101
|
Stroese AJ, Ullerich H, Koehler G, Raetzel V, Senninger N, Dhayat SA. Circulating microRNA-99 family as liquid biopsy marker in pancreatic adenocarcinoma. J Cancer Res Clin Oncol 2018; 144:2377-2390. [PMID: 30225540 DOI: 10.1007/s00432-018-2749-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Recently, we identified the microRNA-99 family as unfavorable prognostic factor in patients with pancreatic ductal adenocarcinoma (PDAC). The aim of this study is to evaluate its value as circulating biomarker for PDAC. METHODS Tissue and corresponding preoperative blood samples of 181 patients with PDAC UICC Stages I-IV (n = 90), intraductal papillary mucinous neoplasm (IPMN, n = 11), chronic pancreatitis (n = 40), pancreatic cystadenoma (n = 20), and age-matched healthy blood serum controls (n = 20) were collected between 2014 and 2017 prospectively. Expression of microRNA-21 as confirmatory marker and the microRNA-99 family, consisting of microRNA-99a, -99b, and -100, was analyzed by qRT-PCR. Target analysis of insulin-like growth factor 1 receptor (IGF1R) was performed using tissue array immunohistochemistry and Western blotting. RESULTS Expression of microRNA-99 family members was significantly increased in macrodissected tumor tissue and corresponding blood serum samples (p < 0.05) of patients with PDAC of all stages. Correspondingly, its target protein IGF1R was upregulated (p < 0.001) in carcinoma tissue. Circulating and tissue-related microRNA-100 could well discriminate PDAC from healthy samples with area under the receiver operating characteristic (ROC) curve (AUC) values of 0.81 and 0.85, respectively. Low expression of circulating microRNA-100 was associated with significantly improved overall survival (p = 0.004) and recurrence-free survival (p = 0.03) in multivariate analyses. Circulating microRNA-21 was overexpressed in PDAC with fair discrimination between PDAC and healthy controls (AUC = 0.71) and decreased overall survival (p = 0.046) and recurrence-free survival (p = 0.03) in PDAC patients. CONCLUSIONS Multivariate survival and ROC analyses identified circulating microRNA-100 as potential diagnostic and prognostic marker in PDAC patients.
Collapse
Affiliation(s)
- Anda J Stroese
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Münster, Germany
| | - Hansjoerg Ullerich
- Department of Medicine, Gastroenterology, University Hospital Muenster, Albert-Schweitzer-Campus 1 (A14), 48149, Muenster, Germany
| | - Gabriele Koehler
- Department of Pathology, University Hospital Muenster, Albert-Schweitzer-Campus 1 (D17), 48149, Muenster, Germany
| | - Verena Raetzel
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Münster, Germany
| | - Norbert Senninger
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Münster, Germany
| | - Sameer A Dhayat
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149, Münster, Germany.
| |
Collapse
|
102
|
Biersack B. Interplay of non-coding RNAs and approved antimetabolites such as gemcitabine and pemetrexed in mesothelioma. Noncoding RNA Res 2018; 3:213-225. [PMID: 30809600 PMCID: PMC6257890 DOI: 10.1016/j.ncrna.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022] Open
Abstract
Gemcitabine and pemetrexed are clinically approved antimetabolites for the therapy of mesothelioma diseases. These drugs are often applied in combination with platinum complexes and other drugs. The activity of antimetabolites depended on the expression levels of certain non-coding RNAs, in particular, of small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The development of tumor resistance towards antimetabolites was regulated by non-coding RNAs. An overview of the interplay between gemcitabine/pemetrexed antimetabolites and non-coding RNAs in mesothelioma is provided. Further to this, various non-coding RNA-modulating agents are discussed which displayed positive effects on gemcitabine or pemetrexed treatment of mesothelioma diseases. A detailed knowledge of the connections of non-coding RNAs with antimetabolites will be constructive for the design of improved therapies in future.
Collapse
Key Words
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3‘-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- Gemcitabine
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- Pemetrexed
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TSA, trichostatin A
Collapse
|
103
|
Zhao Q, Chen S, Zhu Z, Yu L, Ren Y, Jiang M, Weng J, Li B. miR-21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2. Cell Death Dis 2018; 9:1157. [PMID: 30464258 PMCID: PMC6249286 DOI: 10.1038/s41419-018-1182-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/07/2018] [Accepted: 10/19/2018] [Indexed: 12/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant cancer that lacks effective targets for therapy. Alteration of epidermal growth factor (EGF) expression has been recognized as an essential molecular event in pancreatic carcinogenesis. Accumulating studies have demonstrated that miRNAs play critical roles in EGF signaling regulation, tumor initiation, cell proliferation and apoptosis. Here, we demonstrated that miR-21 expression was induced by EGF in pancreatic cancer cells. miR-21 promoted EGF-induced proliferation, inhibited cell apoptosis and accelerated cell cycle progression. In vivo experiments confirmed the influence of miR-21 on tumor growth. Mechanistic studies revealed that miR-21 targeted MAPK/ERK and PI3K/AKT signaling pathways to modulate cell proliferation. In addition, Spry2 was proven to be a target of miR-21. Furthermore, miR-21 and Spry2 were significantly related to clinical features and may be valuable predictors of PDAC patient prognosis.
