101
|
Cardial Tobias G, Lucas Penteado Gomes J, Paula Renó Soci U, Fernandes T, Menezes de Oliveira E. A Landscape of Epigenetic Regulation by MicroRNAs to the Hallmarks of Cancer and Cachexia: Implications of Physical Activity to Tumor Regression. Epigenetics 2019. [DOI: 10.5772/intechopen.84847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
102
|
Yang L, Zhu Y, Kong D, Gong J, Yu W, Liang Y, Nie Y, Teng CB. EGF suppresses the expression of miR-124a in pancreatic β cell lines via ETS2 activation through the MEK and PI3K signaling pathways. Int J Biol Sci 2019; 15:2561-2575. [PMID: 31754329 PMCID: PMC6854373 DOI: 10.7150/ijbs.34985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is characterized by pancreatic β cell dysfunction. Previous studies have indicated that epidermal growth factor (EGF) and microRNA-124a (miR-124a) play opposite roles in insulin biosynthesis and secretion by beta cells. However, the underlying mechanisms remain poorly understood. In the present study, we demonstrated that EGF could inhibit miR-124a expression in beta cell lines through downstream signaling pathways, including mitogen-activated protein kinase kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) cascades. Further, the transcription factor ETS2, a member of the ETS (E26 transformation-specific) family, was identified to be responsible for the EGF-mediated suppression of miR-124a expression, which was dependent on ETS2 phosphorylation at threonine 72. Activation of ETS2 decreased miR-124a promoter transcriptional activity through the putative conserved binding sites AGGAANA/TN in three miR-124a promoters located in different chromosomes. Of note, ETS2 played a positive role in regulating beta cell function-related genes, including miR-124a targets, Forkhead box a2 (FOXA2) and Neurogenic differentiation 1 (NEUROD1), which may have partly been through the inhibition of miR-124 expression. Knockdown and overexpression of ETS2 led to the prevention and promotion of insulin biosynthesis respectively, while barely affecting the secretion ability. These results suggest that EGF may induce the activation of ETS2 to inhibit miR-124a expression to maintain proper beta cell functions and that ETS2, as a novel regulator of insulin production, is a potential therapeutic target for diabetes mellitus treatment.
Collapse
Affiliation(s)
- Lin Yang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuansen Zhu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Delin Kong
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiawei Gong
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Wen Yu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yang Liang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuzhe Nie
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
103
|
Loi E, Moi L, Fadda A, Satta G, Zucca M, Sanna S, Amini Nia S, Cabras G, Padoan M, Magnani C, Miligi L, Piro S, Gentilini D, Ennas MG, Southey MC, Giles GG, Wong Doo N, Cocco P, Zavattari P. Methylation alteration of SHANK1 as a predictive, diagnostic and prognostic biomarker for chronic lymphocytic leukemia. Oncotarget 2019; 10:4987-5002. [PMID: 31452839 PMCID: PMC6697638 DOI: 10.18632/oncotarget.27080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease characterized by the clonal expansion of malignant B cells. To predict the clinical course of the disease, the identification of diagnostic biomarkers is urgently needed. Aberrant methylation patterns may predict CLL development and its course, being very early changes during carcinogenesis. Our aim was to identify CLL specific methylation patterns and to evaluate whether methylation aberrations in selected genes are associated with changes in gene expression. Here, by performing a genome-wide methylation analysis, we identified several CLL-specific methylation alterations. We focused on the most altered one, at a CpG island located in the body of SHANK1 gene, in our CLL cases compared to healthy controls. This methylation alteration was successfully validated in a larger cohort including 139 CLL and 20 control in silico samples. We also found a positive correlation between SHANK1 methylation level and absolute lymphocyte count, in particular CD19+ B cells, in CLL patients. Moreover, we were able to detect gains of methylation at SHANK1 in blood samples collected years prior to diagnosis. Overall, our results suggest methylation alteration at this SHANK1 CpG island as a biomarker for risk and diagnosis of CLL, and also in the personalized quantification of tumor aggressiveness.
Collapse
Affiliation(s)
- Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| | - Loredana Moi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| | - Antonio Fadda
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| | - Giannina Satta
- Department of Medical Sciences and Public Health, Occupational Health Unit, University of Cagliari, Cagliari, Italy
| | - Mariagrazia Zucca
- Department of Biomedical Sciences, Cytomorphology Unit, University of Cagliari, Cagliari, Italy
| | - Sonia Sanna
- Department of Biomedical Sciences, Cytomorphology Unit, University of Cagliari, Cagliari, Italy
| | - Shadi Amini Nia
- Department of Medical Sciences and Public Health, Occupational Health Unit, University of Cagliari, Cagliari, Italy
| | | | - Marina Padoan
- Department of Medical Sciences, Unit of Medical Statistics and Cancer Epidemiology, University of Eastern Piedmont, Novara, Italy
| | - Corrado Magnani
- Department of Medical Sciences, Unit of Medical Statistics and Cancer Epidemiology, University of Eastern Piedmont, Novara, Italy
| | - Lucia Miligi
- Institute of Oncology Studies and Prevention, Florence, Italy
| | - Sara Piro
- Institute of Oncology Studies and Prevention, Florence, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | - Maria Grazia Ennas
- Department of Biomedical Sciences, Cytomorphology Unit, University of Cagliari, Cagliari, Italy
| | - Melissa C Southey
- Precision Medicine, Monash University, Melbourne, Melbourne, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Australia.,Centre for Epidemiology & Biostatistics, The University of Melbourne, Melbourne, Australia
| | - Nicole Wong Doo
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Australia.,Concord Hospital Clinical School, The University of Sydney, Sydney, Australia
| | - Pierluigi Cocco
- Department of Medical Sciences and Public Health, Occupational Health Unit, University of Cagliari, Cagliari, Italy
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| |
Collapse
|
104
|
Quintanal-Villalonga Á, Molina-Pinelo S. Epigenetics of lung cancer: a translational perspective. Cell Oncol (Dordr) 2019; 42:739-756. [PMID: 31396859 DOI: 10.1007/s13402-019-00465-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lung cancer remains the most common cause of cancer-related death, with a 5-year survival rate of only 18%. In recent years, the development of targeted pharmacological agents and immunotherapies has substantially increased the survival of a subset of patients. However, most patients lack such efficacious therapy and are, thus, treated with classical chemotherapy with poor clinical outcomes. Therefore, novel therapeutic strategies are urgently needed. In recent years, the development of epigenetic assays and their application to cancer research have highlighted the relevance of epigenetic regulation in the initiation, development, progression and treatment of lung cancer. CONCLUSIONS A variety of epigenetic modifications do occur at different steps of lung cancer development, some of which are key to tumor progression. The rise of cutting-edge technologies such as single cell epigenomics is, and will continue to be, crucial for uncovering epigenetic events at a single cell resolution, leading to a better understanding of the biology underlying lung cancer development and to the design of novel therapeutic options. This approach has already led to the development of strategies involving single agents or combined agents targeting epigenetic modifiers, currently in clinical trials. Here, we will discuss the epigenetics of every step of lung cancer development, as well as the translation of these findings into clinical applications.
Collapse
Affiliation(s)
| | - Sonia Molina-Pinelo
- Unidad Clínica de Oncología Médica, Radioterapia y Radiofísica, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Avda. Manuel Siurot s/n, 41013, Seville, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
105
|
Balci-Peynircioglu B, Akkaya-Ulum YZ, Akbaba TH, Tavukcuoglu Z. Potential of miRNAs to predict and treat inflammation from the perspective of Familial Mediterranean Fever. Inflamm Res 2019; 68:905-913. [PMID: 31342094 DOI: 10.1007/s00011-019-01272-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
AIM microRNAs (miRNAs) are small noncoding RNAs that play critical roles in physiological networks by regulating host genome expression at the post-transcriptional level. miRNAs are known to be key regulators of various biological processes in different types of immune cells, and they are known to regulate immunological functions. Differential expression of miRNAs has been documented in several diseases, including autoinflammatory and autoimmune diseases. This review aimed to focus on miRNAs and their association with autoimmune and autoinflammatory diseases. METHODS All related literature was screened from PubMed, and we discussed the possible role of miRNAs in disease prediction and usage as therapeutic agents from the perspective of Familial Mediterranean Fever (FMF). CONCLUSIONS FMF is an inherited autosomal recessive autoinflammatory disease caused by mutations in the MEditerranean FeVer (MEFV) gene, which encodes the protein pyrin. Recent studies have demonstrated that miRNAs may be effective in the pathogenesis of FMF and offer a potential explanation for phenotypic heterogeneity. Further understanding of the role of miRNAs in the pathogenesis of these diseases may help to identify molecular diagnostic markers, which may be important for the differential diagnosis of autoinflammatory diseases. Studies have shown that in the near future, traditional therapies in autoinflammatory diseases may be replaced with novel effective, miRNA-based therapies, such as the delivery of miRNA mimics or antagonists. These approaches may be important for predictive, preventive, and personalized medicine.
