101
|
Matias D, Balça-Silva J, da Graça GC, Wanjiru CM, Macharia LW, Nascimento CP, Roque NR, Coelho-Aguiar JM, Pereira CM, Dos Santos MF, Pessoa LS, Lima FRS, Schanaider A, Ferrer VP, Moura-Neto V. Microglia/Astrocytes-Glioblastoma Crosstalk: Crucial Molecular Mechanisms and Microenvironmental Factors. Front Cell Neurosci 2018; 12:235. [PMID: 30123112 PMCID: PMC6086063 DOI: 10.3389/fncel.2018.00235] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, the functions of glial cells, namely, astrocytes and microglia, have gained prominence in several diseases of the central nervous system, especially in glioblastoma (GB), the most malignant primary brain tumor that leads to poor clinical outcomes. Studies showed that microglial cells or astrocytes play a critical role in promoting GB growth. Based on the recent findings, the complex network of the interaction between microglial/astrocytes cells and GB may constitute a potential therapeutic target to overcome tumor malignancy. In the present review, we summarize the most important mechanisms and functions of the molecular factors involved in the microglia or astrocytes-GB interactions, which is particularly the alterations that occur in the cell's extracellular matrix and the cytoskeleton. We overview the cytokines, chemokines, neurotrophic, morphogenic, metabolic factors, and non-coding RNAs actions crucial to these interactions. We have also discussed the most recent studies regarding the mechanisms of transportation and communication between microglial/astrocytes - GB cells, namely through the ABC transporters or by extracellular vesicles. Lastly, we highlight the therapeutic challenges and improvements regarding the crosstalk between these glial cells and GB.
Collapse
Affiliation(s)
- Diana Matias
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joana Balça-Silva
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences Consortium, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Grazielle C da Graça
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Caroline M Wanjiru
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucy W Macharia
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Pires Nascimento
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia R Roque
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Juliana M Coelho-Aguiar
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Marcos F Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S Pessoa
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Schanaider
- Centro de Cirurgia Experimental do Departamento de Cirurgia da Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria P Ferrer
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer - Secretaria de Estado de Saúde, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Universidade do Grande Rio (Unigranrio), Duque de Caxias, Brazil
| |
Collapse
|
102
|
Nadjar A. Role of metabolic programming in the modulation of microglia phagocytosis by lipids. Prostaglandins Leukot Essent Fatty Acids 2018; 135:63-73. [PMID: 30103935 DOI: 10.1016/j.plefa.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Microglia phagocytosis is an essential process to maintain lifelong brain homeostasis and clear potential toxic factors from the neuropil. Microglia can engulf cells or part of cells through the expression of specific receptors at their surface and activation of downstream signaling pathways to engulf material. Microglia phagocytosis is finely regulated and is under the dependence of many factors, including environmental cues such as dietary lipids. Yet, the molecular mechanisms implicated are still largely unknown. The present publication is a 'hypothesis review', assessing the possibility that lipid-mediated modulation of phagocytosis occurs by affecting bioenergetic pathways within microglia. I assess our present knowledge and the elements that allow drawing such hypothesis. I also list some of the important gaps in the literature that need to be filled in. I also consider opportunities for future therapeutic target including nutritional interventions.
Collapse
Affiliation(s)
- A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; University Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France.
| |
Collapse
|
103
|
Let-7a promotes microglia M2 polarization by targeting CKIP-1 following ICH. Immunol Lett 2018; 202:1-7. [PMID: 30053453 DOI: 10.1016/j.imlet.2018.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022]
Abstract
Microglia polarization plays a crucial role in initiating brain inflammatory injury after intracerebral hemorrhage (ICH). Casein Kinase 2 Interacting Protein 1(CKIP-1) has been identified as a transcriptional molecular to manipulate microglia polarization. MiRNAs regulate gene expression and microglia polarization. In the experiment, CKIP-1 has been predicted as a target gene of let-7a. Let-7a, CKIP-1 and downstream proinflammatory mediator production of ICH mice were analyzed. In addition, inflammation, brain edema, and neurological functions in ICH mice were also assessed. Furthermore, let-7a mimic or inhibitors was administrated to study the potential role to manipulate microglia polarization after ICH. We reported that let-7a levels decreased but CKIP-1 levels increased after ICH. Using a dual-luciferase reporter assay, it was demonstrated that CKIP-1 was the target gene of let-7a. Let-7a overexpression decreased the protein levels of CKIP-1 and inhibition of let-7a increased the protein levels of CKIP-1. In addition, our results indicate that let-7a could inhibit expression of proinflammatory cytokines, reduce brain edema, and improve neurological functions in ICH mice. The study indicated that CKIP-1 was a target gene of let-7a and that let-7a regulated microglia M2 polarization by targeting CKIP-1 following ICH.
