101
|
Guo W. Concise review: breast cancer stem cells: regulatory networks, stem cell niches, and disease relevance. Stem Cells Transl Med 2014; 3:942-8. [PMID: 24904174 DOI: 10.5966/sctm.2014-0020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence has shown that cancer stem cells (CSCs), the cancer cells that have long-term proliferative potential and the ability to regenerate tumors with phenotypically heterogeneous cell types, are important mediators of tumor metastasis and cancer relapse. In breast cancer, these cells often possess attributes of cells that have undergone an epithelial-mesenchymal transition (EMT). Signaling networks mediated by microRNAs and EMT-inducing transcription factors connect the EMT program with the core stem cell regulatory machineries. These signaling networks are also regulated by extrinsic niche signals that induce and maintain CSCs, contributing to metastatic colonization and promoting the reactivation of dormant tumor cells. Targeting these CSC pathways is likely to improve the efficacy of conventional chemo- and radiotherapies.
Collapse
Affiliation(s)
- Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
102
|
Abstract
To comprehend the complexity of cancer, the biological characteristics acquired during the initiation and progression of tumours were classified as the 'hallmarks of cancer'. Intravital microscopy techniques have been developed to study individual cells that acquire these crucial traits, by visualizing tissues with cellular or subcellular resolution in living animals. In this Review, we highlight the latest intravital microscopy techniques that have been used in living animals (predominantly mice) to unravel fundamental and dynamic aspects of various hallmarks of cancer. In addition, we discuss the application of intravital microscopy techniques to cancer therapy, as well as limitations and future perspectives for these techniques.
Collapse
Affiliation(s)
- Saskia I J Ellenbroek
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW & University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands-Hubrecht Institute-KNAW & University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
103
|
Da Silva Figueiredo Celestino Gomes P, Panel N, Laine E, Pascutti PG, Solary E, Tchertanov L. Differential effects of CSF-1R D802V and KIT D816V homologous mutations on receptor tertiary structure and allosteric communication. PLoS One 2014; 9:e97519. [PMID: 24828813 PMCID: PMC4020833 DOI: 10.1371/journal.pone.0097519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/22/2014] [Indexed: 02/02/2023] Open
Abstract
The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind.
Collapse
Affiliation(s)
- Priscila Da Silva Figueiredo Celestino Gomes
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nicolas Panel
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
| | - Elodie Laine
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eric Solary
- Institut Gustave Roussy, Villejuif, France
- Faculty of Medicine, Paris- Sud University, Le Kremlin-Bicêtre, France
| | - Luba Tchertanov
- Laboratoire de Biologie et de Pharmacologie Appliquée, École Normale Supérieure de Cachan, Cachan, France
- Centre de Mathématiques et de Leurs Applications, École Normale Supérieure de Cachan, Cachan, France
- * E-mail:
| |
Collapse
|
104
|
Su S, Liu Q, Chen J, Chen J, Chen F, He C, Huang D, Wu W, Lin L, Huang W, Zhang J, Cui X, Zheng F, Li H, Yao H, Su F, Song E. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 2014; 25:605-20. [PMID: 24823638 DOI: 10.1016/j.ccr.2014.03.021] [Citation(s) in RCA: 552] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/25/2013] [Accepted: 03/19/2014] [Indexed: 02/05/2023]
Abstract
The close vicinity of cancer cells undergoing epithelial-mesenchymal transition (EMT) and tumor-associated macrophages (TAMs) at the invasive front of tumors suggests that these two cell type may mutually interact. We show that mesenchymal-like breast cancer cells activate macrophages to a TAM-like phenotype by GM-CSF. Reciprocally, CCL18 from TAMs induces cancer cell EMT, forming a positive feedback loop, in coculture systems and humanized mice. Inhibition of GM-CSF or CCL18 breaks this loop and reduces cancer metastasis. High GM-CSF expression in breast cancer samples is associated with more CCL18(+) macrophages, cancer cell EMT, enhanced metastasis, and reduced patient survival. These findings suggest that a positive feedback loop between GM-CSF and CCL18 is important in breast cancer metastasis.
Collapse
Affiliation(s)
- Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingqi Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical College, Guangzhou 510260, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Fei Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chonghua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ling Lin
- Department of Internal Medicine, The First Affiliated Hospital, Shantou University Medical College, Shantou 515041, China
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jin Zhang
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xiuying Cui
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Fang Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haiyan Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Herui Yao
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
105
|
Knútsdóttir H, Pálsson E, Edelstein-Keshet L. Mathematical model of macrophage-facilitated breast cancer cells invasion. J Theor Biol 2014; 357:184-99. [PMID: 24810842 DOI: 10.1016/j.jtbi.2014.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 02/24/2014] [Accepted: 04/24/2014] [Indexed: 11/25/2022]
Abstract
Mortality from breast cancer stems from its tendency to invade into surrounding tissues and organs. Experiments have shown that this metastatic process is facilitated by macrophages in a short-ranged chemical signalling loop. Macrophages secrete epidermal growth factor, EGF, and respond to the colony stimulating factor 1, CSF-1. Tumor cells secrete CSF-1 and respond to EGF. In this way, the cells coordinate aggregation and cooperative migration. Here we investigate this process in a model for in vitro interactions using two distinct but related mathematical approaches. In the first, we analyze and simulate a set of partial differential equations to determine conditions for aggregation. In the second, we use a cell-based discrete 3D simulation to follow the fates and motion of individual cells during aggregation. Linear stability analysis of the PDE model reveals that decreasing the chemical secretion, chemotaxis coefficients or density of cells or increasing the chemical degradation in the model could eliminate the spontaneous aggregation of cells. Simulations with the discrete model show that the ratio between tumor cells and macrophages in aggregates increases when the EGF secretion parameter is increased. The results also show how CSF-1/CSF-1R autocrine signalling in tumor cells affects the ratio between the two cell types. Comparing the continuum results with simulations of a discrete cell-based model, we find good qualitative agreement.
Collapse
Affiliation(s)
- Hildur Knútsdóttir
- Mathematics Department, University of British Columbia, Vancouver, BC, Canada V6T 1Z2.
| | - Eirikur Pálsson
- Biology Department, Simon Fraser University, Burnaby, BC, Canada V5A 1S6.
| | - Leah Edelstein-Keshet
- Mathematics Department, University of British Columbia, Vancouver, BC, Canada V6T 1Z2.
| |
Collapse
|
106
|
Qin L, Wu YL, Toneff MJ, Li D, Liao L, Gao X, Bane FT, Tien JCY, Xu Y, Feng Z, Yang Z, Xu Y, Theissen SM, Li Y, Young L, Xu J. NCOA1 Directly Targets M-CSF1 Expression to Promote Breast Cancer Metastasis. Cancer Res 2014; 74:3477-88. [PMID: 24769444 DOI: 10.1158/0008-5472.can-13-2639] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In breast cancer, overexpression of the nuclear coactivator NCOA1 (SRC-1) is associated with disease recurrence and resistance to endocrine therapy. To examine the impact of NCOA1 overexpression on morphogenesis and carcinogenesis in the mammary gland (MG), we generated MMTV-hNCOA1 transgenic [Tg(NCOA1)] mice. In the context of two distinct transgenic models of breast cancer, NCOA1 overexpression did not affect the morphology or tumor-forming capability of MG epithelial cells. However, NCOA1 overexpression increased the number of circulating breast cancer cells and the efficiency of lung metastasis. Mechanistic investigations showed that NCOA1 and c-Fos were recruited to a functional AP-1 site in the macrophage attractant CSF1 promoter, directly upregulating colony-simulating factor 1 (CSF1) expression to enhance macrophage recruitment and metastasis. Conversely, silencing NCOA1 reduced CSF1 expression and decreased macrophage recruitment and breast cancer cell metastasis. In a cohort of 453 human breast tumors, NCOA1 and CSF1 levels correlated positively with disease recurrence, higher tumor grade, and poor prognosis. Together, our results define an NCOA1/AP-1/CSF1 regulatory axis that promotes breast cancer metastasis, offering a novel therapeutic target for impeding this process.
Collapse
Affiliation(s)
- Li Qin
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Ye-Lin Wu
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai
| | - Michael J Toneff
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Dabing Li
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine; Institute for Cancer Medicine and Department of Pathology, Luzhou Medical College, Luzhou, Sichuan, China; and
| | - Lan Liao
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Xiuhua Gao
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Fiona T Bane
- Endocrine Oncology Research, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jean C-Y Tien
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine; Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Yixiang Xu
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine; Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Zhen Feng
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai
| | - Zhihui Yang
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine; Institute for Cancer Medicine and Department of Pathology, Luzhou Medical College, Luzhou, Sichuan, China; and
| | - Yan Xu
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Sarah M Theissen
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Yi Li
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Leonie Young
- Endocrine Oncology Research, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jianming Xu
- Authors' Affiliations: Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine; Institute for Cancer Medicine and Department of Pathology, Luzhou Medical College, Luzhou, Sichuan, China; and
| |
Collapse
|
107
|
Joshi S, Singh AR, Zulcic M, Bao L, Messer K, Ideker T, Dutkowski J, Durden DL. Rac2 controls tumor growth, metastasis and M1-M2 macrophage differentiation in vivo. PLoS One 2014; 9:e95893. [PMID: 24770346 PMCID: PMC4000195 DOI: 10.1371/journal.pone.0095893] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/31/2014] [Indexed: 12/16/2022] Open
Abstract
Although it is well-established that the macrophage M1 to M2 transition plays a role in tumor progression, the molecular basis for this process remains incompletely understood. Herein, we demonstrate that the small GTPase, Rac2 controls macrophage M1 to M2 differentiation and the metastatic phenotype in vivo. Using a genetic approach, combined with syngeneic and orthotopic tumor models we demonstrate that Rac2-/- mice display a marked defect in tumor growth, angiogenesis and metastasis. Microarray, RT-PCR and metabolomic analysis on bone marrow derived macrophages isolated from the Rac2-/- mice identify an important role for Rac2 in M2 macrophage differentiation. Furthermore, we define a novel molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin and MCSF receptor lead to the activation of Rac2 and potentially regulate macrophage M2 differentiation. Collectively, our findings demonstrate a macrophage autonomous process by which the Rac2 GTPase is activated downstream of the α4β1 integrin and the MCSF receptor to control tumor growth, metastasis and macrophage differentiation into the M2 phenotype. Finally, using gene expression and metabolomic data from our Rac2-/- model, and information related to M1-M2 macrophage differentiation curated from the literature we executed a systems biologic analysis of hierarchical protein-protein interaction networks in an effort to develop an iterative interactome map which will predict additional mechanisms by which Rac2 may coordinately control macrophage M1 to M2 differentiation and metastasis.