Collapse
|
106
|
Li J, Zhang Z, Chen F, Hu T, Peng W, Gu Q, Sun Y. The Diverse Oncogenic and Tumor Suppressor Roles of microRNA-105 in Cancer. Front Oncol 2019; 9:518. [PMID: 31281797 PMCID: PMC6595394 DOI: 10.3389/fonc.2019.00518] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNA molecules that regulate gene expression at the post-transcriptional/translational level. They act a considerable role not only in the normal progress of development but also in aberrant human diseases, including malignancy. With accumulating proofs of miR-105, the complex role of miR-105 during cancer initiation and progression is gradually emerging. miR-105 acts as a tumor suppressor by inhibiting tumor growth and metastasis or as an oncogene by promoting tumor initiation and invasion, depending on particular tumor contexts and base-pairing genes. In this review, we emphasize the characteristics of miR-105 in cancer to elucidate various deadly tumors and discuss transcriptional regulations that may explain fluctuations in miR-105 expression. This review may provide new ideas for applying miR-105 as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Jie Li
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyuan Zhang
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangyu Chen
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Hu
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Peng
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiou Gu
- First Clinical Medical College, Nanjing Medical University, Nanjing, China.,Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yueming Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
107
|
Wang H, Zhao F, Cai S, Pu Y. MiR-193a regulates chemoresistance of human osteosarcoma cells via repression of IRS2. J Bone Oncol 2019; 17:100241. [PMID: 31193934 PMCID: PMC6543196 DOI: 10.1016/j.jbo.2019.100241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 11/25/2022] Open
Abstract
Chemoresistance prevents curative potential of chemotherapy in most cases. MicroRNAs (miRNAs) are key players in regulating chemoresistance in osteosarcoma, which is the most common primary bone cancer. Bisulfite sequencing and quantitative real time PCR analyses showed that miR-193a expression is downregulated by DNA hypermethylation at its promoter region in a chemoresistant cell line, SJSA-1, compared to a chemosensitive cell line G-292. Introduction of a miR-193a mimic in SJSA-1 cells or an antagomir into G-292 cells confirmed the role of miR-193a in osteosarcoma chemoresistance. Bioinformatics together with biochemical assays showed that insulin receptor substrate 2 (IRS2) is a target of miR-193a. Our data concludes that miR-193a plays a role in the osteosarcoma chemoresistance and thus might serve as a useful biomarker for osteosarcoma prognosis.
Collapse
Key Words
- 3PA, miR-193a-3p-antagomir
- 3PM, miR-193a-3p-mimic
- Ago, miR-193a-3p's agomir
- Anta, miR-193a-3p's antagomir
- BSP, Bisulfite Sequencing PCR
- CDDP, cisplatin
- Carb, carboplatin
- Chemoresistance
- DNA methylation
- Dox, doxorubicin
- Etop, etoposide
- IRS2
- IRS2, Insulin Receptor Substrate 2
- MTX, methotrexate
- Mut, mutation-type vector
- OS, osteosarcoma
- Osteosarcoma
- UTR, untranslated region
- WT, wild-type vector
- miR, microRNA
- miR-193a-3p
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Clinical Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Fangfang Zhao
- Department of Laboratory Research Center, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Shanbao Cai
- Department of Orthopedic Surgery, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Youguang Pu
- Department of Laboratory Research Center, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| |
Collapse
|
108
|
Li Z, Wong KY, Calin GA, Chng WJ, Chan GCF, Chim CS. Epigenetic silencing of miR-340-5p in multiple myeloma: mechanisms and prognostic impact. Clin Epigenetics 2019; 11:71. [PMID: 31064412 PMCID: PMC6505104 DOI: 10.1186/s13148-019-0669-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background miR-340-5p, localized to 5q35, is a tumor suppressor miRNA implicated in multiple cancers. As a CpG island is present at the putative promoter region of its host gene, RNF130, we hypothesized that the intronic miR-340-5p is a tumor suppressor miRNA epigenetically silenced by promoter DNA methylation of its host gene in multiple myeloma. Results By pyrosequencing-confirmed methylation-specific PCR, RNF130/miR-340 was methylated in 8/15 (53.3%) myeloma cell lines but not normal plasma cells. Methylation correlated inversely with the expression of both miR-340-5p and RNF130. In completely methylated WL-2 and RPMI-8226R cells, 5-AzadC treatment led to demethylation and re-expression of miR-340-5p. In primary samples, RNF130/miR-340 methylation was detected in 4 (22.2%) monoclonal gammopathy of undetermined significance, 15 (23.8%) diagnostic myeloma, and 7 (23.3%) relapsed myeloma. RNF130/miR-340 methylation at diagnosis was associated with inferior overall survival (median 27 vs. 68 months; P = 3.944E−5). In WL-2 cells, overexpression of miR-340-5p resulted in reduced cellular proliferation [MTS, P = 0.002; verified in KMS-12-PE (P = 0.002) and RPMI-8226R (P = 2.623E−05) cells], increased cell death (trypan blue, P = 0.005), and enhanced apoptosis by annexin V-PI staining. Moreover, by qRT-PCR, overexpression of miR-340-5p led to repression of both known targets (CCND1 and NRAS) and bioinformatically predicted targets in MAPK signaling (MEKK1, MEKK2, and MEKKK3) and apoptosis (MDM4 and XIAP), hence downregulation of phospho-ERK1/2 and XIAP by Western blot. Furthermore, by qRT-PCR, in CD138-sorted primary samples (n = 37), miR-340-5p and XIAP were inversely correlated (P = 0.002). By luciferase assay, XIAP was confirmed as a direct target of miR-340-5p via targeting of the distal but not proximal seed region binding site. Conclusions Collectively, tumor-specific methylation-mediated silencing of miR-340-5p is likely an early event in myelomagenesis with adverse survival impact, via targeting multiple oncogenes in MAPK signaling and apoptosis, thereby a tumor suppressive miRNA in myeloma. Electronic supplementary material The online version of this article (10.1186/s13148-019-0669-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhai Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
109
|
Visone R, Bacalini MG, Di Franco S, Ferracin M, Colorito ML, Pagotto S, Laprovitera N, Licastro D, Di Marco M, Scavo E, Bassi C, Saccenti E, Nicotra A, Grzes M, Garagnani P, De Laurenzi V, Valeri N, Mariani-Costantini R, Negrini M, Stassi G, Veronese A. DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics 2019; 11:587-604. [PMID: 31066579 DOI: 10.2217/epi-2018-0153] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To investigate the genome-wide methylation of genetically characterized colorectal cancer stem cell (CR-CSC) lines. Materials & methods: Eight CR-CSC lines were isolated from primary colorectal cancer (CRC) tissues, cultured and characterized for aneuploidy, mutational status of CRC-related genes and microsatellite instability (MSI). Genome-wide DNA methylation was assessed by MethylationEPIC microarray. Results: We describe a distinctive methylation pattern that is maintained following in vivo passages in immune-compromised mice. We identified an epigenetic CR-CSC signature associated with MSI. We noticed that the preponderance of the differentially methylated positions do not reside at CpG islands, but spread to shelf and open sea regions. Conclusion: Given that CRCs with MSI-high status have a lower metastatic potential, the identification of a MSI-related methylation signature could provide new insights and possible targets into metastatic CRC.
Collapse
Affiliation(s)
- Rosa Visone
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | | | - Simone Di Franco
- Cellular & Molecular Pathophysiology Laboratory, Department of Surgical, Oncological & Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Luisa Colorito
- Cellular & Molecular Pathophysiology Laboratory, Department of Surgical, Oncological & Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Sara Pagotto
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Noemi Laprovitera
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Mirco Di Marco
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Emanuela Scavo
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery & Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Saccenti
- Department of Morphology, Surgery & Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Annalisa Nicotra
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Grzes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
- Department of Molecular Biology, Institute of Genetics & Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paolo Garagnani
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Vincenzo De Laurenzi
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Renato Mariani-Costantini
- Department of Medical, Oral & Biotechnological Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery & Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Stassi
- Department of Experimental, Diagnostic & Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Angelo Veronese
- Center of Aging Science & Translational Medicine (CeSI-MeT), G. d'Annunzio University, Chieti, Italy
- Department of Medicine & Aging Science, G. d'Annunzio University, Chieti-Pescara, Italy
| |
Collapse
|
110
|
Tang Y, Yang S, Wang M, Liu D, Liu Y, Zhang Y, Zhang Q. Epigenetically altered miR‑193a‑3p promotes HER2 positive breast cancer aggressiveness by targeting GRB7. Int J Mol Med 2019; 43:2352-2360. [PMID: 31017268 PMCID: PMC6488183 DOI: 10.3892/ijmm.2019.4167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence has demonstrated that microRNAs (miRNAs/miRs) have various biological functions in the development of human epidermal growth factor receptor 2 (HER2) positive breast cancer. The aim of the present study is to reveal the mechanism of miR‑193a‑3p inhibiting the progress of HER2 positive breast cancer. The expression of miR‑193a‑3p was evaluated by quantitative polymerase chain reaction (PCR). The methylation status of miR‑193a‑3p was evaluated by PCR and pyrosequencing analysis. Overexpression of miR‑193a‑3p and growth factor receptor bound protein 7 (GRB7) combined with in vitro tumorigenic assays were conducted to determine the carcinostatic capacities of miR‑193a‑3p in HER2 positive breast cancer cells. The association between miR‑193a‑3p and GRB7 was determined by luciferase reporter assay. Protein level was evaluated using western blot analysis. miR‑193a‑3p was downregulated in HER2 positive breast cancer cells and clinical tissues. Methylation‑mediated silencing led to decreased expression of miR‑193a‑3p in HER2 positive breast cancer. Overexpression of miR‑193a‑3p could inhibit proliferation, migration and invasion of breast cancer cells. Overexpression of GRB7 could abolish this effect. miR‑193a‑3p could directly target the 3' untranslated region of GRB7. miR‑193a‑3p could directly or indirectly target extracellular signal‑regulated kinase 1/2 (ERK1/2) and forkhead box M1 (FOXM1) signaling. In conclusion, it was identified that silencing of miR‑193a‑3p through hypermethylation can promote HER2 positive breast cancer progress by targeting GRB7, ERK1/2 and FOXM1 signaling. The function of miR‑193a‑3p in HER2 positive breast cancer implicates its potential application in therapy.
Collapse
Affiliation(s)
- Yiyin Tang
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Siyuan Yang
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Maohua Wang
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Dequan Liu
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Yang Liu
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Ying Zhang
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Qian Zhang
- First Department of Mammary Surgery, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
111
|
Abstract
While only a small part of the human genome encodes for proteins, biological functions for the so-called junk genome are increasingly being recognized through high-throughput technologies and mechanistic experimental studies. Indeed, novel mechanisms of gene regulation are being discovered that require coordinated interaction between DNA, RNA, and proteins. Therefore, interdisciplinary efforts are still needed to decipher these complex transcriptional networks. In this review, we discuss how non-coding RNAs (ncRNAs) are epigenetically regulated in cancer and metastases and consequently how ncRNAs participate in the sculpting of the epigenetic profile of a cancer cell, thus modulating the expression of other RNA molecules. In the latter case, ncRNAs not only affect the DNA methylation status of certain genomic loci but also interact with histone-modifying complexes, changing the structure of the chromatin itself. We present several examples of epigenetic changes causing aberrant expression of ncRNAs in the context of tumor progression. Interestingly, there are also important epigenetic changes and transcriptional regulatory effects derived from their aberrant expression. As ncRNAs can also be used as biomarkers for diagnosis and prognosis or explored as potential targets, we present insights into the use of ncRNAs for targeted cancer therapy.
