101
|
Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer 2019; 19:625-637. [PMID: 31515518 DOI: 10.1038/s41568-019-0187-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 01/11/2023]
Abstract
Methionine uptake and metabolism is involved in a host of cellular functions including methylation reactions, redox maintenance, polyamine synthesis and coupling to folate metabolism, thus coordinating nucleotide and redox status. Each of these functions has been shown in many contexts to be relevant for cancer pathogenesis. Intriguingly, the levels of methionine obtained from the diet can have a large effect on cellular methionine metabolism. This establishes a link between nutrition and tumour cell metabolism that may allow for tumour-specific metabolic vulnerabilities that can be influenced by diet. Recently, a number of studies have begun to investigate the molecular and cellular mechanisms that underlie the interaction between nutrition, methionine metabolism and effects on health and cancer.
Collapse
Affiliation(s)
- Sydney M Sanderson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ziwei Dai
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
102
|
Calcium signaling regulates fundamental processes involved in Neuroblastoma progression. Cell Calcium 2019; 82:102052. [DOI: 10.1016/j.ceca.2019.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
|
103
|
Du S, Wang S, Zhang F, Lv Y. SKP2, positively regulated by circ_ODC1/miR‐422a axis, promotes the proliferation of retinoblastoma. J Cell Biochem 2019; 121:322-331. [PMID: 31297892 DOI: 10.1002/jcb.29177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Shanshan Du
- Department of Ophthalmology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Shuai Wang
- Department of Ophthalmology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Fengyan Zhang
- Department of Ophthalmology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yong Lv
- Department of Ophthalmology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
104
|
Ye Z, Zeng Z, Shen Y, Yang Q, Chen D, Chen Z, Shen S. ODC1 promotes proliferation and mobility via the AKT/GSK3β/β-catenin pathway and modulation of acidotic microenvironment in human hepatocellular carcinoma. Onco Targets Ther 2019; 12:4081-4092. [PMID: 31239700 PMCID: PMC6553997 DOI: 10.2147/ott.s198341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/29/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Ornithine decarboxylase 1 (ODC1)–an oncogene involved in the biosynthesis of polyamines–is commonly upregulated and associated with poor prognosis in numerous cancers. However, the role and mechanism of ODC1 in hepatocellular carcinoma (HCC) remains unclear. The aim of the present study was to investigate the role of ODC1 in HCC and clarify the latent molecular mechanisms. Material and methods: We used samples obtained from The Cancer Genome Atlas. The expression of ODC1 was also assessed in our additional HCC samples and HCC cell lines. The roles of ODC1 in HCC cell proliferation, migration and invasion in vitro were investigated using the cell-counting kit-8 assay, 5-ethynyl-2´-deoxyuridine assay, colony formation assay, flow cytometry, wound healing assay and transwell assay, respectively. The effect of ODC1 on HCC cell proliferation in vivo was investigated by constructing a xenotransplanted tumor model in nude mice. Quantitative real-time polymerase chain and western blotting were used to detect the expression levels of ODC1 in mimetic hypoxia, nutrient depleted, and acidotic microenvironment. The relationships between ODC1, the AKT/GSK3β/β-catenin pathway, and acidotic microenvironment were further investigated through western blotting, immunohistochemical staining, and immunofluorescence. Results: ODC1 was upregulated in HCC tissues and cell lines, and co-expressed with KI67 and PCNA (P<0.05). A decrease in the expression of ODC1 inhibits proliferation, migration, invasion, and induces cell cycle arrest in HCC cell lines in vitro, while suppressing HCC cell proliferation in vivo (P<0.05). Furthermore, the expression of ODC1 was increased in the mimetic acidotic microenvironment, while the interference with the expression of ODC1 reversed the effect of the acidotic microenvironment through regulation of AKT/GSK3β/β-catenin and related downstream proteins. Conclusion: ODC1 is an unfavorable gene in HCC patients,promoting HCC cell proliferation, migration and invasion via the AKT/GSK3β/β-catenin pathway and modulation of the acidotic microenvironment.
Collapse
Affiliation(s)
- Zi Ye
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, Guizhou 550009, People's Republic of China.,Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, People's Republic of China
| | - Yiyi Shen
- Department of Liver-Biliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, People's Republic of China
| | - Qiang Yang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Duidui Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Zubing Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Shiqiang Shen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
105
|
Kaminski L, Torrino S, Dufies M, Djabari Z, Haider R, Roustan FR, Jaune E, Laurent K, Nottet N, Michiels JF, Gesson M, Rocchi S, Mazure NM, Durand M, Tanti JF, Ambrosetti D, Clavel S, Ben-Sahra I, Bost F. PGC1α Inhibits Polyamine Synthesis to Suppress Prostate Cancer Aggressiveness. Cancer Res 2019; 79:3268-3280. [PMID: 31064849 DOI: 10.1158/0008-5472.can-18-2043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 02/22/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022]
Abstract
Although tumorigenesis is dependent on the reprogramming of cellular metabolism, the metabolic pathways engaged in the formation of metastases remain largely unknown. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) plays a pleiotropic role in the control of cancer cell metabolism and has been associated with a good prognosis in prostate cancer. Here, we show that PGC1α represses the metastatic properties of prostate cancer cells via modulation of the polyamine biosynthesis pathway. Mechanistically, PGC1α inhibits the expression of c-MYC and ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme for polyamine synthesis. Analysis of in vivo metastases and clinical data from patients with prostate cancer support the proposition that the PGC1α/c-MYC/ODC1 axis regulates polyamine biosynthesis and prostate cancer aggressiveness. In conclusion, downregulation of PGC1α renders prostate cancer cells dependent on polyamine to promote metastasis. SIGNIFICANCE: These findings show that a major regulator of mitochondrial metabolism controls polyamine synthesis and prostate cancer aggressiveness, with potential applications in therapy and identification of new biomarkers.
Collapse
Affiliation(s)
| | | | - Maeva Dufies
- Biomedical Department, Centre Scientifique de Monaco, Principality of Monaco
| | - Zied Djabari
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Romain Haider
- Université Côte d'Azur, Inserm U1065, C3M, France.,Department of Urology, Hôpital Pasteur 2, CHU Nice, Université Côte d'Azur, France
| | - François-René Roustan
- Université Côte d'Azur, Inserm U1065, C3M, France.,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Emilie Jaune
- Université Côte d'Azur, Inserm U1065, C3M, France
| | | | | | | | - Maeva Gesson
- Université Côte d'Azur, Inserm U1065, C3M, France
| | | | | | - Matthieu Durand
- Department of Urology, Hôpital Pasteur 2, CHU Nice, Université Côte d'Azur, France
| | | | - Damien Ambrosetti
- Department of Pathology, Hôpital Pasteur 2, CHU Nice, Université Côte d'Azur, France
| | | | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
106
|
Huang CT, Hsieh CH, Lee WC, Liu YL, Yang TS, Hsu WM, Oyang YJ, Huang HC, Juan HF. Therapeutic Targeting of Non-oncogene Dependencies in High-risk Neuroblastoma. Clin Cancer Res 2019; 25:4063-4078. [PMID: 30952635 DOI: 10.1158/1078-0432.ccr-18-4117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/17/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Neuroblastoma is a pediatric malignancy of the sympathetic nervous system with diverse clinical behaviors. Genomic amplification of MYCN oncogene has been shown to drive neuroblastoma pathogenesis and correlate with aggressive disease, but the survival rates for those high-risk tumors carrying no MYCN amplification remain equally dismal. The paucity of mutations and molecular heterogeneity has hindered the development of targeted therapies for most advanced neuroblastomas. We use an alternative method to identify potential drugs that target nononcogene dependencies in high-risk neuroblastoma. EXPERIMENTAL DESIGN By using a gene expression-based integrative approach, we identified prognostic signatures and potentially effective single agents and drug combinations for high-risk neuroblastoma. RESULTS Among these predictions, we validated in vitro efficacies of some investigational and marketed drugs, of which niclosamide, an anthelmintic drug approved by the FDA, was further investigated in vivo. We also quantified the proteomic changes during niclosamide treatment to pinpoint nucleoside diphosphate kinase 3 (NME3) downregulation as a potential mechanism for its antitumor activity. CONCLUSIONS Our results establish a gene expression-based strategy to interrogate cancer biology and inform drug discovery and repositioning for high-risk neuroblastoma.
Collapse
Affiliation(s)
- Chen-Tsung Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Chiao-Hui Hsieh
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Wen-Chi Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Yen-Lin Liu
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Tsai-Shan Yang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Jen Oyang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.
| | - Hsueh-Fen Juan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan. .,Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
107
|
Pastor ER, Mousa SA. Current management of neuroblastoma and future direction. Crit Rev Oncol Hematol 2019; 138:38-43. [PMID: 31092383 DOI: 10.1016/j.critrevonc.2019.03.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma is the most common solid extracranial tumor in pediatrics and can regress spontaneously or grow and metastasize with resistance to multiple therapeutic approaches. The prognosis and approach to treatment depends on the tumor presentation and whether it expresses certain drivers such as MYCN, ALK, and TrkB. Expression or mutation of these genes and kinases correlates with high-risk and poor prognosis. Multiple therapeutic approaches are being used to target MYCN, ALK, and TrkB, as well as GD2, a surface antigen present on the surface of neuroblastoma tumor cells. This review discusses the nature of these targets and several current therapies for neuroblastoma. A focus is placed on recent therapeutic developments including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy.
Collapse
Affiliation(s)
- Elizabeth R Pastor
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
108
|
MYC status as a determinant of synergistic response to Olaparib and Palbociclib in ovarian cancer. EBioMedicine 2019; 43:225-237. [PMID: 30898650 PMCID: PMC6557734 DOI: 10.1016/j.ebiom.2019.03.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Background While PARP inhibitors and CDK4/6 inhibitors, the two classes of FDA-approved agents, have shown promising clinical benefits, there is an urgent need to develop new therapeutic strategies to improve clinical response. Meanwhile, extending the utility of these inhibitors beyond their respective molecularly defined cancer types is challenging and will likely require biomarkers predictive of treatment response especially when used in a combination drug development setting. Methods The effects of PARP inhibitor Olaparib and CDK4/6 inhibitor Palbociclib on ovarian cancer cells lines including those of high-grade serous histology were examined in vitro and in vivo. We investigated the molecular mechanism underlying the synergistic effects of drug combination. Findings We show for the first time that combining PARP and CDK4/6 inhibition has synergistic effects against MYC overexpressing ovarian cancer cells both in vitro and in vivo. Mechanistically, we find that Palbociclib induces homologous recombination (HR) deficiency through downregulation of MYC-regulated HR pathway genes, causing synthetic lethality with Olaparib. We further demonstrate that MYC expression determines sensitivity to combinatorial treatment with Olaparib and Palbociclib. Interpretation Our data provide a rationale for clinical evaluation of therapeutic synergy of these two classes of inhibitors in ovarian cancer patients whose tumors show high MYC expression and who do not respond to PARP inhibitors or CDK4/6 inhibitors monotherapies. Fund This work was supported by the National Natural Science Foundation of China [81672575, 81874111, 81472447 to HC; 81572586 and 81372853 to PL], and the Liaoning Provincial Key Basic Research Program for Universities [LZ2017002 to HC].