Collapse
|
104
|
Guo XY, Wang SN, Wu Y, Lin YH, Tang J, Ding SQ, Shen L, Wang R, Hu JG, Lü HZ. Transcriptome profile of rat genes in bone marrow-derived macrophages at different activation statuses by RNA-sequencing. Genomics 2018; 111:986-996. [PMID: 31307632 DOI: 10.1016/j.ygeno.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023]
Abstract
The underlying mechanisms of macrophage polarization have been detected by genome-wide transcriptome analysis in a variety of mammals. However, the transcriptome profile of rat genes in bone marrow-derived macrophages (BMM) at different activation statuses has not been reported. Therefore, we performed RNA-Sequencing to identify gene expression signatures of rat BMM polarized in vitro with different stimuli. The differentially expressed genes (DEGs) among unactivated (M0), classically activated pro-inflammatory (M1), and alternatively activated anti-inflammatory macrophages (M2) were analyzed by using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. In this study, not only we have identified the changes of global gene expression in rat M0, M1 and M2, but we have also made clear systematically the key genes and signaling pathways in the differentiation process of M0 to M1 and M2. These will provide a foundation for future researches of macrophage polarization.
Collapse
Affiliation(s)
- Xue-Yan Guo
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yan Wu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yu-Hong Lin
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jie Tang
- Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
105
|
Khajevand-Khazaei MR, Ziaee P, Motevalizadeh SA, Rohani M, Afshin-Majd S, Baluchnejadmojarad T, Roghani M. Naringenin ameliorates learning and memory impairment following systemic lipopolysaccharide challenge in the rat. Eur J Pharmacol 2018. [DOI: 10.1016/j.ejphar.2018.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
106
|
Li J, Xie J, Liu S, Li X, Zhang D, Wang X, Jiang J, Hu W, Zhang Y, Jin B, Zhuang R, Yin W. ADAR1 attenuates allogeneic graft rejection by suppressing miR‐21 biogenesis in macrophages and promoting M2 polarization. FASEB J 2018; 32:5162-5173. [DOI: 10.1096/fj.201701449r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junjie Li
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Jiangang Xie
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Department of Plastic SurgeryXijing HospitalSchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Shanshou Liu
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Xiao Li
- Department of Hepatobiliary SurgerySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Dongliang Zhang
- Department of Plastic SurgeryXijing HospitalSchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Xianqi Wang
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Jinquan Jiang
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Wei Hu
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Department of ImmunologySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Yuan Zhang
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Boquan Jin
- Department of ImmunologySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Ran Zhuang
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Department of ImmunologySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Wen Yin
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
107
|
Xu L, Sun Y, Li M, Ge X. Dyrk2 mediated the release of proinflammatory cytokines in LPS-induced BV2 cells. Int J Biol Macromol 2018; 109:1115-1124. [PMID: 29155197 DOI: 10.1016/j.ijbiomac.2017.11.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022]
Abstract
NF-κB pathway and p38MAPK (p38mitogen-activated protein kinase) pathway have been shown to play a key role in neuroinflammation, however, the phosphorylation modification is an important process that affects the activation of above pathways. Dual-specificity tyrosine-phosphorylation-regulated kinase 2(Dyrk2), as a phosphokinase that can phosphorylate signal molecules, has been demonstrated to regulate Type I Interferon(TIF) by promoting ser527 phosphorylation of TBK1. Therefore, to investigate the role of Dyrk2 in neuroinflammation, we analyzed the effect of Dyrk2 on LPS-induced the activation of microglia. Here, we found Dyrk2 expressed in BV2 cells, and LPS induced different expression trend of Dyrk2 in the cytoplasm and nucleus. In addition, we revealed that Dyrk2 interacted with Akt, p38MAPK and NF-κB subunit p65, however, in the nucleus of BV2 cells, Dyrk2 selectively interacted with p38MAPK instead of with p65. Although the overexpression of Dyrk2 increased the expression level of phospho-p65, phospho-Akt and phospho-p38MAPK in LPS-stimulated BV2 cells, less TNF-α and IL-1β were detected. Probably, the inhibitory effect of Dyrk2 on the release of TNF-α and IL-1β was associated with the induction of phospho-Akt. In conclusion, these data suggested Dyrk2 involved in regulating LPS-induced the release of proinflammatory cytokines through its phosphokinase function.
