101
|
Zinn RL, Gardner EE, Dobromilskaya I, Murphy S, Marchionni L, Hann CL, Rudin CM. Combination treatment with ABT-737 and chloroquine in preclinical models of small cell lung cancer. Mol Cancer 2013; 12:16. [PMID: 23452820 PMCID: PMC3599053 DOI: 10.1186/1476-4598-12-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/27/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND New therapies are urgently needed for patients with small cell lung cancer (SCLC). Chemotherapy and targeted therapies, including the Bcl-2 inhibitor ABT-737, may induce tumor cell autophagy. Autophagy can promote survival of cancer cells under stress and comprise a pathway of escape from cytotoxic therapies. METHODS We explored the combination of ABT-737 and chloroquine, an inhibitor of autophagy, in preclinical models of SCLC. These included cell culture analyses of viability and of autophagic and apoptotic pathway induction, as well as in vivo analyses of efficacy in multiple xenograft models. RESULTS Combination treatment of SCLC lines with ABT-737 and chloroquine decreased viability and increased caspase-3 activation over treatment with either single agent. ABT-737 induced several hallmarks of autophagy. However, knockdown of beclin-1, a key regulator of entry into autophagy, diminished the efficacy of ABT-737, suggesting either that the effects of chloroquine were nonspecific or that induction but not completion of autophagy is necessary for the combined effect of ABT-737 and chloroquine. ABT-737 and chloroquine in SCLC cell lines downregulated Mcl-1 and upregulated NOXA, both of which may promote apoptosis. Treatment of tumor-bearing mice demonstrated that chloroquine could enhance ABT-737-mediated tumor growth inhibition against NCI-H209 xenografts, but did not alter ABT-737 response in three primary patient-derived xenograft models. CONCLUSION These data suggest that although ABT-737 can induce autophagy in SCLC, autophagic inhibition by choroquine does not markedly alter in vivo response to ABT-737 in relevant preclinical models, arguing against this as a treatment strategy for SCLC.
Collapse
Affiliation(s)
- Rebekah L Zinn
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at the Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Tang J, Salama R, Gadgeel SM, Sarkar FH, Ahmad A. Erlotinib resistance in lung cancer: current progress and future perspectives. Front Pharmacol 2013; 4:15. [PMID: 23407898 PMCID: PMC3570789 DOI: 10.3389/fphar.2013.00015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/25/2013] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the most common cancer in the world. Despite modern advancements in surgeries, chemotherapies, and radiotherapies over the past few years, lung cancer still remains a very difficult disease to treat. This has left the death rate from lung cancer victims largely unchanged throughout the past few decades. A key cause for the high mortality rate is the drug resistance that builds up for patients being currently treated with the chemotherapeutic agents. Although certain chemotherapeutic agents may initially effectively treat lung cancer patients, there is a high probability that there will be a reoccurrence of the cancer after the patient develops resistance to the drug. Erlotinib, the epidermal growth factor receptor (EGFR)-targeting tyrosine kinase inhibitor, has been approved for localized as well as metastatic non-small cell lung cancer where it seems to be more effective in patients with EGFR mutations. Resistance to erlotinib is a common observation in clinics and this review details our current knowledge on the subject. We discuss the causes of such resistance as well as innovative research to overcome it. Evidently, new chemotherapy strategies are desperately needed in order to better treat lung cancer patients. Current research is investigating alternative treatment plans to enhance the chemotherapy that is already offered. Better insight into the molecular mechanisms behind combination therapy pathways and even single molecular pathways may help improve the efficacy of the current treatment options.
Collapse
Affiliation(s)
- Joy Tang
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
| | - Rasha Salama
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
| | - Shirish M. Gadgeel
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of MedicineDetroit, MI, USA
| |
Collapse
|
103
|
Jane EP, Premkumar DR, DiDomenico JD, Hu B, Cheng SY, Pollack IF. YM-155 potentiates the effect of ABT-737 in malignant human glioma cells via survivin and Mcl-1 downregulation in an EGFR-dependent context. Mol Cancer Ther 2013; 12:326-38. [PMID: 23325792 DOI: 10.1158/1535-7163.mct-12-0901] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiapoptotic proteins are commonly overexpressed in gliomas, contributing to therapeutic resistance. We recently reported that clinically achievable concentrations of the Bcl-2/Bcl-xL inhibitor ABT-737 failed to induce apoptosis in glioma cells, with persistent expression of survivin and Mcl-1. To address the role of these mediators in glioma apoptosis resistance, we analyzed the effects of YM-155, a survivin suppressant, on survival on a panel of glioma cell lines. YM-155 inhibited cell growth and downregulated survivin and Mcl-1 in a dose- and cell line-dependent manner. While U373, LN18, LNZ428, T98G, LN229, and LNZ308 cells exhibited an IC(50) of 10 to 75 nmol/L, A172 cells were resistant (IC(50) ∼ 250 nmol/L). No correlation was found between sensitivity to YM-155 and baseline expression of survivin or cIAP-1/cIAP-2/XIAP. However, strong correlation was observed between EGF receptor (EGFR) activation levels and YM-155 response, which was confirmed using EGFR-transduced versus wild-type cells. Because we postulated that decreasing Mcl-1 expression may enhance glioma sensitivity to ABT-737, we examined whether cotreatment with YM-155 promoted ABT-737 efficacy. YM-155 synergistically enhanced ABT-737-induced cytotoxicity and caspase-dependent apoptosis. Downregulation of Mcl-1 using short hairpin RNA also enhanced ABT-737-inducing killing, confirming an important role for Mcl-1 in mediating synergism between ABT-737 and YM-155. As with YM-155 alone, sensitivity to YM-155 and ABT-737 inversely correlated with EGFR activation status. However, sensitivity could be restored in highly resistant U87-EGFRvIII cells by inhibition of EGFR or its downstream pathways, highlighting the impact of EGFR signaling on Mcl-1 expression and the relevance of combined targeted therapies to overcome the multiple resistance mechanisms of these aggressive tumors.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurosurgery, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | | | | | | | | | | |
Collapse
|
104
|
Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells. PLoS One 2012; 7:e52333. [PMID: 23284992 PMCID: PMC3527540 DOI: 10.1371/journal.pone.0052333] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/12/2012] [Indexed: 01/21/2023] Open
Abstract
The human hepatocellular carcinoma (HCC) represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER) stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.
Collapse
|
105
|
Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2012; 17:61-75. [PMID: 23173842 DOI: 10.1517/14728222.2013.733001] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Programmed cell death is well-orchestrated process regulated by multiple pro-apoptotic and anti-apoptotic genes, particularly those of the Bcl-2 gene family. These genes are well documented in cancer with aberrant expression being strongly associated with resistance to chemotherapy and radiation. AREAS COVERED This review focuses on the resistance induced by the Bcl-2 family of anti-apoptotic proteins and current therapeutic interventions currently in preclinical or clinical trials that target this pathway. Major resistance mechanisms that are regulated by Bcl-2 family proteins and potential strategies to circumvent resistance are also examined. Although antisense and gene therapy strategies are used to nullify Bcl-2 family proteins, recent approaches use small molecule inhibitors (SMIs) and peptides. Structural similarity of the Bcl-2 family of proteins greatly favors development of inhibitors that target the BH3 domain, called BH3 mimetics. EXPERT OPINION Strategies to specifically identify and inhibit critical determinants that promote therapy resistance and tumor progression represent viable approaches for developing effective cancer therapies. From a clinical perspective, pretreatment with novel, potent Bcl-2 inhibitors either alone or in combination with conventional therapies hold significant promise for providing beneficial clinical outcomes. Identifying SMIs with broader and higher affinities for inhibiting all of the Bcl-2 pro-survival proteins will facilitate development of superior cancer therapies.
