
| |
Collapse
|
132
|
Joseph M, Trinh HM, Cholkar K, Pal D, Mitra AK. Recent perspectives on the delivery of biologics to back of the eye. Expert Opin Drug Deliv 2017; 14:631-645. [PMID: 27573097 PMCID: PMC5570518 DOI: 10.1080/17425247.2016.1227783] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Biologics are generally macromolecules, large in size with poor stability in biological environments. Delivery of biologics to tissues at the back of the eye remains a challenge. To overcome these challenges and treat posterior ocular diseases, several novel approaches have been developed. Nanotechnology-based delivery systems, like drug encapsulation technology, macromolecule implants and gene delivery are under investigation. We provide an overview of emerging technologies for biologics delivery to back of the eye tissues. Moreover, new biologic drugs currently in clinical trials for ocular neovascular diseases have been discussed. Areas covered: Anatomy of the eye, posterior segment disease and diagnosis, barriers to biologic delivery, ocular pharmacokinetic, novel biologic delivery system Expert opinion: Anti-VEGF therapy represents a significant advance in developing biologics for the treatment of ocular neovascular diseases. Various strategies for biologic delivery to posterior ocular tissues are under development with some in early or late stages of clinical trials. Despite significant progress in the delivery of biologics, there is unmet need to develop sustained delivery of biologics with nearly zero-order release kinetics to the back of the eye tissues. In addition, elevated intraocular pressure associated with frequent intravitreal injections of macromolecules is another concern that needs to be addressed.
Collapse
Affiliation(s)
- Mary Joseph
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Hoang M. Trinh
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Kishore Cholkar
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
- RiconPharma LLC, 100 Ford Road, Suite 9, Denville, NJ, 07834 USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Ashim K. Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| |
Collapse
|
133
|
Destruel PL, Zeng N, Maury M, Mignet N, Boudy V. In vitro and in vivo evaluation of in situ gelling systems for sustained topical ophthalmic delivery: state of the art and beyond. Drug Discov Today 2017; 22:638-651. [DOI: 10.1016/j.drudis.2016.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/18/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
|
134
|
Sun J, Lei Y, Dai Z, Liu X, Huang T, Wu J, Xu ZP, Sun X. Sustained Release of Brimonidine from a New Composite Drug Delivery System for Treatment of Glaucoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7990-7999. [PMID: 28198606 DOI: 10.1021/acsami.6b16509] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A novel layered double hydroxide (LDH) nanoparticle/thermogel composite drug delivery system (DDS) for sustained release of brimonidine (Bri) has been designed, prepared, and characterized in this study for treatment of severe glaucoma. Brimonidine is first loaded onto LDH (Bri@LDH) nanoparticles, which are then dispersed in the thermogel consisting of plenty of micelles based on poly(dl-lactic acid-co-coglycolic acid)-polyethylene glycol-poly(dl-lactic acid-co-coglycolic acid) (PLGA-PEG-PLGA) copolymer. The Bri@LDH/Thermogel DDS containing 125.0 μg/g of brimonidine has been found to sustainably release the drug for up to 144 h, significantly extending the drug release period compared to that from Bri@LDH nanoparticles. The Bri@LDH/Thermogel DDS is not cytotoxic to human corneal epithelial cells and shows good biocompatibility. In vivo drug release from the special contact lens made of Bri@LDH/Thermogel DDS has been sustained for at least 7 days, which more effectively modulates the relief of intraocular pressure (IOP). Thus, the Bri@LDH/Thermogel DDS is a promising drug delivery alternative that can be used for treatment of severe glaucoma.
Collapse
Affiliation(s)
- Jianguo Sun
- Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence for Functional Nanomaterials, The University of Queensland , Brisbane, Queensland 4072, Australia
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | | | | | | | | | - Jihong Wu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence for Functional Nanomaterials, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Xinghuai Sun
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University , Shanghai 200032, China
| |
Collapse
|
135
|
Ban J, Zhang Y, Huang X, Deng G, Hou D, Chen Y, Lu Z. Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone. Int J Nanomedicine 2017; 12:1329-1339. [PMID: 28243093 PMCID: PMC5317251 DOI: 10.2147/ijn.s126199] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Drug delivery carriers can maintain effective therapeutic concentrations in the eye. To this end, we developed lipid nanoparticles (L/NPs) in which the surface was modified with positively charged chitosan, which engaged in hydrogen bonding with the phospholipid membrane. We evaluated in vitro corneal permeability and release characteristics, ocular irritation, and drug dynamics of modified and unmodified L/NPs in aqueous humor. The size of L/NPs was uniform and showed a narrow distribution. Corneal permeation was altered by the presence of chitosan and was dependent on particle size; the apparent permeability coefficient of dexamethasone increased by 2.7 and 1.8 times for chitosan-modified and unmodified L/NPs, respectively. In conclusion, a chitosan-modified system could be a promising method for increasing the ocular bioavailability of unmodified L/NPs by enhancing their retention time and permeation into the cornea. These findings provide a theoretical basis for the development of effective drug delivery systems in the treatment of ocular disease.