Collapse
|
109
|
Makena MR, Cho HE, Nguyen TH, Koneru B, Verlekar DU, Hindle A, Kang MH, Reynolds CP. Cytotoxic activity of difluoromethylornithine compared with fenretinide in neuroblastoma cell lines. Pediatr Blood Cancer 2018; 65:e27447. [PMID: 30251395 PMCID: PMC9621602 DOI: 10.1002/pbc.27447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Maintenance therapy with 13-cis-retinoic acid and immunotherapy (given after completion of intensive cytotoxic therapy) improves outcome for high-risk neuroblastoma patients. The synthetic retinoid fenretinide (4-HPR) achieved multiple complete responses in relapse/refractory neuroblastoma in early-phase clinical trials, has low systemic toxicity, and has been considered for maintenance therapy clinical trials. Difluoromethylornithine (DFMO, an irreversible inhibitor of ornithine decarboxylase with minimal single-agent clinical response data) is being used for maintenance therapy of neuroblastoma. We evaluated the cytotoxic activity of DFMO and fenretinide in neuroblastoma cell lines. PROCEDURE We tested 16 neuroblastoma cell lines in bone marrow-level hypoxia (5% O2 ) using the DIMSCAN cytotoxicity assay. Polyamines were measured by HPLC-mass spectrometry and apoptosis by transferase dUTP nick end labeling (TUNEL) using flow cytometry. RESULTS At clinically achievable levels (100 μM), DFMO significantly decreased (P < 0.05) polyamine putrescine and achieved modest cytotoxicity (<1 log (90% cytotoxicity). Prolonged exposures (7 days) or culture in 2% and 20% O2 did not enhance DFMO cytotoxicity. However, fenretinide (10 μM) even at a concentration lower than clinically achievable in neuroblastoma patients (20 μM) induced ≥ 1 log cell kill in 14 cell lines. The average IC90 and IC99 of fenretinide was 4.7 ± 1 μM and 9.9 ± 1.8 μM, respectively. DFMO did not induce a significant increase (P > 0.05) in apoptosis (TUNEL assay). Apoptosis by fenretinide was significantly higher (P < 0.001) compared with DFMO or controls. CONCLUSIONS DFMO as a single agent has minimal cytotoxic activity for neuroblastoma cell lines.
Collapse
Affiliation(s)
- Monish R. Makena
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Hwang Eui Cho
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Thinh H. Nguyen
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Pharmacology and Neuroscience, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Balakrishna Koneru
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Dattesh U. Verlekar
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Ashly Hindle
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Min H. Kang
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Pharmacology and Neuroscience, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - C. Patrick Reynolds
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Pharmacology and Neuroscience, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Pediatrics, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| |
Collapse
|
110
|
Abstract
This paper is in recognition of the 100th birthday of Dr. Herbert Tabor, a true pioneer in the polyamine field for over 70 years, who served as the editor-in-chief of the Journal of Biological Chemistry from 1971 to 2010. We review current knowledge of MYC proteins (c-MYC, MYCN, and MYCL) and focus on ornithine decarboxylase 1 (ODC1), an important bona fide gene target of MYC, which encodes the sentinel, rate-limiting enzyme in polyamine biosynthesis. Although notable advances have been made in designing inhibitors against the "undruggable" MYCs, their downstream targets and pathways are currently the main avenue for therapeutic anticancer interventions. To this end, the MYC-ODC axis presents an attractive target for managing cancers such as neuroblastoma, a pediatric malignancy in which MYCN gene amplification correlates with poor prognosis and high-risk disease. ODC and polyamine levels are often up-regulated and contribute to tumor hyperproliferation, especially of MYC-driven cancers. We therefore had proposed to repurpose α-difluoromethylornithine (DFMO), an FDA-approved, orally available ODC inhibitor, for management of neuroblastoma, and this intervention is now being pursued in several clinical trials. We discuss the regulation of ODC and polyamines, which besides their well-known interactions with DNA and tRNA/rRNA, are involved in regulating RNA transcription and translation, ribosome function, proteasomal degradation, the circadian clock, and immunity, events that are also controlled by MYC proteins.
Collapse
Affiliation(s)
- André S Bachmann
- From the Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503 and
| | - Dirk Geerts
- the Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
111
|
Abstract
Advances in our understanding of the metabolism and molecular functions of polyamines and their alterations in cancer have led to resurgence in the interest of targeting polyamine metabolism as an anticancer strategy. Increasing knowledge of the interplay between polyamine metabolism and other cancer-driving pathways, including the PTEN-PI3K-mTOR complex 1 (mTORC1), WNT signalling and RAS pathways, suggests potential combination therapies that will have considerable clinical promise. Additionally, an expanding number of promising clinical trials with agents targeting polyamines for both therapy and prevention are ongoing. New insights into molecular mechanisms linking dysregulated polyamine catabolism and carcinogenesis suggest additional strategies that can be used for cancer prevention in at-risk individuals. In addition, polyamine blocking therapy, a strategy that combines the inhibition of polyamine biosynthesis with the simultaneous blockade of polyamine transport, can be more effective than therapies based on polyamine depletion alone and may involve an antitumour immune response. These findings open up new avenues of research into exploiting aberrant polyamine metabolism for anticancer therapy.
Collapse
Affiliation(s)
- Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| | - Tracy Murray Stewart
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Anthony E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
112
|
Novel Therapies for Relapsed and Refractory Neuroblastoma. CHILDREN-BASEL 2018; 5:children5110148. [PMID: 30384486 PMCID: PMC6262328 DOI: 10.3390/children5110148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
While recent increases in our understanding of the biology of neuroblastoma have allowed for more precise risk stratification and improved outcomes for many patients, children with high-risk neuroblastoma continue to suffer from frequent disease relapse, and despite recent advances in our understanding of neuroblastoma pathogenesis, the outcomes for children with relapsed neuroblastoma remain poor. These children with relapsed neuroblastoma, therefore, continue to need novel treatment strategies based on a better understanding of neuroblastoma biology to improve outcomes. The discovery of new tumor targets and the development of novel antibody- and cell-mediated immunotherapy agents have led to a large number of clinical trials for children with relapsed neuroblastoma, and additional clinical trials using molecular and genetic tumor profiling to target tumor-specific aberrations are ongoing. Combinations of these new therapeutic modalities with current treatment regimens will likely be needed to improve the outcomes of children with relapsed and refractory neuroblastoma.
Collapse
|
113
|
Leifer BS, Doyle SK, Richters A, Evans HL, Koehler AN. An Array-Based Ligand Discovery Platform for Proteins With Short Half-Lives. Methods Enzymol 2018; 610:191-218. [PMID: 30390799 DOI: 10.1016/bs.mie.2018.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many promising therapeutic protein targets were previously considered "undruggable" due to a deficit in structural information to guide drug design and/or a lack of an obvious binding pocket. Fortunately, array-based methods for evaluating protein binding against large chemical libraries, such as small-molecule microarray screening, have provided one of several emerging inroads to ligand discovery for these elusive targets. Despite the advance in the area of ligand discovery for poorly structured and intrinsically disordered proteins provided by array-based technologies involving cell lysates, the extension of this technology for screening proteins with short half-lives in physiologically relevant conformations has been technically challenging. In this chapter we present a protocol for leveraging in vitro translation strategies to enable array-based screening of short-lived proteins against large small-molecule libraries for ligand discovery.
Collapse
Affiliation(s)
- Becky S Leifer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Shelby K Doyle
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; The Broad Institute of MIT and Harvard, Cambridge, MA, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - André Richters
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Helen L Evans
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States; The Broad Institute of MIT and Harvard, Cambridge, MA, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
114
|
Molecularly Targeted Therapy for Neuroblastoma. CHILDREN-BASEL 2018; 5:children5100142. [PMID: 30326621 PMCID: PMC6210520 DOI: 10.3390/children5100142] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor encountered in childhood and accounts for 15% of pediatric cancer-related deaths. Although there has been significant improvement in the outcomes for patients with high-risk disease, the therapy needed to achieve a cure is quite toxic and for those that do experience a disease recurrence, the prognosis is very dismal. Given this, there is a tremendous need for novel therapies for children with high-risk neuroblastoma and the molecular discoveries over recent years provide hope for developing new, less toxic, and potentially more efficacious treatments. Here I discuss many of the molecular aberrations identified thus far in neuroblastoma, as well as the agents in development to target these changes. The progress made in both the preclinical arena and in early phase drug development provide much promise for the future of precision medicine in neuroblastoma.
Collapse
|
115
|
Sholler GLS, Ferguson W, Bergendahl G, Bond JP, Neville K, Eslin D, Brown V, Roberts W, Wada RK, Oesterheld J, Mitchell D, Foley J, Parikh NS, Eshun F, Zage P, Rawwas J, Sencer S, Pankiewicz D, Quinn M, Rich M, Junewick J, Kraveka JM. Maintenance DFMO Increases Survival in High Risk Neuroblastoma. Sci Rep 2018; 8:14445. [PMID: 30262852 PMCID: PMC6160434 DOI: 10.1038/s41598-018-32659-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022] Open
Abstract
High risk neuroblastoma (HRNB) accounts for 15% of all pediatric cancer deaths. Despite aggressive therapy approximately half of patients will relapse, typically with only transient responses to second-line therapy. This study evaluated the ornithine decarboxylase inhibitor difluoromethylornithine (DFMO) as maintenance therapy to prevent relapse following completion of standard therapy (Stratum 1) or after salvage therapy for relapsed/refractory disease (Stratum 2). This Phase II single agent, single arm multicenter study enrolled from June 2012 to February 2016. Subjects received 2 years of oral DFMO (750 ± 250 mg/m2 twice daily). Event free survival (EFS) and overall survival (OS) were determined on an intention-to-treat (ITT) basis. 101 subjects enrolled on Stratum 1 and 100 were eligible for ITT analysis; two-year EFS was 84% (±4%) and OS 97% (±2%). 39 subjects enrolled on Stratum 2, with a two-year EFS of 54% (±8%) and OS 84% (±6%). DFMO was well tolerated. The median survival time is not yet defined for either stratum. DFMO maintenance therapy for HRNB in remission is safe and associated with high EFS and OS. Targeting ODC represents a novel therapeutic mechanism that may provide a new strategy for preventing relapse in children with HRNB.