Collapse
Affiliation(s)
- Shibu Thomas
- Virginia Commonwealth University, Department of Human and Molecular Genetics, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Liu J, Huang J, Ma S. Incorporating network structure in integrative analysis of cancer prognosis data. Genet Epidemiol 2012; 37:173-83. [PMID: 23161517 DOI: 10.1002/gepi.21697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 11/10/2022]
Abstract
In high-throughput cancer genomic studies, markers identified from the analysis of single datasets may have unsatisfactory properties because of low sample sizes. Integrative analysis pools and analyzes raw data from multiple studies, and can effectively increase sample size and lead to improved marker identification results. In this study, we consider the integrative analysis of multiple high-throughput cancer prognosis studies. In the existing integrative analysis studies, the interplay among genes, which can be described using the network structure, has not been effectively accounted for. In network analysis, tightly connected nodes (genes) are more likely to have related biological functions and similar regression coefficients. The goal of this study is to develop an analysis approach that can incorporate the gene network structure in integrative analysis. To this end, we adopt an AFT (accelerated failure time) model to describe survival. A weighted least squares approach, which has low computational cost, is adopted for estimation. For marker selection, we propose a new penalization approach. The proposed penalty is composed of two parts. The first part is a group MCP penalty, and conducts gene selection. The second part is a Laplacian penalty, and smoothes the differences of coefficients for tightly connected genes. A group coordinate descent approach is developed to compute the proposed estimate. Simulation study shows satisfactory performance of the proposed approach when there exist moderate-to-strong correlations among genes. We analyze three lung cancer prognosis datasets, and demonstrate that incorporating the network structure can lead to the identification of important genes and improved prediction performance.
Collapse
Affiliation(s)
- Jin Liu
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
107
|
Liu Q, Leber B, Andrews DW. Interactions of pro-apoptotic BH3 proteins with anti-apoptotic Bcl-2 family proteins measured in live MCF-7 cells using FLIM FRET. Cell Cycle 2012; 11:3536-42. [PMID: 22895112 PMCID: PMC3478303 DOI: 10.4161/cc.21462] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Increased interactions between pro-apoptotic BH3-only proteins and anti-apoptotic Bcl-2 family proteins at mitochondria result in tumor initiation, progression and resistance to traditional chemotherapy. Drugs that mimic the BH3 region are expected to release BH3-only proteins from anti-apoptotic proteins, inducing apoptosis in some cancer cells and sensitizing others to chemotherapy. Recently, we applied fluorescence lifetime imaging microscopy and fluorescence resonance energy transfer to measure protein:protein interactions for the Bcl-2 family of proteins in live MCF-7 cells using fluorescent fusion proteins. While the BH3-proteins bound to Bcl-XL and Bcl-2, the BH3 mimetic ABT-737 inhibited binding of only Bad and tBid, but not Bim. We have extended our studies by investigating ABT-263, a clinical drug based on ABT-737. We show that the inhibitory effects and pattern of the two drugs are comparable for both Bcl-XL and Bcl-2. Furthermore, we show that mutation of a conserved residue in the BH3 region in Bad and tBid disrupted their interactions with Bcl-XL and Bcl-2, while the corresponding BimEL mutant showed no decrease in binding to these anti-apoptotic proteins. Therefore, in MCF-7 cells, Bim has unique binding properties compared with other BH3-only proteins that resist displacement from Bcl-XL and Bcl-2 by BH3 mimetics.
Collapse
Affiliation(s)
- Qian Liu
- Department of Biochemistry and Biomedical Sciences; McMaster University; Hamilton, ON Canada
| | - Brian Leber
- Department of Biochemistry and Biomedical Sciences; McMaster University; Hamilton, ON Canada
- Department of Medicine; McMaster University; Hamilton, ON Canada
| | - David W. Andrews
- Department of Biochemistry and Biomedical Sciences; McMaster University; Hamilton, ON Canada
| |
Collapse
|
108
|
Pallis M, Abdul-Aziz A, Burrows F, Seedhouse C, Grundy M, Russell N. The multi-kinase inhibitor TG02 overcomes signalling activation by survival factors to deplete MCL1 and XIAP and induce cell death in primary acute myeloid leukaemia cells. Br J Haematol 2012; 159:191-203. [PMID: 22934750 DOI: 10.1111/bjh.12018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/16/2012] [Indexed: 01/10/2023]
Abstract
The novel multi-kinase inhibitor TG02 has selectivity against cell cycle and transcriptional cyclin dependent kinases (CDKs) as well as fms-like tyrosine kinase receptor-3 (FLT3). Inhibition of transcriptional CDKs preferentially depletes short-lived proteins such as MCL1. We evaluated the in vitro toxicity of TG02 to primary acute myeloid leukaemia (AML) cells in the presence of survival signalling pathway activation by cytokines and fibronectin. One hundred nanomolar TG02 induced a median decrease of 40% in bulk cell survival and 43% in the CD34(+) CD38(-) CD123(+) subset. A 90% inhibitory concentration of 500 nmol/l indicated that TG02 toxicity is not halted by protective cell cycle arrest. Samples with FLT3 internal tandem duplication were not preferentially targeted. By flow cytometry, TG02 treatment caused loss of RNA Polymerase II serine 2 phosphorylation in patient samples, which correlated strongly with BAX activation (R(2) =0·89), suggesting these as potential biomarkers for clinical studies. MCL1 and XIAP expression also decreased. Repeated brief exposure to TG02 in MOLM-13 cells did not result in compensatory up-regulation of survival protein expression. In conclusion, TG02 is potently cytotoxic towards CD34(+) CD38(-) CD123(+) and bulk AML cells, despite protective signalling pathway activation. This antitumour activity is most likely mediated by dephosphorylation of RNA Polymerase II leading to depletion of survival molecules such as MCL1 and XIAP, with subsequent BAX activation and apoptosis.
Collapse
Affiliation(s)
- Monica Pallis
- Academic Haematology, Nottingham University Hospitals City Campus, Clinical Sciences Building, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
109
|
Mattoo AR, FitzGerald DJ. Combination treatments with ABT-263 and an immunotoxin produce synergistic killing of ABT-263-resistant small cell lung cancer cell lines. Int J Cancer 2012; 132:978-87. [PMID: 22821746 DOI: 10.1002/ijc.27732] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/06/2012] [Indexed: 01/04/2023]
Abstract
Synergistic killing was achieved when Small Cell Lung Cancer (SCLC) cell lines were incubated with ABT-263 and an immunotoxin directed to the transferrin receptor. SCLC lines are variably sensitive to the BH-3 only peptide mimetic, ABT-263. To determine their sensitivity to toxin-based reagents, we incubated four representative SCLC lines with a model Pseudomonas exotoxin-based immunotoxin directed to the transferrin receptor. Remarkably in 4-of-4 lines, there was little evidence of immunotoxin-mediated cytotoxicity despite near complete inhibition of protein synthesis. However, when combinations of ABT-263 and immunotoxin were added to the ABT-263-resistant cell lines (H196 and H69AR), there was synergistic killing as evidenced by increased activation of caspase 3/7, annexin V staining, and loss of cell integrity. Synergistic killing was evident at 6 hr and correlated with loss of Mcl-1. This synergy was also noted when the closely related compound ABT-737 was combined with the same immunotoxin. To establish that the synergy seen in tissue culture could be achieved in vivo, H69AR cells were grown as tumors in nude mice and shown to be susceptible to the killing action of an immunotoxin-ABT-737 combination but not to either agent alone. When immunotoxin-ABT combinations were added to ABT-263-sensitive lines (H146 and H1417), killing was additive. Our data support combination approaches for treating ABT-263-resistant SCLC with ABT-263 and a second agent that provides synergistic killing action.
Collapse
Affiliation(s)
- Abid R Mattoo
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, HHS, Bethesda, MD 20819, USA
| | | |
Collapse
|
110
|
Stamelos VA, Redman CW, Richardson A. Understanding sensitivity to BH3 mimetics: ABT-737 as a case study to foresee the complexities of personalized medicine. J Mol Signal 2012; 7:12. [PMID: 22898329 PMCID: PMC3477050 DOI: 10.1186/1750-2187-7-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/29/2012] [Indexed: 12/17/2022] Open
Abstract
BH3 mimetics such as ABT-737 and navitoclax bind to the BCL-2 family of proteins and induce apoptosis through the intrinsic apoptosis pathway. There is considerable variability in the sensitivity of different cells to these drugs. Understanding the molecular basis of this variability will help to determine which patients will benefit from these drugs. Furthermore, this understanding aids in the design of rational strategies to increase the sensitivity of cells which are otherwise resistant to BH3 mimetics. We discuss how the expression of BCL-2 family proteins regulates the sensitivity to ABT-737. One of these, MCL-1, has been widely described as contributing to resistance to ABT-737 which might suggest a poor response in patients with cancers that express levels of MCL-1. In some cases, resistance to ABT-737 conferred by MCL-1 is overcome by the expression of pro-apoptotic proteins that bind to apoptosis inhibitors such as MCL-1. However, the distribution of the pro-apoptotic proteins amongst the various apoptosis inhibitors also influences sensitivity to ABT-737. Furthermore, the expression of both pro- and anti-apoptotic proteins can change dynamically in response to exposure to ABT-737. Thus, there is significant complexity associated with predicting response to ABT-737. This provides a paradigm for the multiplicity of intricate factors that determine drug sensitivity which must be considered for the full implementation of personalized medicine.