Collapse
Affiliation(s)
- Li Xu
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Yuxiang Sun
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China.
| | - Mengmeng Li
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| | - Xin Ge
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, People's Republic of China
| |
Collapse
|
108
|
Mirahmadi SMS, Shahmohammadi A, Rousta AM, Azadi MR, Fahanik-Babaei J, Baluchnejadmojarad T, Roghani M. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine 2018; 104:151-159. [PMID: 29102164 DOI: 10.1016/j.cyto.2017.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 12/16/2022]
Abstract
Systemic inflammation during infectious disorders usually accompanies chronic complications including cognitive dysfunction. Neuroinflammation and cognitive deficit are also observed in some debilitating neurological disorders like Alzheimer's and Parkinson's diseases. Genistein is a soy isoflavone with multiple beneficial effects including anti-inflammatory, anti-oxidative, and protective properties. In this research study, the effect of genistein in prevention of lipopolysaccharide (LPS)-induced cognitive dysfunction was investigated. LPS was given i.p. (500 μg/kg/day) and genistein was orally given (10, 50, or 100 mg/kg) for one week. Findings showed that genistein could dose-dependently attenuate spatial recognition, discrimination, and memory deficits. Additionally, genistein treatment of LPS-challenged group lowered hippocampal level of malondialdehyde (MDA) and increased activity of superoxide dismutase (SOD) and catalase and glutathione (GSH) level. Furthermore, genistein ameliorated hippocampal acetylcholinesterase (AChE) activity in LPS-challenged rats. Furthermore, genistein administration to LPS-injected group lowered hippocampal level of interleukin 6 (IL-6), nuclear factor-kappaB (NF-κB) p65, toll-like receptor 4 (TLR4), tumor necrosis factor α (TNFα), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP), and increased hippocampal level of antioxidant element nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In conclusion, genistein alleviated LPS-induced cognitive dysfunctions and neural inflammation attenuation of oxidative stress and AChE activity and appropriate modulation of Nrf2/NF-κB/IL-6/TNFα/COX2/iNOS/TLR4/GFAP.
Collapse
Affiliation(s)
| | | | | | | | - Javad Fahanik-Babaei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
109
|
Abstract
Classical activation (M1 phenotype) and alternative activation (M2 phenotype) are the two polars of microglial activation states that can produce either neurotoxic or neuroprotective effects in the immune pathogenesis of Parkinson’s disease (PD). Exploiting the beneficial properties of microglia cells by modulating their polarization states provides great potential for the treatment of PD. However, the mechanism that regulates microglia polarization remains elusive. Here we demonstrated that Kir6.1-containing ATP-sensitive potassium (Kir6.1/K-ATP) channel switched microglia from the detrimental M1 phenotype toward the beneficial M2 phenotype. Kir6.1 knockdown inhibited M2 polarization and simultaneously exaggerated M1 microglial inflammatory responses, while Kir6.1 overexpression promoted M2 polarization and synchronously alleviated the toxic phase of M1 microglia polarization. Furthermore, we observed that the Kir6.1 deficiency dramatically exacerbated dopaminergic neuron death companied by microglia activation in mouse model of PD. Mechanistically, Kir6.1 deficiency enhanced the activation of p38 MAPK–NF-κB pathway and increased the ratio of M1/M2 markers in the substantia nigra compacta of mouse model of PD. Suppression of p38 MAPK in vivo partially rescued the deleterious effects of Kir6.1 ablation on microglia phenotype and dopaminergic neuron death. Collectively, our findings reveal that Kir6.1/K-ATP channel modulates microglia phenotypes transition via inhibition of p38 MAPK–NF-κB signaling pathway and Kir6.1/K-ATP channel may be a promising therapeutic target for PD.