Collapse
Affiliation(s)
- Giselle L Saulnier Sholler
- Helen DeVos Children's Hospital at Spectrum Health, Grand Rapids, USA. .,Michigan State University College of Human Medicine, East Lansing, USA.
| | | | | | - Jeffrey P Bond
- Helen DeVos Children's Hospital at Spectrum Health, Grand Rapids, USA
| | | | - Don Eslin
- Arnold Palmer Hospital for Children, Orlando, USA
| | - Valerie Brown
- Penn State Health Children's Hospital at the Penn State Milton S. Hershey Medical Center, Hershey, USA
| | - William Roberts
- Rady Children's Hospital San Diego and UC San Diego School of Medicine, San Diego, USA
| | - Randal K Wada
- Kapiolani Medical Center for Women and Children, Honolulu, USA
| | | | - Deanna Mitchell
- Helen DeVos Children's Hospital at Spectrum Health, Grand Rapids, USA
| | - Jessica Foley
- Helen DeVos Children's Hospital at Spectrum Health, Grand Rapids, USA
| | | | | | - Peter Zage
- Rady Children's Hospital San Diego and UC San Diego School of Medicine, San Diego, USA
| | - Jawhar Rawwas
- Children's Hospitals and Clinics of Minnesota, Minnesota, USA
| | - Susan Sencer
- Children's Hospitals and Clinics of Minnesota, Minnesota, USA
| | - Debra Pankiewicz
- Helen DeVos Children's Hospital at Spectrum Health, Grand Rapids, USA
| | - Monique Quinn
- Helen DeVos Children's Hospital at Spectrum Health, Grand Rapids, USA
| | - Maria Rich
- Helen DeVos Children's Hospital at Spectrum Health, Grand Rapids, USA
| | - Joseph Junewick
- Helen DeVos Children's Hospital at Spectrum Health, Grand Rapids, USA
| | | |
Collapse
|
116
|
Ridinger J, Koeneke E, Kolbinger FR, Koerholz K, Mahboobi S, Hellweg L, Gunkel N, Miller AK, Peterziel H, Schmezer P, Hamacher-Brady A, Witt O, Oehme I. Dual role of HDAC10 in lysosomal exocytosis and DNA repair promotes neuroblastoma chemoresistance. Sci Rep 2018; 8:10039. [PMID: 29968769 PMCID: PMC6030077 DOI: 10.1038/s41598-018-28265-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Drug resistance is a leading cause for treatment failure in many cancers, including neuroblastoma, the most common solid extracranial childhood malignancy. Previous studies from our lab indicate that histone deacetylase 10 (HDAC10) is important for the homeostasis of lysosomes, i.e. acidic vesicular organelles involved in the degradation of various biomolecules. Here, we show that depleting or inhibiting HDAC10 results in accumulation of lysosomes in chemotherapy-resistant neuroblastoma cell lines, as well as in the intracellular accumulation of the weakly basic chemotherapeutic doxorubicin within lysosomes. Interference with HDAC10 does not block doxorubicin efflux from cells via P-glycoprotein inhibition, but rather via inhibition of lysosomal exocytosis. In particular, intracellular doxorubicin does not remain trapped in lysosomes but also accumulates in the nucleus, where it promotes neuroblastoma cell death. Our data suggest that lysosomal exocytosis under doxorubicin treatment is important for cell survival and that inhibition of HDAC10 further induces DNA double-strand breaks (DSBs), providing additional mechanisms that sensitize neuroblastoma cells to doxorubicin. Taken together, we demonstrate that HDAC10 inhibition in combination with doxorubicin kills neuroblastoma, but not non-malignant cells, both by impeding drug efflux and enhancing DNA damage, providing a novel opportunity to target chemotherapy resistance.
Collapse
Affiliation(s)
- Johannes Ridinger
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Emily Koeneke
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,University of Heidelberg, Heidelberg, Germany
| | - Fiona R Kolbinger
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Katharina Koerholz
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Lars Hellweg
- Research Group Cancer Drug Development, German Cancer Research Center, Heidelberg, Germany
| | - Nikolas Gunkel
- Research Group Cancer Drug Development, German Cancer Research Center, Heidelberg, Germany
| | - Aubry K Miller
- Research Group Cancer Drug Development, German Cancer Research Center, Heidelberg, Germany
| | - Heike Peterziel
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Peter Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | - Anne Hamacher-Brady
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, United States
| | - Olaf Witt
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ina Oehme
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany. .,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
117
|
Kolbinger FR, Koeneke E, Ridinger J, Heimburg T, Müller M, Bayer T, Sippl W, Jung M, Gunkel N, Miller AK, Westermann F, Witt O, Oehme I. The HDAC6/8/10 inhibitor TH34 induces DNA damage-mediated cell death in human high-grade neuroblastoma cell lines. Arch Toxicol 2018; 92:2649-2664. [PMID: 29947893 PMCID: PMC6063332 DOI: 10.1007/s00204-018-2234-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
High histone deacetylase (HDAC) 8 and HDAC10 expression levels have been identified as predictors of exceptionally poor outcomes in neuroblastoma, the most common extracranial solid tumor in childhood. HDAC8 inhibition synergizes with retinoic acid treatment to induce neuroblast maturation in vitro and to inhibit neuroblastoma xenograft growth in vivo. HDAC10 inhibition increases intracellular accumulation of chemotherapeutics through interference with lysosomal homeostasis, ultimately leading to cell death in cultured neuroblastoma cells. So far, no HDAC inhibitor covering HDAC8 and HDAC10 at micromolar concentrations without inhibiting HDACs 1, 2 and 3 has been described. Here, we introduce TH34 (3-(N-benzylamino)-4-methylbenzhydroxamic acid), a novel HDAC6/8/10 inhibitor for neuroblastoma therapy. TH34 is well-tolerated by non-transformed human skin fibroblasts at concentrations up to 25 µM and modestly impairs colony growth in medulloblastoma cell lines, but specifically induces caspase-dependent programmed cell death in a concentration-dependent manner in several human neuroblastoma cell lines. In addition to the induction of DNA double-strand breaks, HDAC6/8/10 inhibition also leads to mitotic aberrations and cell-cycle arrest. Neuroblastoma cells display elevated levels of neuronal differentiation markers, mirrored by formation of neurite-like outgrowths under maintained TH34 treatment. Eventually, after long-term treatment, all neuroblastoma cells undergo cell death. The combination of TH34 with plasma-achievable concentrations of retinoic acid, a drug applied in neuroblastoma therapy, synergistically inhibits colony growth (combination index (CI) < 0.1 for 10 µM of each). In summary, our study supports using selective HDAC inhibitors as targeted antineoplastic agents and underlines the therapeutic potential of selective HDAC6/8/10 inhibition in high-grade neuroblastoma.
Collapse
Affiliation(s)
- Fiona R Kolbinger
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Emily Koeneke
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Johannes Ridinger
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Tino Heimburg
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Michael Müller
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Theresa Bayer
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Nikolas Gunkel
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Frank Westermann
- Research Group Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Olaf Witt
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Ina Oehme
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany. .,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
118
|
Fletcher JI, Ziegler DS, Trahair TN, Marshall GM, Haber M, Norris MD. Too many targets, not enough patients: rethinking neuroblastoma clinical trials. Nat Rev Cancer 2018; 18:389-400. [PMID: 29632319 DOI: 10.1038/s41568-018-0003-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroblastoma is a rare solid tumour of infancy and early childhood with a disproportionate contribution to paediatric cancer mortality and morbidity. Combination chemotherapy, radiation therapy and immunotherapy remains the standard approach to treat high-risk disease, with few recurrent, actionable genetic aberrations identified at diagnosis. However, recent studies indicate that actionable aberrations are far more common in relapsed neuroblastoma, possibly as a result of clonal expansion. In addition, although the major validated disease driver, MYCN, is not currently directly targetable, multiple promising approaches to target MYCN indirectly are in development. We propose that clinical trial design needs to be rethought in order to meet the challenge of providing rigorous, evidence-based assessment of these new approaches within a fairly small patient population and that experimental therapies need to be assessed at diagnosis in very-high-risk patients rather than in relapsed and refractory patients.
Collapse
Affiliation(s)
- Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
119
|
Myc, Oncogenic Protein Translation, and the Role of Polyamines. Med Sci (Basel) 2018; 6:medsci6020041. [PMID: 29799508 PMCID: PMC6024823 DOI: 10.3390/medsci6020041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 01/21/2023] Open
Abstract
Deregulated protein synthesis is a common feature of cancer cells, with many oncogenic signaling pathways directly augmenting protein translation to support the biomass needs of proliferating tissues. MYC’s ability to drive oncogenesis is a consequence of its essential role as a governor linking cell cycle entry with the requisite increase in protein synthetic capacity, among other biomass needs. To date, direct pharmacologic inhibition of MYC has proven difficult, but targeting oncogenic signaling modules downstream of MYC, such as the protein synthetic machinery, may provide a viable therapeutic strategy. Polyamines are essential cations found in nearly all living organisms that have both direct and indirect roles in the control of protein synthesis. Polyamine metabolism is coordinately regulated by MYC to increase polyamines in proliferative tissues, and this is further augmented in the many cancer cells harboring hyperactivated MYC. In this review, we discuss MYC-driven regulation of polyamines and protein synthetic capacity as a key function of its oncogenic output, and how this dependency may be perturbed through direct pharmacologic targeting of components of the protein synthetic machinery, such as the polyamines themselves, the eukaryotic translation initiation factor 4F (eIF4F) complex, and the eukaryotic translation initiation factor 5A (eIF5A).
Collapse
|
120
|
Ooi CY, Carter DR, Liu B, Mayoh C, Beckers A, Lalwani A, Nagy Z, De Brouwer S, Decaesteker B, Hung TT, Norris MD, Haber M, Liu T, De Preter K, Speleman F, Cheung BB, Marshall GM. Network Modeling of microRNA-mRNA Interactions in Neuroblastoma Tumorigenesis Identifies miR-204 as a Direct Inhibitor of MYCN. Cancer Res 2018; 78:3122-3134. [PMID: 29610116 DOI: 10.1158/0008-5472.can-17-3034] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/07/2018] [Accepted: 03/28/2018] [Indexed: 11/16/2022]
Abstract
Neuroblastoma is a pediatric cancer of the sympathetic nervous system where MYCN amplification is a key indicator of poor prognosis. However, mechanisms by which MYCN promotes neuroblastoma tumorigenesis are not fully understood. In this study, we analyzed global miRNA and mRNA expression profiles of tissues at different stages of tumorigenesis from TH-MYCN transgenic mice, a model of MYCN-driven neuroblastoma. On the basis of a Bayesian learning network model in which we compared pretumor ganglia from TH-MYCN+/+ mice to age-matched wild-type controls, we devised a predicted miRNA-mRNA interaction network. Among the miRNA-mRNA interactions operating during human neuroblastoma tumorigenesis, we identified miR-204 as a tumor suppressor miRNA that inhibited a subnetwork of oncogenes strongly associated with MYCN-amplified neuroblastoma and poor patient outcome. MYCN bound to the miR-204 promoter and repressed miR-204 transcription. Conversely, miR-204 directly bound MYCN mRNA and repressed MYCN expression. miR-204 overexpression significantly inhibited neuroblastoma cell proliferation in vitro and tumorigenesis in vivo Together, these findings identify novel tumorigenic miRNA gene networks and miR-204 as a tumor suppressor that regulates MYCN expression in neuroblastoma tumorigenesis.Significance: Network modeling of miRNA-mRNA regulatory interactions in a mouse model of neuroblastoma identifies miR-204 as a tumor suppressor and negative regulator of MYCN. Cancer Res; 78(12); 3122-34. ©2018 AACR.
Collapse
Affiliation(s)
- Chi Yan Ooi
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Daniel R Carter
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia.,School of Women's & Children's Health, University of New South Wales Australia, Randwick, New South Wales, Australia
| | - Bing Liu
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Anneleen Beckers
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Amit Lalwani
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Zsuzsanna Nagy
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Sara De Brouwer
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Bieke Decaesteker
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Tzong-Tyng Hung
- Biological Resource Imaging Laboratory, the University of New South Wales, Kensington, New South Wales, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia.,Centre for Childhood Cancer Research, University of New South Wales, Randwick, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Tao Liu
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia
| | - Katleen De Preter
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Frank Speleman
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), Ghent, Belgium
| | - Belamy B Cheung
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia. .,School of Women's & Children's Health, University of New South Wales Australia, Randwick, New South Wales, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales, Australia. .,School of Women's & Children's Health, University of New South Wales Australia, Randwick, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
121
|
Johnsen JI, Dyberg C, Fransson S, Wickström M. Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol Res 2018; 131:164-176. [PMID: 29466695 DOI: 10.1016/j.phrs.2018.02.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common extracranical tumor of childhood and the most deadly tumor of infancy. It is characterized by early age onset and high frequencies of metastatic disease but also the capacity to spontaneously regress. Despite intensive therapy, the survival for patients with high-risk neuroblastoma and those with recurrent or relapsed disease is low. Hence, there is an urgent need to develop new therapies for these patient groups. The molecular pathogenesis based on high-throughput omics technologies of neuroblastoma is beginning to be resolved which have given the opportunity to develop personalized therapies for high-risk patients. Here we discuss the potential of developing targeted therapies against aberrantly expressed molecules detected in sub-populations of neuroblastoma patients and how these selected targets can be drugged in order to overcome treatment resistance, improve survival and quality of life for these patients and also the possibilities to transfer preclinical research into clinical testing.