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Alok R. Singh
- UCSD Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Muamera Zulcic
- UCSD Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Lei Bao
- UCSD Department of Biostatistics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Karen Messer
- UCSD Department of Biostatistics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Janusz Dutkowski
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Donald L. Durden
- UCSD Department of Pediatrics, Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children's Hospital, San Diego, La Jolla, California, United States of America
| |
Collapse
|
108
|
Cioce M, Canino C, Goparaju C, Yang H, Carbone M, Pass HI. Autocrine CSF-1R signaling drives mesothelioma chemoresistance via AKT activation. Cell Death Dis 2014; 5:e1167. [PMID: 24722292 PMCID: PMC5424113 DOI: 10.1038/cddis.2014.136] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/21/2014] [Accepted: 02/28/2014] [Indexed: 01/02/2023]
Abstract
Clinical management of malignant pleural mesothelioma (MPM) is very challenging because of the uncommon resistance of this tumor to chemotherapy. We report here increased expression of macrophage colony-stimulating-factor-1-receptor (M-CSF/CSF-1R) mRNA in mesothelioma versus normal tissue specimens and demonstrate that CSF-1R expression identifies chemoresistant cells of mesothelial nature in both primary cultures and mesothelioma cell lines. By using RNAi or ligand trapping, we demonstrate that the chemoresistance properties of those cells depend on autocrine CSF-1R signaling. At the single-cell level, the isolated CSF-1Rpos cells exhibit a complex repertoire of pluripotency, epithelial–mesenchymal transition and detoxifying factors, which define a clonogenic, chemoresistant, precursor-like cell sub-population. The simple activation of CSF-1R in untransformed mesothelial cells is sufficient to confer clonogenicity and resistance to pemetrexed, hallmarks of mesothelioma. In addition, this induced a gene expression profile highly mimicking that observed in the MPM cells endogenously expressing the receptor and the ligands, suggesting that CSF-1R expression is mainly responsible for the phenotype of the identified cell sub-populations. The survival of CSF1Rpos cells requires active AKT (v-akt murine thymoma viral oncogene homolog 1) signaling, which contributed to increased levels of nuclear, transcriptionally competent β-catenin. Inhibition of AKT reduced the transcriptional activity of β-catenin-dependent reporters and sensitized the cells to senescence-induced clonogenic death after pemetrexed treatment. This work expands what is known on the non-macrophage functions of CSF-1R and its role in solid tumors, and suggests that CSF-1R signaling may have a critical pathogenic role in a prototypical, inflammation-related cancer such as MPM and therefore may represent a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- M Cioce
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, NY, USA
| | - C Canino
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, NY, USA
| | - C Goparaju
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, NY, USA
| | - H Yang
- University of Hawaii Cancer Center, John A Burns School of Medicine, University of Hawaii, Honolulu, HA, USA
| | - M Carbone
- University of Hawaii Cancer Center, John A Burns School of Medicine, University of Hawaii, Honolulu, HA, USA
| | - H I Pass
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Langone Medical Center, New York University, New York, NY, USA
| |
Collapse
|
109
|
Stoletov K, Bond D, Hebron K, Raha S, Zijlstra A, Lewis JD. Metastasis as a therapeutic target in prostate cancer: a conceptual framework. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:45-56. [PMID: 25360439 PMCID: PMC4219290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/26/2014] [Indexed: 06/04/2023]
Abstract
Metastasis is the main cause of prostate cancer-associated deaths. While significant progerss has been made in the treatment of primary tumors, efficent therapies that target the metastatic spread of prostate cancer are far from clinical reality. To efficiently treat cancer we need be able to impede its spread. Unfortunately, the majority of current therapeutics approved to treat metastatic cancer were originally selected based on their ability to inhibit primary tumor growth. This inherent flaw precluded these therapies from efficiently targeting the development of secondary metastatic lesions, a process that is distinct from that of primary tumor progression. In this review we will summarize the conceptual, cellular and molecular targets that should be considered to design effective anti-metastatic therapies.
Collapse
Affiliation(s)
- Konstantin Stoletov
- Department of Oncology, University of Alberta5-142C Katz Group Building, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
| | - David Bond
- Department of Oncology, University of Alberta5-142C Katz Group Building, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
| | - Katie Hebron
- Department of Pathology, Microbiology and Immunology, Vanderbilt University1161 21st Ave. S., C-2102C MCN, Nashville, TN 37232-2561 USA
| | - Srijan Raha
- Department of Oncology, University of Alberta5-142C Katz Group Building, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
| | - Andries Zijlstra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University1161 21st Ave. S., C-2102C MCN, Nashville, TN 37232-2561 USA
| | - John D Lewis
- Department of Oncology, University of Alberta5-142C Katz Group Building, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
110
|
Pten null prostate epithelium promotes localized myeloid-derived suppressor cell expansion and immune suppression during tumor initiation and progression. Mol Cell Biol 2014; 34:2017-28. [PMID: 24662052 DOI: 10.1128/mcb.00090-14] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic inflammation is known to be associated with prostate cancer development, but how epithelium-associated cancer-initiating events cross talk to inflammatory cells during prostate cancer initiation and progression is largely unknown. Using the Pten null murine prostate cancer model, we show an expansion of Gr-1(+) CD11b(+) myeloid-derived suppressor cells (MDSCs) occurring intraprostatically immediately following epithelium-specific Pten deletion without expansion in hematopoietic tissues. This MDSC expansion is accompanied by sustained immune suppression. Prostatic Gr-1(+) CD11b(+) cells, but not those isolated from the spleen of the same tumor-bearing mice, suppress T cell proliferation and express high levels of Arginase 1 and iNOS. Mechanistically, the loss of PTEN in the epithelium leads to a significant upregulation of genes within the inflammatory response and cytokine-cytokine receptor interaction pathways, including Csf1 and Il1b, two genes known to induce MDSC expansion and immunosuppressive activities. Treatment of Pten null mice with the selective CSF-1 receptor inhibitor GW2580 decreases MDSC infiltration and relieves the associated immunosuppressive phenotype. Our study indicates that epithelium-associated tumor-initiating events trigger the secretion of inflammatory cytokines and promote localized MDSC expansion and immune suppression, thereby promoting tumor progression.
Collapse
|
111
|
Jeffery JJ, Lux K, Vogel JS, Herrera WD, Greco S, Woo HH, AbuShahin N, Pagel MD, Chambers SK. Autocrine inhibition of the c-fms proto-oncogene reduces breast cancer bone metastasis assessed with in vivo dual-modality imaging. Exp Biol Med (Maywood) 2014; 239:404-13. [PMID: 24599884 DOI: 10.1177/1535370214522588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast cancer cells preferentially home to the bone microenvironment, which provides a unique niche with a network of multiple bidirectional communications between host and tumor, promoting survival and growth of bone metastases. In the bone microenvironment, the c-fms proto-oncogene that encodes for the CSF-1 receptor, along with CSF-1, serves as one critical cytokine/receptor pair, functioning in paracrine and autocrine fashion. Previous studies concentrated on the effect of inhibition of host (mouse) c-fms on bone metastasis, with resulting decrease in osteolysis and bone metastases as a paracrine effect. In this report, we assessed the role of c-fms inhibition within the tumor cells (autocrine effect) in the early establishment of breast cancer cells in bone and the effects of this early c-fms inhibition on subsequent bone metastases and destruction. This study exploited a multidisciplinary approach by employing two non-invasive, in vivo imaging methods to assess the progression of bone metastases and bone destruction, in addition to ex vivo analyses using RT-PCR and histopathology. Using a mouse model of bone homing human breast cancer cells, we showed that an early one-time application of anti-human c-fms antibody delayed growth of bone metastases and bone destruction for at least 31 days as quantitatively measured by bioluminescence imaging and computed tomography, compared to controls. Thus, neutralizing human c-fms in the breast cancer cell alone decreases extent of subsequent bone metastasis formation and osteolysis. Furthermore, we are the first to show that anti-c-fms antibodies can impact early establishment of breast cancer cells in bone.