Collapse
Affiliation(s)
- Vasileios A Stamelos
- Institute for Science and Technology in Medicine & School of Pharmacy, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent, Keele, ST4 7QB, UK.
| | | | | |
Collapse
|
111
|
Califano R, Abidin AZ, Peck R, Faivre-Finn C, Lorigan P. Management of small cell lung cancer: recent developments for optimal care. Drugs 2012; 72:471-90. [PMID: 22356287 DOI: 10.2165/11597640-000000000-00000] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Small cell lung cancer (SCLC) represents approximately 13% of all lung cancer diagnoses and the incidence has reduced over the last 20 years. Treatment of SCLC remains challenging because of its rapid growth, early dissemination and development of drug resistance during the course of the disease. Chemotherapy remains the cornerstone of treatment for limited (LD) and extensive disease (ED), with concurrent chemotherapy and radical thoracic radiotherapy representing the best treatment option for fit patients with LD. Platinum-based chemotherapy is the treatment of choice in fit patients with good organ function, and the radiosensitizing effect of cisplatin is critically important for concurrent chemoradiotherapy in LD. Anthracycline-containing regimens represent a viable alternative for patients where platinum-based chemotherapy is contraindicated. Patients who relapse or progress after first-line chemotherapy have a very poor prognosis. Second-line therapy may produce a modest clinical benefit. Maintenance chemotherapy has not been shown to convincingly improve outcomes for SCLC. A number of targeted agents have been investigated in LD and ED, mostly in unselected populations, with disappointing results. Prophylactic cranial irradiation has been shown to reduce the incidence of brain metastases and prolong survival for both LD and ED without negative impact on quality of life (QOL) and cognitive function. Ongoing trials will shed some light on the impact of thoracic radiotherapy on QOL, symptom control and survival in ED SCLC patients who benefitted from first-line chemotherapy.
Collapse
Affiliation(s)
- Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
| | | | | | | | | |
Collapse
|
112
|
|
113
|
Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 2012; 119:5807-16. [PMID: 22538851 DOI: 10.1182/blood-2011-12-400929] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The BH3-mimetic ABT-737 and an orally bioavailable compound of the same class, navitoclax (ABT-263), have shown promising antitumor efficacy in preclinical and early clinical studies. Although both drugs avidly bind Bcl-2, Bcl-x(L), and Bcl-w in vitro, we find that Bcl-2 is the critical target in vivo, suggesting that patients with tumors overexpressing Bcl-2 will probably benefit. In human non-Hodgkin lymphomas, high expression of Bcl-2 but not Bcl-x(L) predicted sensitivity to ABT-263. Moreover, we show that increasing Bcl-2 sensitized normal and transformed lymphoid cells to ABT-737 by elevating proapoptotic Bim. In striking contrast, increasing Bcl-x(L) or Bcl-w conferred robust resistance to ABT-737, despite also increasing Bim. Cell-based protein redistribution assays unexpectedly revealed that ABT-737 disrupts Bcl-2/Bim complexes more readily than Bcl-x(L)/Bim or Bcl-w/Bim complexes. These results have profound implications for how BH3-mimetics induce apoptosis and how the use of these compounds can be optimized for treating lymphoid malignancies.
Collapse
|
114
|
Rudin CM, Hann CL, Garon EB, Ribeiro de Oliveira M, Bonomi PD, Camidge DR, Chu Q, Giaccone G, Khaira D, Ramalingam SS, Ranson MR, Dive C, McKeegan EM, Chyla BJ, Dowell BL, Chakravartty A, Nolan CE, Rudersdorf N, Busman TA, Mabry MH, Krivoshik AP, Humerickhouse RA, Shapiro GI, Gandhi L. Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res 2012; 18:3163-9. [PMID: 22496272 DOI: 10.1158/1078-0432.ccr-11-3090] [Citation(s) in RCA: 413] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Bcl-2 is a critical regulator of apoptosis that is overexpressed in the majority of small cell lung cancers (SCLC). Nativoclax (ABT-263) is a potent and selective inhibitor of Bcl-2 and Bcl-x(L). The primary objectives of this phase IIa study included safety at the recommended phase II dose and preliminary, exploratory efficacy assessment in patients with recurrent and progressive SCLC after at least one prior therapy. EXPERIMENTAL DESIGN Thirty-nine patients received navitoclax 325 mg daily, following an initial lead-in of 150 mg daily for 7 days. Study endpoints included safety and toxicity assessment, response rate, progression-free and overall survival (PFS and OS), as well as exploratory pharmacodynamic correlates. RESULTS The most common toxicity associated with navitoclax was thrombocytopenia, which reached grade III-IV in 41% of patients. Partial response was observed in one (2.6%) patient and stable disease in 9 (23%) patients. Median PFS was 1.5 months and median OS was 3.2 months. A strong association between plasma pro-gastrin-releasing peptide (pro-GRP) level and tumor Bcl-2 copy number (R = 0.93) was confirmed. Exploratory analyses revealed baseline levels of cytokeratin 19 fragment antigen 21-1, neuron-specific enolase, pro-GRP, and circulating tumor cell number as correlates of clinical benefit. CONCLUSION Bcl-2 targeting by navitoclax shows limited single-agent activity against advanced and recurrent SCLC. Correlative analyses suggest several putative biomarkers of clinical benefit. Preclinical models support that navitoclax may enhance sensitivity of SCLC and other solid tumors to standard cytotoxics. Future studies will focus on combination therapies.
Collapse
Affiliation(s)
- Charles M Rudin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Cancer Research Building 2, Room 544, 1550 Orleans Street, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Pietanza MC, Rudin CM. Novel therapeutic approaches for small cell lung cancer: the future has arrived. Curr Probl Cancer 2012; 36:156-73. [PMID: 22495056 DOI: 10.1016/j.currproblcancer.2012.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
116
|
Aranovich A, Liu Q, Collins T, Geng F, Dixit S, Leber B, Andrews D. Differences in the Mechanisms of Proapoptotic BH3 Proteins Binding to Bcl-XL and Bcl-2 Quantified in Live MCF-7 Cells. Mol Cell 2012; 45:754-63. [DOI: 10.1016/j.molcel.2012.01.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 10/23/2011] [Accepted: 01/12/2012] [Indexed: 11/16/2022]
|
117
|
|
118
|
Song JH, Kraft AS. Pim kinase inhibitors sensitize prostate cancer cells to apoptosis triggered by Bcl-2 family inhibitor ABT-737. Cancer Res 2012; 72:294-303. [PMID: 22080570 PMCID: PMC3251634 DOI: 10.1158/0008-5472.can-11-3240] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pim serine/threonine kinases contribute to prostate tumorigenesis and therapeutic resistance, yet Pim kinase inhibitors seem to have only limited effects on prostate cancer cell survival. Because overexpression of Bcl-2 family members are implicated in chemotherapeutic resistance in prostate cancer, we investigated the cooperative effects of Pim kinase inhibition with ABT-737, a small molecule antagonist of Bcl-2 family members. Strikingly, the addition of ABT-737 to Pim inhibitors triggered a robust apoptosis of prostate cancer cells in vitro and in vivo. Pim inhibitors decreased levels of the Bcl-2 family member Mcl-1, both by blocking 5'-cap dependent translation and decreasing protein half life. In addition, Pim inhibition transcriptionally increased levels of the BH3 protein Noxa by activating the unfolded protein response (UPR), lead to eIF-2α phosphorylation and increased expression of CHOP. Increased levels of Noxa also inactivated the remaining levels of Mcl-1 protein activity. Notably, these specific protein changes were essential to the apoptotic process because ABT-737 did not inhibit Mcl-1 protein activity and Mcl-1 overexpression blocked the apoptotic activity of ABT-737. Our results therefore suggest that this combination treatment could be developed as a potential therapy for human prostate cancer where overexpression of Pim kinases and antiapoptotic Bcl-2 family members drives tumor cell resistance to current anticancer therapies.