Collapse
Affiliation(s)
- John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden.
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Susanne Fransson
- Department of Pathology and Genetics, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| |
Collapse
|
122
|
MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent. Cell Death Dis 2018; 9:220. [PMID: 29445162 PMCID: PMC5833827 DOI: 10.1038/s41419-018-0295-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Heightened aerobic glycolysis and glutaminolysis are characteristic metabolic phenotypes in cancer cells. Neuroblastoma (NBL), a devastating pediatric cancer, is featured by frequent genomic amplification of MYCN, a member of the Myc oncogene family that is primarily expressed in the early stage of embryonic development and required for neural crest development. Here we report that an enriched glutaminolysis gene signature is associated with MYCN amplification in children with NBL. The partial knockdown of MYCN suppresses glutaminolysis in NBL cells. Conversely, forced overexpression of MYCN in neural crest progenitor cells enhances glutaminolysis. Importantly, glutaminolysis induces oxidative stress by producing reactive oxygen species (ROS), rendering NBL cells sensitive to ROS augmentation. Through a small-scale metabolic-modulator screening, we have found that dimethyl fumarate (DMF), a Food and Drug Administration-approved drug for multiple sclerosis, suppresses NBL cell proliferation in vitro and tumor growth in vivo. DMF suppresses NBL cell proliferation through inducing ROS and subsequently suppressing MYCN expression, which is rescued by an ROS scavenger. Our findings suggest that the metabolic modulation and ROS augmentation could be used as novel strategies in treating NBL and other MYC-driven cancers.
Collapse
|
123
|
Alpha-Difluoromethylornithine, an Irreversible Inhibitor of Polyamine Biosynthesis, as a Therapeutic Strategy against Hyperproliferative and Infectious Diseases. Med Sci (Basel) 2018; 6:medsci6010012. [PMID: 29419804 PMCID: PMC5872169 DOI: 10.3390/medsci6010012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
The fluorinated ornithine analog α-difluoromethylornithine (DFMO, eflornithine, ornidyl) is an irreversible suicide inhibitor of ornithine decarboxylase (ODC), the first and rate-limiting enzyme of polyamine biosynthesis. The ubiquitous and essential polyamines have many functions, but are primarily important for rapidly proliferating cells. Thus, ODC is potentially a drug target for any disease state where rapid growth is a key process leading to pathology. The compound was originally discovered as an anticancer drug, but its effectiveness was disappointing. However, DFMO was successfully developed to treat African sleeping sickness and is currently one of few clinically used drugs to combat this neglected tropical disease. The other Food and Drug Administration (FDA) approved application for DFMO is as an active ingredient in the hair removal cream Vaniqa. In recent years, renewed interest in DFMO for hyperproliferative diseases has led to increased research and promising preclinical and clinical trials. This review explores the use of DFMO for the treatment of African sleeping sickness and hirsutism, as well as its potential as a chemopreventive and chemotherapeutic agent against colorectal cancer and neuroblastoma.
Collapse
|
124
|
Schultz CR, Geerts D, Mooney M, El-Khawaja R, Koster J, Bachmann AS. Synergistic drug combination GC7/DFMO suppresses hypusine/spermidine-dependent eIF5A activation and induces apoptotic cell death in neuroblastoma. Biochem J 2018; 475:531-545. [PMID: 29295892 DOI: 10.1042/bcj20170597] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2023]
Abstract
The eukaryotic initiation factor 5A (eIF5A), which contributes to several crucial processes during protein translation, is the only protein that requires activation by a unique post-translational hypusine modification. eIF5A hypusination controls cell proliferation and has been linked to cancer. eIF5A hypusination requires the enzymes deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase and uniquely depends on the polyamine (PA) spermidine as the sole substrate. Ornithine decarboxylase (ODC) is the rate-limiting enzyme in PA biosynthesis. Both ODC and PAs control cell proliferation and are frequently dysregulated in cancer. Since only spermidine can activate eIF5A, we chose the hypusine-PA nexus as a rational target to identify new drug combinations with synergistic antiproliferative effects. We show that elevated mRNA levels of the two target enzymes DHPS and ODC correlate with poor prognosis in a large cohort of neuroblastoma (NB) tumors. The DHPS inhibitor GC7 (N1-guanyl-1,7-diaminoheptane) and the ODC inhibitor α-difluoromethylornithine (DFMO) are target-specific and in combination induced synergistic effects in NB at concentrations that were not individually cytotoxic. Strikingly, while each drug alone at higher concentrations is known to induce p21/Rb- or p27/Rb-mediated G1 cell cycle arrest, we found that the drug combination induced caspase 3/7/9, but not caspase 8-mediated apoptosis, in NB cells. Hypusinated eIF5A levels and intracellular spermidine levels correlated directly with drug treatments, signifying specific drug targeting effects. This two-pronged GC7/DFMO combination approach specifically inhibits both spermidine biosynthesis and post-translational, spermidine-dependent hypusine-eIF5A activation, offering an exciting clue for improved NB drug therapy.
Collapse
Affiliation(s)
- Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A
| | - Dirk Geerts
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marie Mooney
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A
| | | | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, U.S.A.
| |
Collapse
|
125
|
Arruabarrena-Aristorena A, Zabala-Letona A, Carracedo A. Oil for the cancer engine: The cross-talk between oncogenic signaling and polyamine metabolism. SCIENCE ADVANCES 2018; 4:eaar2606. [PMID: 29376126 PMCID: PMC5783676 DOI: 10.1126/sciadv.aar2606] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/28/2017] [Indexed: 05/09/2023]
Abstract
The study of metabolism has provided remarkable information about the biological basis and therapeutic weaknesses of cancer cells. Classic biochemistry established the importance of metabolic alterations in tumor biology and revealed the importance of various metabolite families to the tumorigenic process. We have evidence of the central role of polyamines, small polycatonic metabolites, in cell proliferation and cancer growth from these studies. However, how cancer cells activate this metabolic pathway and the molecular cues behind the oncogenic action of polyamines has remained largely obscure. In contrast to the view of metabolites as fuel (anabolic intermediates) for cancer cells, polyamines are better defined as the oil that lubricates the cancer engine because they affect the activity of biological processes. Modern research has brought back to the limelight this metabolic pathway, providing a strong link between genetic, metabolic, and signaling events in cancer. In this review, we enumerate and discuss current views of the regulation and activity of polyamine metabolism in tumor cell biology.
Collapse
Affiliation(s)
| | - Amaia Zabala-Letona
- CIC bioGUNE, Bizkaia Technology Park, 801A Building, 48160 Derio, Bizkaia, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Avenida Monforte de Lemos, Madrid, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, 801A Building, 48160 Derio, Bizkaia, Spain
- CIBERONC Centro de Investigación Biomédica en Red de Cáncer, Avenida Monforte de Lemos, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Spain
| |
Collapse
|
126
|
Amoroso L, Haupt R, Garaventa A, Ponzoni M. Investigational drugs in phase II clinical trials for the treatment of neuroblastoma. Expert Opin Investig Drugs 2017; 26:1281-1293. [PMID: 28906153 DOI: 10.1080/13543784.2017.1380625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Neuroblastoma (NB) is an embryonal tumor originating from undifferentiated neural crest cell, highly heterogeneous ranging from spontaneous regression to progression despite multimodal treatments. Approximately, 20% of patients are refractory to frontline therapy and 50% will relapse/progress after an initial response. The overall five year survival for high-risk neuroblastoma ranges from 35-45%. Despite enhanced understanding of NB biology and the addition of myeloablative chemotherapy, isotretinoin and immunotherapy, survival for high risk NB remains less than 50%. Areas covered: This review summarizes and gives a critical overview of phase II trials investigating therapies for relapsed-refractory and high risk neuroblastoma. Expert opinion: Several novel molecules have been developed and are currently under investigation for the treatment of NB. The trend of novel targeted agents is one towards individualized, tailored therapy, based on the molecular and biological differences that characterize tumors that seem similar based solely on histological analysis. The task of developing new molecules is particularly difficult for NB, given the recurrent development of new patterns of drug resistance. However, even if current research is focused towards identifying the best treatments for each children and young adult with a NB defined disease, a deeper knowledge of the molecular biology and genetics is needed.
Collapse
Affiliation(s)
- Loredana Amoroso
- a Department of Pediatric Oncology , Istituto G.Gaslini , Genova , Italy
| | - Riccardo Haupt
- b Epidemiology and Biostatistics Unit , Istituto G.Gaslini , Genova , Italy
| | - Alberto Garaventa
- a Department of Pediatric Oncology , Istituto G.Gaslini , Genova , Italy
| | - Mirco Ponzoni
- c Experimental Therapy Unit in Oncology , Istituto G. Gaslini , Genova , Italy
| |
Collapse
|
127
|
Targeting polyamine metabolism for cancer therapy and prevention. Biochem J 2017; 473:2937-53. [PMID: 27679855 DOI: 10.1042/bcj20160383] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
Abstract
The chemically simple, biologically complex eukaryotic polyamines, spermidine and spermine, are positively charged alkylamines involved in many crucial cellular processes. Along with their diamine precursor putrescine, their normally high intracellular concentrations require fine attenuation by multiple regulatory mechanisms to keep these essential molecules within strict physiologic ranges. Since the metabolism of and requirement for polyamines are frequently dysregulated in neoplastic disease, the metabolic pathway and functions of polyamines provide rational drug targets; however, these targets have been difficult to exploit for chemotherapy. It is the goal of this article to review the latest findings in the field that demonstrate the potential utility of targeting the metabolism and function of polyamines as strategies for both chemotherapy and, possibly more importantly, chemoprevention.