Collapse
Affiliation(s)
- Justin J Jeffery
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Cole C, Krampis K, Karagiannis K, Almeida JS, Faison WJ, Motwani M, Wan Q, Golikov A, Pan Y, Simonyan V, Mazumder R. Non-synonymous variations in cancer and their effects on the human proteome: workflow for NGS data biocuration and proteome-wide analysis of TCGA data. BMC Bioinformatics 2014; 15:28. [PMID: 24467687 PMCID: PMC3916084 DOI: 10.1186/1471-2105-15-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) technologies have resulted in petabytes of scattered data, decentralized in archives, databases and sometimes in isolated hard-disks which are inaccessible for browsing and analysis. It is expected that curated secondary databases will help organize some of this Big Data thereby allowing users better navigate, search and compute on it. RESULTS To address the above challenge, we have implemented a NGS biocuration workflow and are analyzing short read sequences and associated metadata from cancer patients to better understand the human variome. Curation of variation and other related information from control (normal tissue) and case (tumor) samples will provide comprehensive background information that can be used in genomic medicine research and application studies. Our approach includes a CloudBioLinux Virtual Machine which is used upstream of an integrated High-performance Integrated Virtual Environment (HIVE) that encapsulates Curated Short Read archive (CSR) and a proteome-wide variation effect analysis tool (SNVDis). As a proof-of-concept, we have curated and analyzed control and case breast cancer datasets from the NCI cancer genomics program - The Cancer Genome Atlas (TCGA). Our efforts include reviewing and recording in CSR available clinical information on patients, mapping of the reads to the reference followed by identification of non-synonymous Single Nucleotide Variations (nsSNVs) and integrating the data with tools that allow analysis of effect nsSNVs on the human proteome. Furthermore, we have also developed a novel phylogenetic analysis algorithm that uses SNV positions and can be used to classify the patient population. The workflow described here lays the foundation for analysis of short read sequence data to identify rare and novel SNVs that are not present in dbSNP and therefore provides a more comprehensive understanding of the human variome. Variation results for single genes as well as the entire study are available from the CSR website (http://hive.biochemistry.gwu.edu/dna.cgi?cmd=csr). CONCLUSIONS Availability of thousands of sequenced samples from patients provides a rich repository of sequence information that can be utilized to identify individual level SNVs and their effect on the human proteome beyond what the dbSNP database provides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, George Washington University Medical Center, Washington, DC 20037, USA.
| |
Collapse
|
113
|
Strachan DC, Ruffell B, Oei Y, Bissell MJ, Coussens LM, Pryer N, Daniel D. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 + T cells. Oncoimmunology 2013; 2:e26968. [PMID: 24498562 PMCID: PMC3902121 DOI: 10.4161/onci.26968] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/20/2022] Open
Abstract
Increased numbers of tumor-infiltrating macrophages correlate with poor disease outcome in patients affected by several types of cancer, including breast and prostate carcinomas. The colony stimulating factor 1 receptor (CSF1R) signaling pathway drives the recruitment of tumor-associated macrophages (TAMs) to the neoplastic microenvironment and promotes the differentiation of TAMs toward a pro-tumorigenic phenotype. Twelve clinical trials are currently evaluating agents that target the CSF1/CSF1R signaling pathway as a treatment against multiple malignancies, including breast carcinoma, leukemia, and glioblastoma. The blockade of CSF1R signaling has been shown to greatly decrease the number of macrophages in a tissue-specific manner. However, additional mechanistic insights are needed in order to understand how macrophages are depleted and the global effects of CSF1R inhibition on other tumor-infiltrating immune cells. Using BLZ945, a highly selective small molecule inhibitor of CSF1R, we show that CSF1R inhibition attenuates the turnover rate of TAMs while increasing the number of CD8+ T cells that infiltrate cervical and breast carcinomas. Specifically, we find that BLZ945 decreased the growth of malignant cells in the mouse mammary tumor virus-driven polyomavirus middle T antigen (MMTV-PyMT) model of mammary carcinogenesis. Furthermore, we show that BLZ945 prevents tumor progression in the keratin 14-expressing human papillomavirus type 16 (K14-HPV-16) transgenic model of cervical carcinogenesis. Our results demonstrate that TAMs undergo a constant turnover in a CSF1R-dependent manner, and suggest that continuous inhibition of the CSF1R pathway may be essential to maintain efficacious macrophage depletion as an anticancer therapy.
Collapse
Affiliation(s)
| | - Brian Ruffell
- Department of Cell and Developmental Biology and Knight Cancer Institute; Oregon Health and Science University; Portland, OR USA
| | - Yoko Oei
- Novartis Institutes for Biomedical Research; Emeryville, CA USA
| | - Mina J Bissell
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley, CA USA
| | - Lisa M Coussens
- Department of Cell and Developmental Biology and Knight Cancer Institute; Oregon Health and Science University; Portland, OR USA
| | - Nancy Pryer
- Novartis Institutes for Biomedical Research; Emeryville, CA USA
| | - Dylan Daniel
- Novartis Institutes for Biomedical Research; Emeryville, CA USA
| |
Collapse
|
114
|
Roh-Johnson M, Bravo-Cordero JJ, Patsialou A, Sharma VP, Guo P, Liu H, Hodgson L, Condeelis J. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 2013; 33:4203-12. [PMID: 24056963 PMCID: PMC3962803 DOI: 10.1038/onc.2013.377] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 12/23/2022]
Abstract
Most cancer patients die as a result of metastasis, thus it is important to understand the molecular mechanisms of dissemination, including intra- and extravasation. Although the mechanisms of extravasation have been vastly studied in vitro and in vivo, the process of intravasation is still unclear. Furthermore, how cells in the tumor microenvironment facilitate tumor cell intravasation is still unknown. Using high-resolution imaging, we found that macrophages enhance tumor cell intravasation upon physical contact. Macrophage and tumor cell contact induce RhoA activity in tumor cells, triggering the formation of actin-rich degradative protrusions called invadopodia, enabling tumor cells to degrade and break through matrix barriers during tumor cell transendothelial migration. Interestingly, we show that macrophage-induced invadopodium formation and tumor cell intravasation also occur in patient-derived tumor cells and in vivo models, revealing a conserved mechanism of tumor cell intravasation. Our results illustrate a novel heterotypic cell contact mediated signaling role for RhoA, as well as yield mechanistic insight into the ability of cells within the tumor microenvironment to facilitate steps of the metastatic cascade.
Collapse
Affiliation(s)
- M Roh-Johnson
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - J J Bravo-Cordero
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - A Patsialou
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - V P Sharma
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - P Guo
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - H Liu
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - L Hodgson
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - J Condeelis
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| |
Collapse
|
115
|
Zhou ZN, Sharma VP, Beaty BT, Roh-Johnson M, Peterson EA, Van Rooijen N, Kenny PA, Wiley HS, Condeelis JS, Segall JE. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo. Oncogene 2013; 33:3784-93. [PMID: 24013225 PMCID: PMC3950352 DOI: 10.1038/onc.2013.363] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/27/2013] [Accepted: 07/16/2013] [Indexed: 01/04/2023]
Abstract
Increased expression of HBEGF in ER negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of CSF-1 while the tumor associated macrophages (TAMs) in turn aid in tumor cell invasion by secreting EGF. To determine how the autocrine expression of EGFR ligands by carcinoma cells would affect this paracrine loop mechanism, and in particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We find that autocrine HBEGF expression enhanced in vivo intravasation and metastasis, and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of MMP2 and MMP9 expression. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.
Collapse
Affiliation(s)
- Z N Zhou
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - V P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - B T Beaty
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M Roh-Johnson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E A Peterson
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - N Van Rooijen
- Department of Molecular Cell Biology, Free University Medical Center, Amsterdam, The Netherlands
| | - P A Kenny
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - H S Wiley
- 1] Systems Biology Program, Pacific Northwest National Laboratory, Richland, WA, USA [2] Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - J S Condeelis
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss Lipper Center for Biophotonics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J E Segall
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss Lipper Center for Biophotonics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
116
|
Fend L, Accart N, Kintz J, Cochin S, Reymann C, Le Pogam F, Marchand JB, Menguy T, Slos P, Rooke R, Fournel S, Bonnefoy JY, Préville X, Haegel H. Therapeutic effects of anti-CD115 monoclonal antibody in mouse cancer models through dual inhibition of tumor-associated macrophages and osteoclasts. PLoS One 2013; 8:e73310. [PMID: 24019914 PMCID: PMC3760897 DOI: 10.1371/journal.pone.0073310] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Tumor progression is promoted by Tumor-Associated Macrophages (TAMs) and metastasis-induced bone destruction by osteoclasts. Both myeloid cell types depend on the CD115-CSF-1 pathway for their differentiation and function. We used 3 different mouse cancer models to study the effects of targeting cancer host myeloid cells with a monoclonal antibody (mAb) capable of blocking CSF-1 binding to murine CD115. In mice bearing sub-cutaneous EL4 tumors, which are CD115-negative, the anti-CD115 mAb depleted F4/80+ CD163+ M2-type TAMs and reduced tumor growth, resulting in prolonged survival. In the MMTV-PyMT mouse model, the spontaneous appearance of palpable mammary tumors was delayed when the anti-CD115 mAb was administered before malignant transition and tumors became palpable only after termination of the immunotherapy. When administered to mice already bearing established PyMT tumors, anti-CD115 treatment prolonged their survival and potentiated the effect of chemotherapy with Paclitaxel. As shown by immunohistochemistry, this therapeutic effect correlated with the depletion of F4/80+CD163+ M2-polarized TAMs. In a breast cancer model of bone metastasis, the anti-CD115 mAb potently blocked the differentiation of osteoclasts and their bone destruction activity. This resulted in the inhibition of cancer-induced weight loss. CD115 thus represents a promising target for cancer immunotherapy, since a specific blocking antibody may not only inhibit the growth of a primary tumor through TAM depletion, but also metastasis-induced bone destruction through osteoclast inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sylvie Fournel
- UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, Illkirch-Graffenstaden, France
| | | | | | | |
Collapse
|
117
|
Khotskaya YB, Beck BH, Hurst DR, Han Z, Xia W, Hung MC, Welch DR. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix. Mol Carcinog 2013; 53:1011-26. [PMID: 24000122 DOI: 10.1002/mc.22068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/22/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
Abstract
Metastatic dissemination is a multi-step process that depends on cancer cells' ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it decreases survival in circulation, increases susceptibility to anoikis, and reduces capacity to colonize secondary organs. In this report, BRMS1 expression is shown to not significantly alter expression levels of integrin monomers, while time-lapse and confocal microscopy revealed that BRMS1-expressing cells exhibited reduced activation of both β1 integrin and focal adhesion kinase, and decreased localization of these molecules to sites of focal adhesions. Short-term plating of BRMS1-expressing cells onto collagen or fibronectin markedly decreased cytoskeletal reorganization and formation of cellular adhesion projections. Under 3D culture conditions, BRMS1-expressing cells remained rounded and failed to reorganize their cytoskeleton and form invasive colonies. Taken together, BRMS1-expressing breast cancer cells are greatly attenuated in their ability to respond to microenvironment changes. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yekaterina B Khotskaya
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
118
|
Nickerson NK, Mill CP, Wu HJ, Riese DJ, Foley J. Autocrine-derived epidermal growth factor receptor ligands contribute to recruitment of tumor-associated macrophage and growth of basal breast cancer cells in vivo. Oncol Res 2013; 20:303-17. [PMID: 23879171 DOI: 10.3727/096504013x13639794277761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) expression has been linked to progression of basal breast cancers. Many breast cancer cells harbor the EGFR and produce its family of ligands, suggesting they may participate in autocrine and paracrine signaling with cells of the tumor microenvironment. EGFR ligand expression was profiled in the basal breast cancer cell line MDA-231 where AREG, TGF-alpha, and HBEGF were the three ligands most highly expressed. Autocrine signaling was modulated through silencing or overexpression of these three ligands using lentiviral constructs and the impact measured using motility, proliferation, and cytokine expression assays. Changes in receptor phosphorylation and receptor turnover were examined. Knockdown of AREG or TGF-alpha in vitro resulted in decreased motility (p < 0.05) and decreased expression of macrophage chemoattractants. Overexpression of TGF-alpha increased motility and chemoattractant expression, whereas AREG did not. HBEGF modulation had no effect on any cellular behaviors. All the cells with altered ligand production were inoculated into female athymic nude mice to form mammary fat pad tumors, followed by immunohistochemical analysis for necrosis, angiogenesis, and macrophage recruitment. In vivo, knockdown of AREG or TGF-alpha increased survival (p < 0.001) while decreasing angiogenesis (p < 0.001), tumor growth (p < 0.001), and macrophage attraction (p < 0.001). Overexpression of AREG appeared to elicit a greater effect than TGF-alpha on mammary fat pad tumor growth by increasing angiogenesis (p < 0.001) and macrophage attraction to the tumor (p < 0.01). We propose these changes in mammary tumor growth were the result of increased recruitment of macrophages to the tumor by cells with altered autocrine EGFR signaling. We conclude that AREG and TGF-alpha were somewhat interchangeable in their effects on EGFR signaling; however, TGF-alpha had a greater effect in vitro and AREG had a greater effect in vivo.