Collapse
Affiliation(s)
- Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xin Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Guanghan Deng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Dongzhi Hou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yanzhong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zhufen Lu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| |
Collapse
|
136
|
Dasankoppa F, Solankiy P, Sholapur H, Jamakandi V, Sajjanar V, Walveka P. Design, formulation, and evaluation of in situ gelling ophthalmic drug delivery system comprising anionic and nonionic polymers. INDIAN JOURNAL OF HEALTH SCIENCES AND BIOMEDICAL RESEARCH KLEU 2017. [DOI: 10.4103/kleuhsj.kleuhsj_131_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
137
|
Pharmacodynamic profile of mydriatic agents delivered by ocular piezo-ejection microdosing compared with conventional eyedropper. Ther Deliv 2016; 7:751-760. [PMID: 27733098 DOI: 10.4155/tde-2016-0061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIM Eyedroppers deliver medication volumes exceeding conjunctival absorptive capacity, causing spillage and risking ocular/systemic complications. We evaluated piezoelectric microdosing. Results/methodology: Subjects (n = 102) received precision microdroplet delivery of phenylephrine (2.5%) and tropicamide (1.0%): 1 × 1.5 μl, 1 × 6 μl or 2 × 3 μl of each (randomized 1:1:1), into one eye. Contralateral eyes received eyedropper doses of both drugs. Outcomes were pupil dilation (0-60 min) and patient satisfaction. Six-microliter microdosing achieved comparable, and 2 × 3 μl met/exceeded dilation speed and magnitude versus eyedropper. Separately, participants preferred piezoelectric saline self-delivery to eyedroppers, reporting better head-positioning comfort, reduced tearing/overflow and increased likelihood of adhering to ocular medication regimens. CONCLUSION Piezoelectric microdosing achieves comparable effects as eyedroppers delivering 4-17-fold larger doses. Microdosing may enhance patient adherence to ocular medication regimens while minimizing side effects.
Collapse
|
138
|
Karki S, Kim H, Na SJ, Shin D, Jo K, Lee J. Thin films as an emerging platform for drug delivery. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.05.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
139
|
Lasowski F, Sheardown H. Atropine and Roscovitine Release from Model Silicone Hydrogels. Optom Vis Sci 2016; 93:404-11. [PMID: 26779867 DOI: 10.1097/opx.0000000000000807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Drug delivery to the anterior eye has a low compliance and results in significant drug losses. In pediatric patients, eye diseases such as myopia and retinoblastoma can potentially be treated pharmacologically, but the risk associated with high drug concentrations coupled with the need for regular dosing limits their effectiveness. The current study examined the feasibility of atropine and roscovitine delivery from model silicone hydrogel materials which could potentially be used to treat myopia and retinoblastoma, respectively. METHODS Model silicone hydrogel materials that comprised TRIS and DMA were prepared with the drug incorporated during synthesis. Various materials properties, with and without incorporated drug, were investigated including water uptake, water contact angle, and light transmission. Drug release was evaluated under sink conditions into phosphate buffered saline. RESULTS The results demonstrate that up to 2 wt% of the drugs can be incorporated into model silicone hydrogel materials without adversely affecting critical materials properties such as water uptake, light transmission, and surface hydrophilicity. Equilibrium water content ranged from 15 to 32% and transmission exceeded 89% for materials with at least 70% DMA. Extended release exceeding 14 days was possible with both drugs, with the total amount of drug released from the materials ranging from 16% to over 76%. Although a burst effect was noted, this was thought to be due to surface-bound drug, and therefore storage in an appropriate packaging solution could be used to overcome this if desired. CONCLUSIONS Silicone hydrogel materials have the potential to deliver drugs for over 2 weeks without compromising lens properties. This could potentially overcome the need for regular drop instillation and allow for the maintenance of drug concentration in the tear film over the period of wear. This represents a potential option for treating a host of ophthalmic disorders in children including myopia and retinoblastoma.