Collapse
|
128
|
He W, Roh E, Yao K, Liu K, Meng X, Liu F, Wang P, Bode AM, Dong Z. Targeting ornithine decarboxylase (ODC) inhibits esophageal squamous cell carcinoma progression. NPJ Precis Oncol 2017; 1:13. [PMID: 29872701 PMCID: PMC5859467 DOI: 10.1038/s41698-017-0014-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/02/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
To explore the function of ornithine decarboxylase in esophageal squamous cell carcinoma progression and test the effectiveness of anti-ornithine decarboxylase therapy for esophageal squamous cell carcinoma. In this study, we examined the expression pattern of ornithine decarboxylase in esophageal squamous cell carcinoma cell lines and tissues using immunohistochemistry and Western blot analysis. Then we investigated the function of ornithine decarboxylase in ESCC cells by using shRNA and an irreversible inhibitor of ornithine decarboxylase, difluoromethylornithine. To gather more supporting pre-clinical data, a human esophageal squamous cell carcinoma patient-derived xenograft mouse model (C.B-17 severe combined immunodeficient mice) was used to determine the antitumor effects of difluoromethylornithine in vivo. Our data showed that the expression of the ornithine decarboxylase protein is increased in esophageal squamous cell carcinoma tissues compared with esophagitis or normal adjacent tissues. Polyamine depletion by ODC shRNA not only arrests esophageal squamous cell carcinoma cells in the G2/M phase, but also induces apoptosis, which further suppresses esophageal squamous cell carcinoma cell tumorigenesis. Difluoromethylornithine treatment decreases proliferation and also induces apoptosis of esophageal squamous cell carcinoma cells and implanted tumors, resulting in significant reduction in the size and weight of tumors. The results of this study indicate that ornithine decarboxylase is a promising target for esophageal squamous cell carcinoma therapy and difluoromethylornithine warrants further study in clinical trials to test its effectiveness against esophageal squamous cell carcinoma. Blocking an enzyme involved in the cellular synthesis of essential compounds called polyamines could help treat esophageal cancer. Zigang Dong from the University of Minnesota’s Hormel Institute, USA, and colleagues showed that this enzyme, called ornithine decarboxylase (ODC), is expressed at elevated levels in tumor tissues taken from patients with esophageal squamous cell carcinoma. The researchers blocked ODC activity in esophageal cancer cells using either RNA interference techniques or a drug called difluoromethylornithine (DFMO). In both cases, the treatment suppressed further growth and induced cell death. DFMO treatment also reduced the size and weight of tumors in mice implanted with human patient-derived esophageal cancer tissue. The findings point DFMO, which is already used as a medication to treat African sleeping sickness and excessive hair growth, as a potential therapy for cancer patients.
Collapse
Affiliation(s)
- Wei He
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA.,2The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China.,3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Eunmiri Roh
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Ke Yao
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Kangdong Liu
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Xing Meng
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Fangfang Liu
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Penglei Wang
- 3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| | - Ann M Bode
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Zigang Dong
- 1The Hormel Institute, University of Minnesota, Austin, MN 55912 USA.,3Basic Medical College, Zhengzhou University, Zhengzhou, 450001 China.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008 China
| |
Collapse
|
129
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
130
|
Qiu S, Liu J, Xing F. Antizyme inhibitor 1: a potential carcinogenic molecule. Cancer Sci 2017; 108:163-169. [PMID: 27870265 PMCID: PMC5329145 DOI: 10.1111/cas.13122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/05/2016] [Accepted: 11/17/2016] [Indexed: 01/15/2023] Open
Abstract
Polyamines are multivalent and organic cations essential for cellular growth, proliferation, differentiation, and apoptosis. Increased levels of polyamines are closely associated with numerous forms of cancer. An autoregulatory circuit composed of ornithine decarboxylase (ODC), antizyme (AZ) and antizyme inhibitor (AZI) govern the intracellular level of polyamines. Antizyme binds with ODC to inhibit ODC activity and to promote the ubiquitin‐independent degradation of ODC. Antizyme inhibitor binds to AZ with a higher affinity than ODC. Consequently, ODC is released from the ODC–AZ complex to rescue its activity. Antizyme inhibitor increases the ODC activity to accelerate the formation of intracellular polyamines, triggering gastric and breast carcinogenesis as well as hepatocellular carcinoma and esophageal squamous cell carcinoma development. Antizyme inhibitor 1 (AZIN1), a primary member of the AZI family, has aroused more attention because of its contribution to cancer. Even though its conformation is changed by adenosine‐to‐inosine (A→I) RNA editing, it plays an important role in tumorigenesis through regulating intracellular polyamines. Encouragingly, AZIN1 has been revealed to have an additional function outside the polyamine pathway so as to bypass the deficiency of targeting the polyamine biosynthetic pathway, promising to become a critical target for cancer therapy. Here, we review the latest research advances into AZIN1 and its potential contribution to carcinogenesis.
Collapse
Affiliation(s)
- Shiqiao Qiu
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China.,Key Laboratory of Functional Protein Research of Guangdong, Higher Education Institutes, Jinan University, Guangzhou, China
| | - Jing Liu
- Department of Stomatology, Jinan University, Guangzhou, China
| | - Feiyue Xing
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China.,Key Laboratory of Functional Protein Research of Guangdong, Higher Education Institutes, Jinan University, Guangzhou, China
| |
Collapse
|
131
|
Applebaum MA, Desai AV, Glade Bender JL, Cohn SL. Emerging and investigational therapies for neuroblastoma. Expert Opin Orphan Drugs 2017; 5:355-368. [PMID: 29062613 PMCID: PMC5649635 DOI: 10.1080/21678707.2017.1304212] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/06/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Treatment for children with clinically aggressive, high-risk neuroblastoma remains challenging. Less than 50% of patients with high-risk neuroblastoma will survive long-term with current therapies, and survivors are at risk for serious treatment-related late toxicities. Here, we review new and evolving treatments that may ultimately improve outcome for children with high-risk neuroblastoma with decreased potential for late adverse events. AREAS COVERED New strategies for treating high-risk neuroblastoma are reviewed including: radiotherapy, targeted cytotoxics, biologics, immunotherapy, and molecularly targeted agents. Recently completed and ongoing neuroblastoma clinical trials testing these novel treatments are highlighted. In addition, we discuss ongoing clinical trials designed to evaluate precision medicine approaches that target actionable somatic mutations and oncogenic cellular pathways. EXPERT OPINION Advances in genomic medicine and molecular biology have led to the development of early phase studies testing biologically rational therapies targeting aberrantly activated cellular pathways. Because many of these drugs have a wider therapeutic index than standard chemotherapeutic agents, these treatments may be more effective and less toxic than current strategies. However, to effectively integrate these targeted strategies, robust predictive biomarkers must be developed that will identify patients who will benefit from these approaches and rapidly match treatments to patients at diagnosis.
Collapse
Affiliation(s)
- Mark A. Applebaum
- Department of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Ami V. Desai
- Department of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Julia L. Glade Bender
- Department of Pediatrics, Columbia University Medical Center, New York, New York, 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, 10032
| | - Susan L. Cohn
- Department of Pediatrics, University of Chicago, Chicago, Illinois, 60637, United States of America
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, 60637, United States of America
| |
Collapse
|
132
|
Whittle SB, Smith V, Doherty E, Zhao S, McCarty S, Zage PE. Overview and recent advances in the treatment of neuroblastoma. Expert Rev Anticancer Ther 2017; 17:369-386. [PMID: 28142287 DOI: 10.1080/14737140.2017.1285230] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Children with neuroblastoma have widely divergent outcomes, ranging from cure in >90% of patients with low risk disease to <50% for those with high risk disease. Recent research has shed light on the biology of neuroblastoma, allowing for more accurate risk stratification and treatment reduction in many cases, although newer treatment strategies for children with high-risk and relapsed neuroblastoma are needed to improve outcomes. Areas covered: Neuroblastoma epidemiology, diagnosis, risk stratification, and recent advances in treatment of both newly diagnosed and relapsed neuroblastoma. Expert commentary: The identification of newer tumor targets and of novel cell-mediated immunotherapy agents may lead to novel therapeutic approaches, and clinical trials for regimens designed to target individual genetic aberrations in tumors are underway. A combination of therapeutic modalities will likely be required to improve survival and cure rates for patients with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Sarah B Whittle
- a Department of Pediatrics, Section of Hematology-Oncology , Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston , TX , USA
| | - Valeria Smith
- a Department of Pediatrics, Section of Hematology-Oncology , Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston , TX , USA
| | - Erin Doherty
- a Department of Pediatrics, Section of Hematology-Oncology , Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston , TX , USA
| | - Sibo Zhao
- a Department of Pediatrics, Section of Hematology-Oncology , Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston , TX , USA
| | - Scott McCarty
- b Department of Pediatrics, Division of Hematology-Oncology , University of California San Diego, La Jolla, CA and Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital , San Diego , CA , USA
| | - Peter E Zage
- b Department of Pediatrics, Division of Hematology-Oncology , University of California San Diego, La Jolla, CA and Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital , San Diego , CA , USA
| |
Collapse
|
133
|
He X, Fan L, Wu Z, He J, Cheng B. Gene expression profiles reveal key pathways and genes associated with neuropathic pain in patients with spinal cord injury. Mol Med Rep 2017; 15:2120-2128. [PMID: 28260076 PMCID: PMC5364823 DOI: 10.3892/mmr.2017.6231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 12/08/2016] [Indexed: 12/26/2022] Open
Abstract
Previous gene expression profiling studies of neuropathic pain (NP) following spinal cord injury (SCI) have predominantly been performed in animal models. The present study aimed to investigate gene alterations in patients with spinal cord injury and to further examine the mechanisms underlying NP following SCI. The GSE69901 gene expression profile was downloaded from the public Gene Expression Omnibus database. Samples of peripheral blood mononuclear cells (PBMCs) derived from 12 patients with intractable NP and 13 control patients without pain were analyzed to identify the differentially expressed genes (DEGs), followed by functional enrichment analysis and protein‑protein interaction (PPI) network construction. In addition, a transcriptional regulation network was constructed and functional gene clustering was performed. A total of 70 upregulated and 61 downregulated DEGs were identified in the PBMC samples from patients with NP. The upregulated and downregulated genes were significantly involved in different Gene Ontology terms and pathways, including focal adhesion, T cell receptor signaling pathway and mitochondrial function. Glycogen synthase kinase 3 β (GSK3B) was identified as a hub protein in the PPI network. In addition, ornithine decarboxylase 1 (ODC1) and ornithine aminotransferase (OAT) were regulated by additional transcription factors in the regulation network. GSK3B, OAT and ODC1 were significantly enriched in two functional gene clusters, the function of mitochondrial membrane and DNA binding. Focal adhesion and the T cell receptor signaling pathway may be significantly linked with NP, and GSK3B, OAT and ODC1 may be potential targets for the treatment of NP.
Collapse
Affiliation(s)
- Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Liying Fan
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhongheng Wu
- Department of Rehabilitation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiaxuan He
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Bin Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
134
|
Wong M, Tee AEL, Milazzo G, Bell JL, Poulos RC, Atmadibrata B, Sun Y, Jing D, Ho N, Ling D, Liu PY, Zhang XD, Hüttelmaier S, Wong JWH, Wang J, Polly P, Perini G, Scarlett CJ, Liu T. The Histone Methyltransferase DOT1L Promotes Neuroblastoma by Regulating Gene Transcription. Cancer Res 2017; 77:2522-2533. [PMID: 28209620 DOI: 10.1158/0008-5472.can-16-1663] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/08/2016] [Accepted: 01/17/2017] [Indexed: 11/16/2022]
Abstract
Myc oncoproteins exert tumorigenic effects by regulating expression of target oncogenes. Histone H3 lysine 79 (H3K79) methylation at Myc-responsive elements of target gene promoters is a strict prerequisite for Myc-induced transcriptional activation, and DOT1L is the only known histone methyltransferase that catalyzes H3K79 methylation. Here, we show that N-Myc upregulates DOT1L mRNA and protein expression by binding to the DOT1L gene promoter. shRNA-mediated depletion of DOT1L reduced mRNA and protein expression of N-Myc target genes ODC1 and E2F2 DOT1L bound to the Myc Box II domain of N-Myc protein, and knockdown of DOT1L reduced histone H3K79 methylation and N-Myc protein binding at the ODC1 and E2F2 gene promoters and reduced neuroblastoma cell proliferation. Treatment with the small-molecule DOT1L inhibitor SGC0946 reduced H3K79 methylation and proliferation of MYCN gene-amplified neuroblastoma cells. In mice xenografts of neuroblastoma cells stably expressing doxycycline-inducible DOT1L shRNA, ablating DOT1L expression with doxycycline significantly reduced ODC1 and E2F2 expression, reduced tumor progression, and improved overall survival. In addition, high levels of DOT1L gene expression in human neuroblastoma tissues correlated with high levels of MYCN, ODC1, and E2F2 gene expression and independently correlated with poor patient survival. Taken together, our results identify DOT1L as a novel cofactor in N-Myc-mediated transcriptional activation of target genes and neuroblastoma oncogenesis. Furthermore, they characterize DOT1L inhibitors as novel anticancer agents against MYCN-amplified neuroblastoma. Cancer Res; 77(9); 2522-33. ©2017 AACR.