Collapse
|
110
|
Baluchnejadmojarad T, Zeinali H, Roghani M. Scutellarin alleviates lipopolysaccharide-induced cognitive deficits in the rat: Insights into underlying mechanisms. Int Immunopharmacol 2018; 54:311-319. [DOI: 10.1016/j.intimp.2017.11.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
|
111
|
Zhao H, Zhang H, Qin X. Age-related differences in serum MFG-E8, TGF-β1 and correlation to the severity of atherosclerosis determined by ultrasound. Mol Med Rep 2017; 16:9741-9748. [DOI: 10.3892/mmr.2017.7838] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/03/2017] [Indexed: 11/06/2022] Open
|
112
|
Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, Chen F, Wang H, Zhang J, Lei P. Increased miR‐124‐3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowthviatheir transfer into neurons. FASEB J 2017; 32:512-528. [PMID: 28935818 DOI: 10.1096/fj.201700673r] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Shan Huang
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Xintong Ge
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
| | - Jinwen Yu
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Zhaoli Han
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Department of GeriatricsTianjin Medical University General Hospital Tianjin China
| | - Zhenyu Yin
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Ying Li
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Fanglian Chen
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Haichen Wang
- Department of NeurologyDuke University Medical Center Durham North Carolina USA
| | - Jianning Zhang
- Key Laboratory of Injuries, Variations, and Regeneration of Nervous SystemTianjin Neurological Institute, Tianjin Medical University General Hospital Tianjin China
- Department of NeurosurgeryTianjin Medical University General Hospital Tianjin China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of Education Tianjin China
| | - Ping Lei
- Laboratory of Neuro‐Trauma and Neurodegenerative DisordersTianjin Geriatrics Institute Tianjin China
- Department of GeriatricsTianjin Medical University General Hospital Tianjin China
| |
Collapse
|
113
|
Caldeira C, Cunha C, Vaz AR, Falcão AS, Barateiro A, Seixas E, Fernandes A, Brites D. Key Aging-Associated Alterations in Primary Microglia Response to Beta-Amyloid Stimulation. Front Aging Neurosci 2017; 9:277. [PMID: 28912710 PMCID: PMC5583148 DOI: 10.3389/fnagi.2017.00277] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by a progressive cognitive decline and believed to be driven by the self-aggregation of amyloid-β (Aβ) peptide into oligomers and fibrils that accumulate as senile plaques. It is widely accepted that microglia-mediated inflammation is a significant contributor to disease pathogenesis; however, different microglia phenotypes were identified along AD progression and excessive Aβ production was shown to dysregulate cell function. As so, the contribution of microglia to AD pathogenesis remains to be elucidated. In this study, we wondered if isolated microglia cultured for 16 days in vitro (DIV) would react differentially from the 2 DIV cells upon treatment with 1000 nM Aβ1-42 for 24 h. No changes in cell viability were observed and morphometric alterations associated to microglia activation, such as volume increase and process shortening, were obvious in 2 DIV microglia, but less evident in 16 DIV cells. These cells showed lower phagocytic, migration and autophagic properties after Aβ treatment than the 2 DIV cultured microglia. Reduced phagocytosis may derive from increased CD33 expression, reduced triggering receptor expressed on myeloid cells 2 (TREM2) and milk fat globule-EGF factor 8 protein (MFG-E8) levels, which were mainly observed in 16 DIV cells. Activation of inflammatory mediators, such as high mobility group box 1 (HMGB1) and pro-inflammatory cytokines, as well as increased expression of Toll-like receptor 2 (TLR2), TLR4 and fractalkine/CX3C chemokine receptor 1 (CX3CR1) cell surface receptors were prominent in 2 DIV microglia, while elevation of matrix metalloproteinase 9 (MMP9) was marked in 16 DIV cells. Increased senescence-associated β-galactosidase (SA-β-gal) and upregulated miR-146a expression that were observed in 16 DIV cells showed to increase by Aβ in 2 DIV microglia. Additionally, Aβ downregulated miR-155 and miR-124, and reduced the CD11b+ subpopulation in 2 DIV microglia, while increased the number of CD86+ cells in 16 DIV microglia. Simultaneous M1 and M2 markers were found after Aβ treatment, but at lower expression in the in vitro aged microglia. Data show key-aging associated responses by microglia when incubated with Aβ, with a loss of reactivity from the 2 DIV to the 16 DIV cells, which course with a reduced phagocytosis, migration and lower expression of inflammatory miRNAs. These findings help to improve our understanding on the heterogeneous responses that microglia can have along the progression of AD disease and imply that therapeutic approaches may differ from early to late stages.