Collapse
Affiliation(s)
- Nicole K Nickerson
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
119
|
Quantitative secretome analysis reveals the interactions between epithelia and tumor cells by in vitro modulating colon cancer microenvironment. J Proteomics 2013; 89:51-70. [DOI: 10.1016/j.jprot.2013.05.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/22/2013] [Accepted: 05/20/2013] [Indexed: 11/18/2022]
|
120
|
Wiskott-Aldrich syndrome protein regulates leukocyte-dependent breast cancer metastasis. Cell Rep 2013; 4:429-36. [PMID: 23911287 DOI: 10.1016/j.celrep.2013.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/24/2013] [Accepted: 07/08/2013] [Indexed: 11/22/2022] Open
Abstract
A paracrine interaction between epidermal growth factor (EGF)-secreting tumor-associated macrophages (TAMs) and colony-stimulating factor 1 (CSF-1)-secreting breast carcinoma cells promotes invasion and metastasis. Here, we show that mice deficient in the hematopoietic-cell-specific Wiskott-Aldrich syndrome protein (WASp) are unable to support TAM-dependent carcinoma cell invasion and metastasis in both orthotopic and transgenic models of mammary tumorigenesis. Motility and invasion defects of tumor cells were recapitulated ex vivo upon coculture with WASp(-/-) macrophages. Mechanistically, WASp is required for macrophages to migrate toward CSF-1-producing carcinoma cells, as well as for the release of EGF through metalloprotease-dependent shedding of EGF from the cell surface of macrophages. Our findings suggest that WASp acts to support both the migration of TAMs and the production of EGF, which in concert promote breast tumor metastasis.
Collapse
|
121
|
Tyrosine kinase inhibitors (TKIs) in human and pet tumours with special reference to breast cancer: a comparative review. Crit Rev Oncol Hematol 2013; 88:293-308. [PMID: 23768779 DOI: 10.1016/j.critrevonc.2013.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/27/2013] [Accepted: 05/17/2013] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinase receptors (TKRs) play a key role in tumour cell proliferation and survival since they are involved in endothelial cell activation leading to tumour neoangiogenesis. In particular, vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptor (PDGFR), stem cell factor receptor (c-KitR), and colony-stimulating factor 1 (CSF-1) are overexpressed or constitutively activated in human and pet malignancies. A variety of small molecule inhibitors targeting specific tyrosine kinases (known as tyrosine kinase inhibitors or TKIs) have recently been approved, or are under investigation, for the treatment of human cancer. TKI application in animal cancer is however relatively recent. This review aims to illustrate the major aspects of tyrosine kinase dysfunctions, with special regard to human and animal cancer of the mammary gland, providing an update on the background of the anti-angiogenic and anti-neoplastic properties of TKIs in human and veterinary cancer.
Collapse
|
122
|
Shapira I, Lee A, Vora R, Budman DR. P53 mutations in triple negative breast cancer upregulate endosomal recycling of epidermal growth factor receptor (EGFR) increasing its oncogenic potency. Crit Rev Oncol Hematol 2013; 88:284-92. [PMID: 23755891 DOI: 10.1016/j.critrevonc.2013.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 04/03/2013] [Accepted: 05/02/2013] [Indexed: 01/03/2023] Open
Abstract
There is no available targeted therapy for triple-negative or its more aggressive subtype, basal-like breast cancer. Multiple therapeutic strategies based on translational knowledge have not improved the treatment options for triple negative patients. As understanding of molecular pathways that drive tumor development is rapidly increasing, it is imperative to adapt our treatment strategies to perturbations in molecular pathways driving the malignant process. Basal-like breast cancers over-express EGFR (without mutations or EGFR gene amplifications) and have p53 mutations. While EGFR drives the malignant behavior in triple negative breast cancer (TNBC), anti-EGFR therapies have fallen short of the expected results in clinical trials. Here we bring evidence that the less than optimal results of the anti-EGFR therapies may be explained in part by the increased potency of the EGFR signaling due to increased endosomal recycling. The functional connection between EGFR and endosomal trafficking in TNBC is mutant p53 found in the most aggressive forms of TNBC. Mutant p53 acquires oncogenic functions and binds p63 protein, a member of p53 family with tumor suppressor activities. In the absence of functional p63 there is an upregulation of endosomal recycling EGFR and integrin to the membrane with increased proinvasive abilities of cancer cells. Blocking endosomal trafficking combined with anti-EGFR treatments may result in better clinical outcomes in TNBC.
Collapse
Affiliation(s)
- Iuliana Shapira
- Monter Cancer Center, Don Monti Division of Oncology, Division of Hematology, Hofstra North Shore Long Island Jewish School of Medicine, United States.
| | | | | | | |
Collapse
|
123
|
Macrophages stimulate gastric and colorectal cancer invasion through EGFR Y(1086), c-Src, Erk1/2 and Akt phosphorylation and smallGTPase activity. Oncogene 2013; 33:2123-33. [PMID: 23644655 DOI: 10.1038/onc.2013.154] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/19/2022]
Abstract
The interactions between cancer cells and their microenvironment are crucial for malignant progression, as they modulate invasion-related activities. Tumor-associated macrophages are generally considered allies in the process of tumor progression in several types of cancer, although their role on gastric and colorectal carcinomas is still poorly understood. In this report, we studied the influence of primary human macrophages on gastric and colorectal cancer cells, considering invasion, motility/migration, proteolysis and activated intracellular signaling pathways. We demonstrated that macrophages stimulate cancer cell invasion, motility and migration, and that these effects depend on matrix metalloproteinase (MMP) activity and on the activation of epidermal growth factor receptor (EGFR) (at the residue Y(1086)), PLC-γ (phospholipase C-gamma) and Gab1 (GRB2-associated binding protein-1), as evidenced by siRNA (small interference RNA) experiments. Epidermal growth factor (EGF)-immunodepletion impaired macrophage-mediated cancer cell invasion and motility, suggesting that EGF is the pro-invasive and pro-motile factor produced by macrophages. Macrophages also induced gastric and colorectal cancer cell phosphorylation of Akt, c-Src and ERK1/2, and led to an increase of RhoA and Cdc42 activity. Interestingly, whereas macrophage-mediated cancer cell c-Src and ERK1/2 phosphorylation occurred downstream EGFR activation, Akt phosphorylation seems to be a parallel event, taking place in an EGFR-independent manner. The involvement of EGF, EGFR-downstream signaling partners and MMPs in macrophage-mediated invasion provides novel insights into the molecular crosstalk established between cancer cells and macrophages, opening new perspectives for the design of new and more efficient therapeutic strategies to counteract cancer cell invasion.
Collapse
|
124
|
CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells. BMC Vet Res 2013; 9:65. [PMID: 23561040 PMCID: PMC3639202 DOI: 10.1186/1746-6148-9-65] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/31/2013] [Indexed: 11/10/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach.
Collapse
|
125
|
Beaty BT, Sharma VP, Bravo-Cordero JJ, Simpson MA, Eddy RJ, Koleske AJ, Condeelis J. β1 integrin regulates Arg to promote invadopodial maturation and matrix degradation. Mol Biol Cell 2013; 24:1661-75, S1-11. [PMID: 23552693 PMCID: PMC3667720 DOI: 10.1091/mbc.e12-12-0908] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
β1 integrin is a major regulator of invadopodium maturation. Studies reveal that β1 integrin–mediated adhesion is a key upstream switch that induces Arg-dependent cortactin phosphorylation, actin polymerization, and MMP recruitment to invadopodia for extracellular matrix degradation. β1 integrin has been shown to promote metastasis in a number of tumor models, including breast, ovarian, pancreatic, and skin cancer; however, the mechanism by which it does so is poorly understood. Invasive membrane protrusions called invadopodia are believed to facilitate extracellular matrix degradation and intravasation during metastasis. Previous work showed that β1 integrin localizes to invadopodia, but its role in regulating invadopodial function has not been well characterized. We find that β1 integrin is required for the formation of mature, degradation-competent invadopodia in both two- and three-dimensional matrices but is dispensable for invadopodium precursor formation in metastatic human breast cancer cells. β1 integrin is activated during invadopodium precursor maturation, and forced β1 integrin activation enhances the rate of invadopodial matrix proteolysis. Furthermore, β1 integrin interacts with the tyrosine kinase Arg and stimulates Arg-dependent phosphorylation of cortactin on tyrosine 421. Silencing β1 integrin with small interfering RNA completely abrogates Arg-dependent cortactin phosphorylation and cofilin-dependent barbed-end formation at invadopodia, leading to a significant decrease in the number and stability of mature invadopodia. These results describe a fundamental role for β1 integrin in controlling actin polymerization–dependent invadopodial maturation and matrix degradation in metastatic tumor cells.