Collapse
Affiliation(s)
| | - Andrew E L Tee
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jessica L Bell
- Institute of Molecular Medicine, Martin Luther University, ZAMED, Halle, Germany
| | - Rebecca C Poulos
- Prince of Wales Clinical School and Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Bernard Atmadibrata
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Yuting Sun
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Duohui Jing
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Nicholas Ho
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Dora Ling
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Pei Yan Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University, ZAMED, Halle, Germany
| | - Jason W H Wong
- Prince of Wales Clinical School and Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jenny Wang
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia.,Centre for Childhood Cancer Research, UNSW Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Patsie Polly
- Department of Pathology and Mechanisms of Disease and Translational Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Christopher J Scarlett
- School of Environmental & Life Sciences, University of Newcastle, Ourimbah, New South Wales, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, Australia. .,Centre for Childhood Cancer Research, UNSW Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
135
|
Duffy DJ, Krstic A, Halasz M, Schwarzl T, Konietzny A, Iljin K, Higgins DG, Kolch W. Retinoic acid and TGF-β signalling cooperate to overcome MYCN-induced retinoid resistance. Genome Med 2017; 9:15. [PMID: 28187790 PMCID: PMC5303304 DOI: 10.1186/s13073-017-0407-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Retinoid therapy is widely employed in clinical oncology to differentiate malignant cells into their more benign counterparts. However, certain high-risk cohorts, such as patients with MYCN-amplified neuroblastoma, are innately resistant to retinoid therapy. Therefore, we employed a precision medicine approach to globally profile the retinoid signalling response and to determine how an excess of cellular MYCN antagonises these signalling events to prevent differentiation and confer resistance. METHODS We applied RNA sequencing (RNA-seq) and interaction proteomics coupled with network-based systems level analysis to identify targetable vulnerabilities of MYCN-mediated retinoid resistance. We altered MYCN expression levels in a MYCN-inducible neuroblastoma cell line to facilitate or block retinoic acid (RA)-mediated neuronal differentiation. The relevance of differentially expressed genes and transcriptional regulators for neuroblastoma outcome were then confirmed using existing patient microarray datasets. RESULTS We determined the signalling networks through which RA mediates neuroblastoma differentiation and the inhibitory perturbations to these networks upon MYCN overexpression. We revealed opposing regulation of RA and MYCN on a number of differentiation-relevant genes, including LMO4, CYP26A1, ASCL1, RET, FZD7 and DKK1. Furthermore, we revealed a broad network of transcriptional regulators involved in regulating retinoid responsiveness, such as Neurotrophin, PI3K, Wnt and MAPK, and epigenetic signalling. Of these regulators, we functionally confirmed that MYCN-driven inhibition of transforming growth factor beta (TGF-β) signalling is a vulnerable node of the MYCN network and that multiple levels of cross-talk exist between MYCN and TGF-β. Co-targeting of the retinoic acid and TGF-β pathways, through RA and kartogenin (KGN; a TGF-β signalling activating small molecule) combination treatment, induced the loss of viability of MYCN-amplified retinoid-resistant neuroblastoma cells. CONCLUSIONS Our approach provides a powerful precision oncology tool for identifying the driving signalling networks for malignancies not primarily driven by somatic mutations, such as paediatric cancers. By applying global omics approaches to the signalling networks regulating neuroblastoma differentiation and stemness, we have determined the pathways involved in the MYCN-mediated retinoid resistance, with TGF-β signalling being a key regulator. These findings revealed a number of combination treatments likely to improve clinical response to retinoid therapy, including co-treatment with retinoids and KGN, which may prove valuable in the treatment of high-risk MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, Florida, 32080, USA.
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Anja Konietzny
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Present address: Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kristiina Iljin
- VTT Technical Research Centre of Finland, Tietotie 2, FI-02044 VTT, Espoo, Finland
| | - Desmond G Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
136
|
Esposito MR, Aveic S, Seydel A, Tonini GP. Neuroblastoma treatment in the post-genomic era. J Biomed Sci 2017; 24:14. [PMID: 28178969 PMCID: PMC5299732 DOI: 10.1186/s12929-017-0319-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is an embryonic malignancy of early childhood originating from neural crest cells and showing heterogeneous biological, morphological, genetic and clinical characteristics. The correct stratification of neuroblastoma patients within risk groups (low, intermediate, high and ultra-high) is critical for the adequate treatment of the patients. High-throughput technologies in the Omics disciplines are leading to significant insights into the molecular pathogenesis of neuroblastoma. Nonetheless, further study of Omics data is necessary to better characterise neuroblastoma tumour biology. In the present review, we report an update of compounds that are used in preclinical tests and/or in Phase I-II trials for neuroblastoma. Furthermore, we recapitulate a number of compounds targeting proteins associated to neuroblastoma: MYCN (direct and indirect inhibitors) and downstream targets, Trk, ALK and its downstream signalling pathways. In particular, for the latter, given the frequency of ALK gene deregulation in neuroblastoma patients, we discuss on second-generation ALK inhibitors in preclinical or clinical phases developed for the treatment of neuroblastoma patients resistant to crizotinib. We summarise how Omics drive clinical trials for neuroblastoma treatment and how much the research of biological targets is useful for personalised medicine. Finally, we give an overview of the most recent druggable targets selected by Omics investigation and discuss how the Omics results can provide us additional advantages for overcoming tumour drug resistance.
Collapse
Affiliation(s)
- Maria Rosaria Esposito
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy.
| | - Sanja Aveic
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy
| | - Anke Seydel
- Department of Biology, University of Padua, Padua, Italy
| | - Gian Paolo Tonini
- Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Corso Stati Uniti, 4, Padua, 35127, Italy
| |
Collapse
|
137
|
Alexiou GA, Lianos GD, Ragos V, Galani V, Kyritsis AP. Difluoromethylornithine in cancer: new advances. Future Oncol 2017; 13:809-819. [PMID: 28125906 DOI: 10.2217/fon-2016-0266] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Difluoromethylornithine (DFMO; eflornithine) is an irreversible suicide inhibitor of the enzyme ornithine decarboxylase which is involved in polyamine synthesis. Polyamines are important for cell survival, thus DFMO was studied as an anticancer agent and as a chemoprevention agent. DFMO exhibited mainly cytostatic activity and had single agent efficacy as well as activity in combination with other chemotherapeutic drugs for some cancers and leukemias. Herewith, we summarize the current knowledge of the anticancer and chemopreventive properties of DFMO and assess the status of clinical trials.
Collapse
Affiliation(s)
- George A Alexiou
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Georgios D Lianos
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Vassileios Ragos
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| | - Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Athanassios P Kyritsis
- Neurosurgical Institute, Ioannina University School of Medicine, Ioannina, GR 451 10, Greece
| |
Collapse
|
138
|
Johanns TM, Ward JP, Miller CA, Wilson C, Kobayashi DK, Bender D, Fu Y, Alexandrov A, Mardis ER, Artyomov MN, Schreiber RD, Dunn GP. Endogenous Neoantigen-Specific CD8 T Cells Identified in Two Glioblastoma Models Using a Cancer Immunogenomics Approach. Cancer Immunol Res 2016; 4:1007-1015. [PMID: 27799140 DOI: 10.1158/2326-6066.cir-16-0156] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/16/2022]
Abstract
The "cancer immunogenomics" paradigm has facilitated the search for tumor-specific antigens over the last 4 years by applying comprehensive cancer genomics to tumor antigen discovery. We applied this methodology to identify tumor-specific "neoantigens" in the C57BL/6-derived GL261 and VM/Dk-derived SMA-560 tumor models. Following DNA whole-exome and RNA sequencing, high-affinity candidate neoepitopes were predicted and screened for immunogenicity by ELISPOT and tetramer analyses. GL261 and SMA-560 harbored 4,932 and 2,171 nonsynonymous exome mutations, respectively, of which less than half were expressed. To establish the immunogenicities of H-2Kb and H-2Db candidate neoantigens, we assessed the ability of the epitopes predicted in silico to be the highest affinity binders to activate tumor-infiltrating T cells harvested from GL261 and SMA-560 tumors. Using IFNγ ELISPOT, we confirmed H-2Db-restricted Imp3D81N (GL261) and Odc1Q129L (SMA-560) along with H-2Kb-restricted E2f8K272R (SMA-560) as endogenous tumor-specific neoantigens that are functionally immunogenic. Furthermore, neoantigen-specific T cells to Imp3D81N and Odc1Q129L were detected within intracranial tumors as well as cervical draining lymph nodes by tetramer analysis. By establishing the immunogenicities of predicted high-affinity neoepitopes in these models, we extend the immunogenomics-based neoantigen discovery pipeline to glioblastoma models and provide a tractable system to further study the mechanism of action of T cell-activating immunotherapeutic approaches in preclinical models of glioblastoma. Cancer Immunol Res; 4(12); 1007-15. ©2016 AACR.
Collapse
Affiliation(s)
- Tanner M Johanns
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey P Ward
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri
| | - Christopher A Miller
- The McDonnell Genome Institute, Washington University, St. Louis, Missouri.,Division of Genomics and Bioinformatics, Department of Medicine, Washington University, St. Louis, Missouri
| | - Courtney Wilson
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Dale K Kobayashi
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Diane Bender
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri
| | - Yujie Fu
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Anton Alexandrov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Elaine R Mardis
- The McDonnell Genome Institute, Washington University, St. Louis, Missouri.,Division of Genomics and Bioinformatics, Department of Medicine, Washington University, St. Louis, Missouri
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert D Schreiber
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri
| | - Gavin P Dunn
- Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri. .,Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
139
|
Henrich KO, Bender S, Saadati M, Dreidax D, Gartlgruber M, Shao C, Herrmann C, Wiesenfarth M, Parzonka M, Wehrmann L, Fischer M, Duffy DJ, Bell E, Torkov A, Schmezer P, Plass C, Höfer T, Benner A, Pfister SM, Westermann F. Integrative Genome-Scale Analysis Identifies Epigenetic Mechanisms of Transcriptional Deregulation in Unfavorable Neuroblastomas. Cancer Res 2016; 76:5523-37. [PMID: 27635046 DOI: 10.1158/0008-5472.can-15-2507] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/29/2016] [Indexed: 11/16/2022]
Abstract
The broad clinical spectrum of neuroblastoma ranges from spontaneous regression to rapid progression despite intensive multimodal therapy. This diversity is not fully explained by known genetic aberrations, suggesting the possibility of epigenetic involvement in pathogenesis. In pursuit of this hypothesis, we took an integrative approach to analyze the methylomes, transcriptomes, and copy number variations in 105 cases of neuroblastoma, complemented by primary tumor- and cell line-derived global histone modification analyses and epigenetic drug treatment in vitro We found that DNA methylation patterns identify divergent patient subgroups with respect to survival and clinicobiologic variables, including amplified MYCN Transcriptome integration and histone modification-based definition of enhancer elements revealed intragenic enhancer methylation as a mechanism for high-risk-associated transcriptional deregulation. Furthermore, in high-risk neuroblastomas, we obtained evidence for cooperation between PRC2 activity and DNA methylation in blocking tumor-suppressive differentiation programs. Notably, these programs could be re-activated by combination treatments, which targeted both PRC2 and DNA methylation. Overall, our results illuminate how epigenetic deregulation contributes to neuroblastoma pathogenesis, with novel implications for its diagnosis and therapy. Cancer Res; 76(18); 5523-37. ©2016 AACR.