Collapse
Affiliation(s)
- Cláudia Caldeira
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Carolina Cunha
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Ana R Vaz
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Ana S Falcão
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Andreia Barateiro
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Elsa Seixas
- Obesity Laboratory, Instituto Gulbenkian de CiênciaOeiras, Portugal
| | - Adelaide Fernandes
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Dora Brites
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
114
|
Yang HM, Yang S, Huang SS, Tang BS, Guo JF. Microglial Activation in the Pathogenesis of Huntington's Disease. Front Aging Neurosci 2017; 9:193. [PMID: 28674491 PMCID: PMC5474461 DOI: 10.3389/fnagi.2017.00193] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by expanded CAG trinucleotide repeats (>36) in exon 1 of HTT gene that encodes huntingtin protein. Although HD is characterized by a predominant loss of neurons in the striatum and cortex, previous studies point to a critical role of aberrant accumulation of mutant huntingtin in microglia that contributes to the progressive neurodegeneration in HD, through both cell-autonomous and non-cell-autonomous mechanisms. Microglia are resident immune cells in the central nervous system (CNS), which function to surveil the microenvironment at a quiescent state. In response to various pro-inflammatory stimuli, microglia become activated and undergo two separate phases (M1 and M2 phenotype), which release pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), anti-inflammatory cytokines, and growth factors (TGF-β, CD206, and Arg1), respectively. Immunoregulation by microglial activation could be either neurotoxic or neuroprotective. In this review, we summarized current understanding about microglial activation in the pathogenesis and progression of HD, with a primary focus of M1 and M2 phenotype of activated microglia and their corresponding signaling pathways.
Collapse
Affiliation(s)
- Hui-Ming Yang
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China
| | - Su Yang
- Department of Human Genetics, Emory University School of Medicine, AtlantaGA, United States
| | - Shan-Shan Huang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and TechnologyWuhan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South UniversityChangsha, China.,State Key Laboratory of Medical GeneticsChangsha, China.,National Clinical Research Center for Geriatric DiseasesChangsha, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South UniversityChangsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South UniversityChangsha, China.,State Key Laboratory of Medical GeneticsChangsha, China.,National Clinical Research Center for Geriatric DiseasesChangsha, China
| |
Collapse
|
115
|
Cunha C, Santos C, Gomes C, Fernandes A, Correia AM, Sebastião AM, Vaz AR, Brites D. Downregulated Glia Interplay and Increased miRNA-155 as Promising Markers to Track ALS at an Early Stage. Mol Neurobiol 2017; 55:4207-4224. [PMID: 28612258 DOI: 10.1007/s12035-017-0631-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause. Absence of specific targets and biomarkers compromise the development of new therapeutic strategies and of innovative tools to stratify patients and assess their responses to treatment. Here, we investigate changes in neuroprotective-neuroinflammatory actions in the spinal cord of SOD1 G93A mice, at presymptomatic and symptomatic stages to identify stage-specific biomarkers and potential targets. Results showed that in the presymptomatic stage, there are alterations in both astrocytes and microglia, which comprise decreased expression of GFAP and S100B and upregulation of GLT-1, as well as reduced expression of CD11b, M2-phenotype markers, and a set of inflammatory mediators. Reduced levels of Connexin-43, Pannexin-1, CCL21, and CX3CL1 further indicate the existence of a compromised intercellular communication. In contrast, in the symptomatic stage, increased markers of inflammation became evident, such as NF-κB/Nlrp3-inflammasome, Iba1, pro-inflammatory cytokines, and M1-polarizion markers, together with a decreased expression of M2-phenotypic markers. We also observed upregulation of the CX3CL1-CX3CR1 axis, Connexin-43, Pannexin-1, and of microRNAs (miR)-124, miR-125b, miR-146a and miR-21. Reduced motor neuron number and presence of reactive astrocytes with decreased GFAP, GLT-1, and GLAST further characterized this inflammatory stage. Interestingly, upregulation of miR-155 and downregulation of MFG-E8 appear as consistent biomarkers of both presymptomatic and symptomatic stages. We hypothesize that downregulated cellular interplay at the early stages may represent neuroprotective mechanisms against inflammation, SOD1 aggregation, and ALS onset. The present study identified a set of inflamma-miRNAs, NLRP3-inflammasome, HMGB1, CX3CL1-CX3CR1, Connexin-43, and Pannexin-1 as emerging candidates and promising pharmacological targets that may represent potential neuroprotective strategies in ALS therapy.