Collapse
Affiliation(s)
- Qiuyan Zhao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Sumin Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Zhonglin Zhu
- Department of General Surgery, Henan Provincial People's Hospital, Henan, 450003, China.,Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Lanting Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Yingchun Ren
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Mingjie Jiang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Junyong Weng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China. .,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
104
|
Karasek P, Gablo N, Hlavsa J, Kiss I, Vychytilova-Faltejskova P, Hermanova M, Kala Z, Slaby O, Prochazka V. Pre-operative Plasma miR-21-5p Is a Sensitive Biomarker and Independent Prognostic Factor in Patients with Pancreatic Ductal Adenocarcinoma Undergoing Surgical Resection. Cancer Genomics Proteomics 2018; 15:321-327. [PMID: 29976637 DOI: 10.21873/cgp.20090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Blood plasma microRNAs (miRNAs) are emerging as a clinically useful tool for non-invasive detection and prognosis estimation in various cancer types including pancreatic ductal adenocarcinoma (PDAC). The aim of the present study was to provide an independent validation of circulating miRNAs identified in previous studies as diagnostic and/or prognostic biomarkers in PDAC. Based on the literature search, 6 miRNAs were chosen as candidates for independent validation; miR-21-5p, miR-375, miR-155, miR-17-5p, miR-126-5p and miR-1290. Validation of these miRNAs was performed in a cohort of 25 patients with PDAC undergoing surgical resection and 24 healthy donors. Plasma levels of miRNAs were determined using quantitative real-time PCR. We confirmed significantly higher levels of all tested miRNA in blood plasma of PDAC patients in comparison to healthy controls with miR-21-5p showing the highest analytical performance (p<0.001; AUC>0.99). Increased levels of miR-21-5p (p=0.045) and miR-375 (p=0.013) were significantly associated with overall survival. Multivariate analysis demonstrated that miR-21-5p is a significant unfavorable prognostic factor independent on other clinical variables including adjuvant chemotherapy (hazard ratio 2.95; 95% CI 1.06-8.18; p=0.038). Our preliminary data indicate promising diagnostic and prognostic utility of plasma miR-21-5p in PDAC patients.
Collapse
Affiliation(s)
- Petr Karasek
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Brno, Czech Republic
| | - Natalia Gablo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Hlavsa
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Kiss
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Brno, Czech Republic
| | | | - Marketa Hermanova
- Department of Pathological Anatomy, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Kala
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vladimir Prochazka
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
105
|
Nielsen MFB, Mortensen MB, Detlefsen S. Typing of pancreatic cancer-associated fibroblasts identifies different subpopulations. World J Gastroenterol 2018; 24:4663-4678. [PMID: 30416314 PMCID: PMC6224473 DOI: 10.3748/wjg.v24.i41.4663] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether it is possible to identify different immune phenotypic subpopulations of cancer-associated fibroblasts (CAFs) in pancreatic cancer (PC).
METHODS We defined four different stromal compartments in surgical specimens with PC: The juxtatumoural, peripheral, lobular and septal stroma. Tissue microarrays were produced containing all pre-defined PC compartments, and the expression of 37 fibroblast (FB) and 8 extracellular matrix (ECM) markers was evaluated by immunohistochemistry, immunofluorescence (IF), double-IF, and/or in situ hybridization. The compartment-specific mean labelling score was determined for each marker using a four-tiered scoring system. DOG1 gene expression was examined by quantitative reverse transcription PCR (qPCR).
RESULTS CD10, CD271, cytoglobin, DOG1, miR-21, nestin, and tenascin C exhibited significant differences in expression profiles between the juxtatumoural and peripheral compartments. The expression of CD10, cytoglobin, DOG1, nestin, and miR-21 was moderate/strong in juxtatumoural CAFs (j-CAFs) and barely perceptible/weak in peripheral CAFs (p-CAFs). The upregulation of DOG1 gene expression in PC compared to normal pancreas was verified by qPCR. Tenascin C expression was strong in the juxtatumoural ECM and barely perceptible/weak in the peripheral ECM. CD271 expression was barely perceptible in j-CAFs but moderate in the other compartments. Galectin-1 was stronger expressed in j-CAFs vs septal fibroblasts, PDGF-Rβ, tissue transglutaminase 2, and hyaluronic acid were stronger expressed in lobular fibroblasts vs p-CAFs, and plectin-1 was stronger expressed in j-CAFs vs l-FBs. The expression of the remaining 33 markers did not differ significantly when related to the quantity of CAFs/FBs or the amount of ECM in the respective compartments.
CONCLUSION Different immune phenotypic CAF subpopulations can be identified in PC, using markers such as cytoglobin, CD271, and miR-21. Future studies should determine whether CAF subpopulations have different functional properties.
Collapse
Affiliation(s)
- Michael Friberg Bruun Nielsen
- Department of Pathology, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, Odense Pancreas Center (OPAC), Odense C 5000, Denmark
| | - Michael Bau Mortensen
- Department of Surgery, HPB Section, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, Odense Pancreas Center (OPAC), Odense C 5000, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Department of Clinical Research, University of Southern Denmark, Odense Pancreas Center (OPAC), Odense C 5000, Denmark
| |
Collapse
|
106
|
Kurtanich T, Roos N, Wang G, Yang J, Wang A, Chung EJ. Pancreatic Cancer Gene Therapy Delivered by Nanoparticles. SLAS Technol 2018; 24:151-160. [PMID: 30395768 DOI: 10.1177/2472630318811108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is one of the most lethal forms of cancer and has proven to be difficult to treat through conventional methods, including surgery and chemotherapy. Gene therapy serves as a potential novel treatment to interfere with genes that make this cancer so aggressive, but free nucleic acids have low cell uptake due to their negative charge and are unstable in circulation. Nanoparticles can serve as an effective carrier for a wide variety of gene therapies for pancreatic cancer as they can improve the circulation time, decrease the recognition by the immune system, and be functionalized to target specific surface proteins. In this review, we focus on therapeutic strategies using nanoparticles as carriers of small interfering RNA (siRNA), microRNA (miRNA), and gene augmentation (DNA) therapies in the context of pancreatic cancer. Lastly, we discuss the future outlook of nanoparticle-based therapies, including challenges in the clinical setting.