Collapse
Affiliation(s)
- Brian T Beaty
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, New York, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
126
|
Chimal-Ramírez GK, Espinoza-Sánchez NA, Fuentes-Pananá EM. Protumor activities of the immune response: insights in the mechanisms of immunological shift, oncotraining, and oncopromotion. JOURNAL OF ONCOLOGY 2013; 2013:835956. [PMID: 23577028 PMCID: PMC3612474 DOI: 10.1155/2013/835956] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/25/2013] [Indexed: 12/15/2022]
Abstract
Experimental and clinical studies indicate that cells of the innate and adaptive immune system have both anti- and pro-tumor activities. This dual role of the immune system has led to a conceptual shift in the role of the immune system's regulation of cancer, in which immune-tumor cell interactions are understood as a dynamic process that comprises at least five phases: immunosurveillance, immunoselection, immunoescape, oncotraining, and oncopromotion. The tumor microenvironment shifts immune cells to perform functions more in tune with the tumor needs (oncotraining); these functions are related to chronic inflammation and tissue remodeling activities. Among them are increased proliferation and survival, increased angiogenesis and vessel permeability, protease secretion, acquisition of migratory mesenchymal characteristics, and self-renewal properties that altogether promote tumor growth and metastasis (oncopromotion). Important populations in all these pro-tumor processes are M2 macrophages, N2 neutrophils, regulatory T cells, and myeloid derived suppressor cells; the main effectors molecules are CSF-1, IL-6, metalloproteases, VEGF, PGE-2, TGF- β , and IL-10. Cancer prognosis correlates with densities and concentrations of protumoral populations and molecules, providing ideal targets for the intelligent design of directed preventive or anticancer therapies.
Collapse
Affiliation(s)
- G. K. Chimal-Ramírez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias (UIMEIP), Hospital de Pediatría Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Colonia Doctores, 06725 Delegación Cuauhtémoc, DF, Mexico
- Programa de Doctorado en Ciencias Quimicobiológicas del Instituto Politécnico Nacional (IPN), Mexico
| | - N. A. Espinoza-Sánchez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias (UIMEIP), Hospital de Pediatría Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Colonia Doctores, 06725 Delegación Cuauhtémoc, DF, Mexico
- Programa de Doctorado en Ciencias Biomédicas de la Universidad Autónoma de México (UNAM), Mexico
| | - E. M. Fuentes-Pananá
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias (UIMEIP), Hospital de Pediatría Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Colonia Doctores, 06725 Delegación Cuauhtémoc, DF, Mexico
| |
Collapse
|
127
|
Curran CS, Keely PJ. Breast tumor and stromal cell responses to TGF-β and hypoxia in matrix deposition. Matrix Biol 2012; 32:95-105. [PMID: 23262216 DOI: 10.1016/j.matbio.2012.11.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/06/2012] [Accepted: 11/06/2012] [Indexed: 02/07/2023]
Abstract
The components that comprise the extracellular matrix (ECM) are integral to normal tissue homeostasis as well as the development and progression of breast tumors. The secretion, construction, and remodeling of the ECM are each regulated by a complex interplay between tumor cells, fibroblasts and macrophages. Transforming growth factor-β (TGF-β) is an essential molecule in regulating the cellular production of ECM molecules and the adhesive interactions of cells with the ECM. Additionally, hypoxic cell signals, initiated by oxygen deprivation, additional metabolic factors or receptor activation, are associated with ECM formation and the progression of breast cancer. Both TGF-β and hypoxic cell signals are implicated in the functional and morphological changes of cancer-associated-fibroblasts and tumor-associated-macrophages. Moreover, the enhanced recruitment of tumor and stromal cells in response to hypoxia-induced chemokines leads to increased ECM deposition and remodeling, increased blood vessel formation, and enhanced tumor migration. Thus, elucidation of the collaborative networks between tumor and stromal cells in response to the combined signals of TGF-β and hypoxia may yield insight into treatment parameters that target both tumor and stromal cells.
Collapse
Affiliation(s)
- Colleen S Curran
- Laboratory of Cell and Molecular Biology, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States.
| | | |
Collapse
|
128
|
Dovas A, Patsialou A, Harney AS, Condeelis J, Cox D. Imaging interactions between macrophages and tumour cells that are involved in metastasis in vivo and in vitro. J Microsc 2012. [PMID: 23198984 DOI: 10.1111/j.1365-2818.2012.03667.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumour-associated macrophages participate in several protumour functions including tumour growth and angiogenesis, and facilitate almost every step of the metastatic cascade. Interfering with macrophage functions may therefore provide an important strategy in the clinical management of cancer and metastatic disease. Our understanding of macrophage functions has been greatly expanded by direct observations of macrophage-carcinoma cell interactions using light microscopy. Imaging approaches include intravital microscopy of tumours in mouse models of cancer and visualization of macrophage-carcinoma cell interactions in in vitro assays; whether atop 2D substrates, embedded in 3D matrices or in more complex assemblies of multiple cell types that mimic specific topologies of the tumour microenvironment. Such imaging and reconstitution approaches have provided us with a wealth of information on the motile behaviour and physical associations between macrophages and carcinoma cells and the role of the tumour microenvironment in influencing the movement of these cells. Finally, high-resolution imaging techniques have permitted researchers to correlate motility patterns with specific gene signatures and biochemical pathways in cells, pointing to potential targets for intervention. Here, we review experimental approaches employed in the study of macrophage interactions with carcinoma cells with an emphasis on imaging invasive and metastatic cell motility in breast carcinomas.
Collapse
Affiliation(s)
- A Dovas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
129
|
Wicha MS. Migratory gene expression signature predicts poor patient outcome: are cancer stem cells to blame? Breast Cancer Res 2012; 14:114. [PMID: 23153392 PMCID: PMC4053126 DOI: 10.1186/bcr3338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Breast cancer metastasis accounts for the majority of deaths from this disease. In the previous issue of Breast Cancer Research, Patsialou and colleagues used a novel in vivo invasion assay to capture migrating breast cancer cells and demonstrate that the gene expression signature of these cells predicts breast cancer metastasis in a large cohort of patients. Furthermore, specific genes identified play a functional role in the invasion of MDA-MB-231 breast cancer cells and in patient-derived breast tumors. These genes regulate pathways known to be induced in invasion and metastases and play an important role in the regulation of cancer stem cells.
Collapse
|
130
|
Patsialou A, Wang Y, Lin J, Whitney K, Goswami S, Kenny PA, Condeelis JS. Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients. Breast Cancer Res 2012; 14:R139. [PMID: 23113900 PMCID: PMC4053118 DOI: 10.1186/bcr3344] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 10/11/2012] [Indexed: 02/07/2023] Open
Abstract
Introduction Metastasis of breast cancer is the main cause of death in patients. Previous genome-wide studies have identified gene-expression patterns correlated with cancer patient outcome. However, these were derived mostly from whole tissue without respect to cell heterogeneity. In reality, only a small subpopulation of invasive cells inside the primary tumor is responsible for escaping and initiating dissemination and metastasis. When whole tissue is used for molecular profiling, the expression pattern of these cells is masked by the majority of the noninvasive tumor cells. Therefore, little information is available about the crucial early steps of the metastatic cascade: migration, invasion, and entry of tumor cells into the systemic circulation. Methods In the past, we developed an in vivo invasion assay that can capture specifically the highly motile tumor cells in the act of migrating inside living tumors. Here, we used this assay in orthotopic xenografts of human MDA-MB-231 breast cancer cells to isolate selectively the migratory cell subpopulation of the primary tumor for gene-expression profiling. In this way, we derived a gene signature specific to breast cancer migration and invasion, which we call the Human Invasion Signature (HIS). Results Unsupervised analysis of the HIS shows that the most significant upregulated gene networks in the migratory breast tumor cells include genes regulating embryonic and tissue development, cellular movement, and DNA replication and repair. We confirmed that genes involved in these functions are upregulated in the migratory tumor cells with independent biological repeats. We also demonstrate that specific genes are functionally required for in vivo invasion and hematogenous dissemination in MDA-MB-231, as well as in patient-derived breast tumors. Finally, we used statistical analysis to show that the signature can significantly predict risk of breast cancer metastasis in large patient cohorts, independent of well-established prognostic parameters. Conclusions Our data provide novel insights into, and reveal previously unknown mediators of, the metastatic steps of invasion and dissemination in human breast tumors in vivo. Because migration and invasion are the early steps of metastatic progression, the novel markers that we identified here might become valuable prognostic tools or therapeutic targets in breast cancer.