Collapse
Affiliation(s)
- Carolina Cunha
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Santos
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Cátia Gomes
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Adelaide Fernandes
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Rita Vaz
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Neuron Glia Biology in Health and Disease Group, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal. .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
116
|
Pinto S, Cunha C, Barbosa M, Vaz AR, Brites D. Exosomes from NSC-34 Cells Transfected with hSOD1-G93A Are Enriched in miR-124 and Drive Alterations in Microglia Phenotype. Front Neurosci 2017; 11:273. [PMID: 28567000 PMCID: PMC5434170 DOI: 10.3389/fnins.2017.00273] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disorder affecting motor neurons (MNs). Evidences indicate that ALS is a non-cell autonomous disease in which glial cells participate in both disease onset and progression. Exosomal transfer of mutant copper-zinc superoxide dismutase 1 (mSOD1) from cell-to-cell was suggested to contribute to disease dissemination. Data from our group and others showed that exosomes from activated cells contain inflammatory-related microRNAs (inflamma-miRNAs) that recapitulate the donor cell. While glia-derived exosomes and their effects in neurons have been addressed by several studies, only a few investigated the influence of motor neuron (MN)-derived exosomes in other cell function, the aim of the present study. We assessed a set of inflamma-miRs in NSC-34 MN-like cells transfected with mutant SOD1(G93A) and extended the study into their derived exosomes (mSOD1 exosomes). Then, the effects produced by mSOD1 exosomes in the activation and polarization of the recipient N9 microglial cells were investigated. Exosomes in coculture with N9 microglia and NSC-34 cells [either transfected with either wild-type (wt) human SOD1 or mutant SOD1(G93A)] showed to be transferred into N9 cells. Increased miR-124 expression was found in mSOD1 NSC-34 cells and in their derived exosomes. Incubation of mSOD1 exosomes with N9 cells determined a sustained 50% reduction in the cell phagocytic ability. It also caused a persistent NF-kB activation and an acute generation of NO, MMP-2, and MMP-9 activation, as well as upregulation of IL-1β, TNF-α, MHC-II, and iNOS gene expression, suggestive of induced M1 polarization. Marked elevation of IL-10, Arginase 1, TREM2, RAGE, and TLR4 mRNA levels, together with increased miR-124, miR-146a, and miR-155, at 24 h incubation, suggest the switch to mixed M1 and M2 subpopulations in the exosome-treated N9 microglial cells. Exosomes from mSOD1 NSC-34 MNs also enhanced the number of senescent-like positive N9 cells. Data suggest that miR-124 is translocated from the mSOD1 MNs to exosomes, which determine early and late phenotypic alterations in the recipient N9-microglial cells. In conclusion, modulation of the inflammatory-associated miR-124, in mSOD1 NSC-34 MNs, with potential benefits in the cargo of their exosomes may reveal a promising therapeutic strategy in halting microglia activation and associated effects in MN degeneration.