Collapse
Affiliation(s)
- Kai-Oliver Henrich
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany. k.henrich@dkfz
| | - Sebastian Bender
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany & Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Germany
| | - Maral Saadati
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Dreidax
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany
| | - Moritz Gartlgruber
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany
| | - Chunxuan Shao
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Carl Herrmann
- Division of Theoretical Bioinformatics, German Cancer Research Center, Institute of Pharmacy and Molecular Biotechnology, Bioquant, University of Heidelberg, Germany
| | - Manuel Wiesenfarth
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Martha Parzonka
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany
| | - Lea Wehrmann
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Fischer
- Department of Pediatric Oncology, University Children's Hospital, and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Emma Bell
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alica Torkov
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany
| | - Peter Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany & Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Germany
| | - Frank Westermann
- Neuroblastoma Genomics B087, German Cancer Research Center, Heidelberg, Germany. k.henrich@dkfz
| |
Collapse
|
140
|
Choi Y, Oh ST, Won MA, Choi KM, Ko MJ, Seo D, Jeon TW, Baik IH, Ye SK, Park KU, Park IC, Jang BC, Seo JY, Lee YH. Targeting ODC1 inhibits tumor growth through reduction of lipid metabolism in human hepatocellular carcinoma. Biochem Biophys Res Commun 2016; 478:1674-81. [DOI: 10.1016/j.bbrc.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 11/29/2022]
|
141
|
Evageliou NF, Haber M, Vu A, Laetsch TW, Murray J, Gamble LD, Cheng NC, Liu K, Reese M, Corrigan KA, Ziegler DS, Webber H, Hayes CS, Pawel B, Marshall GM, Zhao H, Gilmour SK, Norris MD, Hogarty MD. Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression. Clin Cancer Res 2016; 22:4391-404. [PMID: 27012811 DOI: 10.1158/1078-0432.ccr-15-2539] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma. EXPERIMENTAL DESIGN We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity. RESULTS An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance. CONCLUSIONS Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.
Collapse
Affiliation(s)
- Nicholas F Evageliou
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Center for Childhood Cancer Research, University of New South Wales, Sydney, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Sydney, Australia
| | - Annette Vu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Jayne Murray
- Children's Cancer Institute Australia, Sydney, Australia
| | - Laura D Gamble
- Children's Cancer Institute Australia, Sydney, Australia
| | | | - Kangning Liu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Megan Reese
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly A Corrigan
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David S Ziegler
- Children's Cancer Institute Australia, Sydney, Australia. Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia. School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, Sydney, Australia
| | - Hannah Webber
- Children's Cancer Institute Australia, Sydney, Australia
| | - Candice S Hayes
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Sydney, Australia. Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia
| | - Huaqing Zhao
- Department of Biostatistics, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Murray D Norris
- Children's Cancer Institute Australia, Sydney, Australia. Center for Childhood Cancer Research, University of New South Wales, Sydney, Australia
| | - Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
142
|
Waldeck K, Cullinane C, Ardley K, Shortt J, Martin B, Tothill RW, Li J, Johnstone RW, McArthur GA, Hicks RJ, Wood PJ. Long term, continuous exposure to panobinostat induces terminal differentiation and long term survival in the TH-MYCN neuroblastoma mouse model. Int J Cancer 2016; 139:194-204. [PMID: 26914605 DOI: 10.1002/ijc.30056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/12/2016] [Indexed: 01/10/2023]
Abstract
Neuroblastoma is the most common extra-cranial malignancy in childhood and accounts for ∼15% of childhood cancer deaths. Amplification of MYCN in neuroblastoma is associated with aggressive disease and predicts for poor prognosis. Novel therapeutic approaches are therefore essential to improving patient outcomes in this setting. The histone deacetylases are known to interact with N-Myc and regulate numerous cellular processes via epigenetic modulation, including differentiation. In this study, we used the TH-MYCN mouse model of neuroblastoma to investigate the antitumor activity of the pan-HDAC inhibitor, panobinostat. In particular we sought to explore the impact of long term, continuous panobinostat exposure on the epigenetically driven differentiation process. Continuous treatment of tumor bearing TH-MYCN transgenic mice with panobinostat for nine weeks led to a significant improvement in survival as compared with mice treated with panobinostat for a three-week period. Panobinostat induced rapid tumor regression with no regrowth observed following a nine-week treatment period. Initial tumor response was associated with apoptosis mediated via upregulation of BMF and BIM. The process of terminal differentiation of neuroblastoma into benign ganglioneuroma, with a characteristic increase in S100 expression and reduction of N-Myc expression, occurred following prolonged exposure to the drug. RNA-sequencing analysis of tumors from treated animals confirmed significant upregulation of gene pathways associated with apoptosis and differentiation. Together our data demonstrate the potential of panobinostat as a novel therapeutic strategy for high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Kelly Waldeck
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia
| | - Carleen Cullinane
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kerry Ardley
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia
| | - Jake Shortt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Peter MacCallum Cancer Centre, Gene Regulation Laboratory, East Melbourne, VIC, Australia.,School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Ben Martin
- Peter MacCallum Cancer Centre, Gene Regulation Laboratory, East Melbourne, VIC, Australia
| | - Richard W Tothill
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia
| | - Jason Li
- Peter MacCallum Cancer Centre, Bioinformatics Core Facility, East Melbourne, VIC, Australia
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Peter MacCallum Cancer Centre, Gene Regulation Laboratory, East Melbourne, VIC, Australia
| | - Grant A McArthur
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, St.Vincent's Hospital, Fitzroy, VIC, Australia
| | - Rodney J Hicks
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Paul J Wood
- Peter MacCallum Cancer Centre, Translational Research Laboratory, East Melbourne, VIC, Australia.,Children's Cancer Centre, Monash Health, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Clayton, VIC, Australia
| |
Collapse
|
143
|
Stafman LL, Beierle EA. Cell Proliferation in Neuroblastoma. Cancers (Basel) 2016; 8:E13. [PMID: 26771642 PMCID: PMC4728460 DOI: 10.3390/cancers8010013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed.
Collapse
Affiliation(s)
- Laura L Stafman
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| | - Elizabeth A Beierle
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
144
|
Benatti P, Chiaramonte ML, Lorenzo M, Hartley JA, Hochhauser D, Gnesutta N, Mantovani R, Imbriano C, Dolfini D. NF-Y activates genes of metabolic pathways altered in cancer cells. Oncotarget 2016; 7:1633-50. [PMID: 26646448 PMCID: PMC4811486 DOI: 10.18632/oncotarget.6453] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/15/2015] [Indexed: 12/21/2022] Open
Abstract
The trimeric transcription factor NF-Y binds to the CCAAT box, an element enriched in promoters of genes overexpressed in tumors. Previous studies on the NF-Y regulome identified the general term metabolism as significantly enriched. We dissect here in detail the targeting of metabolic genes by integrating analysis of NF-Y genomic binding and profilings after inactivation of NF-Y subunits in different cell types. NF-Y controls de novo biosynthetic pathways of lipids, teaming up with the master SREBPs regulators. It activates glycolytic genes, but, surprisingly, is neutral or represses mitochondrial respiratory genes. NF-Y targets the SOCG (Serine, One Carbon, Glycine) and Glutamine pathways, as well as genes involved in the biosynthesis of polyamines and purines. Specific cancer-driving nodes are generally under NF-Y control. Altogether, these data delineate a coherent strategy to promote expression of metabolic genes fuelling anaerobic energy production and other anabolic pathways commonly altered in cancer cells.
Collapse
Affiliation(s)
- Paolo Benatti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | | | - Mariangela Lorenzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - John A. Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Daniel Hochhauser
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Carol Imbriano
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
145
|
Jin Y, Wang H, Han W, Lu J, Chu P, Han S, Ni X, Ning B, Yu D, Guo Y. Single nucleotide polymorphism rs11669203 in TGFBR3L is associated with the risk of neuroblastoma in a Chinese population. Tumour Biol 2015; 37:3739-47. [PMID: 26468016 DOI: 10.1007/s13277-015-4192-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
With a primary mortality, neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Amplification of the MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog) oncogene is observed in 20-30 % of NB cases, a feature which also characterizes a highly aggressive subtype of the disease. However, the systematic study of association between single nucleotide polymorphisms (SNPs) in MYCN-regulated genes and the risk of NB has not been investigated. In the current study, we scanned a set of 16 SNPs located within known or predicted MYCN binding sites in a cohort of 247 patients of Chinese origin with neuroblastic family tumors, including neuroblastoma (NB), ganglioneuroma (GN), and ganglioneuroblastoma (GNB), and in 290 cancer-free controls to determine whether any of the tested SNPs are associated with neuroblastic family tumors. We found that the rs11669203 G>C polymorphism, located in TGFBR3L promoter, is significantly associated with the risk of NB. Further, we found that this association is site specific to adrenal NB compared to non-adrenal NB. In addition, transcriptome analysis indicated that increased expression of TGFBR3L is strongly correlated with poor survival. The SNP rs11669203 located at the MYCN binding site of TGFBR3L is significantly associated with elevated risk of NB, and abnormal MYCN-regulated TGFBR3L expression may contribute to NB oncogenesis.
Collapse
Affiliation(s)
- Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Han
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shujing Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
- Department of Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Baitang Ning
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, USA
| | - Dianke Yu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, USA.
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
146
|
Bartolini A, Di Paolo D, Noghero A, Murgia D, Sementa AR, Cilli M, Pasqualini R, Arap W, Bussolino F, Ponzoni M, Pastorino F, Marchiò S. The Neuronal Pentraxin-2 Pathway Is an Unrecognized Target in Human Neuroblastoma, Which Also Offers Prognostic Value in Patients. Cancer Res 2015; 75:4265-71. [DOI: 10.1158/0008-5472.can-15-0649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/01/2015] [Indexed: 11/16/2022]
|
147
|
Kidd M, Drozdov I, Modlin I. Blood and tissue neuroendocrine tumor gene cluster analysis correlate, define hallmarks and predict disease status. Endocr Relat Cancer 2015; 22:561-75. [PMID: 26037279 DOI: 10.1530/erc-15-0092] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2015] [Indexed: 12/13/2022]
Abstract
A multianalyte algorithmic assay (MAAA) identifies circulating neuroendocrine tumor (NET) transcripts (n=51) with a sensitivity/specificity of 98%/97%. We evaluated whether blood measurements correlated with tumor tissue transcript analysis. The latter were segregated into gene clusters (GC) that defined clinical 'hallmarks' of neoplasia. A MAAA/cluster integrated algorithm (CIA) was developed as a predictive activity index to define tumor behavior and outcome. We evaluated three groups. Group 1: publically available NET transcriptome databases (n=15; GeneProfiler). Group 2: prospectively collected tumors and matched blood samples (n=22; qRT-PCR). Group 3: prospective clinical blood samples, n=159: stable disease (SD): n=111 and progressive disease (PD): n=48. Regulatory network analysis, linear modeling, principal component analysis (PCA), and receiver operating characteristic analyses were used to delineate neoplasia 'hallmarks' and assess GC predictive utility. Our results demonstrated: group 1: NET transcriptomes identified (92%) genes elevated. Group 2: 98% genes elevated by qPCR (fold change >2, P<0.05). Correlation analysis of matched blood/tumor was highly significant (R(2)=0.7, P<0.0001), and 58% of genes defined nine omic clusters (SSTRome, proliferome, signalome, metabolome, secretome, epigenome, plurome, and apoptome). Group 3: six clusters (SSTRome, proliferome, metabolome, secretome, epigenome, and plurome) differentiated SD from PD (area under the curve (AUC)=0.81). Integration with blood-algorithm amplified the AUC to 0.92±0.02 for differentiating PD and SD. The CIA defined a significantly lower SD score (34.1±2.6%) than in PD (84±2.8%, P<0.0001). In conclusion, circulating transcripts measurements reflect NET tissue values. Integration of biologically relevant GC differentiate SD from PD. Combination of GC data with the blood-algorithm predicted disease status in >92%. Blood transcript measurement predicts NET activity.