Collapse
Affiliation(s)
- Trevin Kurtanich
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Nicole Roos
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Guanmeng Wang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Jesse Yang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Alan Wang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Eun Ji Chung
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.,2 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USC.,3 Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,4 Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.,5 Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA.,6 Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
107
|
Campayo M, Navarro A, Benítez JC, Santasusagna S, Ferrer C, Monzó M, Cirera L. miR-21, miR-99b and miR-375 combination as predictive response signature for preoperative chemoradiotherapy in rectal cancer. PLoS One 2018; 13:e0206542. [PMID: 30388154 PMCID: PMC6214543 DOI: 10.1371/journal.pone.0206542] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction Preoperative chemoradiotherapy (CRT) is a standard treatment for locally advanced rectal cancer patients. Despite the benefits of CRT, its use in non-responder patients can be associated with increased toxicities and surgical resection delay. The identification of CRT response biomarkers, such as microRNAs, could improve the management of these patients. We have studied the microRNA expression in pretreatment endoscopy biopsies from rectal cancer patients treated with CRT to identify potential microRNAs able to predict CRT response and clinical outcome of these patients. Material and methods RNA from pretreatment endoscopy biopsies from 96 rectal cancer patients treated with preoperative CRT were studied. Pathological response was graded according to the tumor regression grade (TRG) Dworak classification. In the screening phase, 377 miRNAs were studied in 12 patients with extreme responses (TRG0-1 vs TRG4). The potential role as predictive biomarkers for CRT response, disease-free survival (DFS) and overall survival (OS) of the miRNAs identified in the screening phase were validated in the whole cohort. Results In the screening phase, an 8-miRNAs CRT-response signature was identified: let-7b, let-7e, miR-21, miR-99b, miR-183, miR-328, miR-375 and miR-483-5p. In the validation phase, miR-21, miR-99b and miR-375 emerged as CRT response-related miRNAs while miR-328 and let-7e emerged as prognostic markers for DFS and OS. Interestingly, ROC curve analysis showed that the combination of miR-21, miR-99b and miR-375 had the best capacity to distinguish patients with maximum response (TRG4) from others. Conclusions miR-21, miR-99b and miR-375 could add valuable information for individualizing treatment in locally advanced rectal cancer patients.
Collapse
Affiliation(s)
- Marc Campayo
- Department of Medical Oncology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
- * E-mail:
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Jose Carlos Benítez
- Department of Medical Oncology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Sandra Santasusagna
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carme Ferrer
- Department of Pathology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Mariano Monzó
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Luis Cirera
- Department of Medical Oncology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| |
Collapse
|
108
|
Liu Z, Li C, Chen S, Lin H, Zhao H, Liu M, Weng J, Liu T, Li X, Lei C, Li C, Jiang Y, Moyer MP, Yin C, Zhou X. MicroRNA-21 increases the expression level of occludin through regulating ROCK1 in prevention of intestinal barrier dysfunction. J Cell Biochem 2018; 120:4545-4554. [PMID: 30302792 DOI: 10.1002/jcb.27742] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the role of molecular mechanism of microRNA (miR)-21 on tight junction (TJ)-proteins and its protective effects on the intestinal barrier. METHODS TJ proteins and target genes expression were analyzed in miR-21 inhibition and overexpression NCM460 cell lines. To further verify the role of miR-21, the mmu-miR-21 intestinal epithelial conditional knockout (IKO) mice model was established. MiR-21 expression was detected in clinical specimens of acute stercoral obstruction patients. RESULTS Rho-associated protein kinase 1 (ROCK1) were identified as target genes of miR-21. There is a negative correlation between miR-21 expression level and TJ proteins levels. TJ protein and ROCK1 were significantly decreased in miR-21 IKO mice, which presented intestinal inflammation response and intestinal barrier dysfunction (both P < 0.05). Determination of clinical samples showed consistent results with NCM460 cell line and miR-21 IKO mice. CONCLUSIONS MiR-21 could be a protective factor of intestinal barrier dysfunction, which promoting the expression of TJ protein by targeting ROCK1 in vivo and in vitro.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao Li
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shihua Chen
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongcheng Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huan Zhao
- Department of Shenzhen Ruikang Pharmaceutical Technology Co. Ltd, Shenzhen, Guangdong, China
| | - Min Liu
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinsheng Weng
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Li
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Lei
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Li
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanqiong Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mary Pat Moyer
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chunxia Yin
- Department of Gynaecology and Obstetrics, Changchun Obstetrics and Gynecology Hospital, Changchun, Jilin, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
109
|
Rovira-Rigau M, Raimondi G, Marín MÁ, Gironella M, Alemany R, Fillat C. Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer. Mol Ther 2018; 27:230-243. [PMID: 30341009 DOI: 10.1016/j.ymthe.2018.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022] Open
Abstract
Oncolytic viruses are designed for cancer treatment. Cell-virus interactions are key determinants for successful viral replication. Therefore, the extensive reprogramming of gene expression that occurs in tumor cells might create a hurdle for viral propagation. We used a replication-based approach of a microRNA (miRNA) adenoviral library encoding up to 243 human miRNAs as a bioselection strategy to identify miRNAs that facilitate adenoviral oncolytic activity in pancreatic ductal adenocarcinoma. We identify two miRNAs, miR-99b and miR-485, that function as enhancers of adenoviral oncolysis by improving the intra- and extracellular yield of mature virions. An increased adenoviral activity is the consequence of enhanced E1A and late viral protein expression, which is probably mediated by the downregulation of the transcriptional repressors ELF4, MDM2, and KLF8, which we identify as miR-99b or miR-485 target genes. Arming the oncolytic adenovirus ICOVIR15 with miR-99b or miR-485 enhances its fitness and its antitumoral activity. Our results demonstrate the potential of this strategy to improve oncolytic adenovirus potency, and they highlight miR-99b and miR-485 as sensitizers of adenoviral replication.
Collapse
Affiliation(s)
- Maria Rovira-Rigau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Giulia Raimondi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Miguel Ángel Marín
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Meritxell Gironella
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 08036 Barcelona, Spain
| | - Ramon Alemany
- Institut Català d'Oncologia-IDIBELL, 08907 L'Hospitalet de Llobregat, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain; Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona (UB), 08036 Barcelona, Spain.