Collapse
Affiliation(s)
- Sara Pinto
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Carolina Cunha
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Marta Barbosa
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Ana R Vaz
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Dora Brites
- Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
117
|
Zhou D, Yang K, Chen L, Zhang W, Xu Z, Zuo J, Jiang H, Luan J. Promising landscape for regulating macrophage polarization: epigenetic viewpoint. Oncotarget 2017; 8:57693-57706. [PMID: 28915705 PMCID: PMC5593677 DOI: 10.18632/oncotarget.17027] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Macrophages are critical myeloid cells with the hallmark of phenotypic heterogeneity and functional plasticity. Macrophages phenotypes are commonly described as classically-activated M1 and alternatively-activated M2 macrophages which play an essential role in the tissues homeostasis and diseases pathogenesis. Alternations of macrophage polarization and function states require precise regulation of target-gene expression. Emerging data demonstrate that epigenetic mechanisms and transcriptional factors are becoming increasingly appreciated in the orchestration of macrophage polarization in response to local environmental signals. This review is to focus on the advanced concepts of epigenetics changes involved with the macrophage polarization, including microRNAs, DNA methylation and histone modification, which are responsible for the altered cellular signaling and signature genes expression during M1 or M2 polarization. Eventually, the persistent investigation and understanding of epigenetic mechanisms in tissue macrophage polarization and function will enhance the potential to develop novel therapeutic targets for various diseases.
Collapse
Affiliation(s)
- Dexi Zhou
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Kui Yang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Lu Chen
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Wen Zhang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jian Zuo
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Hui Jiang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jiajie Luan
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China.,Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
118
|
Abal M. Characterizing the contribution of inflammasome-derived exosomes in the activation of the immune response. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:172. [PMID: 28480208 DOI: 10.21037/atm.2017.03.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Miguel Abal
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), University Hospital of Santiago (SERGAS), Trav. Choupana s/n 15706 Santiago de Compostela, Spain
| |
Collapse
|
119
|
Falcão AS, Carvalho LAR, Lidónio G, Vaz AR, Lucas SD, Moreira R, Brites D. Dipeptidyl Vinyl Sulfone as a Novel Chemical Tool to Inhibit HMGB1/NLRP3-Inflammasome and Inflamma-miRs in Aβ-Mediated Microglial Inflammation. ACS Chem Neurosci 2017; 8:89-99. [PMID: 27797173 DOI: 10.1021/acschemneuro.6b00250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rapid microglial activation and associated inflammatory pathways contribute to immune-defense and tissue repair in the central nervous system (CNS). However, persistent activation of these cells will ultimately result in vast production of pro-inflammatory mediators and other neurotoxic factors, which may induce neuronal damage and contribute to chronic neurodegenerative diseases, as Alzheimer's disease (AD). Therefore, small molecules with immunomodulatory effects on microglia may be considered as potential tools to counteract their proinflammatory phenotype and neuroimmune dysregulation in such disorders. Indeed, reducing amyloid-β (Aβ)-induced microglia activation is believed to be effective in treating AD. In this study, we investigated whether dipeptidyl vinyl sulfone (VS) was able to attenuate Aβ-mediated inflammatory response using a mouse microglial (N9) cell line and a solution containing a mixture of Aβ aggregates. We show that low levels of VS are able to prevent cell death while reducing microglia phagocytosis upon Aβ treatment. VS also suppressed Aβ-induced expression of inflammatory mediators in microglia, such as matrix metalloproteinase (MMP)-2 and MMP-9, as well as high-mobility group box protein-1 (HMGB1), nod-like receptor protein 3 (NLRP3)-inflammasome, and interleukin (IL)-1β. Interestingly, increased expression of the two critical inflammation-related microRNAs (miR)-155 and miR-146a in microglia upon Aβ treatment was also prevented by VS coincubation. Taken together, VS emerges as a potential new therapeutic strategy worthy of further investigation in improved cellular and animal models of AD.
Collapse
Affiliation(s)
- Ana S. Falcão
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Luís A. R. Carvalho
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Gonçalo Lidónio
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana R. Vaz
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Susana D. Lucas
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Dora Brites
- Neuron
Glia Biology in Health and Disease Group, Research Institute
for Medicines (iMed.ULisboa), ‡Department of Biochemistry and Human Biology, §Medicinal Chemistry
Group, Research Institute for Medicines (iMed.ULisboa), and ∥Department of
Pharmaceutical Chemistry and Therapeutics, Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|