Collapse
Affiliation(s)
- Mark Kidd
- Wren Laboratories35 NE Industrial Road, Branford, Connecticut 06405, USA
| | - Ignat Drozdov
- Wren Laboratories35 NE Industrial Road, Branford, Connecticut 06405, USA
| | - Irvin Modlin
- Wren Laboratories35 NE Industrial Road, Branford, Connecticut 06405, USA
| |
Collapse
|
148
|
Bassiri H, Benavides A, Haber M, Gilmour SK, Norris MD, Hogarty MD. Translational development of difluoromethylornithine (DFMO) for the treatment of neuroblastoma. Transl Pediatr 2015; 4:226-38. [PMID: 26835380 PMCID: PMC4729051 DOI: 10.3978/j.issn.2224-4336.2015.04.06] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/08/2015] [Indexed: 01/01/2023] Open
Abstract
Neuroblastoma is a childhood tumor in which MYC oncogenes are commonly activated to drive tumor progression. Survival for children with high-risk neuroblastoma remains poor despite treatment that incorporates high-dose chemotherapy, stem cell support, surgery, radiation therapy and immunotherapy. More effective and less toxic treatments are sought and one approach under clinical development involves re-purposing the anti-protozoan drug difluoromethylornithine (DFMO; Eflornithine) as a neuroblastoma therapeutic. DFMO is an irreversible inhibitor of ornithine decarboxylase (Odc), a MYC target gene, bona fide oncogene, and the rate-limiting enzyme in polyamine synthesis. DFMO is approved for the treatment of Trypanosoma brucei gambiense encephalitis ("African sleeping sickness") since polyamines are essential for the proliferation of these protozoa. However, polyamines are also critical for mammalian cell proliferation and the finding that MYC coordinately regulates all aspects of polyamine metabolism suggests polyamines may be required to support cancer promotion by MYC. Pre-emptive blockade of polyamine synthesis is sufficient to block tumor initiation in an otherwise fully penetrant transgenic mouse model of neuroblastoma driven by MYCN, underscoring the necessity of polyamines in this process. Moreover, polyamine depletion regimens exert potent anti-tumor activity in pre-clinical models of established neuroblastoma as well, in combination with numerous chemotherapeutic agents and even in tumors with unfavorable genetic features such as MYCN, ALK or TP53 mutation. This has led to the testing of DFMO in clinical trials for children with neuroblastoma. Current trial designs include testing lower dose DFMO alone (2,000 mg/m(2)/day) starting at the completion of standard therapy, or higher doses combined with chemotherapy (up to 9,000 mg/m(2)/day) for patients with relapsed disease that has progressed. In this review we will discuss important considerations for the future design of DFMO-based clinical trials for neuroblastoma, focusing on the need to better define the principal mechanisms of anti-tumor activity for polyamine depletion regimens. Putative DFMO activities that are both cancer cell intrinsic (targeting the principal oncogenic driver, MYC) and cancer cell extrinsic (altering the tumor microenvironment to support anti-tumor immunity) will be discussed. Understanding the mechanisms of DFMO activity are critical in determining how it might be best leveraged in upcoming clinical trials. This mechanistic approach also provides a platform by which iterative pre-clinical testing using translational tumor models may complement our clinical approaches.
Collapse
|
149
|
Yco LP, Geerts D, Mocz G, Koster J, Bachmann AS. Effect of sulfasalazine on human neuroblastoma: analysis of sepiapterin reductase (SPR) as a new therapeutic target. BMC Cancer 2015; 15:477. [PMID: 26093909 PMCID: PMC4475614 DOI: 10.1186/s12885-015-1447-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022] Open
Abstract
Background Neuroblastoma (NB) is an aggressive childhood malignancy in children up to 5 years of age. High-stage tumors frequently relapse even after aggressive multimodal treatment, and then show therapy resistance, typically resulting in patient death. New molecular-targeted compounds that effectively suppress tumor growth and prevent relapse with more efficacy are urgently needed. We and others previously showed that polyamines (PA) like spermidine and spermine are essential for NB tumorigenesis and that DFMO, an inhibitor of the key PA synthesis gene product ODC, is effective both in vitro and in vivo, securing its evaluation in NB clinical trials. To find additional compounds interfering with PA biosynthesis, we tested sulfasalazine (SSZ), an FDA-approved salicylate-based anti-inflammatory and immune-modulatory drug, recently identified to inhibit sepiapterin reductase (SPR). We earlier presented evidence for a physical interaction between ODC and SPR and we showed that RNAi-mediated knockdown of SPR expression significantly reduced native ODC enzyme activity and impeded NB cell proliferation. Methods Human NB mRNA expression datasets in the public domain were analyzed using the R2 platform. Cell viability, isobologram, and combination index analyses as a result of SSZ treatment with our without DFMO were carried out in NB cell cultures. Molecular protein-ligand docking was achieved using the GRAMM algorithm. Statistical analyses were performed with the Kruskal-Wallis test, 2log Pearson test, and Student’s t test. Results In this study, we show the clinical relevance of SPR in human NB tumors. We found that high SPR expression is significantly correlated to unfavorable NB characteristics like high age at diagnosis, MYCN amplification, and high INSS stage. SSZ inhibits the growth of NB cells in vitro, presumably due to the inhibition of SPR as predicted by computational docking of SSZ into SPR. Importantly, the combination of SSZ with DFMO produces synergistic antiproliferative effects in vitro. Conclusions The results suggest the use of SSZ in combination with DFMO for further experiments, and possible prioritization as a novel therapy for the treatment of NB patients.
Collapse
Affiliation(s)
- Lisette P Yco
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 301 Michigan Street, NE, Grand Rapids, MI, 49503, USA. .,Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA. .,Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Dirk Geerts
- Department of Pediatric Oncology/Hematology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, GE, 3015, The Netherlands.
| | - Gabor Mocz
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands.
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 301 Michigan Street, NE, Grand Rapids, MI, 49503, USA. .,Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, 96720, USA. .,Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
150
|
Saulnier Sholler GL, Gerner EW, Bergendahl G, MacArthur RB, VanderWerff A, Ashikaga T, Bond JP, Ferguson W, Roberts W, Wada RK, Eslin D, Kraveka JM, Kaplan J, Mitchell D, Parikh NS, Neville K, Sender L, Higgins T, Kawakita M, Hiramatsu K, Moriya SS, Bachmann AS. A Phase I Trial of DFMO Targeting Polyamine Addiction in Patients with Relapsed/Refractory Neuroblastoma. PLoS One 2015; 10:e0127246. [PMID: 26018967 PMCID: PMC4446210 DOI: 10.1371/journal.pone.0127246] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/11/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common cancer in infancy and most frequent cause of death from extracranial solid tumors in children. Ornithine decarboxylase (ODC) expression is an independent indicator of poor prognosis in NB patients. This study investigated safety, response, pharmacokinetics, genetic and metabolic factors associated with ODC in a clinical trial of the ODC inhibitor difluoromethylornithine (DFMO) ± etoposide for patients with relapsed or refractory NB. METHODS AND FINDINGS Twenty-one patients participated in a phase I study of daily oral DFMO alone for three weeks, followed by additional three-week cycles of DFMO plus daily oral etoposide. No dose limiting toxicities (DLTs) were identified in patients taking doses of DFMO between 500-1500 mg/m2 orally twice a day. DFMO pharmacokinetics, single nucleotide polymorphisms (SNPs) in the ODC gene and urinary levels of substrates for the tissue polyamine exporter were measured. Urinary polyamine levels varied among patients at baseline. Patients with the minor T-allele at rs2302616 of the ODC gene had higher baseline levels (p=0.02) of, and larger decreases in, total urinary polyamines during the first cycle of DFMO therapy (p=0.003) and had median progression free survival (PFS) that was over three times longer, compared to patients with the major G allele at this locus although this last result was not statistically significant (p=0.07). Six of 18 evaluable patients were progression free during the trial period with three patients continuing progression free at 663, 1559 and 1573 days after initiating treatment. Median progression-free survival was less among patients having increased urinary polyamines, especially diacetylspermine, although this result was not statistically significant (p=0.056). CONCLUSIONS DFMO doses of 500-1500 mg/m2/day are safe and well tolerated in children with relapsed NB. Children with the minor T allele at rs2302616 of the ODC gene with relapsed or refractory NB had higher levels of urinary polyamine markers and responded better to therapy containing DFMO, compared to those with the major G allele at this locus. These findings suggest that this patient subset may display dependence on polyamines and be uniquely susceptible to therapies targeting this pathway. TRIAL REGISTRATION Clinicaltrials.gov NCT#01059071.
Collapse
Affiliation(s)
- Giselle L. Saulnier Sholler
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Eugene W. Gerner
- Cancer Prevention Pharmaceuticals, Tucson, Arizona, United States of America
| | - Genevieve Bergendahl
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
| | - Robert B. MacArthur
- Cancer Prevention Pharmaceuticals, Tucson, Arizona, United States of America
| | - Alyssa VanderWerff
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
| | - Takamaru Ashikaga
- Medical Biostatistics, University of Vermont, Burlington, Vermont, United States of America
| | - Jeffrey P. Bond
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - William Ferguson
- Cardinal Glennon Children's Hospital, St. Louis, Missouri, United States of America
| | - William Roberts
- University of California San Diego School of Medicine and Rady Children's Hospital, San Diego, California, United States of America
| | - Randal K. Wada
- Kapiolani Medical Center for Women and Children, Honolulu, Hawaii, United States of America
| | - Don Eslin
- Arnold Palmer Hospital for Children, Orlando, Florida, United States of America
| | - Jacqueline M. Kraveka
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Joel Kaplan
- Levine Children's Hospital, Charlotte, North Carolina, United States of America
| | - Deanna Mitchell
- Helen DeVos Children’s Hospital, Grand Rapids, Michigan, United States of America
| | - Nehal S. Parikh
- Connecticut Children's Medical Center, Hartford, Connecticut, United States of America
| | - Kathleen Neville
- Children's Mercy Hospitals and Clinics, Kansas City, Missouri, United States of America
| | - Leonard Sender
- Children’s Hospital of Orange County, Orange, California, United States of America
| | - Timothy Higgins
- Medical Biostatistics, University of Vermont, Burlington, Vermont, United States of America
| | - Masao Kawakita
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Hiramatsu
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - André S. Bachmann
- College of Human Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, Hawaii, United States of America
| |
Collapse
|