| |
Collapse
|
110
|
Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol 2018; 24:3222-3238. [PMID: 30090003 PMCID: PMC6079284 DOI: 10.3748/wjg.v24.i29.3222] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/31/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive diseases and is characterized by high chemoresistance, leading to the lack of effective therapeutic approaches and grim prognosis. Despite increasing understanding of the mechanisms of chemoresistance in cancer and the role of ATP-binding cassette (ABC) transporters in this resistance, the therapeutic potential of their pharmacological inhibition has not been successfully exploited yet. In spite of the discovery of potent pharmacological modulators of ABC transporters, the results obtained in clinical trials have been so far disappointing, with high toxicity levels impairing their successful administration to the patients. Critically, although ABC transporters have been mostly studied for their involvement in development of multidrug resistance (MDR), in recent years the contribution of ABC transporters to cancer initiation and progression has emerged as an important area of research, the understanding of which could significantly influence the development of more specific and efficient therapies. In this review, we explore the role of ABC transporters in the development and progression of malignancies, with focus on PDAC. Their established involvement in development of MDR will be also presented. Moreover, an emerging role for ABC transporters as prognostic tools for patients' survival will be discussed, demonstrating the therapeutic potential of ABC transporters in cancer therapy.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia
| |
Collapse
|
111
|
Hahne JC, Valeri N. Non-Coding RNAs and Resistance to Anticancer Drugs in Gastrointestinal Tumors. Front Oncol 2018; 8:226. [PMID: 29967761 PMCID: PMC6015885 DOI: 10.3389/fonc.2018.00226] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs are important regulators of gene expression and transcription. It is well established that impaired non-coding RNA expression especially the one of long non-coding RNAs and microRNAs is involved in a number of pathological conditions including cancer. Non-coding RNAs are responsible for the development of resistance to anticancer treatments as they regulate drug resistance-related genes, affect intracellular drug concentrations, induce alternative signaling pathways, alter drug efficiency via blocking cell cycle regulation, and DNA damage response. Furthermore, they can prevent therapeutic-induced cell death and promote epithelial-mesenchymal transition (EMT) and elicit non-cell autonomous mechanisms of resistance. In this review, we summarize the role of non-coding RNAs for different mechanisms resulting in drug resistance (e.g., drug transport, drug metabolism, cell cycle regulation, regulation of apoptotic pathways, cancer stem cells, and EMT) in the context of gastrointestinal cancers.
Collapse
Affiliation(s)
- Jens C. Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
- Department of Medicine, The Royal Marsden NHS Trust, London, United Kingdom
| |
Collapse
|
112
|
Saraggi D, Galuppini F, Fanelli GN, Remo A, Urso EDL, Bao RQ, Bacchin D, Guzzardo V, Luchini C, Braconi C, Farinati F, Rugge M, Fassan M. MiR-21 up-regulation in ampullary adenocarcinoma and its pre-invasive lesions. Pathol Res Pract 2018; 214:835-839. [PMID: 29731265 DOI: 10.1016/j.prp.2018.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
Poor information is available on the molecular landscape characterizing the carcinogenetic process leading to ampullary carcinoma. MiR-21 is one of the most frequently up-regulated miRNAs in pancreatic adenocarcinoma, a tumor sharing similar molecular features with ampullary adenocarcinomas (AVCs), above all with the pancreatic-biliary type. We profiled, by in situ hybridization (ISH), miR-21 expression in a series of 26 AVCs, 50 ampullary dysplastic lesions (35 low-grade [LG-IEN] and 15 high-grade [HG-IEN]) and 10 normal duodenal mucosa samples. The same series was investigated by immunohistochemistry for β-catenin, p53 and HER2 expression. HER2 gene amplification was evaluated by chromogenic in situ hybridization. To validate miR-21 ISH results we performed miR-21 qRT-PCR analysis in a series of 10 AVCs and their matched normal samples. All the normal control samples showed a negative or faint miR-21 expression, whereas a significant miR-21 up-regulation was observed during the carcinogenetic cascade (p < 0.001), with 21/26 (80.8%) of cancer samples showing a miR-21 overexpression. In comparison to control samples, a significant overexpression was found in samples of LG-IEN (p = .0003), HG-IEN (p = .0001), and AVCs (p < 0.0001). No significant difference in miR-21 overexpression was observed between LG-IEN, HG-IEN and AVCs. By qRT-PCR analysis, AVCs showed a 1.7-fold increase over the controls (p = .003). P53 was frequently dysregulated in both dysplastic and carcinoma samples (44 out of 76; 57.9%). A 20% (10/50) of dysplastic lesions and 11% (3/26) of carcinomas were characterized by a nuclear localization of β-catenin. Only 2 AVCs (7.7%; both intestinal-type) showed a HER2 overexpression (both 2+), which corresponded to a HER2 gene amplification at CISH analysis. This is the first study demonstrating a miRNA dysregulation in the whole spectrum of ampullary carcinogenesis. MiR-21 overexpression is an early molecular event during ampullary carcinogenesis and its levels increase with the neoplastic progression.
Collapse
Affiliation(s)
- Deborah Saraggi
- Department of Medicine (DIMED), University of Padua, Padua, PD, Italy
| | | | | | - Andrea Remo
- Department of Pathology, "Mater Salutis" Hospital - ULSS9, 37045, Legnago, VR, Italy
| | - Emanuele D L Urso
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, PD, Italy
| | - Ricardo Q Bao
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, PD, Italy
| | - Deborah Bacchin
- Department of Medicine (DIMED), University of Padua, Padua, PD, Italy
| | - Vincenza Guzzardo
- Department of Medicine (DIMED), University of Padua, Padua, PD, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Chiara Braconi
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Fabio Farinati
- Department of Surgical Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, PD, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), University of Padua, Padua, PD, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, PD, Italy.
| |
Collapse
|
113
|
Guo S, Fesler A, Wang H, Ju J. microRNA based prognostic biomarkers in pancreatic Cancer. Biomark Res 2018; 6:18. [PMID: 29942514 PMCID: PMC5963153 DOI: 10.1186/s40364-018-0131-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
Despite tremendous research efforts focused on diagnosis and treatment, pancreatic ductal adenocarcinoma remains the third leading cause of cancer-related death in the United States, with a 5-year overall survival rate of less than 5%. Although resistance is rather complex, emerging evidence has demonstrated that epigenetic alterations (e.g. miRNA) have important roles in PDAC progression as well as resistance to therapy. Certain miRNAs have been identified as potential prognostic biomarkers in PDAC. In this review, we summarize the recent developments in miRNA research related to PDAC therapeutic resistance mechanisms and the potential of miRNAs as prognostic biomarkers for future clinical management of PDAC.