Collapse
Affiliation(s)
- Frances Lasowski
- *BEng †PhD Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada (all authors)
| | | |
Collapse
|
140
|
Sharma C, Biswas NR, Ojha S, Velpandian T. Comprehensive evaluation of formulation factors for ocular penetration of fluoroquinolones in rabbits using cassette dosing technique. Drug Des Devel Ther 2016; 10:811-23. [PMID: 26955263 PMCID: PMC4769009 DOI: 10.2147/dddt.s95870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Corneal permeability of drugs is an important factor used to assess the efficacy of topical preparations. Transcorneal penetration of drugs from aqueous formulation is governed by various physiological, physiochemical, and formulation factors. In the present study, we investigated the effect of formulation factors like concentration, pH, and volume of instillation across the cornea using cassette dosing technique for ophthalmic fluoroquinolones (FQs). MATERIALS AND METHODS Sterile cocktail formulations were prepared using four congeneric ophthalmic FQs (ofloxacin, sparfloxacin, pefloxacin mesylate, and gatifloxacin) at concentrations of 0.025%, 0.5%, and 0.1%. Each formulation was adjusted to different pH ranges (4.5, 7.0, and 8.0) and assessed for transcorneal penetration in vivo in rabbit's cornea (n=4 eyes) at three different volumes (12.5, 25, and 50 μL). Aqueous humor was aspirated through paracentesis after applying local anesthesia at 0, 5, 15, 30, 60, 120, and 240 minutes postdosing. The biosamples collected from a total of 27 groups were analyzed using liquid chromatography-tandem mass spectroscopy to determine transcorneal permeability of all four FQs individually. RESULTS Increase in concentration showed an increase in penetration up to 0.05%; thereafter, the effect of concentration was found to be dependent on volume of instillation as we observed a decrease in transcorneal penetration. The highest transcorneal penetration of all FQs was observed at pH 7.0 at concentration 0.05% followed by 0.025% at pH 4.5. Lastly, increasing the volume of instillation from 12.5 to 50 μL showed a significant fall in transcorneal penetration. CONCLUSION The study concludes that formulation factors showed discernible effect on transcorneal permeation; therefore, due emphasis should be given on drug development and design of ophthalmic formulation.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Ocular Pharmacology and Pharmacy, All India Institute of Medical Sciences, New Delhi, India
- Department of Internal Medicine, United Arab Emirates University, Al Ain, UAE
| | - Nihar R Biswas
- Department of Ocular Pharmacology and Pharmacy, All India Institute of Medical Sciences, New Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology and Pharmacy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
141
|
Patel N, Thakkar V, Metalia V, Baldaniya L, Gandhi T, Gohel M. Formulation and development of ophthalmicin situgel for the treatment ocular inflammation and infection using application of quality by design concept. Drug Dev Ind Pharm 2016; 42:1406-23. [DOI: 10.3109/03639045.2015.1137306] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
142
|
Gavini E, Bonferoni MC, Rassu G, Sandri G, Rossi S, Salis A, Porcu EP, Giunchedi P. Engineered microparticles based on drug-polymer coprecipitates for ocular-controlled delivery of Ciprofloxacin: influence of technological parameters. Drug Dev Ind Pharm 2015; 42:554-62. [PMID: 26482534 DOI: 10.3109/03639045.2015.1100201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ciprofloxacin is a drug active against a broad spectrum of aerobic Gram-positive and Gram-negative bacteria, for the therapy of ocular infections. It requires frequent administrations owing to rapid ocular clearance and it is a good candidate for ocular controlled release formulations. The preparation of such drug release systems is still a challenge. Ionic interactions between ciprofloxacin and the polyelectrolytes chondroitin sulfate or lambda carrageenan result in coprecipitates that can act as microparticulate controlled release systems from which the drug is released after being displaced by the medium's ions. In some formulations, Carbopol was added to improve the mucoadhesive properties. The aim of this research was the study of the influence of the technological parameters of the preparation method of coprecipitates on their particle size, with the goal of achieving particles engineered with a size suitable for the ocular administration. Technological parameters taken into account were: concentration of drug and polymer solutions utilized for the preparation of interaction products, possible use of surfactants (kind and concentration), temperature of the solutions and stirring during the process of preparation of the coprecipitates. Preliminary stability study tests were carried out to further characterize the leader formulation. Particle size in suspensions for ocular drug delivery is a critical parameter influencing the quality of the formulation. The results obtained from this study show that chondroitin sulfate coprecipitates present the best characteristics in terms of particle size suitable for ocular administration. A further improvement of the particle size characteristics has been obtained with the addition of surfactants.