Collapse
|
131
|
Tran K, Risingsong R, Royce DB, Williams CR, Sporn MB, Pioli PA, Gediya LK, Njar VC, Liby KT. The combination of the histone deacetylase inhibitor vorinostat and synthetic triterpenoids reduces tumorigenesis in mouse models of cancer. Carcinogenesis 2012; 34:199-210. [PMID: 23042302 DOI: 10.1093/carcin/bgs319] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Novel drugs and drug combinations are needed for the chemoprevention and treatment of cancer. We show that the histone deacetylase inhibitor vorinostat [suberoylanilide hydroxamic acid (SAHA)] and the methyl ester or ethyl amide derivatives of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-Me and CDDO-Ea, respectively) cooperated to inhibit the de novo synthesis of nitric oxide in RAW 264.7 macrophage-like cells and in primary mouse peritoneal macrophages. Additionally, SAHA enhanced the ability of synthetic triterpenoids to delay formation of estrogen receptor-negative mammary tumors in MMTV-polyoma middle T (PyMT) mice. CDDO-Me (50 mg/kg diet) and SAHA (250 mg/kg diet) each significantly delayed the initial development of tumors by 4 (P < 0.001) and 2 (P < 0.05) weeks, respectively, compared with the control group in the time required to reach 50% tumor incidence. CDDO-Ea (400 mg/kg diet), as a single agent, did not delay tumor development. The combination of either triterpenoid with SAHA was significantly more potent than the individual drugs for delaying tumor development, with a 7 week (P < 0.001) delay before 50% tumor incidence was reached. SAHA, alone and in combination with CDDO-Me, also significantly (P < 0.05) inhibited the infiltration of tumor-associated macrophages into the mammary glands of PyMT mice and levels of the chemokine macrophage colony-stimulating factor in primary PyMT tumor cells. In addition, SAHA and the synthetic triterpenoids cooperated to suppress secreted levels of the pro-angiogenic factor matrix metalloproteinase-9. Similar results were observed in mouse models of pancreatic and lung cancer. At concentrations that were anti-inflammatory, SAHA had no effect on histone acetylation. These studies suggest that both SAHA and triterpenoids effectively delay tumorigenesis, thereby demonstrating a promising, novel drug combination for chemoprevention.
Collapse
Affiliation(s)
- Kim Tran
- Department of Pharmacology or Medicine, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Smith HO, Stephens ND, Qualls CR, Fligelman T, Wang T, Lin CY, Burton E, Griffith JK, Pollard JW. The clinical significance of inflammatory cytokines in primary cell culture in endometrial carcinoma. Mol Oncol 2012; 7:41-54. [PMID: 22944067 DOI: 10.1016/j.molonc.2012.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 11/28/2022] Open
Abstract
Endometrial cancer is the most common malignancy of the female genital tract, and the incidence and mortality rates from this disease are increasing. Although endometrial carcinoma has been regarded as a tissue-specific disease mediated by female sex steroid pathways, considerable evidence implicates a role for an inflammatory response in the development and propagation of endometrial cancer. We hypothesized that if specific patterns of cytokine expression were found to be predictive of adverse outcome, then selective receptor targeting may be a therapeutic option. This study was therefore undertaken to determine the relationship between cytokine production in primary cell culture and clinical outcome in endometrial adenocarcinoma. Fresh endometrial tissues were fractionated into epithelial and stromal fractions and cultured. After 6-7 days, supernatants were collected and cells enumerated. Batched aliquots were assayed using ELISA kits specific for CSF-1, GMCSF, G-CSF, TNF-α, IL-6, IL-8, and VEGF. Data were compared using ANOVA, Fisher's exact, and log rank tests. Increased epithelial VEGF production was observed more often in tumors with Type 2 variants (p = 0.039) and when GPR30 receptor expression was high (p = 0.038). Although increased stromal VEGF production was detected more often in grade 3 endometrioid tumors (p = 0.050), when EGFR expression was high (p = 0.003), and/or when ER/PR expression was low (p = 0.048), VEGF production did not correlated with overall survival (OS). Increased epithelial CSF-1 and TNF-α production, respectively, were observed more often in tumors with deep myometrial invasion (p = 0.014) and advanced stage (p = 0.018). Increased CSF-1 (89.5% vs. 42.9%, p = 0.032), TNF-α (88.9% vs. 42.9%, p = 0.032, and IL-6 (92.3% vs. 61.5%, p = 0.052) also correlated with low OS. In Cox multivariate models, CSF-1 was an independent predictor of low survival when stratified by grade (p = 0.046) and histology (p = 0.050), and TNF-α, when stratified by histology (p = 0.037). In this study, high CSF-1, TNF-α, and IL-6 production rates identified patients at greatest risk for death, and may signify patients likely to benefit from receptor-specific therapy.
Collapse
Affiliation(s)
- Harriet O Smith
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Montefiore Medical Center, 3332 Rochambeau Avenue, Bronx, NY 10467, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 2012; 109:13515-20. [PMID: 22869695 DOI: 10.1073/pnas.1210182109] [Citation(s) in RCA: 626] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Entry of tumor cells into the blood stream is a critical step in cancer metastasis. Although significant progress has been made in visualizing tumor cell motility in vivo, the underlying mechanism of cancer cell intravasation remains largely unknown. We developed a microfluidic-based assay to recreate the tumor-vascular interface in three-dimensions, allowing for high resolution, real-time imaging, and precise quantification of endothelial barrier function. Studies are aimed at testing the hypothesis that carcinoma cell intravasation is regulated by biochemical factors from the interacting cells and cellular interactions with macrophages. We developed a method to measure spatially resolved endothelial permeability and show that signaling with macrophages via secretion of tumor necrosis factor alpha results in endothelial barrier impairment. Under these conditions intravasation rates were increased as validated with live imaging. To further investigate tumor-endothelial (TC-EC) signaling, we used highly invasive fibrosarcoma cells and quantified tumor cell migration dynamics and TC-EC interactions under control and perturbed (with tumor necrosis factor alpha) barrier conditions. We found that endothelial barrier impairment was associated with a higher number and faster dynamics of TC-EC interactions, in agreement with our carcinoma intravasation results. Taken together our results provide evidence that the endothelium poses a barrier to tumor cell intravasation that can be regulated by factors present in the tumor microenvironment.
Collapse
|
134
|
Gil-Henn H, Patsialou A, Wang Y, Warren MS, Condeelis JS, Koleske AJ. Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo. Oncogene 2012; 32:2622-30. [PMID: 22777352 PMCID: PMC3473103 DOI: 10.1038/onc.2012.284] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor progression is a complex, multistep process involving accumulation of genetic aberrations and alterations in gene-expression patterns leading to uncontrolled cell division, invasion into surrounding tissue and finally dissemination and metastasis. We have previously shown that the Arg/Abl2 non-receptor tyrosine kinase acts downstream of the EGF receptor and Src tyrosine kinases to promote invadopodium function in breast cancer cells, thereby promoting their invasiveness. However, whether and how Arg contributes to tumor development and dissemination in vivo has never been investigated. Using a mouse xenograft model, we show that knocking down Arg in breast cancer cells leads to increased tumor cell proliferation and significantly enlarged tumor size. Despite having larger tumors, the Arg knockdown tumor-bearing mice exhibit significant reductions in tumor cell invasion, intravasation into blood vessels, and spontaneous metastasis to lungs. Interestingly, we found that proliferation-associated genes in the Ras-MAPK pathway are upregulated in Arg-knockdown breast cancer cells, as is Ras-MAPK signaling, while invasion-associated genes are significantly downregulated. These data suggest that Arg promotes tumor cell invasion and dissemination, while simultaneously inhibiting tumor growth. We propose that Arg acts as a switch in metastatic cancer cells that governs the decision to “grow or go” (divide or invade).
Collapse
Affiliation(s)
- H Gil-Henn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
135
|
Labovsky V, Vallone VBF, Martinez LM, Otaegui J, Chasseing NA. Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines. Cancer Cell Int 2012; 12:29. [PMID: 22709548 PMCID: PMC3478192 DOI: 10.1186/1475-2867-12-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/18/2012] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND While breast cancer (BC) is the major cause of death among women worldwide, there is no guarantee of better patient survival because many of these patients develop primarily metastases, despite efforts to detect it in its early stages. Bone metastasis is a common complication that occurs in 65-80 % of patients with disseminated disease, but the molecular basis underlying dormancy, dissemination and establishment of metastasis is not understood. Our objective has been to evaluate simultaneously osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), stromal cell-derived factor-1 (SDF-1), and their receptors (R) in 2 human BC cell lines, MDA-MB-231 and MCF-7. METHODS OPG, RANKL, TRAIL and SDF-1 expression and release, in addition to the expression of their receptors has been investigated using immunofluorescence, immunocytochemistry and ELISA analyses. RESULTS MCF-7 cells released higher levels of OPG in conditioned media (CM) than MDA-MB-231 cells; 100 % of both types of cell expressed OPG, RANKL, TRAIL and SDF-1. Moreover, 100 % in both lines expressed membrane RANKL and RANK, whereas only 50 % expressed CXCR4. Furthermore, 100 % expressed TRAIL-R1 and R4, 30-50 % TRAIL-R2, and 40-55 % TRAIL-R3. CONCLUSIONS MCF-7 and MDA-MB-231 cells not only released OPG, but expressed RANKL, TRAIL and SDF-1. The majority of the cells also expressed RANK, CXCR4 and TRAIL-R. Since these ligands and their receptors are implicated in the regulation of proliferation, survival, migration and future bone metastasis during breast tumor progression, assessment of these molecules in tumor biopsies of BC patients could be useful in identifying patients with more aggressive tumors that are also at risk of bone metastasis, which may thus improve the available options for therapeutic intervention.
Collapse
Affiliation(s)
- Vivian Labovsky
- Laboratorio de Inmuno-Hematología, Instituto de Biología y Medicina Experimental (IBYME), Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
136
|
At the crossroads: EGFR and PTHrP signaling in cancer-mediated diseases of bone. Odontology 2012; 100:109-29. [PMID: 22684584 DOI: 10.1007/s10266-012-0070-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
Abstract
The epidermal growth factor receptor is a well-established cancer therapeutic target due to its stimulation of proliferation, motility, and resistance to apoptosis. Recently, additional roles for the receptor have been identified in growth of metastases. Similar to development, metastatic spread requires signaling interactions between epithelial-derived tumor cells and mesenchymal derivatives of the microenvironment. This necessitates reactivation of developmental signaling molecules, including the hypercalcemia factor parathyroid hormone-related protein. This review covers the variations of epidermal growth factor receptor signaling in cancers that produce bone metastases, regulation of parathyroid hormone-related protein, and evidence that the two molecules drive cancer-mediated diseases of bone.