Collapse
Affiliation(s)
- Jin H. Song
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425
| | - Andrew S. Kraft
- Department of Medicine, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425
| |
Collapse
|
119
|
Lucas KM, Mohana-Kumaran N, Lau D, Zhang XD, Hersey P, Huang DC, Weninger W, Haass NK, Allen JD. Modulation of NOXA and MCL-1 as a strategy for sensitizing melanoma cells to the BH3-mimetic ABT-737. Clin Cancer Res 2011; 18:783-95. [PMID: 22173547 DOI: 10.1158/1078-0432.ccr-11-1166] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Drug resistance in melanoma is commonly attributed to ineffective apoptotic pathways. Inhibiting antiapoptotic BCL-2 and its relatives is an attractive strategy for sensitizing lymphoid malignancies to drugs but it has been largely unsuccessful for melanoma and other solid tumors. ABT-737, a small-molecule BH3-mimetic, selectively inhibits BCL-2, BCL-XL, and BCL-w and shows promise for treating leukemia, lymphoma, and small-cell lung cancer. Melanoma cells are insensitive to ABT-737, but MCL-1 inhibition reportedly increases the sensitivity of other tumors to the compound. EXPERIMENTAL DESIGN The efficacy of MCL-1 and BFL-1 inhibition for sensitizing melanoma cells to ABT-737 was investigated by short hairpin RNA-mediated knockdown or overexpression of their antagonist NOXA in two-dimensional cell culture, a three-dimensional organotypic spheroid model, and an in vivo model. RESULTS MCL-1 downregulation or NOXA overexpression strongly sensitized melanoma cells to ABT-737 in vitro. NOXA-inducing cytotoxic drugs also strongly sensitized melanomas to ABT-737 but, surprisingly, not vice versa. The drugs most suitable are not necessarily those normally used to treat melanoma. Resistance to ABT-737 occurred quickly in three-dimensional melanoma spheroids through reduced NOXA expression, although experiments with both xenografts and three-dimensional spheroids suggest that penetration of ABT-737 into tumor masses may be the principal limitation, which may be obviated through use of more diffusible BH3-mimetics. CONCLUSION Sensitization of tumors to BH3-mimetics by cytotoxic drugs that induce NOXA is a therapeutic strategy worth exploring for the treatment of melanoma and other solid cancers.
Collapse
Affiliation(s)
- Keryn M Lucas
- The Centenary Institute, Newtown, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Fulda S, Kroemer G. Mitochondria as therapeutic targets for the treatment of malignant disease. Antioxid Redox Signal 2011; 15:2937-49. [PMID: 21644835 DOI: 10.1089/ars.2011.4078] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIGNIFICANCE Mitochondria exert vital functions during normal physiology and are also centrally involved in the regulation of various modes of cell death. Thus, engaging the mitochondrial apoptosis pathway presents an attractive possibility to activate lethal effectors in cancer cells. RECENT ADVANCES Compounds that directly target mitochondria offer the advantage to initiate mitochondrial outer membrane permeabilization independently of upstream signal transduction elements that are frequently impaired in human cancers. As a consequence, mitochondrion-targeted agents may bypass some forms of drug resistance. CRITICAL ISSUES An ever-increasing number of compounds, including natural compounds and rationally designed drugs, has been shown to directly act on mitochondria. FUTURE DIRECTIONS Forthcoming insights into the fine regulation of mitochondrial apoptosis will likely open future perspectives for cancer drug development.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt am Main, Germany.
| | | |
Collapse
|
121
|
|
122
|
Klymenko T, Brandenburg M, Morrow C, Dive C, Makin G. The novel Bcl-2 inhibitor ABT-737 is more effective in hypoxia and is able to reverse hypoxia-induced drug resistance in neuroblastoma cells. Mol Cancer Ther 2011; 10:2373-83. [PMID: 22006676 DOI: 10.1158/1535-7163.mct-11-0326] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a common solid tumor of childhood and advanced disease carries a poor prognosis despite intensive multimodality therapy. Hypoxia is a common feature of solid tumors because of poorly organized tumor-induced neovasculature. Hypoxia is associated with advanced stage and poor outcome in a range of tumor types, and leads to resistance to clinically relevant cytotoxic agents in neuroblastoma and other pediatric tumors in vitro. Resistance to apoptosis is a common feature of tumor cells and leads to pleiotropic drug resistance, mediated by Bcl-2 family proteins. ABT-737 is a novel small-molecule inhibitor of Bcl-2 and Bcl-x(L) that is able to induce apoptosis in a range of tumor types. Neuroblastoma cell lines are relatively resistant to ABT-737-induced apoptosis in normoxia, but in contrast to the situation with conventional cytotoxic agents are more sensitive in hypoxia. This sensitization is because of an increase in ABT-737-induced apoptosis and is variably dependent upon the presence of functional hypoxia-inducible factor 1 (HIF-1) α. In contrast to the situation in colon carcinoma and non-small cell lung cancer cells, hypoxia does not result in downregulation of the known ABT-737 resistance factor, Mcl-1, nor any other Bcl-2 family proteins. ABT-737 sensitizes neuroblastoma cells to clinically relevant cytotoxic agents under normal levels of oxygen, and importantly, this sensitization is maintained under hypoxia when neuroblastoma cells are resistant to these agents. Thus rational combinations of ABT-737 and conventional cytotoxics offer a novel approach to overcoming hypoxia-induced drug resistance in neuroblastoma.
Collapse
Affiliation(s)
- Tetyana Klymenko
- Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
123
|
Zheng L, Yang W, Zhang C, Ding WJ, Zhu H, Lin NM, Wu HH, He QJ, Yang B. GDC-0941 sensitizes breast cancer to ABT-737 in vitro and in vivo through promoting the degradation of Mcl-1. Cancer Lett 2011; 309:27-36. [DOI: 10.1016/j.canlet.2011.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 12/21/2022]
|
124
|
Yamaguchi R, Janssen E, Perkins G, Ellisman M, Kitada S, Reed JC. Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy. PLoS One 2011; 6:e24102. [PMID: 21949692 PMCID: PMC3176271 DOI: 10.1371/journal.pone.0024102] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 07/31/2011] [Indexed: 01/30/2023] Open
Abstract
As single agents, ABT-263 and ABT-737 (ABT), molecular antagonists of the Bcl-2 family, bind tightly to Bcl-2, Bcl-xL and Bcl-w, but not to Mcl-1, and induce apoptosis only in limited cell types. The compound 2-deoxyglucose (2DG), in contrast, partially blocks glycolysis, slowing cell growth but rarely causing cell death. Injected into an animal, 2DG accumulates predominantly in tumors but does not harm other tissues. However, when cells that were highly resistant to ABT were pre-treated with 2DG for 3 hours, ABT became a potent inducer of apoptosis, rapidly releasing cytochrome c from the mitochondria and activating caspases at submicromolar concentrations in a Bak/Bax-dependent manner. Bak is normally sequestered in complexes with Mcl-1 and Bcl-xL. 2DG primes cells by interfering with Bak-Mcl-1 association, making it easier for ABT to dissociate Bak from Bcl-xL, freeing Bak to induce apoptosis. A highly active glucose transporter and Bid, as an agent of the mitochondrial apoptotic signal amplification loop, are necessary for efficient apoptosis induction in this system. This combination treatment of cancer-bearing mice was very effective against tumor xenograft from hormone-independent highly metastasized chemo-resistant human prostate cancer cells, suggesting that the combination treatment may provide a safe and effective alternative to genotoxin-based cancer therapies.