Collapse
Affiliation(s)
- Shixiang Guo
- 1Stony Brook University, Stony Brook, New York, 11794 USA.,2Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Andrew Fesler
- 1Stony Brook University, Stony Brook, New York, 11794 USA
| | - Huaizhi Wang
- 2Third Military Medical University, Chongqing, 400038 People's Republic of China
| | - Jingfang Ju
- 1Stony Brook University, Stony Brook, New York, 11794 USA
| |
Collapse
|
114
|
Gilles ME, Hao L, Huang L, Rupaimoole R, Lopez-Casas PP, Pulver E, Jeong JC, Muthuswamy SK, Hidalgo M, Bhatia SN, Slack FJ. Personalized RNA Medicine for Pancreatic Cancer. Clin Cancer Res 2018; 24:1734-1747. [PMID: 29330203 DOI: 10.1158/1078-0432.ccr-17-2733] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/21/2017] [Accepted: 01/03/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Since drug responses vary between patients, it is crucial to develop pre-clinical or co-clinical strategies that forecast patient response. In this study, we tested whether RNA-based therapeutics were suitable for personalized medicine by using patient-derived-organoid (PDO) and patient-derived-xenograft (PDX) models.Experimental Design: We performed microRNA (miRNA) profiling of PDX samples to determine the status of miRNA deregulation in individual pancreatic ductal adenocarcinoma (PDAC) patients. To deliver personalized RNA-based-therapy targeting oncogenic miRNAs that form part of this common PDAC miRNA over-expression signature, we packaged antimiR oligonucleotides against one of these miRNAs in tumor-penetrating nanocomplexes (TPN) targeting cell surface proteins on PDAC tumors.Results: As a validation for our pre-clinical strategy, the therapeutic potential of one of our nano-drugs, TPN-21, was first shown to decrease tumor cell growth and survival in PDO avatars for individual patients, then in their PDX avatars.Conclusions: This general approach appears suitable for co-clinical validation of personalized RNA medicine and paves the way to prospectively identify patients with eligible miRNA profiles for personalized RNA-based therapy. Clin Cancer Res; 24(7); 1734-47. ©2018 AACR.
Collapse
Affiliation(s)
- Maud-Emmanuelle Gilles
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Liangliang Hao
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology MIT, Cambridge, Massachusetts
- Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ling Huang
- Beth Israel Deaconess Medical Center, Cancer Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Rajesha Rupaimoole
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Emilia Pulver
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology MIT, Cambridge, Massachusetts
| | - Jong Cheol Jeong
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- The division of Biomedical Informatics, The Department of Internal Medicine, College of Medicine, The University of Kentucky, Lexington, Kentucky
| | - Senthil K Muthuswamy
- Beth Israel Deaconess Medical Center, Cancer Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Manuel Hidalgo
- Beth Israel Deaconess Medical Center, Cancer Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology MIT, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Cambridge, Massachusetts
- Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
115
|
Fu X, Liu M, Qu S, Ma J, Zhang Y, Shi T, Wen H, Yang Y, Wang S, Wang J, Nan K, Yao Y, Tian T. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018. [PMID: 29530052 PMCID: PMC5846230 DOI: 10.1186/s13046-018-0677-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Multidrug resistance is the main obstacle for hepatocellular carcinoma (HCC) treatment. miR-32-5p is involved in HCC progression but its function in multidrug resistance is still unclear. Here we aim to find out the function of miR-32-5p in inducing multidrug resistance and its underlying mechanisms of transforming sensitive cell to resistant cell. METHODS We detected the expression of miR-32-5p and PTEN in the multidrug-resistant cell line (Bel/5-FU) and the sensitive cell line (Bel7402), HCC and para-carcinoma liver tissues through real-time PCR. Dual-luciferase reporter assay verified PTEN is the target of miR-32-5p. Exosomes from sensitive and multidrug resistant cell line were obtained and confirmed through ultracentrifuge and Nano Analyzer. Gain- and loss-of-function experiments, rescue experiments, a PI3K/Akt pathway inhibitor, an exosome biogenesis inhibitor, and nude mice xenograft models were used to determine the underlying mechanisms of miR-32-5p and PTEN, as well as exosomal miR-32-5p in inducing multidrug resistance in vitro and in vivo. RESULTS miR-32-5p was significantly elevated but PTEN was reduced in Bel/5-FU. An inverse correlation between miR-32-5p and PTEN was confirmed in HCC cell lines and patients; moreover, high expression of miR-32-5p and low expression of PTEN were positively associated with poor prognosis. Over-expression of miR-32-5p activated the PI3K/Akt pathway by suppressing PTEN and induced multidrug resistance via exosomes through promoting angiogenesis and epithelial-mesenchymal transition (EMT). CONCLUSIONS Our study demonstrated that the multidrug-resistant cell, Bel/5-FU delivers miR-32-5p to sensitive cell, Bel7402 by exosomes and activates the PI3K/Akt pathway to further induce multidrug resistance by modulating angiogenesis and EMT.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Mengjie Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shengyang Qu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiequn Ma
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yamin Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Tingting Shi
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hongqing Wen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.,Department of Respiratory, Third Hospital of Xi'an, Xi'an, Shaanxi, 710018, People's Republic of China
| | - Yujuan Yang
- The Third Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi province, 710068, People's Republic of China
| | - Shuhong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jing Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
116
|
Qi M, Liu D, Zhang S. MicroRNA-21 contributes to the discrimination of chemoresistance in metastatic gastric cancer. Cancer Biomark 2018; 18:451-458. [PMID: 28128744 DOI: 10.3233/cbm-161732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Multidrug resistance in gastric cancer greatly impedes the efficacy of chemotherapy. OBJECTIVE To explore the efficacy of microRNA-21 (mir-21) in distinguishing metastatic gastric cancer (MGC) with chemoresistance. METHODS From April 2012 to May 2015, 92 MGC patients were enrolled. Cisplatin and fluorouracil-based systemic chemotherapy was given, and patients' characteristics and follow-up data were collected. In addition, miR-21 expression was determined in tumor tissue and plasma. RESULTS Sixty-seven patients responded to chemotherapy, and chemotherapy resistance was observed in 25 patients. miR-21 expression in tumor tissue and plasma was significantly elevated in the chemotherapy-resistant group (CRG) compared to the chemotherapy-sensitive group (CSG) (p< 0.001). miR-21 expression in tissue was associated with tumor differentiation (p= 0.042), and plasma miR-21 was correlated with gender (p= 0.016), tumor differentiation (p= 0.003), and number of metastatic sites (p< 0.001). Receiver operating characteristic (ROC) analysis indicated that miR-21 in tissue yielded an area under the ROC curve (AUC) of 0.830 (95%CI: 0.737-0.900, sensitivity: 88.0%, specificity: 68.7%) in distinguishing CRG from CSG; and plasma miR-21 yielded an AUC of 0.759 (95%CI: 0.658-0.842, sensitivity: 52.0%, specificity: 88.1%) in distinguishing CRG form CSG. Log-rank test and Cox proportional hazard regression analysis indicated that patients with higher miR-21 expression in tissue and plasma experienced shorter overall survival (P< 0.001). CONCLUSION miR-21 could serve as a potential biomarker to identify MGC with chemoresistance.