Collapse
|
112
|
The Roles of MicroRNA in Lung Cancer. Int J Mol Sci 2019; 20:ijms20071611. [PMID: 30935143 PMCID: PMC6480472 DOI: 10.3390/ijms20071611] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is the most devastating malignancy in the world. Beyond genetic research, epigenomic studies—especially investigations of microRNAs—have grown rapidly in quantity and quality in the past decade. This has enriched our understanding about basic cancer biology and lit up the opportunities for potential therapeutic development. In this review, we summarize the involvement of microRNAs in lung cancer carcinogenesis and behavior, by illustrating the relationship to each cancer hallmark capability, and in addition, we briefly describe the clinical applications of microRNAs in lung cancer diagnosis and prognosis. Finally, we discuss the potential therapeutic use of microRNAs in lung cancer.
Collapse
|
113
|
Jun HH, Kwack K, Lee KH, Kim JO, Park HS, Ryu CS, Lee JY, Ko D, Kim JW, Kim NK. Association between TP53 genetic polymorphisms and the methylation and expression of miR-34a, 34b/c in colorectal cancer tissues. Oncol Lett 2019; 17:4726-4734. [PMID: 30944658 DOI: 10.3892/ol.2019.10092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/31/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancers, as evidenced by the >1.2 million patient diagnoses and 600,000 mortalities globally each year. Recently, the microRNA (miR/miRNA)-34 miRNA precursor family was revealed to participate in the tumor protein (TP)-53 pathway, which is frequently involved in CRC. Furthermore, the expression of miR-34 is reportedly regulated by DNA methylation. Accordingly, the present study investigated the correlation between the methylation status of miR-34 miRNAs and miR-34 expression in paired CRC tumor and normal tissues. The methylation status of miR-34a and miR-34b/c was determined using the MethyLight assay, and the expression of miR-34a and miR-34b/c in the same paired tissues was analyzed by reverse transcription-quantitative polymerase chain reaction. The results revealed significantly elevated miR-34a (P=0.012) and miR-34b/c (P<0.0001) methylation levels in tumor tissues when compared with normal tissues, whereas only the expression of miR-34b/c differed (P=0.005) between the paired tissues. In addition, an association between TP53 haplotypes and miR-34 family expression levels was observed. The miR-34a methylation levels in the TP53 PIN A1A1 (48.56±36.49) and TP53 MSP GG (49.00±36.44) genotypes were increased in the tumor tissues when compared with normal tissues. In conclusion, it was determined that miR-34 promoter methylation and TP53 polymorphisms may be associated with CRC pathogenesis.
Collapse
Affiliation(s)
- Hak Hoon Jun
- Department of Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Kyubum Kwack
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Keun Hee Lee
- Department of Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Han Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Daeun Ko
- Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea
| | - Jong Woo Kim
- Department of Surgery, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
114
|
Tiwari P, Gupta S, Kumar A, Sharma M, Sundararajan VS, Kothari SL, Mathur SK, Medicherla KM, Suravajhala P, Malik B. Characterizing and Functional Assignment of Noncoding RNAs. ENCYCLOPEDIA OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY 2019:47-59. [DOI: 10.1016/b978-0-12-809633-8.20077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
115
|
Xu F, Zha G, Wu Y, Cai W, Ao J. Overexpressing lncRNA SNHG16 inhibited HCC proliferation and chemoresistance by functionally sponging hsa-miR-93. Onco Targets Ther 2018; 11:8855-8863. [PMID: 30573973 PMCID: PMC6290873 DOI: 10.2147/ott.s182005] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been identified as prognostic biomarkers and functional regulators in human cancers. The present study aimed to determine the expressions and functions of an lncRNA, Small Nucleolar RNA Host Gene 16 (SNHG16), in hepatocellular carcinoma (HCC). Patients and methods SNHG16 expressions were tested by quantitative real-time PCR (qRT-PCR) in HCC cell lines, as well as 43 pairs of HCC tissues and pair-matched healthy hepatic tissues. It was overexpressed in Hep3B and HuH7 cells. The effects of SNHG16 overexpression in HCC in vitro proliferation, 5-fluorouracil (5-FU) chemoresistance, and in vivo tumor growth were tested. A potential microRNA (miRNA) sponge target of SNHG16, hsa-miR-93, was tested by luciferase reporter assay and qRT-PCR. In addition, hsa-miR-93 was upregulated in SNHG16-overexpressed HCC cells to examine its effect on SNHG16-mediated cancer cell functional regulation in HCC. Results SNHG16 levels were markedly downregulated in both HCC cell lines and HCC tissues. Lentivirus-mediated SNHG16 overexpression inhibited HCC cell proliferation, 5-FU chemoresistance, and in vivo tumor growth. Hsa-miR-93 was confirmed to be directly sponging on SNHG16. Its upregulation in HCC cells reversed SNHG16 overexpression and induced tumor-suppressing effects in HCC cells. Conclusion Our data demonstrate that SNHG16 plays a critical role in HCC development via functionally sponging hsa-miR-93.
Collapse
Affiliation(s)
- Fengfeng Xu
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China,
| | - Guoqing Zha
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yanpeng Wu
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China,
| | - Weilong Cai
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China,
| | - Jian Ao
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China,
| |
Collapse
|
116
|
The promising role of miR-296 in human cancer. Pathol Res Pract 2018; 214:1915-1922. [DOI: 10.1016/j.prp.2018.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/08/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022]
|
117
|
MicroRNA-1270 modulates papillary thyroid cancer cell development by regulating SCAI. Biomed Pharmacother 2018; 109:2357-2364. [PMID: 30551495 DOI: 10.1016/j.biopha.2018.08.150] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We intended to evaluate expression and mechanisms of human microRNA 1270 (hsa-miR-1270) in papillary thyroid cancer (PTC). METHODS In PTC cell lines and human PTC tumors, hsa-miR-1270 expressions were evaluated by qRT-PCR. Hsa-miR-1270 was downregulated in TPC1 and K1 cells via lentiviral transduction. Its effects on PTC cancer cell proliferation, migration and in vivo transplantation were assessed, respectively. Potential targeting of hsa-miR-1270 on downstream gene, Suppressor Of Cancer Cell Invasion (SCAI), was assessed. In hsa-miR-1270-downregulated PTC cells, SCAI was further downregulated to examine its associating role in hsa-miR-1270-mediated regulation on cancer cell proliferation and migration. RESULTS Hsa-miR-1270 was aberrantly upregulated in PTC cell lines and human PTC tumors. In TPC1 and K1 cells, lentivirus-mediated hsa-miR-1270 downregulation suppressed cancer cell proliferation, migration and in vivo transplantation. Hsa-miR-1270 binds SCAI and inversely regulated SCAI gene expression in PTC cells. SCAI downregulation removed the suppressing effects of hsa-miR-1270 downregulation in human PTC cells. CONCLUSION Hsa-miR-1270 downregulation may suppress human PTC cell development both in vitro and in vivo. The regulatory mechanism of hsa-miR-1270 in PTC may be primarily associated with SCAI.
Collapse
|
118
|
Yang T, Jin X, Lan J, Wang W. Long non-coding RNA SNHG16 has Tumor suppressing effect in acute lymphoblastic leukemia by inverse interaction on hsa-miR-124-3p. IUBMB Life 2018; 71:134-142. [PMID: 30380185 DOI: 10.1002/iub.1947] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/26/2018] [Accepted: 09/01/2018] [Indexed: 01/05/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is one of the deadly forms of childhood cancers in the world. In the present study, we used both in vitro and in vivo models to evaluate the functional mechanisms of a long noncoding RNA (lncRNA), small nucleolar RNA host gene 16 (SNHG16) in ALL. SNHG16 gene expression was evaluated by quantitative real-time PCR (qPCR) in both in vitro ALL cell lines and in vivo human samples of T lymphocytes. Lentivirus-mediated SNHG16 downregulation was performed in MOLT3 and SUP-B15 cells, to evaluate its functional effects on ALL cell proliferation, migration in vitro, and ALL transplant in vivo. Epigenetic regulation of SNHG16 on human miR-124-3p (hsa-miR-124-3p) was evaluated by dual-luciferase activity assay and qPCR. Hsa-miR-124-3p was inhibited in SNHG16-downregulated MOLT3 and SUP-B15 cells to further evaluate the functional correlation between SNHG16 and hsa-miR-124-3p in ALL. SNHG16 is upregulated in both in vitro ALL cell lines and in vivo human leukemic T-cells. SNHG16 downregulation suppressed ALL proliferation and migration in vitro, and ALL explant in vivo. Hsa-miR-124-3p was demonstrated to interact with SNHG16, and upregulated in SNHG16-downregulated ALL cells. In addition, inhibiting hsa-miR-124-3p reversed SNHG16-downregulation-mediated tumor suppressive functions in ALL. SNHG16 is upregulated in ALL, and its inhibition has tumor suppressive effect in ALL, likely through epigenetic interaction on hsa-miR-124-3p. © 2018 IUBMB Life, 71(1):134-142, 2019.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Hematology, Zhejiang Province People's Hospital, Hangzhou, 310014, China
| | - Xing Jin
- Department of Hematology, Zhejiang Province People's Hospital, Hangzhou, 310014, China
| | - Jianping Lan
- Department of Hematology, Zhejiang Province People's Hospital, Hangzhou, 310014, China
| | - Wensong Wang
- Department of Hematology, Zhejiang Province People's Hospital, Hangzhou, 310014, China
| |
Collapse
|
119
|
Oltra SS, Peña-Chilet M, Vidal-Tomas V, Flower K, Martinez MT, Alonso E, Burgues O, Lluch A, Flanagan JM, Ribas G. Methylation deregulation of miRNA promoters identifies miR124-2 as a survival biomarker in Breast Cancer in very young women. Sci Rep 2018; 8:14373. [PMID: 30258192 PMCID: PMC6158237 DOI: 10.1038/s41598-018-32393-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/02/2018] [Indexed: 01/02/2023] Open
Abstract
MiRNAs are part of the epigenetic machinery, and are also epigenetically modified by DNA methylation. MiRNAs regulate expression of different genes, so any alteration in their methylation status may affect their expression. We aimed to identify methylation differences in miRNA encoding genes in breast cancer affecting women under 35 years old (BCVY), in order to identify potential biomarkers in these patients. In Illumina Infinium MethylationEPIC BeadChip samples (metEPICVal), we analysed the methylation of 9,961 CpG site regulators of miRNA-encoding genes present in the array. We identified 193 differentially methylated CpG sites in BCVY (p-value < 0.05 and methylation differences ±0.1) that regulated 83 unique miRNA encoding genes. We validated 10 CpG sites using two independent datasets based on Infinium Human Methylation 450k array. We tested gene expression of miRNAs with differential methylation in BCVY in a meta-analysis using The Cancer Genome Atlas (TCGA), Clariom D and Affymetrix datasets. Five miRNAs (miR-9, miR-124-2, miR-184, miR-551b and miR-196a-1) were differently expressed (FDR p-value < 0.01). Finally, only miR-124-2 shows a significantly different gene expression by quantitative real-time PCR. MiR-124-hypomethylation presents significantly better survival rates for older patients as opposed to the worse prognosis observed in BCVY, identifying it as a potential specific survival biomarker in BCVY.