Collapse
|
137
|
Mukhtar RA, Moore AP, Tandon VJ, Nseyo O, Twomey P, Adisa CA, Eleweke N, Au A, Baehner FL, Moore DH, McGrath MS, Olopade OI, Gray JW, Campbell MJ, Esserman LJ. Elevated levels of proliferating and recently migrated tumor-associated macrophages confer increased aggressiveness and worse outcomes in breast cancer. Ann Surg Oncol 2012; 19:3979-86. [PMID: 22622474 DOI: 10.1245/s10434-012-2415-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Indexed: 12/22/2022]
Abstract
PURPOSE Macrophages play a major role in inflammatory processes and have been associated with poor prognosis in a variety of cancers, including breast cancer. Previously, we investigated the relationship of a subset of tumor-associated macrophages (PCNA(+) TAMs) with clinicopathologic characteristics of breast cancer. We reported that high PCNA(+) TAM counts were associated with hormone receptor (HR)-negative, high-grade tumors and early recurrence. To further understand the significance of elevated PCNA(+) TAMs and the functionality of TAMs, we examined the expression of S100A8/S100A9 with the antibody Mac387. The heterodimeric S100A8/S100A9 complex plays a role in inflammation and is increased in several cancer types. METHODS We performed immunohistochemistry using the Mac387 antibody on 367 invasive human breast cancer cases. Results were compared to previous PCNA(+) TAM counts and were correlated with patient outcomes adjusting for HR status and histologic grade. RESULTS Like PCNA(+) TAMs, high Mac387 counts were associated with HR negativity, high tumor grade, younger age, and decreased recurrence-free survival. Mac387, however, appears to identify both a subset of macrophages and a subset of tumor cells. The concordance between Mac387 and PCNA(+) TAM counts was low and cases that had both high Mac387 and high PCNA(+) TAMs counts had a stronger association with early recurrence. CONCLUSIONS The presence of high numbers of PCNA(+) TAMs and Mac387-positive cells in breast cancers with poor outcomes may implicate a subset of TAMs in breast cancer pathogenesis, and may ultimately serve to develop potential cellular targets for therapeutic interventions.
Collapse
Affiliation(s)
- Rita A Mukhtar
- Department of Surgery, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Raposo T, Gregório H, Pires I, Prada J, Queiroga FL. Prognostic value of tumour-associated macrophages in canine mammary tumours. Vet Comp Oncol 2012; 12:10-9. [PMID: 22533625 DOI: 10.1111/j.1476-5829.2012.00326.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 02/10/2012] [Indexed: 01/31/2023]
Abstract
Tumour-associated macrophages (TAMs) have already been associated in human breast cancer to a poor prognosis. As a part of a tumoural microenvironment, TAMs have an important contribution influencing neoplastic progression. Hitherto, in canine mammary tumours (CMT) the prognostic value of TAMs has not been reported. In this study, MAC387 immunohistochemical expression was evaluated in 59 CMTs (20 benign and 39 malignant). The TAM value was significantly higher in malignant than benign CMT (P = 0.011). In malignant CMT, TAMs were associated with skin ulceration (P = 0.022), histological type (P = 0.044), nuclear grade (P = 0.031) and tubular differentiation (P = 0.042). The survival analysis revealed a significant association between tumours with higher levels of TAMs and the decrease in overall survival (P = 0.030). TAMs have proven to have a prognostic value. These findings suggest the future possibility of using TAMs as a novel therapeutic target in CMT.
Collapse
Affiliation(s)
- T Raposo
- Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | | | | | | | | |
Collapse
|
139
|
Mouchemore KA, Pixley FJ. CSF-1 signaling in macrophages: pleiotrophy through phosphotyrosine-based signaling pathways. Crit Rev Clin Lab Sci 2012; 49:49-61. [DOI: 10.3109/10408363.2012.666845] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
140
|
Hughes-Alford SK, Lauffenburger DA. Quantitative analysis of gradient sensing: towards building predictive models of chemotaxis in cancer. Curr Opin Cell Biol 2012; 24:284-91. [PMID: 22284347 DOI: 10.1016/j.ceb.2012.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/16/2011] [Accepted: 01/03/2012] [Indexed: 11/17/2022]
Abstract
Chemotaxis of tumor cells in response to a gradient of extracellular ligand is an important step in cancer metastasis. The heterogeneity of chemotactic responses in cancer has not been widely addressed by experimental or mathematical modeling techniques. However, recent advancements in chemoattractant presentation, fluorescent-based signaling probes, and phenotypic analysis paradigms provide rich sources for building data-driven relational models that describe tumor cell chemotaxis in response to a wide variety of stimuli. Here we present gradient sensing, and the resulting chemotactic behavior, in a 'cue-signal-response' framework and suggest methods for utilizing recently reported experimental methods in data-driven modeling ventures.
Collapse
Affiliation(s)
- Shannon K Hughes-Alford
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | |
Collapse
|
141
|
Morandi A, Barbetti V, Riverso M, Dello Sbarba P, Rovida E. The colony-stimulating factor-1 (CSF-1) receptor sustains ERK1/2 activation and proliferation in breast cancer cell lines. PLoS One 2011; 6:e27450. [PMID: 22096574 PMCID: PMC3212567 DOI: 10.1371/journal.pone.0027450] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 10/17/2011] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the second leading cause of cancer-related deaths in western countries. Colony-Stimulating Factor-1 (CSF-1) and its receptor (CSF-1R) regulate macrophage and osteoclast production, trophoblast implantation and mammary gland development. The expression of CSF-1R and/or CSF-1 strongly correlates with poor prognosis in several human epithelial tumors, including breast carcinomas. We demonstrate that CSF-1 and CSF-1R are expressed, although at different levels, in 16/17 breast cancer cell lines tested with no differences among molecular subtypes. The role of CSF-1/CSF-1R in the proliferation of breast cancer cells was then studied in MDAMB468 and SKBR3 cells belonging to different subtypes. CSF-1 administration induced ERK1/2 phosphorylation and enhanced cell proliferation in both cell lines. Furthermore, the inhibition of CSF-1/CSF-1R signaling, by CSF-1R siRNA or imatinib treatment, impaired CSF-1 induced ERK1/2 activation and cell proliferation. We also demonstrate that c-Jun, cyclin D1 and c-Myc, known for their involvement in cell proliferation, are downstream CSF-1R in breast cancer cells. The presence of a proliferative CSF-1/CSF-1R autocrine loop involving ERK1/2 was also found. The wide expression of the CSF-1/CSF-1R pair across breast cancer cell subtypes supports CSF-1/CSF-1R targeting in breast cancer therapy.
Collapse
Affiliation(s)
- Andrea Morandi
- Dipartimento di Patologia e Oncologia Sperimentali, Università degli Studi di Firenze, and Istituto Toscano Tumori, Firenze, Italy
| | - Valentina Barbetti
- Dipartimento di Patologia e Oncologia Sperimentali, Università degli Studi di Firenze, and Istituto Toscano Tumori, Firenze, Italy
| | - Maria Riverso
- Dipartimento di Patologia e Oncologia Sperimentali, Università degli Studi di Firenze, and Istituto Toscano Tumori, Firenze, Italy
| | - Persio Dello Sbarba
- Dipartimento di Patologia e Oncologia Sperimentali, Università degli Studi di Firenze, and Istituto Toscano Tumori, Firenze, Italy
- * E-mail: (PDS); (ER)
| | - Elisabetta Rovida
- Dipartimento di Patologia e Oncologia Sperimentali, Università degli Studi di Firenze, and Istituto Toscano Tumori, Firenze, Italy
- * E-mail: (PDS); (ER)
| |
Collapse
|
142
|
Bioengineering embryonic stem cell microenvironments for the study of breast cancer. Int J Mol Sci 2011; 12:7662-91. [PMID: 22174624 PMCID: PMC3233430 DOI: 10.3390/ijms12117662] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most prevalent disease amongst women worldwide and metastasis is the main cause of death due to breast cancer. Metastatic breast cancer cells and embryonic stem (ES) cells display similar characteristics. However, unlike metastatic breast cancer cells, ES cells are nonmalignant. Furthermore, embryonic microenvironments have the potential to convert metastatic breast cancer cells into a less invasive phenotype. The creation of in vitro embryonic microenvironments will enable better understanding of ES cell-breast cancer cell interactions, help elucidate tumorigenesis, and lead to the restriction of breast cancer metastasis. In this article, we will present the characteristics of breast cancer cells and ES cells as well as their microenvironments, importance of embryonic microenvironments in inhibiting tumorigenesis, convergence of tumorigenic and embryonic signaling pathways, and state of the art in bioengineering embryonic microenvironments for breast cancer research. Additionally, the potential application of bioengineered embryonic microenvironments for the prevention and treatment of invasive breast cancer will be discussed.
Collapse
|
143
|
Menke J, Kriegsmann J, Schimanski CC, Schwartz MM, Schwarting A, Kelley VR. Autocrine CSF-1 and CSF-1 receptor coexpression promotes renal cell carcinoma growth. Cancer Res 2011; 72:187-200. [PMID: 22052465 DOI: 10.1158/0008-5472.can-11-1232] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Renal cell carcinoma is increasing in incidence but the molecular mechanisms regulating its growth remain elusive. Coexpression of the monocytic growth factor colony-stimulating factor (CSF)-1 and its receptor CSF-1R on renal tubular epithelial cells (TEC) will promote proliferation and antiapoptosis during regeneration of renal tubules. Here, we show that a CSF-1-dependent autocrine pathway is also responsible for the growth of renal cell carcinoma (RCC). CSF-1 and CSF-1R were coexpressed in RCCs and TECs proximally adjacent to RCCs. CSF-1 engagement of CSF-1R promoted RCC survival and proliferation and reduced apoptosis, in support of the likelihood that CSF-1R effector signals mediate RCC growth. In vivo CSF-1R blockade using a CSF-1R tyrosine kinase inhibitor decreased RCC proliferation and macrophage infiltration in a manner associated with a dramatic reduction in tumor mass. Further mechanistic investigations linked CSF-1 and epidermal growth factor signaling in RCCs. Taken together, our results suggest that budding RCC stimulates the proximal adjacent microenvironment in the kidney to release mediators of CSF-1, CSF-1R, and epidermal growth factor expression in RCCs. Furthermore, our findings imply that targeting CSF-1/CSF-1R signaling may be therapeutically effective in RCCs.