Collapse
Affiliation(s)
- Ming Qi
- Department of Digestive System, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Dongmei Liu
- Transfusion Centre, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| | - Shuhong Zhang
- Department of Digestive System, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, China
| |
Collapse
|
117
|
Lin L, Fan Y, Gao F, Jin L, Li D, Sun W, Li F, Qin P, Shi Q, Shi X, Du L. UTMD-Promoted Co-Delivery of Gemcitabine and miR-21 Inhibitor by Dendrimer-Entrapped Gold Nanoparticles for Pancreatic Cancer Therapy. Theranostics 2018; 8:1923-1939. [PMID: 29556365 PMCID: PMC5858509 DOI: 10.7150/thno.22834] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/23/2017] [Indexed: 12/22/2022] Open
Abstract
Conventional chemotherapy of pancreatic cancer (PaCa) suffers the problems of low drug permeability and inherent or acquired drug resistance. Development of new strategies for enhanced therapy still remains a great challenge. Herein, we report a new ultrasound-targeted microbubble destruction (UTMD)-promoted delivery system based on dendrimer-entrapped gold nanoparticles (Au DENPs) for co-delivery of gemcitabine (Gem) and miR-21 inhibitor (miR-21i). Methods: In this study, Gem-Au DENPs/miR-21i was designed and synthesized. The designed polyplexes were characterized via transmission electron microscopy (TEM), Gel retardation assay and dynamic light scattering (DLS). Then, the optimum exposure parameters were examined by an ultrasound exposure platform. The cellular uptake, cytotoxicity and anticancer effects in vitro were analyzed by confocal laser microscopy, spectra microplate reader, flow cytometry and a chemiluminescence imaging system. Lastly, the anticancer effects in vivo were evaluated by contrast-enhanced ultrasound (CEUS), hematoxylin and eosin (H&E) staining, TUNEL staining and comparison of tumor volume. Results: The results showed that the Gem-Au DENPs/miR-21i can be uptake by cancer cells and the cellular uptake was further facilitated by UTMD with an ultrasound power of 0.4 W/cm2 to enhance the cell permeability. Further, the co-delivery of Gem and miR-21i with or without UTMD treatment displayed 82-fold and 13-fold lower IC50 values than the free Gem, respectively. The UTMD-promoted co-delivery of Gem and miR-21i was further validated by in vivo treatment and showed a significant tumor volume reduction and an increase in blood perfusion of xenografted pancreatic tumors. Conclusion: The co-delivery of Gem and miR-21i using Au DENPs can be significantly promoted by UTMD technology, hence providing a promising strategy for effective pancreatic cancer treatments.
Collapse
|
118
|
Zhang X, Ren D, Wu X, Lin X, Ye L, Lin C, Wu S, Zhu J, Peng X, Song L. miR-1266 Contributes to Pancreatic Cancer Progression and Chemoresistance by the STAT3 and NF-κB Signaling Pathways. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:142-158. [PMID: 29858050 PMCID: PMC5842289 DOI: 10.1016/j.omtn.2018.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer is characterized by chemoresistance after several cycles of chemotherapy, which is a major issue responsible for treatment failure of pancreatic cancer. Therefore, it is necessary to explore the specific mechanism underlying chemotherapeutic resistance to overcome this issue. Here we report that miR-1266 is dramatically elevated and correlates with poor survival and chemotherapy response in pancreatic cancer patients. Upregulation of miR-1266 enhanced the chemoresistance of pancreatic cancer cells to gemcitabine (GEM) in vitro and in vivo; conversely, inhibition of miR-1266 yielded the opposite effect. Importantly, silencing of miR-1266 restored the sensitivity of pancreatic cancer cells to GEM in a dose-dependent manner in vivo. Furthermore, our results demonstrate that miR-1266 promotes resistance of pancreatic cancer cells to GEM by targeting multiple negative regulators of the STAT3 and NF-κB pathways, including SOCS3, PTPN11, ITCH, and TNIP1, leading to constitutive activation of STAT3 and NF-κB signaling. Thus, our findings clarify a novel mechanism by which miR-1266 induces chemotherapeutic resistance in pancreatic cancer, indicating that miR-1266 may be used as chemotherapeutic response indicator. Antagomir-1266 as a chemotherapeutic sensitizer, in combination with GEM, may serve as a rational regimen in the treatment of chemotherapy-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Dong Ren
- Department of Orthopaedic Surgery/Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Xianqiu Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xi Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Liping Ye
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Chuyong Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shu Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jinrong Zhu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery/Orthopaedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Libing Song
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
119
|
Goto T, Fujiya M, Konishi H, Sasajima J, Fujibayashi S, Hayashi A, Utsumi T, Sato H, Iwama T, Ijiri M, Sakatani A, Tanaka K, Nomura Y, Ueno N, Kashima S, Moriichi K, Mizukami Y, Kohgo Y, Okumura T. An elevated expression of serum exosomal microRNA-191, - 21, -451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer 2018; 18:116. [PMID: 29385987 PMCID: PMC5793347 DOI: 10.1186/s12885-018-4006-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic cancer is associated with an extremely poor prognosis, so new biomarkers that can detect the initial stages are urgently needed. The significance of serum microRNA (miR) levels in pancreatic neoplasm such as pancreatic cancer and intraductal papillary mucinous neoplasm (IPMN) diagnosis remains unclear. We herein evaluated the usefulness of miRs enclosed in serum exosomes (ExmiRs) as diagnostic markers. METHODS The ExmiRs from patients with pancreatic cancer (n = 32) or IPMN (n = 29), and patients without neoplasms (controls; n = 22) were enriched using ExoQuick-TC™. The expression of ExmiRs was evaluated using a next-generation sequencing analysis, and the selected three miRs through this analysis were confirmed by a quantitative real-time polymerase chain reaction. RESULTS The expression of ExmiR-191, ExmiR-21 and ExmiR-451a was significantly up-regulated in patients with pancreatic cancer and IPMN compared to the controls (p < 0.05). A receiver operating characteristic curve analysis showed that the area under the curve and the diagnostic accuracy of ExmiRs were 5-20% superior to those of three serum bulky circulating miRs (e.g.; ExmiR-21: AUC 0.826, accuracy 80.8%. Circulating miR-21: AUC 0.653, accuracy 62.3%). In addition, high ExmiR-451a was associated with mural nodules in IPMN (p = 0.010), and high ExmiR-21 was identified as a candidate prognostic factor for the overall survival (p = 0.011, HR 4.071, median OS of high-ExmiR-21: 344 days, median OS of low-ExmiR-21: 846 days) and chemo-resistant markers (p = 0.022). CONCLUSIONS The level of three ExmiRs can thus serve as early diagnostic and progression markers of pancreatic cancer and IPMN, and considered more useful markers than the circulating miRs (limited to these three miRs).