Collapse
Affiliation(s)
- Sara S Oltra
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Maria Peña-Chilet
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Victoria Vidal-Tomas
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Kirsty Flower
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - María Teresa Martinez
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Elisa Alonso
- Pathology Department, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Octavio Burgues
- Pathology Department, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain
| | - Ana Lluch
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain.,Center for Biomedical Network Research on Cancer, Valencia, Spain
| | - James M Flanagan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Gloria Ribas
- INCLIVA Biomedical Research Institute, Hospital Clínico Universitario Valencia, University of Valencia, Valencia, Spain. .,Center for Biomedical Network Research on Cancer, Valencia, Spain.
| |
Collapse
|
120
|
|
121
|
Puca AA, Spinelli C, Accardi G, Villa F, Caruso C. Centenarians as a model to discover genetic and epigenetic signatures of healthy ageing. Mech Ageing Dev 2018; 174:95-102. [DOI: 10.1016/j.mad.2017.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 01/07/2023]
|
122
|
High-throughput chemical screening to discover new modulators of microRNA expression in living cells by using graphene-based biosensor. Sci Rep 2018; 8:11413. [PMID: 30061704 PMCID: PMC6065314 DOI: 10.1038/s41598-018-29633-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulatory RNAs that control gene expression in various biological processes. Therefore, control over the disease-related miRNA expression is important both for basic research and for a new class of therapeutic modality to treat serious diseases such as cancer. Here, we present a high-throughput screening strategy to identify small molecules that modulate miRNA expression in living cells. The screen enables simultaneous monitoring of the phenotypic cellular changes associated with the miRNA expression by measuring quantitative fluorescent signals corresponding to target miRNA level in living cells based on a novel biosensor composed of peptide nucleic acid and nano-sized graphene oxide. In this study, the biosensor based cellular screening of 967 compounds (including FDA-approved drugs, enzyme inhibitors, agonists, and antagonists) in cells identified four different classes of small molecules consisting of (i) 70 compounds that suppress both miRNA-21 (miR-21) expression and cell proliferation, (ii) 65 compounds that enhance miR-21 expression and reduce cell proliferation, (iii) 2 compounds that suppress miR-21 expression and increase cell proliferation, and (iv) 21 compounds that enhance both miR-21 expression and cell proliferation. We further investigated the hit compounds to correlate cell morphology changes and cell migration ability with decreased expression of miR-21.
Collapse
|
123
|
Zhang W, Jiang M, Chen J, Zhang R, Ye Y, Liu P, Yu W, Yu J. SOCS3 Suppression Promoted the Recruitment of CD11b +Gr-1 -F4/80 -MHCII - Early-Stage Myeloid-Derived Suppressor Cells and Accelerated Interleukin-6-Related Tumor Invasion via Affecting Myeloid Differentiation in Breast Cancer. Front Immunol 2018; 9:1699. [PMID: 30083161 PMCID: PMC6064721 DOI: 10.3389/fimmu.2018.01699] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) is an important trigger for the expansion and recruitment of myeloid-derived suppressor cells (MDSCs), which are regarded to be major coordinators of the immunosuppressive tumor microenvironment. In this study, we constructed IL-6-knockdown breast cancer mice models to explore the molecular events involved in the IL-6-mediated effects on MDSC development. We defined a subset of early-stage MDSCs (e-MDSCs) with the phenotype of CD11b+Gr-1−F4/80−MHCII− in IL-6 high-expressing 4T1 mice mammary carcinoma models, which were the precursors of CD11b+Gr-1+ conventional MDSCs. Furthermore, sustained suppression of SOCS3 and aberrant hyperactivation of the JAK/STAT signaling pathway was exclusively detected in wide-type 4T1 tumor-bearing mice, which promoted the accumulation of e-MDSCs in situ and their immunosuppressive capability in vitro. After blocking the IL-6/STAT3 signaling pathway with the IL-6 receptor antibody or STAT3 antagonist JSI-124 in tumor-bearing mice, significant shrinkage of primary tumors and decrease in lung metastatic nodules were observed in vivo, accompanied by the dramatic decrease of e-MDSC recruitment and recovery of anti-tumor T cell immunity. Thus, SOCS3 suppression accelerated the IL-6-mediated growth and metastasis of mammary carcinoma via affecting myeloid differentiation in breast cancer. Moreover, the IL-6/STAT3 signaling pathway might be a promising candidate target in developing novel therapeutic strategies to eliminate e-MDSCs and improve breast cancer prognosis.
Collapse
Affiliation(s)
- Wenwen Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Mengmeng Jiang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jieying Chen
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
124
|
Abstract
MicroRNAs are short regulatory RNAs that posttranscriptionally modulate gene expression and thus play crucial roles in controlling cancer-onset, growth, and progression processes. miR107, a highly conserved microRNA that maps to intron 5 of the PANK1 gene, contributes to the regulation of normal and tumor biological processes. Studies have reported that miR107 has oncogenic or tumor-suppressor functions in different human tumors. The pleiotropic functions of miR107 in various cancers are achieved via its targeting different genes that are involved in tumor proliferation, invasiveness, metastasis, angiogenesis, and chemotherapy-response pathways. The carcinogenicity or cancer-suppressor effects of miR107 occur in a tissue- and cell-specific manner, and the expression level of miR107 can be affected by various factors, including epigenetic and genetic factors, treatment exposure, and daily diet. A comprehensive analysis of the current literature suggests that miR107 functions as a central element in the regulation of cancer networks and can be used as a potential diagnostic and prognostic biomarker and drug target for therapeutic intervention.
Collapse
Affiliation(s)
- Zhiying Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China, .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China,
| | - Yi Zheng
- Department of Pharmacy, Hunan Province Maternal and Child Health, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China, .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China,
| |
Collapse
|
125
|
Splicing factors as regulators of miRNA biogenesis – links to human disease. Semin Cell Dev Biol 2018; 79:113-122. [DOI: 10.1016/j.semcdb.2017.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022]
|
126
|
Circular RNA CpG island hypermethylation-associated silencing in human cancer. Oncotarget 2018; 9:29208-29219. [PMID: 30018746 PMCID: PMC6044373 DOI: 10.18632/oncotarget.25673] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Noncoding RNAs (ncRNAs), such as microRNAs and long noncoding RNAs (lncRNAs), participate in cellular transformation. Work done in the last decade has also demonstrated that ncRNAs with growth-inhibitory functions can undergo promoter CpG island hypermethylation-associated silencing in tumorigenesis. Herein, we wondered whether circular RNAs (circRNAs), a type of RNA transcripts lacking 5′-3′ ends and forming closed loops that are gaining relevance in cancer biology, are also a target of epigenetic inactivation in tumors. To tackle this issue, we have used cancer cells genetically deficient for the DNA methyltransferase enzymes in conjuction with circRNA expression microarrays. We have found that the loss of DNA methylation provokes a release of circRNA silencing. In particular, we have identified that promoter CpG island hypermethylation of the genes TUSC3 (tumor suppressor candidate 3), POMT1 (protein O-mannosyltransferase 1), ATRNL1 (attractin-like 1) and SAMD4A (sterile alpha motif domain containing 4A) is linked to the transcriptional downregulation of both linear mRNA and the hosted circRNA. Although some circRNAs regulate the linear transcript, we did not observe changes in TUSC3 mRNA levels upon TUSC3 circ104557 overexpression. Interestingly, we found circRNA-mediated regulation of target miRNAs and an in vivo growth inhibitory effect upon TUSC3 circ104557 transduction. Data mining for 5′-end CpG island methylation of TUSC3, ATRNL1, POMT1 and SAMD4A in cancer cell lines and primary tumors showed that the epigenetic defect was commonly observed among different tumor types in association with the diminished expression of the corresponding transcript. Our findings support a role for circRNA DNA methylation-associated loss in human cancer.