Collapse
Affiliation(s)
- Ryuji Yamaguchi
- Program of Cell Death and Apoptosis, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America.
| | | | | | | | | | | |
Collapse
|
125
|
Erlandsson A, Forssell-Aronsson E, Seidal T, Bernhardt P. Binding of TS1, an anti-keratin 8 antibody, in small-cell lung cancer after 177Lu-DOTA-Tyr3-octreotate treatment: a histological study in xenografted mice. EJNMMI Res 2011; 1:19. [PMID: 22214480 PMCID: PMC3271392 DOI: 10.1186/2191-219x-1-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 08/26/2011] [Indexed: 01/02/2023] Open
Abstract
Background Small-cell lung carcinoma (SCLC) is an aggressive malignancy characterised by an early relapse, a tendency towards drug resistance, and a high incidence of metastasis. SCLC cells are of neuroendocrine origin and express high levels of somatostatin receptors; therefore, future treatment might involve targeting tumours with radiolabelled somatostatin analogues. This therapy induces abundant necrotic patches that contain exposed keratins; thus, keratin 8, which is one of the most abundant cytoskeletal proteins may represent an interesting secondary target for SCLC. This study aimed to investigate the effects of177Lu-DOTA-Tyr3-octerotate and the binding of the monoclonal anti-keratin 8 antibody, TS1, in vitro in treated SCLC- and midgut-xenografted mouse models. Methods NCI-H69- and GOT1-xenotransplanted mice were treated with three doses of 30 MBq177Lu-DOTA-Tyr3-octreotate administered 24 h apart. Mice xenotransplanted with NCI-H69 were sacrificed 1, 5, 12, 20 and 150 days post-injection or when the tumour had regrown to its original size. GOT1-xenotransplanted mice were sacrificed 3 days post-injection. Immunohistochemistry was performed to evaluate TS1 staining in tumours and in seven human biopsies of primary SCLC from pulmonary bronchi. Central cell density and nucleus size were determined in NCI-H69 sections. Results Twelve days after177Lu-DOTA-Tyr3-octerotate treatment, the SCLC xenograft response was extensive. Twenty days after treatment, one of three analysed tumours displayed complete remission. The other two tumours showed 1/4 the cell density of untreated controls and cell nuclei were about three times larger than those of untreated controls. At 150 days after treatment, one of four mice exhibited complete remission. Treated tumours displayed increased TS1 antibody accumulation and high TS1 binding in necrotic patches. All seven human SCLC biopsies displayed necrotic areas with TS1 staining. Conclusions Radiation treatment with three injections of 30 MBq177Lu-DOTA-Tyr3-octreotate had pronounced effects on tumour cell density and cell nuclei, which indicated mitotic catastrophe. Despite these anti-tumour effects, two of three SCLC tumours recurred. Further studies should investigate the nature of tumour cell survival and develop more effective treatments. High TS1 accumulation in tumour sections in vitro after177Lu-DOTA-Tyr3-octerotate treatment indicated that TS1 might represent a promising secondary therapeutic strategy.
Collapse
Affiliation(s)
- Ann Erlandsson
- Department of Chemistry and Biomedical Sciences, Karlstad University, 651 88 Karlstad, Sweden.
| | | | | | | |
Collapse
|
126
|
Quinn BA, Dash R, Azab B, Sarkar S, Das SK, Kumar S, Oyesanya RA, Dasgupta S, Dent P, Grant S, Rahmani M, Curiel DT, Dmitriev I, Hedvat M, Wei J, Wu B, Stebbins JL, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Targeting Mcl-1 for the therapy of cancer. Expert Opin Investig Drugs 2011; 20:1397-411. [PMID: 21851287 DOI: 10.1517/13543784.2011.609167] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Human cancers are genetically and epigenetically heterogeneous and have the capacity to commandeer a variety of cellular processes to aid in their survival, growth and resistance to therapy. One strategy is to overexpress proteins that suppress apoptosis, such as the Bcl-2 family protein Mcl-1. The Mcl-1 protein plays a pivotal role in protecting cells from apoptosis and is overexpressed in a variety of human cancers. AREAS COVERED Targeting Mcl-1 for extinction in these cancers, using genetic and pharmacological approaches, represents a potentially effectual means of developing new efficacious cancer therapeutics. Here we review the multiple strategies that have been employed in targeting this fundamental protein, as well as the significant potential these targeting agents provide in not only suppressing cancer growth, but also in reversing resistance to conventional cancer treatments. EXPERT OPINION We discuss the potential issues that arise in targeting Mcl-1 and other Bcl-2 anti-apoptotic proteins, as well problems with acquired resistance. The application of combinatorial approaches that involve inhibiting Mcl-1 and manipulation of additional signaling pathways to enhance therapeutic outcomes is also highlighted. The ability to specifically inhibit key genetic/epigenetic elements and biochemical pathways that maintain the tumor state represent a viable approach for developing rationally based, effective cancer therapies.
Collapse
Affiliation(s)
- Bridget A Quinn
- Virginia Commonwealth University, School of Medicine, Department of Human and Molecular Genetics, Richmond, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
An antiapoptotic BCL-2 family expression index predicts the response of chronic lymphocytic leukemia to ABT-737. Blood 2011; 118:3579-90. [PMID: 21772052 DOI: 10.1182/blood-2011-03-340364] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The antiapoptotic BCL-2 proteins regulate lymphocyte survival and are over-expressed in lymphoid malignancies, including chronic lymphocytic leukemia. The small molecule inhibitor ABT-737 binds with high affinity to BCL-2, BCL-XL, and BCL-W but with low affinity to MCL-1, BFL-1, and BCL-B. The active analog of ABT-737, navitoclax, has shown a high therapeutic index in lymphoid malignancies; developing a predictive marker for it would be clinically valuable for patient selection or choice of drug combinations. Here we used RT-PCR as a highly sensitive and quantitative assay to compare expression of antiapoptotic BCL-2 genes that are known to be targeted by ABT-737. Our findings reveal that the relative ratio of MCL-1 and BFL-1 to BCL-2 expression provides a highly significant linear correlation with ABT-737 sensitivity (r = 0.6, P < .001). In contrast, antiapoptotic transcript levels, used individually or in combination for high or low affinity ABT-737-binding proteins, could not predict ABT-737 sensitivity. The (MCL-1 + BFL-1)/BCL-2 ratio was validated in a panel of leukemic cell lines subjected to genetic and pharmacologic manipulations. Changes after ABT-737 treatment included increased expression of BFL-1 and BCL-B that may contribute to treatment resistance. This study defines a highly significant BCL-2 expression index for predicting the response of CLL to ABT-737.
Collapse
|
128
|
Sensitization of BCL-2-expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. Proc Natl Acad Sci U S A 2011; 109:2766-71. [PMID: 21768359 DOI: 10.1073/pnas.1104778108] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Overexpression of the prosurvival protein BCL-2 is common in breast cancer. Here we have explored its role as a potential therapeutic target in this disease. BCL-2, its anti-apoptotic relatives MCL-1 and BCL-XL, and the proapoptotic BH3-only ligand BIM were found to be coexpressed at relatively high levels in a substantial proportion of heterogeneous breast tumors, including clinically aggressive basal-like cancers. To determine whether the BH3 mimetic ABT-737 that neutralizes BCL-2, BCL-XL, and BCL-W had potential efficacy in targeting BCL-2-expressing basal-like triple-negative tumors, we generated a panel of primary breast tumor xenografts in immunocompromised mice and treated recipients with either ABT-737, docetaxel, or a combination. Tumor response and overall survival were significantly improved by combination therapy, but only for tumor xenografts that expressed elevated levels of BCL-2. Treatment with ABT-737 alone was ineffective, suggesting that ABT-737 sensitizes the tumor cells to docetaxel. Combination therapy was accompanied by a marked increase in apoptosis and dissociation of BIM from BCL-2. Notably, BH3 mimetics also appeared effective in BCL-2-expressing xenograft lines that harbored p53 mutations. Our findings provide in vivo evidence that BH3 mimetics can be used to sensitize primary breast tumors to chemotherapy and further suggest that elevated BCL-2 expression constitutes a predictive response marker in breast cancer.
Collapse
|
129
|
Optimization of circulating biomarkers of obatoclax-induced cell death in patients with small cell lung cancer. Neoplasia 2011; 13:339-47. [PMID: 21472138 DOI: 10.1593/neo.101524] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/16/2011] [Accepted: 01/20/2011] [Indexed: 11/18/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive disease in which, after initial sensitivity to platinum/etoposide chemotherapy, patients frequently relapse with drug-resistant disease. Deregulation of the Bcl-2 pathway is implicated in the pathogenesis of SCLC, and early phase studies of Bcl-2 inhibitors have been initiated in SCLC. Obatoclax is a small-molecule drug designed to target the antiapoptotic Bcl-2 family members to a proapoptotic effect. Preclinical studies were conducted to clarify the kinetics of obatoclax-induced apoptosis in a panel of SCLC cell lines to assist with the interpretation of biomarker data generated during early phase clinical trials. In vitro, obatoclax was synergistic with cisplatin and etoposide, and "priming" cells with obatoclax before the cytotoxics maximized tumor cell death. Peak levels of apoptosis, reflected by cleaved cytokeratin 18 (CK18) levels (M30 ELISA) and caspase activity (SR-DEVD-FMK), occurred 24 hours after obatoclax treatment. A phase 1b-2 trial of obatoclax administered using two infusion regimens in combination with carboplatin and etoposide has been completed in previously untreated patients with extensive-stage SCLC. Circulating pharmacodynamic biomarkers of cell death, full-length and/or cleaved CK18, and oligonucleosomal DNA were studied in the phase 1b trial. All SCLC patients classified as "responders" after two cycles of treatment showed significantly increased levels of full-length and cleaved CK18 (M65 ELISA) on day 3 of study. However, the preclinical data and the absence of a peak in circulating caspase-cleaved CK18 in trial patients suggest suboptimal timing of blood sampling, which will need refinement in future trials incorporating obatoclax.