Collapse
Affiliation(s)
- Elisabetta Gavini
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | | | - Giovanna Rassu
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Giuseppina Sandri
- b Department of Drug Sciences , University of Pavia , Pavia , Italy , and
| | - Silvia Rossi
- b Department of Drug Sciences , University of Pavia , Pavia , Italy , and
| | - Andrea Salis
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| | - Elena Piera Porcu
- c PhD School of Experimental Medicine, University of Pavia , Pavia , Italy
| | - Paolo Giunchedi
- a Department of Chemistry and Pharmacy , University of Sassari , Sassari , Italy
| |
Collapse
|
143
|
Xu X, Al-Ghabeish M, Krishnaiah YS, Rahman Z, Khan MA. Kinetics of drug release from ointments: Role of transient-boundary layer. Int J Pharm 2015; 494:31-9. [DOI: 10.1016/j.ijpharm.2015.07.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/04/2015] [Accepted: 07/29/2015] [Indexed: 11/25/2022]
|
144
|
Foureaux G, Franca JR, Nogueira JC, Fulgêncio GDO, Ribeiro TG, Castilho RO, Yoshida MI, Fuscaldi LL, Fernandes SOA, Cardoso VN, Cronemberger S, Faraco AAG, Ferreira AJ. Ocular Inserts for Sustained Release of the Angiotensin-Converting Enzyme 2 Activator, Diminazene Aceturate, to Treat Glaucoma in Rats. PLoS One 2015. [PMID: 26204514 PMCID: PMC4512709 DOI: 10.1371/journal.pone.0133149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The aim of this study was to develop and evaluate the effects of chitosan inserts for sustained release of the angiotensin-converting enzyme 2 (ACE2) activator, diminazene aceturate (DIZE), in experimental glaucoma. Monolayer DIZE loaded inserts (D+I) were prepared and characterized through swelling, attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and in vitro drug release. Functionally, the effects of D+I were tested in glaucomatous rats. Glaucoma was induced by weekly injections of hyaluronic acid (HA) into the anterior chamber and intraocular pressure (IOP) measurements were performed. Retinal ganglion cells (RGC) and optic nerve head cupping were evaluated in histological sections. Biodistribution of the drug was accessed by scintigraphic images and ex vivo radiation counting. We found that DIZE increased the swelling index of the inserts. Also, it was molecularly dispersed and interspersed in the polymeric matrix as a freebase. DIZE did not lose its chemical integrity and activity when loaded in the inserts. The functional evaluation demonstrated that D+I decreased the IOP and maintained the IOP lowered for up to one month (last week: 11.0±0.7 mmHg). This effect of D+I prevented the loss of RGC and degeneration of the optic nerve. No toxic effects in the eyes related to application of the inserts were observed. Moreover, biodistribution studies showed that D+I prolonged the retention of DIZE in the corneal site. We concluded that D+I provided sustained DIZE delivery in vivo, thereby evidencing the potential application of polymeric-based DIZE inserts for glaucoma management.
Collapse
Affiliation(s)
- Giselle Foureaux
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juçara Ribeiro Franca
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Carlos Nogueira
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Tatiana Gomes Ribeiro
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rachel Oliveira Castilho
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Irene Yoshida
- Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Lima Fuscaldi
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Valbert Nascimento Cardoso
- Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sebastião Cronemberger
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André Augusto Gomes Faraco
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson José Ferreira
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
145
|
Fernández-Ferreiro A, González Barcia M, Gil-Martínez M, Vieites-Prado A, Lema I, Argibay B, Blanco Méndez J, Lamas MJ, Otero-Espinar FJ. In vitro and in vivo ocular safety and eye surface permanence determination by direct and Magnetic Resonance Imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Eur J Pharm Biopharm 2015; 94:342-51. [PMID: 26079831 DOI: 10.1016/j.ejpb.2015.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 06/08/2015] [Indexed: 11/17/2022]
Abstract
Gellan gum, kappa-carrageenan and alginates are natural polysaccharides able to interact with different cations that can be used to elaborate ion-activated in situ gelling systems for different uses. The interaction between fluid solutions of these polysaccharides and cations presents into the tear made these biopolymers very interesting to elaborate ophthalmic drug delivery systems. The main purpose of this study is to evaluate the ability of mixtures of these polymers to obtain ion-activated ophthalmic in situ gelling systems with optimal properties for ocular use. To achieve this purpose different proportion of the biopolymers were analyzed using a mixture experimental design evaluating their transparency, mechanical properties and bioadhesion in the absence and presence of simulated tear fluid. Tear induces a rapid sol-to-gel phase transition in the mixtures forming a consistent hydrogel. The solution composed by 80% of gellan gum and 20% kappa-carrageenan showed the best mechanical and mucoadhesive properties. This mixture was evaluated for rheological behavior, microstructure, cytotoxicity, acute corneal irritancy, ex-vivo and in vivo ocular toxicity and in vivo corneal contact time using Magnetic Resonance Images (MRI) techniques. Result indicates that the system is safe at ophthalmic level and produces an extensive ocular permanence higher than 6h.