Collapse
|
127
|
Heller G, Altenberger C, Steiner I, Topakian T, Ziegler B, Tomasich E, Lang G, End-Pfützenreuter A, Zehetmayer S, Döme B, Arns BM, Klepetko W, Zielinski CC, Zöchbauer-Müller S. DNA methylation of microRNA-coding genes in non-small-cell lung cancer patients. J Pathol 2018; 245:387-398. [PMID: 29570800 PMCID: PMC6055722 DOI: 10.1002/path.5079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
Deregulated DNA methylation leading to transcriptional inactivation of certain genes occurs frequently in non‐small‐cell lung cancers (NSCLCs). As well as protein‐coding genes, microRNA (miRNA)‐coding genes may be targets for methylation in NSCLCs; however, the number of known methylated miRNA genes is still small. Thus, we investigated methylation of miRNA genes in primary tumour (TU) samples and corresponding non‐malignant lung tissue (NL) samples of 50 NSCLC patients by using methylated DNA immunoprecipitation followed by custom‐designed tiling microarray analyses (MeDIP‐chip), and 252 differentially methylated probes between TU samples and NL samples were identified. These probes were annotated, which resulted in the identification of 34 miRNA genes with increased methylation in TU samples. Some of these miRNA genes were already known to be methylated in NSCLCs (e.g. those encoding miR‐9‐3 and miR‐124), but methylation of the vast majority of them was previously unknown. We selected six miRNA genes (those encoding miR‐10b, miR‐1179, miR‐137, miR‐572, miR‐3150b, and miR‐129‐2) for gene‐specific methylation analyses in TU samples and corresponding NL samples of 104 NSCLC patients, and observed a statistically significant increase in methylation of these genes in TU samples (p < 0.0001). In silico target prediction of the six miRNAs identified several oncogenic/cell proliferation‐promoting factors (e.g. CCNE1 as an miR‐1179 target). To investigate whether miR‐1179 indeed targets CCNE1, we transfected miR‐1179 gene mimics into CCNE1‐expressing NSCLC cells, and observed downregulated CCNE1 mRNA expression in these cells as compared with control cells. Similar effects on cyclin E1 expression were seen in western blot analyses. In addition, we found a statistically significant reduction in the growth of NSCLC cells transfected with miR‐1179 mimics as compared with control cells. In conclusion, we identified many methylated miRNA genes in NSCLC patients, and found that the miR‐1179 gene is a potential tumour cell growth suppressor in NSCLCs. Overall, our findings emphasize the impact of miRNA gene methylation on the pathogenesis of NSCLCs. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gerwin Heller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Corinna Altenberger
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Irene Steiner
- Centre for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Thais Topakian
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Barbara Ziegler
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Erwin Tomasich
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - György Lang
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Adelheid End-Pfützenreuter
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Sonja Zehetmayer
- Centre for Medical Statistics, Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary.,Department of Tumour Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | | | - Walter Klepetko
- Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph C Zielinski
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Sabine Zöchbauer-Müller
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
128
|
Allen B, Schneider A, Victoria B, Nunez Lopez YO, Muller M, Szewczyk M, Pazdrowski J, Majchrzak E, Barczak W, Golusinski W, Golusinski P, Masternak MM. Blood Serum From Head and Neck Squamous Cell Carcinoma Patients Induces Altered MicroRNA and Target Gene Expression Profile in Treated Cells. Front Oncol 2018; 8:217. [PMID: 29942793 PMCID: PMC6004400 DOI: 10.3389/fonc.2018.00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022] Open
Abstract
The head and neck squamous cell carcinoma (HNSCC) represents one of the most common cancers in humans. Close to 600,000 new diagnoses are made every year worldwide and over half of diagnosed patients will not survive. In view of this low survival rate, the development of novel cell-based assays for HNSCC will allow more mechanistic approaches for specific diagnostics for each individual patient. The cell-based assays will provide more informative data predicting cellular processes in treated patient, which in effect would improve patient follow up. More importantly, it will increase the specificity and effectiveness of therapeutic approaches. In this study, we investigated the role of serum from HNSCC patients on the regulation of microRNA (miRNA) expression in exposed cells in vitro. Next-generation sequencing of miRNA revealed that serum from HNSCC patients induced a different miRNA expression profile than the serum from healthy individuals. Out of 377 miRNA detected, we found that 16 miRNAs were differentially expressed when comparing cells exposed to serum from HNSCC or healthy individuals. The analysis of gene ontologies and pathway analysis revealed that these miRNA target genes were involved in biological cancer-related processes, including cell cycle and apoptosis. The real-time PCR analysis revealed that serum from HNSCC patients downregulate the expression level of five genes involved in carcinogenesis and two of these genes-P53 and SLC2A1-are direct targets of detected miRNAs. These novel findings provide new insight into how cancer-associated factors in circulation regulate the expression of genes and regulatory elements in distal cells in favor of tumorigenesis. This has the potential for new therapeutic approaches and more specific diagnostics with tumor-specific cell lines or single-cell in vitro assays for personalized treatment and early detection of primary tumors or metastasis.
Collapse
Affiliation(s)
- Brittany Allen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Yury O Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, United States
| | - Mark Muller
- Epigenetics Division, TopoGEN Inc, Buena Vista, CO, United States
| | - Mateusz Szewczyk
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Jakub Pazdrowski
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Ewa Majchrzak
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wojciech Barczak
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Pawel Golusinski
- Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland.,Biology and Environmental Studies, Head and Neck Cancer Biology Laboratory, Poznań University of Medical Sciences, Poznan, Poland
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States.,Department of Head and Neck Surgery, Poznań University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
129
|
Llinàs-Arias P, Esteller M. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: an update. Open Biol 2018; 7:rsob.170152. [PMID: 28931650 PMCID: PMC5627056 DOI: 10.1098/rsob.170152] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer cells undergo many different alterations during their transformation, including genetic and epigenetic events. The controlled division of healthy cells can be impaired through the downregulation of tumour suppressor genes. Here, we provide an update of the mechanisms in which epigenetically altered coding and non-coding tumour suppressor genes are implicated. We will highlight the importance of epigenetics in the different molecular pathways that lead to enhanced and unlimited capacity of division, genomic instability, metabolic shift, acquisition of mesenchymal features that lead to metastasis, and tumour plasticity. We will briefly describe these pathways, focusing especially on genes whose epigenetic inactivation through DNA methylation has been recently described, as well as on those that are well established as being epigenetically silenced in cancer. A brief perspective of current clinical therapeutic approaches that can revert epigenetic inactivation of non-coding tumour suppressor genes will also be given.
Collapse
Affiliation(s)
- Pere Llinàs-Arias
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain .,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Carrer de la Feixa Llarga, s/n, 08908 L'Hospitalet, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
130
|
Gga-miR-130b-3p inhibits MSB1 cell proliferation, migration, invasion, and its downregulation in MD tumor is attributed to hypermethylation. Oncotarget 2018; 9:24187-24198. [PMID: 29849932 PMCID: PMC5966247 DOI: 10.18632/oncotarget.24679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/27/2018] [Indexed: 01/07/2023] Open
Abstract
Marek's disease is an oncogenic and lymphoproliferative disease of chickens caused by Marek's disease virus. Hypermethylation or hypomethylation of CpG islands in gene promoter region are involved in the initiation and progression of carcinogenesis. In this study, we analyzed differential methylation levels of upstream region of gga-miR-130b-3p gene between Marek's disease virus-infected tumorous and non-infected spleens. Around the upstream 1 kb of gga-miR-130b-3p gene, two amplicons were designed that covered 616 bp. There were forty-eight CpG sites in this region. CpG sites in this region presented higher methylation level in tumorous spleens compared with that in non-infected ones. There were eight CpG sites significantly hypermethylated in tumorous spleens. The expression level of three DNA methyltransferases including DNMT1, DNMT3a and DNMT3b increased and the expression level of Tet ten-eleven translocation protein 2 remarkably decreased in tumorous spleens. Hypermethylation in the upstream region of gga-miR-130b-3p gene might be a direct reason for its downregulation in MD tumorous tissues. Moreover, cell proliferation of Marek's disease lymphoblastoid cell line MDCC-MSB1 was remarkably inhibited at 24, 36, 48, 60 and 72 h post-gga-miR-130b-3p-agomir transfection. The transwell migration assay indicated cell number of migration was significantly lower in miRNA agomir transfection group. Matrix metalloproteinases MMP2 and MMP9 are involved in tumor invasion, and their protein levels were significantly downregulated at 72 h post-miRNA-agomir transfection. Collectively, these results indicated that hypermethylation in upstream region of gga-miR-130b-3p gene contributed to its downregulation in tumorous tissues. Gga-miR-130b-3p plays an inhibitory role in lymphomatous cell transformation.
Collapse
|
131
|
Koshizuka K, Hanazawa T, Arai T, Okato A, Kikkawa N, Seki N. Involvement of aberrantly expressed microRNAs in the pathogenesis of head and neck squamous cell carcinoma. Cancer Metastasis Rev 2018; 36:525-545. [PMID: 28836104 DOI: 10.1007/s10555-017-9692-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as fine-tuners of the post-transcriptional control of protein-coding or noncoding RNAs by repressing translation or cleaving RNA transcripts in a sequence-dependent manner in cells. Accumulating evidence have been indicated that aberrantly expressed miRNAs are deeply involved in human pathogenesis, including cancers. Surprisingly, these small, single-stranded RNAs (18-23 nucleotides) have been shown to function as antitumor or oncogenic RNAs in several types of cancer cells. A single miRNA has regulating hundreds or thousands of different mRNAs, and individual mRNA has been regulated by multiple different miRNAs in normal cells. Therefore, tightly controlled RNA networks can be disrupted by dysregulated of miRNAs in cancer cells. Investigation of novel miRNA-mediated RNA networks in cancer cells could provide new insights in the field of cancer research. In this review, we focus on head and neck squamous cell carcinoma (HNSCC) and discuss current findings of the involvement of aberrantly expressed miRNAs in the pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Naoko Kikkawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
132
|
Allen B, Pezone A, Porcellini A, Muller MT, Masternak MM. Non-homologous end joining induced alterations in DNA methylation: A source of permanent epigenetic change. Oncotarget 2018; 8:40359-40372. [PMID: 28423717 PMCID: PMC5522286 DOI: 10.18632/oncotarget.16122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/07/2017] [Indexed: 01/11/2023] Open
Abstract
In addition to genetic mutations, epigenetic revision plays a major role in the development and progression of cancer; specifically, inappropriate DNA methylation or demethylation of CpG residues may alter the expression of genes that promote tumorigenesis. We hypothesize that DNA repair, specifically the repair of DNA double strand breaks (DSB) by Non-Homologous End Joining (NHEJ) may play a role in this process. Using a GFP reporter system inserted into the genome of HeLa cells, we are able to induce targeted DNA damage that enables the cells, after successfully undergoing NHEJ repair, to express WT GFP. These GFP+ cells were segregated into two expression classes, one with robust expression (Bright) and the other with reduced expression (Dim). Using a DNA hypomethylating drug (AzadC) we demonstrated that the different GFP expression levels was due to differential methylation statuses of CpGs in regions on either side of the break site. Deep sequencing analysis of this area in sorted Bright and Dim populations revealed a collection of different epi-alleles that display patterns of DNA methylation following repair by NHEJ. These patterns differ between Bright and Dim cells which are hypo- and hypermethylated, respectively, and between the post-repair populations and the original, uncut cells. These data suggest that NHEJ repair facilitates a rewrite of the methylation landscape in repaired genes, elucidating a potential source for the altered methylation patterns seen in cancer cells, and understanding the mechanism by which this occurs could provide new therapeutic targets for preventing this process from contributing to tumorigenesis.