Collapse
|
130
|
Lück SC, Russ AC, Botzenhardt U, Paschka P, Schlenk RF, Döhner H, Fulda S, Döhner K, Bullinger L. Deregulated apoptosis signaling in core-binding factor leukemia differentiates clinically relevant, molecular marker-independent subgroups. Leukemia 2011; 25:1728-38. [PMID: 21701487 DOI: 10.1038/leu.2011.154] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Core-binding factor (CBF) leukemias, characterized by translocations t(8;21) or inv(16)/t(16;16) targeting the CBF, constitute acute myeloid leukemia (AML) subgroups with favorable prognosis. However, about 40% of patients relapse and the current classification system does not fully reflect this clinical heterogeneity. Previously, gene expression profiling (GEP) revealed two distinct CBF leukemia subgroups displaying significant outcome differences and identified apoptotic signaling, MAPKinase signaling and chemotherapy-resistance mechanisms among the most significant differentially regulated pathways. We now tested different inhibitors of the respective pathways in a cell line model (six cell lines reflecting the CBF subgroup-specific gene expression alterations), and found apoptotic signaling to be differentiating between the CBF subgroup models. In accordance, primary samples from newly diagnosed CBF AML patients (n=23) also showed differential sensitivity to in vitro treatment with a Smac mimetic such as BV6, an antagonist of inhibitor of apoptosis (IAP) proteins, and ABT-737, a BCL2 inhibitor. Furthermore, GEP revealed the BV6-resistant cases to resemble the previously identified unfavorable CBF subgroup. Thus, our current findings show deregulated IAP expression and apoptotic signaling to differentiate clinically relevant CBF subgroups, which were independent of known molecular markers, thereby providing a starting point for novel therapeutic approaches.
Collapse
Affiliation(s)
- S C Lück
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Distribution of Bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1-expressing myeloma cells. Blood 2011; 118:1329-39. [PMID: 21659544 DOI: 10.1182/blood-2011-01-327197] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dependence on Bcl-2 proteins is a common feature of cancer cells and provides a therapeutic opportunity. ABT-737 is an antagonist of antiapoptotic Bcl-2 proteins and therefore is a good predictor of Bcl-x(L)/Bcl-2 dependence. Surprisingly, analysis of Mcl-1-dependent multiple myeloma cell lines revealed codependence on Bcl-2/Bcl-x(L) in half the cells tested. Codependence is not predicted by the expression level of antiapoptotic proteins, rather through interactions with Bim. Consistent with these findings, acquired resistance to ABT-737 results in loss of codependence through redistribution of Bim to Mcl-1. Overall, these results suggest that complex interactions, and not simply expression patterns of Bcl-2 proteins, need to be investigated to understand Bcl-2 dependence and how to better use agents, such as ABT-737.
Collapse
|
132
|
Cippà PE, Kraus AK, Edenhofer I, Segerer S, Chen J, Hausmann M, Liu Y, Guimezanes A, Bardwell PD, Wüthrich RP, Fehr T. The BH3-mimetic ABT-737 inhibits allogeneic immune responses. Transpl Int 2011; 24:722-32. [DOI: 10.1111/j.1432-2277.2011.01272.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
133
|
Vogler M, Dickens D, Dyer MJ, Owen A, Pirmohamed M, Cohen GM. The B-cell lymphoma 2 (BCL2)-inhibitors, ABT-737 and ABT-263, are substrates for P-glycoprotein. Biochem Biophys Res Commun 2011; 408:344-9. [DOI: 10.1016/j.bbrc.2011.04.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
|
134
|
Harrison LRE, Micha D, Brandenburg M, Simpson KL, Morrow CJ, Denneny O, Hodgkinson C, Yunus Z, Dempsey C, Roberts D, Blackhall F, Makin G, Dive C. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1. J Clin Invest 2011; 121:1075-87. [PMID: 21393866 DOI: 10.1172/jci43505] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 12/22/2010] [Indexed: 12/21/2022] Open
Abstract
Solid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia. This hypoxic induction of apoptosis was mediated through downregulation of myeloid cell leukemia sequence 1 (Mcl-1), a Bcl-2 family protein that serves as a biomarker for ABT-737 resistance. Downregulation of Mcl-1 in hypoxia was independent of hypoxia-inducible factor 1 (HIF-1) activity and was consistent with decreased global protein translation. In addition, ABT-737 induced apoptosis deep within tumor spheroids, consistent with an optimal hypoxic oxygen tension being necessary to promote ABT-737–induced cell death. Tumor xenografts in ABT-737–treated mice also displayed significantly more apoptotic cells within hypoxic regions relative to normoxic regions. Synergies between ABT-737 and other cytotoxic drugs were maintained in hypoxia, suggesting that this drug may be useful in combination with chemotherapeutic agents. Taken together, these findings suggest that Mcl-1–sparing BH-3 mimetics may induce apoptosis in hypoxic tumor cells that are resistant to other chemotherapeutic agents and may have a role in combinatorial chemotherapeutic regimens for treatment of solid tumors.
Collapse
Affiliation(s)
- Luke R E Harrison
- Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Kazarian M, Laird-Offringa IA. Small-cell lung cancer-associated autoantibodies: potential applications to cancer diagnosis, early detection, and therapy. Mol Cancer 2011; 10:33. [PMID: 21450098 PMCID: PMC3080347 DOI: 10.1186/1476-4598-10-33] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 03/30/2011] [Indexed: 12/26/2022] Open
Abstract
Small-cell lung cancer (SCLC) is the most aggressive lung cancer subtype and lacks effective early detection methods and therapies. A number of rare paraneoplastic neurologic autoimmune diseases are strongly associated with SCLC. Most patients with such paraneoplastic syndromes harbor high titers of antibodies against neuronal proteins that are abnormally expressed in SCLC tumors. These autoantibodies may cross-react with the nervous system, possibly contributing to autoimmune disease development. Importantly, similar antibodies are present in many SCLC patients without autoimmune disease, albeit at lower titers. The timing of autoantibody development relative to cancer and the nature of the immune trigger remain to be elucidated. Here we review what is currently known about SCLC-associated autoantibodies, and describe a recently developed mouse model system of SCLC that appears to lend itself well to the study of the SCLC-associated immune response. We also discuss potential clinical applications for these autoantibodies, such as SCLC diagnosis, early detection, and therapy.
Collapse
Affiliation(s)
- Meleeneh Kazarian
- Department of Surgery, Norris Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NOR 6420, Los Angeles, CA 90089-9176, USA
| | | |
Collapse
|
136
|
Gandhi L, Camidge DR, Ribeiro de Oliveira M, Bonomi P, Gandara D, Khaira D, Hann CL, McKeegan EM, Litvinovich E, Hemken PM, Dive C, Enschede SH, Nolan C, Chiu YL, Busman T, Xiong H, Krivoshik AP, Humerickhouse R, Shapiro GI, Rudin CM. Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol 2011; 29:909-16. [PMID: 21282543 DOI: 10.1200/jco.2010.31.6208] [Citation(s) in RCA: 456] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Resistance to chemotherapy-induced apoptosis represents a major obstacle to cancer control. Overexpression of Bcl-2 is seen in multiple tumor types and targeting Bcl-2 may provide therapeutic benefit. A phase I study of navitoclax, a novel inhibitor of Bcl-2 family proteins, was conducted to evaluate safety, pharmacokinetics, and preliminary efficacy in patients with solid tumors. PATIENTS AND METHODS Patients enrolled to intermittent dosing cohorts received navitoclax on day -3, followed by dosing on days 1 to 14 of a 21-day cycle. Patients on continuous dosing received a 1-week lead-in dose of 150 mg followed by continuous daily administration. Blood samples were collected for pharmacokinetic analyses, biomarker analyses, and platelet monitoring. RESULTS Forty-seven patients, including 29 with small-cell lung cancer (SCLC) or pulmonary carcinoid, were enrolled between 2007 and 2008, 35 on intermittent and 12 on continuous dosing cohorts. Primary toxicities included diarrhea (40%), nausea (34%), vomiting (36%), and fatigue (34%); most were grade 1 or 2. Dose- and schedule-dependent thrombocytopenia was seen in all patients. One patient with SCLC had a confirmed partial response lasting longer than 2 years, and eight patients with SCLC or carcinoid had stable disease (one remained on study for 13 months). Pro-gastrin releasing peptide (pro-GRP) was identified as a surrogate marker of Bcl-2 amplification and changes correlated with changes in tumor volume. CONCLUSION Navitoclax is safe and well tolerated, with dose-dependent thrombocytopenia as the major adverse effect. Preliminary efficacy data are encouraging in SCLC. Efficacy in SCLC and the utility of pro-GRP as a marker of treatment response will be further evaluated in phase II studies.