Collapse
Affiliation(s)
- Julia Menke
- Laboratory of Molecular Autoimmune Disease, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
144
|
Goulet B, Chan G, Chambers AF, Lewis JD. An emerging role for the nuclear localization of maspin in the suppression of tumor progression and metastasis. Biochem Cell Biol 2011; 90:22-38. [PMID: 22047058 DOI: 10.1139/o11-053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Maspin, a member of the serpin family of serine protease inhibitors, was originally identified as a tumor suppressor that is expressed in normal mammary epithelial cells but is reduced or absent in breast carcinomas. Early enthusiasm for maspin as a biomarker for disease progression has been tempered by clinical data that associates maspin with favourable outcomes in some studies and poor prognosis in others. Here, we review all of the published clinical studies for maspin in breast and ovarian cancers and propose that the apparent discordance between clinical reports is a consequence of differential cellular distribution of maspin. Indeed, it was thought that an extracellular pool of maspin possessed tumor suppressor activity, acting by inhibiting migration and increasing cell adhesion. Recent evidence from our group and others indicates, however, that the nuclear localization of maspin in cancer cells is necessary for its tumor suppressor activity. We provide additional data here to demonstrate that nuclear-localized maspin binds to chromatin and is required to effectively prevent cells from metastasizing. Our knowledge of other serpins that localize to the nucleus should help to inform future studies of nuclear maspin. Elucidation of the molecular mechanisms regulating the localization and activities of maspin should pave the way for the development of improved diagnostics and therapies for cancer.
Collapse
Affiliation(s)
- Brigitte Goulet
- London Regional Cancer Program, Translational Prostate Cancer Research Group, London, ON N6A 4L6, Canada
| | | | | | | |
Collapse
|
145
|
Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 2011. [PMID: 22039576 DOI: 10.1158/2159-8274.cd-10-0028.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Immune-regulated pathways influence multiple aspects of cancer development. In this article we demonstrate that both macrophage abundance and T-cell abundance in breast cancer represent prognostic indicators for recurrence-free and overall survival. We provide evidence that response to chemotherapy is in part regulated by these leukocytes; cytotoxic therapies induce mammary epithelial cells to produce monocyte/macrophage recruitment factors, including colony stimulating factor 1 (CSF1) and interleukin-34, which together enhance CSF1 receptor (CSF1R)-dependent macrophage infiltration. Blockade of macrophage recruitment with CSF1R-signaling antagonists, in combination with paclitaxel, improved survival of mammary tumor-bearing mice by slowing primary tumor development and reducing pulmonary metastasis. These improved aspects of mammary carcinogenesis were accompanied by decreased vessel density and appearance of antitumor immune programs fostering tumor suppression in a CD8+ T-cell-dependent manner. These data provide a rationale for targeting macrophage recruitment/response pathways, notably CSF1R, in combination with cytotoxic therapy, and identification of a breast cancer population likely to benefit from this novel therapeutic approach. SIGNIFICANCE These findings reveal that response to chemotherapy is in part regulated by the tumor immune microenvironment and that common cytotoxic drugs induce neoplastic cells to produce monocyte/macrophage recruitment factors, which in turn enhance macrophage infiltration into mammary adenocarcinomas. Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8+ T-cell-dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy.
Collapse
|
146
|
Timpson P, McGhee EJ, Erami Z, Nobis M, Quinn JA, Edward M, Anderson KI. Organotypic collagen I assay: a malleable platform to assess cell behaviour in a 3-dimensional context. J Vis Exp 2011:e3089. [PMID: 22025017 PMCID: PMC3227204 DOI: 10.3791/3089] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell migration is fundamental to many aspects of biology, including development, wound healing, the cellular responses of the immune system, and metastasis of tumor cells. Migration has been studied on glass coverslips in order to make cellular dynamics amenable to investigation by light microscopy. However, it has become clear that many aspects of cell migration depend on features of the local environment including its elasticity, protein composition, and pore size, which are not faithfully represented by rigid two dimensional substrates such as glass and plastic 1. Furthermore, interaction with other cell types, including stromal fibroblasts 2 and immune cells 3, has been shown to play a critical role in promoting the invasion of cancer cells. Investigation at the molecular level has increasingly shown that molecular dynamics, including response to drug treatment, of identical cells are significantly different when compared in vitro and in vivo4. Ideally, it would be best to study cell migration in its naturally occurring context in living organisms, however this is not always possible. Intermediate tissue culture systems, such as cell derived matrix, matrigel, organotypic culture (described here) tissue explants, organoids, and xenografts, are therefore important experimental intermediates. These systems approximate certain aspects of an in vivo environment but are more amenable to experimental manipulation such as use of stably transfected cell lines, drug treatment regimes, long term and high-resolution imaging. Such intermediate systems are especially useful as proving grounds to validate probes and establish parameters required to image the dynamic response of cells and fluorescent reporters prior to undertaking imaging in vivo 5. As such, they can serve an important role in reducing the need for experiments on living animals.
Collapse
Affiliation(s)
- Paul Timpson
- The Beatson Institute for Cancer Research, University of Glasgow
| | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Chemotaxis of tumour cells and stromal cells in the surrounding microenvironment is an essential component of tumour dissemination during progression and metastasis. This Review summarizes how chemotaxis directs the different behaviours of tumour cells and stromal cells in vivo, how molecular pathways regulate chemotaxis in tumour cells and how chemotaxis choreographs cell behaviour to shape the tumour microenvironment and to determine metastatic spread. The central importance of chemotaxis in cancer progression is highlighted by discussion of the use of chemotaxis as a prognostic marker, a treatment end point and a target of therapeutic intervention.
Collapse
Affiliation(s)
- Evanthia T Roussos
- Department of Anatomy and Structural Biology, Program in Tumor Microenvironment and Metastasis, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
148
|
Roussos ET, Balsamo M, Alford SK, Wyckoff JB, Gligorijevic B, Wang Y, Pozzuto M, Stobezki R, Goswami S, Segall JE, Lauffenburger DA, Bresnick AR, Gertler FB, Condeelis JS. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J Cell Sci 2011; 124:2120-31. [PMID: 21670198 PMCID: PMC3113666 DOI: 10.1242/jcs.086231] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 12/20/2022] Open
Abstract
We have shown previously that distinct Mena isoforms are expressed in invasive and migratory tumor cells in vivo and that the invasion isoform (Mena(INV)) potentiates carcinoma cell metastasis in murine models of breast cancer. However, the specific step of metastatic progression affected by this isoform and the effects on metastasis of the Mena11a isoform, expressed in primary tumor cells, are largely unknown. Here, we provide evidence that elevated Mena(INV) increases coordinated streaming motility, and enhances transendothelial migration and intravasation of tumor cells. We demonstrate that promotion of these early stages of metastasis by Mena(INV) is dependent on a macrophage-tumor cell paracrine loop. Our studies also show that increased Mena11a expression correlates with decreased expression of colony-stimulating factor 1 and a dramatically decreased ability to participate in paracrine-mediated invasion and intravasation. Our results illustrate the importance of paracrine-mediated cell streaming and intravasation on tumor cell dissemination, and demonstrate that the relative abundance of Mena(INV) and Mena11a helps to regulate these key stages of metastatic progression in breast cancer cells.
Collapse
Affiliation(s)
- Evanthia T. Roussos
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michele Balsamo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shannon K. Alford
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey B. Wyckoff
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bojana Gligorijevic
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Pozzuto
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert Stobezki
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Sumanta Goswami
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | - Jeffrey E. Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Douglas A. Lauffenburger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anne R. Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Frank B. Gertler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John S. Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
149
|
Pro-inflammatory type-1 and anti-inflammatory type-2 macrophages differentially modulate cell survival and invasion of human bladder carcinoma T24 cells. Mol Immunol 2011; 48:1556-67. [DOI: 10.1016/j.molimm.2011.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/20/2022]
|
150
|
Mukhtar RA, Moore AP, Nseyo O, Baehner FL, Au A, Moore DH, Twomey P, Campbell MJ, Esserman LJ. Elevated PCNA+ tumor-associated macrophages in breast cancer are associated with early recurrence and non-Caucasian ethnicity. Breast Cancer Res Treat 2011; 130:635-44. [PMID: 21717106 DOI: 10.1007/s10549-011-1646-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 06/18/2011] [Indexed: 01/24/2023]
Abstract
African American and Hispanic women develop more triple negative breast cancer at younger ages than Caucasian women. The frequently observed association between race and socioeconomic status (SES) has confounded our understanding of the outcomes disparities seen in these groups. Given the association between inflammatory cells and high-grade, triple negative tumors, we sought to investigate whether differences in the presence of these cells varies by race. We evaluated breast tumor specimens for the presence PCNA+ tumor-associated macrophages (TAMs) in consecutive cases from a county hospital serving primarily un- or under-insured patients. All patients in this cohort had elevated PCNA + TAM levels. Higher PCNA + TAM counts were associated with hormone receptor (HR) negative tumors and non-Caucasian ethnicity. Hispanic women specifically had significantly higher PCNA + TAM counts than Caucasian patients and shorter disease-free survival. These findings implicate immune function in the development of aggressive breast cancer and suggest a possible link between SES and the inflammatory response.
Collapse
Affiliation(s)
- Rita A Mukhtar
- University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|