Collapse
Affiliation(s)
- Takuma Goto
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Hiroaki Konishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Junpei Sasajima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Shugo Fujibayashi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Akihiro Hayashi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Tatsuya Utsumi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Hiroki Sato
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Takuya Iwama
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Masami Ijiri
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Aki Sakatani
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Kazuyuki Tanaka
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Yoshiki Nomura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Nobuhiro Ueno
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Shin Kashima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Kentaro Moriichi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Yusuke Mizukami
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Yutaka Kohgo
- Department of Gastroenterology, International University of Health and Welfare Hospital, Nasushiobara, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| |
Collapse
|
120
|
Vila-Casadesús M, Vila-Navarro E, Raimondi G, Fillat C, Castells A, Lozano JJ, Gironella M. Deciphering microRNA targets in pancreatic cancer using miRComb R package. Oncotarget 2018; 9:6499-6517. [PMID: 29464088 PMCID: PMC5814228 DOI: 10.18632/oncotarget.24034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/02/2018] [Indexed: 12/23/2022] Open
Abstract
MiRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression. They play important roles in cancer but little is known about the specific functions that each miRNA exerts in each type of cancer. More knowledge about their specific targets is needed to better understand the complexity of molecular networks taking part in cancer. In this study we report the miRNA-mRNA interactome occurring in pancreatic cancer by using a bioinformatic approach called miRComb, which combines tissue expression data with miRNA-target prediction databases (TargetScan, miRSVR and miRDB). MiRNome and transcriptome of 12 human pancreatic tissues (9 pancreatic ductal adenocarcinomas and 3 controls) were analyzed by next-generation sequencing and microarray, respectively. Analysis confirmed differential expression of both miRNAs and mRNAs in cancerous tissue versus control, and unveiled 17401 relevant miRNA-mRNA interactions likely to occur in pancreatic cancer. They were sorted according to the degree of negative correlation between miRNA and mRNA expression. Results highlighted the importance of miR-148a and miR-21 interactions among others. Two components of the Notch signaling pathway, ADAM17 and EP300, were confirmed as miR-148a targets in MiaPaca-2 pancreatic cancer cells overexpressing miR-148a. Moreover, a CRISPR-Cas9 cellular model was generated to knock-out the expression of miR-21 in PANC-1 cells. As expected, the expression of two miRComb miR-21 predicted targets, PDCD4 and BTG2, was significantly upregulated in these cells in comparison to control PANC-1.
Collapse
Affiliation(s)
- Maria Vila-Casadesús
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Bioinformatics Platform, CIBEREHD, Barcelona, Catalonia, Spain
| | - Elena Vila-Navarro
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Giulia Raimondi
- Gene Therapy and Cancer, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Fillat
- Gene Therapy and Cancer, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Antoni Castells
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Juan José Lozano
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Bioinformatics Platform, CIBEREHD, Barcelona, Catalonia, Spain
| | - Meritxell Gironella
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| |
Collapse
|
121
|
Kuninty PR, Bojmar L, Tjomsland V, Larsson M, Storm G, Östman A, Sandström P, Prakash J. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor. Oncotarget 2017; 7:16396-408. [PMID: 26918939 PMCID: PMC4941323 DOI: 10.18632/oncotarget.7651] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. α-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Praneeth R Kuninty
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands
| | - Linda Bojmar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vegard Tjomsland
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marie Larsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gert Storm
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| | - Per Sandström
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| |
Collapse
|
122
|
Xiong J, Wang D, Wei A, Ke N, Wang Y, Tang J, He S, Hu W, Liu X. MicroRNA-410-3p attenuates gemcitabine resistance in pancreatic ductal adenocarcinoma by inhibiting HMGB1-mediated autophagy. Oncotarget 2017; 8:107500-107512. [PMID: 29296182 PMCID: PMC5746084 DOI: 10.18632/oncotarget.22494] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
Gemcitabine-based chemotherapy is the most common treatment option for pancreatic ductal adenocarcinoma (PDAC). However, it offers little therapeutic value in many cases due to the rapid development of chemoresistance. MicroRNAs (miRNAs) have been found to play pivotal roles in the chemotherapeutic resistance of PDAC. We found that miR-410-3p was significantly down-regulated in human pancreatic cancer xenograft (HPCx) tumor tissues from gemcitabine-treated mice. Low miR-410-3p expression correlated with gemcitabine resistance in HPCx tumors and PDAC cells as well as poor prognosis in PDAC patients. We also found that miR-410-3p attenuated the gemcitabine resistance of PDAC by targeting the 3'-UTR of HMGB1. Moreover, our study clearly demonstrated that miR-410-3p enhanced chemosensitivity to gemcitabine via inhibiting HMGB1-induced autophagy during chemotherapy in PDAC cells. Our study suggests that miR-410-3p expression may be a useful indicator of the potential for chemoresistance to gemcitabine and provide a potential new therapeutic target for chemoresistance in PDAC.