Collapse
|
137
|
Polymorphisms in the Apoptotic Pathway Gene BCL-2 and Survival in Small Cell Lung Cancer. J Thorac Oncol 2011; 6:183-9. [DOI: 10.1097/jto.0b013e3181f8a20e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
138
|
Proapoptotic agents in lung cancer. J Thorac Oncol 2010; 5:S480-1. [PMID: 21102248 DOI: 10.1097/01.jto.0000391375.79129.e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
139
|
D'Angelo SP, Pietanza MC. [The molecular pathogenesis of small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:C46-57. [PMID: 21081036 PMCID: PMC6134416 DOI: 10.3779/j.issn.1009-3419.2010.11.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sandra P D'Angelo
- Department of Medicine, Thoracic Oncology Service, Division of Solid Tumor Oncology, Memorial Sloan-Kettering Cancer Center and the Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
140
|
Lawson MH, Cummings NM, Rassl DM, Vowler SL, Wickens M, Howat WJ, Brenton JD, Murphy G, Rintoul RC. Bcl-2 and β1-integrin predict survival in a tissue microarray of small cell lung cancer. Br J Cancer 2010; 103:1710-5. [PMID: 21063403 PMCID: PMC2994222 DOI: 10.1038/sj.bjc.6605950] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Survival in small cell lung cancer (SCLC) is limited by the development of chemoresistance. Factors associated with chemoresistance in vitro have been difficult to validate in vivo. Both Bcl-2 and β(1)-integrin have been identified as in vitro chemoresistance factors in SCLC but their importance in patients remains uncertain. Tissue microarrays (TMAs) are useful to validate biomarkers but no large TMA exists for SCLC. We designed an SCLC TMA to study potential biomarkers of prognosis and then used it to clarify the role of both Bcl-2 and β(1)-integrin in SCLC. METHODS A TMA was constructed consisting of 184 cases of SCLC and stained for expression of Bcl-2 and β(1)-integrin. The slides were scored and the role of the proteins in survival was determined using Cox regression analysis. A meta-analysis of the role of Bcl-2 expression in SCLC prognosis was performed based on published results. RESULTS Both proteins were expressed at high levels in the SCLC cases. For Bcl-2 (n=140), the hazard ratio for death if the staining was weak in intensity was 0.55 (0.33-0.94, P=0.03) and for β(1)-integrin (n=151) was 0.60 (0.39-0.92, P=0.02). The meta-analysis showed an overall hazard ratio for low expression of Bcl-2 of 0.91(0.74-1.09). CONCLUSIONS Both Bcl-2 and β(1)-integrin are independent prognostic factors in SCLC in this cohort although further validation is required to confirm their importance. A TMA of SCLC cases is feasible but challenging and an important tool for biomarker validation.
Collapse
Affiliation(s)
- M H Lawson
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Fulda S. Exploiting mitochondrial apoptosis for the treatment of cancer. Mitochondrion 2010; 10:598-603. [DOI: 10.1016/j.mito.2010.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/10/2010] [Accepted: 05/12/2010] [Indexed: 01/11/2023]
|
142
|
Pore MM, Hiltermann TJN, Kruyt FAE. Targeting apoptosis pathways in lung cancer. Cancer Lett 2010; 332:359-68. [PMID: 20974517 DOI: 10.1016/j.canlet.2010.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/18/2010] [Accepted: 09/13/2010] [Indexed: 01/23/2023]
Abstract
Lung cancer is a devastating disease with a poor prognosis. Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) represent different forms of lung cancer that are associated with distinct genetic causes and display different responses to therapy in the clinic. Whereas SCLC is often sensitive to chemotherapy at start of treatment, NSCLC are less chemo-sensitive. In NSCLC different histological subtypes are distinguished and increasing efforts are made to identify subtypes that respond to specific therapies, such as those harbouring epidermal growth factor receptor (EGFR) mutations that have benefit from treatment with EGFR inhibitors. Targeting of the apoptotic machinery represents another approach that aims to selectively kill cancer cells while sparing normal ones. Here we describe different ways that are currently explored to induce apoptosis in lung cancer cells, specifically pathways controlled by TNF-related apoptosis-inducing ligand (TRAIL), BCL-2 family members and apoptosis inhibitory proteins (IAPs). Preclinical studies are discussed and for some agents results from early clinical studies and future perspectives are considered.
Collapse
Affiliation(s)
- Milind M Pore
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
143
|
Hikita H, Takehara T, Shimizu S, Kodama T, Shigekawa M, Iwase K, Hosui A, Miyagi T, Tatsumi T, Ishida H, Li W, Kanto T, Hiramatsu N, Hayashi N. The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology 2010; 52:1310-21. [PMID: 20799354 DOI: 10.1002/hep.23836] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
UNLABELLED Tumor cells are characterized by uncontrolled proliferation, often driven by activation of oncogenes, and apoptosis resistance. The oncogenic kinase inhibitor sorafenib can significantly prolong median survival of patients with advanced hepatocellular carcinoma (HCC), although the response is disease-stabilizing and cytostatic rather than one of tumor regression. Bcl-xL (B cell lymphoma extra large), an antiapoptotic member of the B cell lymphoma-2 (Bcl-2) family, is frequently overexpressed in HCC. Here, we present in vivo evidence that Bcl-xL overexpression is directly linked to the rapid growth of solid tumors. We also examined whether ABT-737, a small molecule that specifically inhibits Bcl-xL but not myeloid cell leukemia-1 (Mcl-1), could control HCC progression, especially when used with sorafenib. Administration of ABT-737, even at an in vivo effective dose, failed to suppress Huh7 xenograft tumors in mice. ABT-737 caused the levels of Mcl-1 expression to rapidly increase by protein stabilization. This appeared to be related to resistance to ABT-737, because decreasing Mcl-1 expression levels to the baseline by a small interfering RNA-mediated strategy made hepatoma cells sensitive to this agent. Importantly, administration of ABT-737 to Mcl-1 knockout mice induced severe liver apoptosis, suggesting that tumor-specific inhibition of Mcl-1 is required for therapeutic purposes. Sorafenib transcriptionally down-regulated Mcl-1 expression specifically in tumor cells and abolished Mcl-1 up-regulation induced by ABT-737. Sorafenib, not alone but in combination with ABT-737, efficiently induced apoptosis in hepatoma cells. This combination also led to stronger suppression of xenograft tumors than sorafenib alone. CONCLUSION Bcl-xL inactivation by ABT-737 in combination with sorafenib was found to be safe and effective for anti-HCC therapy in preclinical models. Direct activation of the apoptosis machinery seems to unlock the antitumor potential of oncogenic kinase inhibitors and may produce durable clinical responses against HCC.
Collapse
Affiliation(s)
- Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
INTRODUCTION Radiotherapy has a central role in the treatment of lung cancer. However, its effectiveness is often limited, in part, because of the defects in key apoptosis regulators, such as Bcl-2 family members, that contribute to cancer ability to evade apoptosis. In this study, we tested AT-101, a pan-Bcl-2 inhibitor, as a potential radiosensitizer in lung cancer. METHODS AND RESULTS Clonogenic assays were used to determine the radiosensitivity of multiple lung cancer cell lines. On the basis of their relative response to radiotherapy, lung cancer cells were stratified into two groups, and a representative cell line of each group was selected for more in-depth study: A549 (resistant) and HCC2429 (sensitive). The expression levels of antiapoptotic (Bcl-2, Bcl-XL, and Mcl-1) and proapoptotic (Bax, Bak, and Bid) Bcl-2 proteins were determined for each group. Although the levels of Bcl-2 and Mcl-1 were low for both groups, Bcl-XL expression was dramatically higher in A549, whereas almost not detected in HCC2429. The levels of Bax/Bak were 40% higher in HCC2429 compared with A549. When administered alone, AT-101 resulted in increased apoptosis in concentration-dependent manner against both groups, with enhanced activity in HCC2429 even at lower concentration. Furthermore, AT-101 promoted radiosensitivity of A549 and HCC2429 cells (p < 0.005). Consistent with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay findings, A549 cells required increased AT-101 dose to achieve a similar cytoxicity to HCC2429 cells. CONCLUSIONS These investigations suggest that the Bcl-2 family may serve as effective therapeutic targets in lung cancer. Further clinical studies are warranted to assess the potential of AT-101 as an agent that enhances the therapeutic ratio of radiotherapy in lung cancer.