Collapse
Affiliation(s)
- Brittany Allen
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Antonio Pezone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, Napoli, Italy
| | | | - Mark T Muller
- Epigenetics Division, TopoGEN, Inc., Buena Vista, CO, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.,Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland, Europe
| |
Collapse
|
133
|
Sahabi K, Selvarajah GT, Abdullah R, Cheah YK, Tan GC. Comparative aspects of microRNA expression in canine and human cancers. J Vet Sci 2018; 19:162-171. [PMID: 28927253 PMCID: PMC5879064 DOI: 10.4142/jvs.2018.19.2.162] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/19/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have important roles in all biological pathways in multicellular organisms. Over 1,400 human miRNAs have been identified, and many are conserved among vertebrates and invertebrates. Regulation of miRNA is the most common mode of post-transcriptional gene regulation. The miRNAs that are involved in the initiation and progression of cancers are termed oncomiRs and several of them have been identified in canine and human cancers. Similarly, several miRNAs have been reported to be down-regulated in cancers of the two species. In this review, current information on the expression and roles of miRNAs in oncogenesis and progression of human and canine cancers, as well the roles miRNAs have in cancer stem cell biology, are highlighted. The potential for the use of miRNAs as therapeutic targets in personalized cancer therapy in domestic dogs and their possible application in human cancer counterparts are also discussed.
Collapse
Affiliation(s)
- Kabiru Sahabi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Gayathri T Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Rasedee Abdullah
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
134
|
Li J, Ju J, Ni B, Wang H. The emerging role of miR-506 in cancer. Oncotarget 2018; 7:62778-62788. [PMID: 27542202 PMCID: PMC5308765 DOI: 10.18632/oncotarget.11294] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. They are involved in almost all biological processes, and many have been identified as potential oncogenes or tumor suppressor genes. miR-506 was recently discovered to play pivotal roles in regulating cell proliferation, differentiation, migration and invasion. Dysregulation of miR-506 has been demonstrated in multiple types of cancers; however, whether it functions as an oncogene or a tumor suppressor seems to be context-dependent. Altered miR-506 expression in cancer is caused by promoter methylation and changes in upstream transcription factors. In this review, we summarize the current understanding of the diverse roles and underlying mechanisms of miR-506 and its involvement in cancer, and suggest the potential therapeutic strategy based on miR-506.
Collapse
Affiliation(s)
- Jian Li
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Jingfang Ju
- Translational Research Laboratory, Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing, PR China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
135
|
Li Y, Li L, Qian Z, Lin B, Chen J, Luo Y, Qu J, Raj JU, Gou D. Phosphatidylinositol 3-Kinase-DNA Methyltransferase 1-miR-1281-Histone Deacetylase 4 Regulatory Axis Mediates Platelet-Derived Growth Factor-Induced Proliferation and Migration of Pulmonary Artery Smooth Muscle Cells. J Am Heart Assoc 2018; 7:e007572. [PMID: 29514810 PMCID: PMC5907547 DOI: 10.1161/jaha.117.007572] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Platelet-derived growth factor BB, a potent mitogen of pulmonary artery smooth muscle cells (PASMCs), has been implicated in pulmonary arterial remodeling, which is a key pathogenic feature of pulmonary arterial hypertension. Previous microRNA profiling in platelet-derived growth factor BB-treated PASMCs found a significantly downregulated microRNA, miR-1281, but it has not been associated with any cellular function, and we investigated the possibility. METHODS AND RESULTS Real-time quantitative reverse transcription-polymerase chain reaction assay proved that downregulation of miR-1281 was a conserved phenomenon in human and rat PASMCs. Overexpression and inhibition of miR-1281 in PASMCs promoted and suppressed, respectively, the cell proliferation and migration. Bioinformatic prediction and 3'-untranslated region reporter assay identified histone deacetylase 4 to be a direct target of miR-1281. Supporting this, proliferation and migration assay demonstrated the cellular function of histone deacetylase 4 is inversely correlated with that of miR-1281. Mechanistically, it is found that platelet-derived growth factor BB activates the phosphatidylinositol 3-kinase pathway, which then induces the expression of DNA methyltransferase 1, leading to enhanced methylation of a flanking CpG island and repressed miR-1281 expression. Finally, a reduced miR-1281 level was consistently identified in hypoxic PASMCs in vitro, in pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension, and in serum of patients with coronary heart disease-pulmonary arterial hypertension. These data suggest that there may be a diagnostic and therapeutic use for miR-1281. CONCLUSIONS Herein, we report a novel regulatory axis, phosphatidylinositol 3-kinase-DNA methyltransferase 1-miR-1281-histone deacetylase 4, integrating multiple epigenetic regulators that participate in platelet-derived growth factor BB-stimulated PASMC proliferation and migration and pulmonary vascular remodeling.
Collapse
MESH Headings
- Animals
- Becaplermin/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Disease Models, Animal
- HEK293 Cells
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Monocrotaline
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphatidylinositol 3-Kinase/metabolism
- Pulmonary Artery/enzymology
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Yanjiao Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhengjiang Qian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Boya Lin
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Jidong Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yixuan Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, IL
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
136
|
Yi JM, Kang EJ, Kwon HM, Bae JH, Kang K, Ahuja N, Yang K. Epigenetically altered miR-1247 functions as a tumor suppressor in pancreatic cancer. Oncotarget 2018; 8:26600-26612. [PMID: 28460450 PMCID: PMC5432282 DOI: 10.18632/oncotarget.15722] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/13/2017] [Indexed: 01/06/2023] Open
Abstract
Altered expression of microRNAs has been strongly implicated in human cancers, and growing evidence is emerging that a number of miRNAs are downregulated in cancer associated with CpG island hypermethylation. Although pancreatic cancer is one of the most malignant human cancers, the roles of miRNAs underlying the tumorigenesis of pancreatic cancer are still poorly understood. In the present study, we explored the molecular functional role of microRNA-1247 as tumor suppressor associated with epigenetic alteration in pancreatic cancer. CpG islands methylation of miR-1247 is frequently observed in various pancreatic cancer cell lines and in primary pancreatic tumors, but not in normal pancreatic tissue. Ectopic expression of miR-1247 in five pancreatic cancer cell lines results in suppressing of cell growth, proliferation, migration, and invasion in vitro and tumorigenicity of pancreatic cancer cells in vivo. Interestingly, we found one putative target gene of miR-1247, regulator of chromosome condensation 2 (RCC2), harbored miR-1247 target sequences in the 3′ UTR of its mRNA. In functional studies in vitro to understand the interaction between miR-1247 and RCC2, decreasing of RCC2 gene expression by miR-1247 was observed by immunoblotting and immunohistochemistry at both mRNA and protein levels. Moreover, luciferase reporter assay confirmed that RCC2 was a direct target of miR-1247. Taken together, our data suggest that CpG island hypermethylation of miR-1247 is responsible for its downregulation in pancreatic cancer, and ectopic expression of miR-1247 functions as a potential tumor suppressor targeting RCC2 in pancreatic cancer cells.
Collapse
Affiliation(s)
- Joo Mi Yi
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Eun-Jin Kang
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Hyun-Mi Kwon
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Jin-Han Bae
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, Korea, Republic of Korea
| | - Nita Ahuja
- Department of Surgery, Oncology, and Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, Republic of Korea
| |
Collapse
|
137
|
Khan MI, Rath S, Adhami VM, Mukhtar H. Targeting epigenome with dietary nutrients in cancer: Current advances and future challenges. Pharmacol Res 2018; 129:375-387. [DOI: 10.1016/j.phrs.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
138
|
Abstract
Lung cancer is the leading cause of cancer deaths worldwide and over 80% of lung cancer patients are classified as having non-small cell lung cancer. Although there have been technological advancements in the early detection and standard treatment of lung cancer, it is often diagnosed at an advanced stage and is chemoresistant to most available drugs. A number of studies have demonstrated that microRNA is able to modulate various tumorigenic processes, including progression and metastasis, in various mechanisms. In this review we examine the most recent achievements in microRNA and lung cancer treatment and summarize the research progress on the reciprocal regulation between microRNA and epigenetic modifications, as both have been intensively studied in lung cancer. Epigenetic modifications on the human genome regulate gene and microRNA expression at the transcriptional level; inversely, microRNA can also transcriptionally cleave and/or translationally repress the expression of several key enzymes involved in epigenetic processes such as DNA methylation and histone modification. Better understanding of reciprocal regulation between microRNA and epigenetic modifications will underlie the development of novel microRNA orientated diagnostic and therapeutic strategies relating to lung cancer in the near future.