Collapse
Affiliation(s)
- Anxo Fernández-Ferreiro
- Pharmacy and Pharmaceutical Technology Department and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain; Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela (SERGAS), Travesía Choupana s/n, Santiago de Compostela 15706, Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - Miguel González Barcia
- Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela (SERGAS), Travesía Choupana s/n, Santiago de Compostela 15706, Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - María Gil-Martínez
- Instituto Oftalmológico Gómez-Ulla, Rúa de Maruxa Mallo, 3, Santiago de Compostela 15706, Spain
| | - Alba Vieites-Prado
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - Isabel Lema
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain; Surgery Department (Ophthalmology), Faculty of Optics and Optometry, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain
| | - Barbara Argibay
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - José Blanco Méndez
- Pharmacy and Pharmaceutical Technology Department and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain
| | - Maria Jesus Lamas
- Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela (SERGAS), Travesía Choupana s/n, Santiago de Compostela 15706, Spain; Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - Francisco Javier Otero-Espinar
- Pharmacy and Pharmaceutical Technology Department and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15782, Spain.
| |
Collapse
|
146
|
Eördögh R, Schwendenwein I, Tichy A, Loncaric I, Nell B. Clinical effect of four different ointment bases on healthy cat eyes. Vet Ophthalmol 2015; 19 Suppl 1:4-12. [DOI: 10.1111/vop.12279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Réka Eördögh
- Department for Companion Animals and Horses; University of Veterinary Medicine Vienna; Vienna Austria
| | - Ilse Schwendenwein
- Department for Pathobiology, Clinical Pathology; University of Veterinary Medicine Vienna; Vienna Austria
| | - Alexander Tichy
- Department of Biomedical Sciences; University of Veterinary Medicine Vienna; Vienna Austria
| | - Igor Loncaric
- Department for Pathobiology, Clinical Pathology; University of Veterinary Medicine Vienna; Vienna Austria
- Department for Pathobiology; Institute of Bacteriology, Mycology and Hygiene; University of Veterinary Medicine Vienna; Vienna Austria
| | - Barbara Nell
- Department for Companion Animals and Horses; University of Veterinary Medicine Vienna; Vienna Austria
| |
Collapse
|
147
|
Lambert WS, Carlson BJ, van der Ende AE, Shih G, Dobish JN, Calkins DJ, Harth E. Nanosponge-Mediated Drug Delivery Lowers Intraocular Pressure. Transl Vis Sci Technol 2015; 4:1. [PMID: 25599009 DOI: 10.1167/tvst.4.1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023] Open
Abstract
PURPOSE We examined the efficacy of an extended-release drug delivery system, nanosponge (NS) encapsulated compounds, administered intravitreally to lower intraocular pressure (IOP) in mice. METHODS Bilateral ocular hypertension was induced in mice by injecting microbeads into the anterior chamber. Hypertensive mice received NS loaded with ocular hypotensive drugs via intravitreal injection and IOP was monitored. Retinal deposition and retinal ganglion cell (RGC) uptake of Neuro-DiO were examined following intravitreal injection of Neuro-DiO-NS using confocal microscopy. RESULTS Brimonidine-loaded NS lowered IOP 12% to 30% for up to 6 days (P < 0.02), whereas travoprost-NS lowered IOP 19% to 29% for up to 4 days (P < 0.02) compared to saline injection. Three bimatoprost NS were tested: a 400-nm NS and two 700-nm NS with amorphous (A-NS) or amorphous/crystalline (AC-NS) crosslinkers. A single injection of 400 nm NS lowered IOP 24% to 33% for up to 17 days compared to saline, while A-NS and AC-NS lowered IOP 22% to 32% and 18% to 26%, respectively, for up to 32 days (P < 0.046). Over time retinal deposition of Neuro-DiO increased from 19% to 71%; Neuro-DiO released from NS was internalized by RGCs. CONCLUSIONS A single injection of NS can effectively deliver ocular hypotensive drugs in a linear and continuous manner for up to 32 days. Also, NS may be effective at targeting RGCs, the neurons that degenerate in glaucoma. TRANSLATIONAL RELEVANCE Patient compliance is a major issue in glaucoma. The use of NS to deliver a controlled, sustained release of therapeutics could drastically reduce the number of patients that progress to vision loss in this disease.
Collapse
Affiliation(s)
- Wendi S Lambert
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian J Carlson
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Grace Shih
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julia N Dobish
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David J Calkins
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA ; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eva Harth
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|