Collapse
|
145
|
Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors. Proc Natl Acad Sci U S A 2010; 107:13040-5. [PMID: 20615970 DOI: 10.1073/pnas.1008132107] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The goal of this study was to characterize and classify pulmonary neuroendocrine tumors based on array comparative genomic hybridization (aCGH). Using aCGH, we performed karyotype analysis of 33 small cell lung cancer (SCLC) tumors, 13 SCLC cell lines, 19 bronchial carcinoids, and 9 gastrointestinal carcinoids. In contrast to the relatively conserved karyotypes of carcinoid tumors, the karyotypes of SCLC tumors and cell lines were highly aberrant. High copy number (CN) gains were detected in SCLC tumors and cell lines in cytogenetic bands encoding JAK2, FGFR1, and MYC family members. In some of those samples, the CN of these genes exceeded 100, suggesting that they could represent driver alterations and potential drug targets in subgroups of SCLC patients. In SCLC tumors, as well as bronchial carcinoids and carcinoids of gastrointestinal origin, recurrent CN alterations were observed in 203 genes, including the RB1 gene and 59 microRNAs of which 51 locate in the DLK1-DIO3 domain. These findings suggest the existence of partially shared CN alterations in these tumor types. In contrast, CN alterations of the TP53 gene and the MYC family members were predominantly observed in SCLC. Furthermore, we demonstrated that the aCGH profile of SCLC cell lines highly resembles that of clinical SCLC specimens. Finally, by analyzing potential drug targets, we provide a genomics-based rationale for targeting the AKT-mTOR and apoptosis pathways in SCLC.
Collapse
|
146
|
Abstract
Mitochondria are the cells' powerhouse, but also their suicidal weapon store. Dozens of lethal signal transduction pathways converge on mitochondria to cause the permeabilization of the mitochondrial outer membrane, leading to the cytosolic release of pro-apoptotic proteins and to the impairment of the bioenergetic functions of mitochondria. The mitochondrial metabolism of cancer cells is deregulated owing to the use of glycolytic intermediates, which are normally destined for oxidative phosphorylation, in anabolic reactions. Activation of the cell death machinery in cancer cells by inhibiting tumour-specific alterations of the mitochondrial metabolism or by stimulating mitochondrial membrane permeabilization could therefore be promising therapeutic approaches.
Collapse
Affiliation(s)
- Simone Fulda
- University Children's Hospital, Ulm University, Eythstrasse 24, D-89075 Ulm, Germany.
| | | | | |
Collapse
|
147
|
Song R, Harris LD, Pettaway CA. Downmodulation of Bcl-2 sensitizes metastatic LNCaP-LN3 cells to undergo apoptosis via the intrinsic pathway. Prostate 2010; 70:571-83. [PMID: 19938012 DOI: 10.1002/pros.21091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND We explored the mechanisms of apoptosis after Bcl-2 protein downmodulation in metastatic LNCaP-LN3 cells (LN3). METHODS LNCaP, LNCaP-Pro5 (Pro5) and LN3 cells were cultured in 5% charcoal-stripped serum (CSS) or in R1881 (synthetic androgen) and bicalutamide (synthetic anti-androgen) and growth inhibition was assessed. Expression levels of androgen receptor (AR) and Bcl-2 were determined. LN3 cells were transfected with small interfering RNA Bcl-2 (siRNA Bcl-2) or control siRNA oligonucleotides. Rates of apoptosis and proliferation were obtained. Cytochrome c localization in treated and control cells was assessed +/- cyclosporine A (CsA). Caspases 9, 3, and poly (ADP-ribose) polymerase cleavage (PARP) were measured upon downmodulation of Bcl-2; and cell growth inhibition in vitro after Bcl-2 modulation combined with docetaxel chemotherapy was determined. RESULTS LN3 cells maintained growth under castrate conditions in vitro. AR protein amplification did not explain castrate-resistant LN3 cell growth. Bcl-2 protein levels in LN3 cells were significantly higher than in Pro5 cells, and were effectively downmodulated by siRNA Bcl-2. Subsequently increased apoptosis and decreased proliferation mediated by cytochrome c was noted and this was reversed by CsA. siRNA Bcl-2-transfected LN3 cells exhibited elevated levels of caspases 9, 3, and PARP cleavage. Exposure of LN3 cells to docetaxel led to increased apoptosis, and simultaneous downmodulation of Bcl-2 substantially enhanced this effect. CONCLUSIONS Downmodulation of Bcl-2 in metastatic castrate-resistant LNCaP-LN3 cells led to apoptosis via a cytochrome c-dependent pathway that was enhanced with docetaxel treatment.
Collapse
Affiliation(s)
- Renduo Song
- Department of Urology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
148
|
Abstract
Although the incidence of small cell lung cancer (SCLC) has declined during the past 30 years, it remains a significant cause of cancer mortality in the United States and across the world. With appropriate treatment, about 20% of patients who present with limited stage SCLC can be cured of their disease. Unfortunately, the outcome for the remainder of patients is extremely poor. The only significant advance in extensive stage SCLC in the past 2 decades is the recent discovery that prophylactic cranial irradiation improves survival in those patients whose disease has responded to initial chemotherapy. Numerous attempts to enhance the antitumor effects of traditional chemotherapy for SCLC have not been successful. As the understanding of the biology of SCLC increased, a number of rational molecular targets for therapy have been identified. Although initial attempts at "targeted therapy" in SCLC have been unsuccessful, several newly identified targets hold promise and give hope that significant improvements in therapy for this challenging disease are not far away.
Collapse
|
149
|
Abidin AZ, Garassino MC, Califano R, Harle A, Blackhall F. Targeted therapies in small cell lung cancer: a review. Ther Adv Med Oncol 2010; 2:25-37. [PMID: 21789124 PMCID: PMC3126006 DOI: 10.1177/1758834009356014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive form of lung cancer that is characterized by a rapid doubling time, early onset of dissemination and high sensitivity to chemotherapy. Despite the potential for cure in patients with limited disease with concurrent chemoradiation and an initial good response to chemotherapy in extensive disease, there is a high chance of disease relapse with an overall poor median survival for both stages. With increasing translational research and a better understanding of the molecular basis of cancer, a number of molecular targets have been identified in various preclinical studies. This review summarizes potentially viable targets and new agents that have been developed and employed in recent, ongoing and future clinical trials to attempt to improve clinical outcomes in this disease.
Collapse
Affiliation(s)
- Aidalena Z Abidin
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | | | | | | | | |
Collapse
|
150
|
Hurwitz JL, McCoy F, Scullin P, Fennell DA. New advances in the second-line treatment of small cell lung cancer. Oncologist 2009; 14:986-94. [PMID: 19819917 DOI: 10.1634/theoncologist.2009-0026] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death in the U.K., with small cell histology accounting for 15%-20% of cases. Small cell lung cancer (SCLC) is initially a chemosensitive disease, but relapse is common, and in this group of patients it remains a rapidly lethal disease with a particularly poor prognosis. The choice of second-line chemotherapy for patients with relapsed SCLC has been an area of difficulty for oncologists, and until recently there was no randomized evidence for its use over best supportive care (BSC). Topotecan is currently the only drug licensed in Europe and the U.S. for this indication, having been shown in a phase III trial to lead to longer overall survival and better quality of life than with BSC. In this article, we review the current evidence for the use of second-line cytotoxic therapy and also the emerging role of novel agents and targeted therapies in this setting. In particular, we explore the role of the Bcl-2 protein family, which are key regulators of mitochondrial apoptosis and are implicated in resistance to anticancer therapies. SCLC overexpresses antiapoptotic members of the Bcl-2 family in approximately 80% of cases. Several Bcl-2 inhibitors, including obatoclax, are currently entering clinical trials in SCLC and are an exciting area of drug development in the relapsed setting.
Collapse
Affiliation(s)
- Jane L Hurwitz
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland
| | | | | | | |
Collapse
|