Collapse
Affiliation(s)
- Rajeev Kumar
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Yaguang Xi
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
139
|
Li Y, Shao G, Zhang M, Zhu F, Zhao B, He C, Zhang Z. miR-124 represses the mesenchymal features and suppresses metastasis in Ewing sarcoma. Oncotarget 2018; 8:10274-10286. [PMID: 28055964 PMCID: PMC5354658 DOI: 10.18632/oncotarget.14394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022] Open
Abstract
Metastasis is the most powerful predictor of poor outcome of Ewing sarcoma (ES). Thus, identification of new molecules involved in tumor metastasis is of crucial importance to reduce morbidity and mortality of this devastating disease. In this study, we found that miR-124, a highly conserved miRNA, was suppressed in ES tissues and might be associated with tumor metastasis through suppressing its mesenchymal features. Overexpression of miR-124 suppressed the invasion of ES cells in vitro and tumor metastasis in vivo, which might be achieved through suppressing its mesenchymal features, as overexpression of miR-124 could repress the mesenchymal genes expression, and inhibit cell differentiation to mesenchymal lineages in ES cells. However, when SLUG was experimentally restored in these cells, mesenchymal features including suppressed expression of mesenchymal genes and decreased invasive ability were observed. We also found that cyclin D2 (CCND2) was a novel target gene of miR-124, and was directly involved in miR-124-mediated suppressive effects on cell growth. Lastly, we found that treatment with 5-Aza-CdR restored the expression of miR-124, accompanied with suppressed cell proliferation, invasion and mesenchymal features of ES cells, which demonstrated that hypermethylation might be involved in the regulation of miR-124 expression. Collectively, our data suggest that hypermethylation-mediated suppression of miR-124 might be involved in the tumor initiation and metastasis through suppressing the mesenchymal features of ES cells.
Collapse
Affiliation(s)
- Yunyun Li
- Department of Gynecology and Obstetrics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Gaohai Shao
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Minghua Zhang
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Fengchen Zhu
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Bo Zhao
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Chao He
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| | - Zhongzu Zhang
- Department of Orthopedics, the Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, PR China
| |
Collapse
|
140
|
Wang ZL, Zhang CB, Wang Z, Meng XQ, Liu XJ, Han B, Duan CB, Cai JQ, Hao ZF, Chen MH, Jiang T, Li YL, Jiang CL, Wang HJ. MiR-134, epigenetically silenced in gliomas, could mitigate the malignant phenotype by targeting KRAS. Carcinogenesis 2018; 39:389-396. [PMID: 29432532 DOI: 10.1093/carcin/bgy022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhi-liang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuan-bao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiang-qi Meng
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang Province, China
| | - Xiao-juan Liu
- Hematological Department, Harbin Institute of Hematology and Oncology, Harbin, Heilong Jiang Province, China
| | - Bo Han
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang Province, China
| | - Chun-bin Duan
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang Province, China
| | - Jin-quan Cai
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang Province, China
| | - Zhong-fei Hao
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang Province, China
| | - Ming-hui Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang Province, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong-li Li
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang Province, China
| | - Chuan-lu Jiang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang Province, China
| | - Hong-jun Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilong Jiang Province, China
| |
Collapse
|
141
|
Epigenetics and MicroRNAs in Cancer. Int J Mol Sci 2018; 19:ijms19020459. [PMID: 29401683 PMCID: PMC5855681 DOI: 10.3390/ijms19020459] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
The ability to reprogram the transcriptional circuitry by remodeling the three-dimensional structure of the genome is exploited by cancer cells to promote tumorigenesis. This reprogramming occurs because of hereditable chromatin chemical modifications and the consequent formation of RNA-protein-DNA complexes that represent the principal actors of the epigenetic phenomena. In this regard, the deregulation of a transcribed non-coding RNA may be both cause and consequence of a cancer-related epigenetic alteration. This review summarizes recent findings that implicate microRNAs in the aberrant epigenetic regulation of cancer cells.
Collapse
|
142
|
Li Z, Wong KY, Chan GCF, Chng WJ, Chim CS. Epigenetic silencing of EVL/miR-342 in multiple myeloma. Transl Res 2018; 192:46-53. [PMID: 29242101 DOI: 10.1016/j.trsl.2017.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022]
Abstract
miR-342-3p, localized to 14q32, is a tumor suppressor miRNA implicated in multiple cancers. As the promoter region of its host gene, EVL, is embedded in a CpG island, we postulated that miR-342-3p is an intronic miRNA co-regulated with its host gene by promoter DNA methylation in multiple myeloma (MM). By methylation-specific polymerase chain reaction, verified by quantitative bisulfite pyrosequencing, methylation of EVL/miR-342 was absent in all healthy controls (n = 10) and 12 of 15 (80%) human myeloma cell lines (HMCLs), but partially methylated in 3 of 15 (20%) HMCLs, including KMS-12-PE, OCI-MY5, and RPMI-8226R. In HMCLs, by real-time quantitative reverse transcription-polymerase chain reaction, methylation of EVL/miR-342 correlated with lower expression of both EVL (P = 0.013) and miR-342-3p (P = 0.023). Moreover, in KMS-12-PE and RPMI-8226R cells, both partially methylated for EVL/miR-342, 5-AzadC treatment led to demethylation of EVL/miR-342 and re-expression of miR-342-3p. Upon removal of 5-AzadC, continuous culture resulted in restoration of EVL/miR-342 methylation and downregulation of miR-342-3p. In primary samples, methylation of EVL/miR-342 was detected in 1 of 18 (5.6%) monoclonal gammopathy of undetermined significance (MGUS), 8 of 63 (12.7%) diagnostic MM, and 5 of 30 (16.7%) relapsed MM. EVL/miR-342 methylation was preferentially detected in IgD MM but not found to impact survival. Collectively, in MM, miR-342-3p is an intronic miRNA regulated by promoter DNA methylation of its host gene, EVL, in a tumor-specific manner. Methylation of EVL/miR-342 was present in consecutive stages of myelomagenesis including MGUS, diagnostic MM, and relapsed MM.
Collapse
Affiliation(s)
- Zhenhai Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong.
| |
Collapse
|
143
|
Porcellini E, Laprovitera N, Riefolo M, Ravaioli M, Garajova I, Ferracin M. Epigenetic and epitranscriptomic changes in colorectal cancer: Diagnostic, prognostic, and treatment implications. Cancer Lett 2018; 419:84-95. [PMID: 29360561 DOI: 10.1016/j.canlet.2018.01.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/07/2018] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
A cancer cell is the final product of a complex mixture of genetic, epigenetic and epitranscriptomic alterations, whose final interplay contribute to cancer onset and progression. This is specifically true for colorectal cancer, a tumor with a strong epigenetic component, which acts earlier than any other genetic alteration in promoting cancer cell malignant transformation. The pattern of progressive, and usually subtype-specific, DNA and histone modifications that occur in colorectal cancer has been extensively studied in the last decade, providing plenty of data to explore. For this tumor, it became recently evident that also RNA modifications play a relevant role in the activation of oncogenes or repression of tumor suppressor genes. In this review we provide a brief overview of all epigenetic and epitranscriptomic changes that have been found associated to colorectal cancer till now. We explore the impact of these alterations in cancer prognosis and response to treatment and discuss their potential use as cancer biomarkers.
Collapse
Affiliation(s)
- Elisa Porcellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Noemi Laprovitera
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Mattia Riefolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Ingrid Garajova
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| |
Collapse
|
144
|
Wang Q, Xu B, Du J, Xu X, Shang C, Wang X, Wang J. MicroRNA-139-5p/Flt1/Wnt/β-catenin regulatory crosstalk modulates the progression of glioma. Int J Mol Med 2018; 41:2139-2149. [PMID: 29393392 PMCID: PMC5810245 DOI: 10.3892/ijmm.2018.3439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/16/2018] [Indexed: 01/27/2023] Open
Abstract
Fms-related tyrosine kinase 1 (Flt1), the receptor of VEGF/PIGF, is associated with cancer angiogenesis and tumorigenesis. Although the high expression of Flt1 in glioma is identified, its regulatory mechanism remains unclear. In the present study, we demonstrate that miR-139-5p inhibits Flt1 expression mediated by binding its 3′ untranslated region (3′UTR) to regulate the progression of human glioma. We found miR-139-5p was downregulated in glioma tissues compared with normal brain tissues whereas a converse expression level of Flt1 was observed. Additionally we proved that miR-139-5p directly integrated with the 3′UTR of Flt1 via luciferase activity assay and cells transfected with miR-139-5p characterized with a low expression of Flt1 in mRNA and protein levels. Furthermore, we validated that miR-139-5p enforced its biological modulation via targeting Flt1 through rescue experiments. miR-139-5p suppressed and Flt1 stimulated the malignant activities of glioma cells. We demonstrated that miR-139-5p inhibited the Flt1-mediated Wnt/β-catenin signaling pathway in glioma cells. Conclusively, our study indicated that miR-139-5p can counteract the malignant phenotypes of glioma cells by the inhibitory effect of the Flt1-mediated Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qiong Wang
- Tianjin Neurosurgery Institute, Tianjin Key Laboratory of Cerebral Vascular and Neural Degenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Bin Xu
- The Graduate School, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Jixiang Du
- The Graduate School, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Xinnv Xu
- Department of Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300060, P.R. China
| | - Chao Shang
- Tianjin Neurosurgery Institute, Tianjin Key Laboratory of Cerebral Vascular and Neural Degenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| | - Xiuyu Wang
- The Graduate School, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Jinhuan Wang
- Tianjin Neurosurgery Institute, Tianjin Key Laboratory of Cerebral Vascular and Neural Degenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
145
|
Eun JW, Kim HS, Shen Q, Yang HD, Kim SY, Yoon JH, Park WS, Lee JY, Nam SW. MicroRNA-495-3p functions as a tumor suppressor by regulating multiple epigenetic modifiers in gastric carcinogenesis. J Pathol 2018; 244:107-119. [PMID: 28991363 DOI: 10.1002/path.4994] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/18/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) engage in complex interactions with the machinery that controls the transcriptome and concurrently target multiple mRNAs. Here, we demonstrate that microRNA-495-3p (miR-495-3p) functions as a potent tumor suppressor by governing ten oncogenic epigenetic modifiers (EMs) in gastric carcinogenesis. From the large cohort transcriptome datasets of gastric cancer (GC) patients available from The Cancer Genome Atlas (TCGA) and the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), we were able to recapitulate 15 EMs as significantly overexpressed in GC among the 51 EMs that were previously reported to be involved in cancer progression. Computational target prediction yielded miR-495-3p, which targets as many as ten of the 15 candidate oncogenic EMs. Ectopic expression of miRNA mimics in GC cells caused miR-495-3p to suppress ten EMs, and inhibited tumor cell growth and proliferation via caspase-dependent and caspase-independent cell death processing. In addition, in vitro metastasis assays showed that miR-495-3p plays a role in the metastatic behavior of GC cells by regulating SLUG, vimentin, and N-cadherin. Furthermore, treatment of GC cells with 5-aza-2'-deoxcytidine restored miR-495-3p expression; sequence analysis revealed hypermethylation of the miR-495-3p promoter region in GC cells. A negative regulatory loop is proposed, whereby DNMT1, among ten oncogenic EMs, regulates miR-495-3p expression via hypermethylation of the miR-495-3p promoter. Our findings suggest that the functional loss or suppression of miR-495-3p triggers overexpression of multiple oncogenic EMs, and thereby contributes to malignant transformation and growth of gastric epithelial cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jung Woo Eun
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Seok Kim
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Qingyu Shen
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee Doo Yang
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Yean Kim
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hwan Yoon
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won Sang Park
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Young Lee
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suk Woo Nam
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
146
|
Abstract
Thousands of unique non-coding RNA (ncRNA) sequences exist within cells. Work from the past decade has altered our perception of ncRNAs from 'junk' transcriptional products to functional regulatory molecules that mediate cellular processes including chromatin remodelling, transcription, post-transcriptional modifications and signal transduction. The networks in which ncRNAs engage can influence numerous molecular targets to drive specific cell biological responses and fates. Consequently, ncRNAs act as key regulators of physiological programmes in developmental and disease contexts. Particularly relevant in cancer, ncRNAs have been identified as oncogenic drivers and tumour suppressors in every major cancer type. Thus, a deeper understanding of the complex networks of interactions that ncRNAs coordinate would provide a unique opportunity to design better therapeutic interventions.
Collapse
Affiliation(s)
- Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Leni S Jacob
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
147
|
Epigenetic modification of miR-141 regulates SKA2 by an endogenous 'sponge' HOTAIR in glioma. Oncotarget 2017; 7:30610-25. [PMID: 27121316 PMCID: PMC5058705 DOI: 10.18632/oncotarget.8895] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Aberrant expression of miR-141 has recently implicated in the occurrence and development of various types of malignant tumors. However whether the involvement of miR-141 in the pathogenesis of glioma remains unknown. Here, we showed that miR-141 was markedly downregulated in glioma tissues and cell lines compared with normal brain tissues, and its expression correlated with the pathological grading. Enforced expression of miR-141 in glioma cells significantly inhibited cell proliferation, migration and invasion, whereas knockdown of miR-141 exerted opposite effect. Mechanistic investigations revealed that HOTAIR might act as an endogenous 'sponge' of miR-141, thereby regulating the derepression of SKA2. Further, we explored the molecular mechanism by which miR-141 expression was regulated, and found that the miR-141 promoter was hypermethylated and that promoter methylation of miR-141 was mediated by DNMT1 in glioma cells. Finally, both overexpression of miR-141 and knockdown of HOTAIR in a mouse model of human glioma resulted in significant reduction of tumor growth in vivo. Collectively, these results suggest that epigenetic modification of miR-141 and the interaction of ceRNA regulatory network will provide a new approach for therapeutics against glioma.
Collapse
|
148
|
Abstract
The majority of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) affect normal expression of the genes, including oncogenes and tumour suppressive genes, which make them a new class of targets for drug development in cancer. Although microRNAs (miRNAs) are the most studied regulatory ncRNAs to date, and miRNA-targeted therapeutics have already reached clinical development, including the mimics of the tumour suppressive miRNAs miR-34 and miR-16, which reached phase I clinical trials for the treatment of liver cancer and mesothelioma, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognised. Here, we describe obstacles and advances in the development of ncRNA therapeutics and provide the comprehensive overview of the ncRNA chemistry and delivery technologies. Furthermore, we summarise recent knowledge on the biological functions of miRNAs and their involvement in carcinogenesis, and discuss the strategies of their therapeutic manipulation in cancer. We review also the emerging insights into the role of lncRNAs and their potential as targets for novel treatment paradigms. Finally, we provide the up-to-date summary of clinical trials involving miRNAs and future directions in the development of ncRNA therapeutics.
Collapse
Affiliation(s)
- Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
149
|
Toiyama Y, Okugawa Y, Tanaka K, Araki T, Uchida K, Hishida A, Uchino M, Ikeuchi H, Hirota S, Kusunoki M, Boland CR, Goel A. A Panel of Methylated MicroRNA Biomarkers for Identifying High-Risk Patients With Ulcerative Colitis-Associated Colorectal Cancer. Gastroenterology 2017; 153:1634-1646.e8. [PMID: 28847750 PMCID: PMC5748293 DOI: 10.1053/j.gastro.2017.08.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/27/2017] [Accepted: 08/18/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND & AIMS Methylation of specific microRNAs (miRNAs) often occurs in an age-dependent manner, as a field defect in some instances, and may be an early event in colitis-associated carcinogenesis. We aimed to determine whether specific mRNA signature patterns (MIR1, MIR9, MIR124, MIR137, MIR34B/C) could be used to identify patients with ulcerative colitis (UC) who are at increased risk for colorectal neoplasia. METHODS We obtained 387 colorectal tissue specimens collected from 238 patients with UC (152 without neoplasia, 17 with dysplasia, and 69 with UC-associated colorectal cancer [UC-CRC]), from 2 independent cohorts in Japan between 2005 and 2015. We quantified methylation of miRNAs by bisulfite pyrosequencing analysis. We analyzed clinical data to determine whether miRNA methylation patterns were associated with age, location, or segment of the colorectum (cecum, transverse colon, and rectum). Differences in tissue miRNA methylation and expression levels were compared among samples and associated with cancer risk using the Wilcoxon, Mann-Whitney, and Kruskal-Wallis tests as appropriate. We performed a validation study of samples from 90 patients without UC and 61 patients with UC-associated dysplasia or cancer to confirm the association between specific methylation patterns of miRNAs in non-tumor rectal mucosa from patients with UC at risk of UC-CRC. RESULTS Among patients with UC without neoplasia, rectal tissues had significantly higher levels of methylation levels of MIR1, MIR9, MIR124, and MIR137 than in proximal mucosa; levels of methylation were associated with age and duration of UC in rectal mucosa. Methylation of all miRNAs was significantly higher in samples from patients with dysplasia or CRC compared with samples from patients without neoplasia. Receiver operating characteristic analysis revealed that methylation levels of miRNAs in rectal mucosa accurately differentiated patients with CRC from those without. Methylation of MIR137 in rectal mucosa was an independent risk factor for UC-CRC. Methylation patterns of a set of miRNAs (panel) could discriminate discriminate UC patients with or without dysplasia or CRC in the evaluation cohort (area under the curve, 0.81) and the validation cohort (area under the curve, 0.78). CONCLUSIONS In evaluation and validation cohorts, we found specific miRNAs to be methylated in rectal mucosal samples from patients with UC with dysplasia or CRC compared with patients without neoplasms. This pattern also associated with patient age and might be used to identify patients with UC at greatest risk for developing UC-CRC. Our findings provide evidence for a field defect in rectal mucosa from patients with UC-CRC.
Collapse
Affiliation(s)
- Yuji Toiyama
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas,Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas,Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Toshimitsu Araki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Keiichi Uchida
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoi Uchino
- Department of Inflammatory Bowel Disease, Hyogo College of Medicine, Hyogo, Japan
| | - Hiroki Ikeuchi
- Department of Inflammatory Bowel Disease, Hyogo College of Medicine, Hyogo, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - C. Richard Boland
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas,School of Medicine, University of California, San Diego, La Jolla, California
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|
150
|
Yu Q, Xiang L, Yin L, Liu X, Yang D, Zhou J. Loss-of-function of miR-142 by hypermethylation promotes TGF-β-mediated tumour growth and metastasis in hepatocellular carcinoma. Cell Prolif 2017; 50:e12384. [PMID: 28963738 PMCID: PMC6529086 DOI: 10.1111/cpr.12384] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/18/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Hypermethylation-induced epigenetic silencing of tumour suppressor genes (TSGs) are frequent events during carcinogenesis. MicroRNA-142 (miR-142) is found to be dysregulated in cancer patients to participate into tumour growth, metastasis and angiogenesis. However, the tumour suppressive role of miR-142 and the status of methylation are not fully understood in hepatocellular carcinoma (HCC). METHODS Hepatocellular carcinoma tissues and corresponding non-neoplastic tissues were collected. The expression and function of miR-142 and TGF-β in two HCC cell lines were determined. The miRNA-mRNA network of miR-142 was analysed in HCC cell lines. RESULTS We found that the miR-142 expression was reduced in tumour tissues and two HCC cell lines HepG2 and SMMC7721, which correlated to higher TNM stage, metastasis and differentiation. Moreover, miR-142 was identified to directly target and inhibit transforming growth factor β (TGF-β), leading to decreased cell vitality, proliferation, EMT and the ability of pro-angiogenesis in TGF-β-dependent manner. Interestingly, the status of methylation of miR-142 was analysed and the results found the hypermethylated miR-142 in tumour patients and cell lines. The treatment of methylation inhibitor 5-Aza could restore the expression of miR-142 to suppress the TGF-β expression, which impaired TGF-β-induced tumour growth. CONCLUSION These findings implicated that miR-142 was a tumour suppressor gene in HCC and often hyermethylated to increase TGF-β-induced development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qiangfeng Yu
- Department of Hepatobiliary SurgeryNanfang Hospital Affiliated to Southern Medical UniversityGuangzhouChina
- Department of Hepatobiliary SurgeryThe Second Hospital of LongyanLongyanChina
| | - Leyang Xiang
- Department of Hepatobiliary SurgeryNanfang Hospital Affiliated to Southern Medical UniversityGuangzhouChina
| | - Libo Yin
- Department of Hepatobiliary SurgeryChangzhou No. 2 People's HospitalNanjing Medical UniversityChangzhouJiangsuChina
| | - Xincheng Liu
- The Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Dinghua Yang
- Department of Hepatobiliary SurgeryNanfang Hospital Affiliated to Southern Medical UniversityGuangzhouChina
| | - Jianyin Zhou
- Department of Hepatobiliary and Pancreatic SurgeryZhongshan HospitalXiamen UniversityXiamenChina
| |
Collapse
|