Collapse
Affiliation(s)
- Junjie Xiong
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ailin Wei
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China.,Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nengwen Ke
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yichao Wang
- Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jie Tang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Sirong He
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weiming Hu
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xubao Liu
- Department of Pancreatic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
123
|
Dhayat SA, Mardin WA, Senninger N. Comment on: MicroRNA Expression as a Predictive Marker for Gemcitabine Response After Surgical Resection of Pancreatic Cancer. Ann Surg Oncol 2017; 24:669. [PMID: 29094249 DOI: 10.1245/s10434-017-6207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Sameer A Dhayat
- Department of General and Visceral Surgery, University Hospital of Muenster, Muenster, Germany.
| | - Wolf Arif Mardin
- Department of General and Visceral Surgery, University Hospital of Muenster, Muenster, Germany
| | - Norbert Senninger
- Department of General and Visceral Surgery, University Hospital of Muenster, Muenster, Germany
| |
Collapse
|
124
|
Que K, Tong Y, Que G, Li L, Lin H, Huang S, Wang R, Tang L. Downregulation of miR-874-3p promotes chemotherapeutic resistance in colorectal cancer via inactivation of the Hippo signaling pathway. Oncol Rep 2017; 38:3376-3386. [PMID: 29039607 PMCID: PMC5783584 DOI: 10.3892/or.2017.6041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022] Open
Abstract
Overcoming resistance to chemotherapy is an arduous challenge in the treatment of colorectal cancer (CRC), particularly since the underlying molecular mechanisms remain obscure. In the present study, we reported that miR-874-3p was markedly downregulated in CRC tissues compared with that in adjacent normal colorectal epithelial tissues. Upregulation of miR-874-3p attenuated the chemoresistance of CRC cells to 5-fluorouracil (5-FU) in vitro and in vivo. Conversely, inhibition of miR-874-3p yielded an opposite effect. Furthermore, our results demonstrated that miR-874-3p directly inhibited the expression of transcriptional co-activators YAP and TAZ of the Hippo signaling pathway, resulting in the inactivation of the TEAD transcription. Thus, our findings clarify a novel mechanism by which miR-874-3p restores chemotherapeutic sensitivity of CRC to 5-FU, indicating that offering miR-874-3p mimics in combination with 5-FU may serve as a new therapeutic strategy to circumvent the chemoresistance in CRC.
Collapse
Affiliation(s)
- Kaiqian Que
- Department of Radiation and Chemotherapy Oncology, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, Fujian, P.R. China
| | - Yuanhe Tong
- Department of Radiation and Chemotherapy Oncology, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, Fujian, P.R. China
| | - Ganbo Que
- Department of Critical Care Medicine, The Second Hospital of Longyan, Longyan, Fujian, P.R. China
| | - Li Li
- Department of Pelvic Floor Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Hongcheng Lin
- Department of Chinese Integrative Medicine Anorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, P.R. China
| | - Ruoyu Wang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, P.R. China
| | - Langlang Tang
- Department of Radiology, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, Fujian 364000, P.R. China
| |
Collapse
|
125
|
Wang H, Xu W, Shao Q, Ding Q. miR-21 silencing ameliorates experimental autoimmune encephalomyelitis by promoting the differentiation of IL-10-producing B cells. Oncotarget 2017; 8:94069-94079. [PMID: 29212210 PMCID: PMC5706856 DOI: 10.18632/oncotarget.21578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/18/2017] [Indexed: 01/04/2023] Open
Abstract
IL-10-producing regulatory B (IL-10+ Breg) cells promote tolerance in autoimmune diseases and transplantation. However, it remains unclear whether microRNAs are involved in the development of IL-10+ Breg cells. Here, we found that microRNA-21 (miR-21) acts as an upstream regulator of IL-10 by targeting the 3' untranslated region of IL-10 mRNA. We also demonstrated that IL-10+ Breg cells exhibit lower miR-21 expression than non-Breg cells and that miR-21 acts as a potent negative regulator of the differentiation of IL-10+ Breg cells. Accordingly, specific inhibition of miR-21 using antisense oligonucleotides markedly promoted B cell IL-10 expression. Thus, IL-10 is a direct target of miR-21. Moreover, silencing of miR-21 significantly alleviated the severity of experimental autoimmune encephalomyelitis (EAE), and this change was associated with an increase in the number of IL-10+ Breg cells. Finally, we demonstrated that miR-21-silenced B cells exert their suppressive activity through effector T cells in an IL-10-dependent manner. Thus, we characterized a B cell-intrinsic microRNA pathway that inhibits the differentiation of IL-10+ Breg cells and promotes autoimmunity. miR-21 silencing therefore represents a new therapeutic strategy for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Qixiang Shao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Qing Ding
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
126
|
Negoi I, Hostiuc S, Sartelli M, Negoi RI, Beuran M. MicroRNA-21 as a prognostic biomarker in patients with pancreatic cancer - A systematic review and meta-analysis. Am J Surg 2017; 214:515-524. [PMID: 28477839 DOI: 10.1016/j.amjsurg.2017.03.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The aim of this systematic review and meta-analysis is to summarize the current knowledge regarding microRNA-21 and to evaluate its prognostic impact in patients with pancreatic cancer. METHODS We conducted an electronic literature search to identify all published studies in PubMed/MEDLINE, Scopus and Google Scholar databases from 2000 until August 2016. RESULTS A total of 17 studies involving 1471 patients met the inclusion criteria for the quantitative synthesis. The microRNA-21 upregulation was significantly associated with poorer overall survival, disease-free survival, and progression-free survival. The subgroup analysis revealed that microRNA-21 overexpression has a significant higher prognostic value for patients who receive adjuvant chemotherapy. Increased microRNA-21 was associated with a statistically significant higher rate of metastatic lymph nodes and poorly differentiated tumors. CONCLUSIONS MicroRNA-21 upregulation in pancreatic cancer is associated with a significantly poorer overall survival, disease-free survival, and progression-free survival. MicroRNA-21 may be a useful prognostic biomarker, allowing stratification for chemotherapy administration, and being a component of precision medicine in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Ionut Negoi
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania; Department of General Surgery, Emergency Hospital of Bucharest, Romania.
| | - Sorin Hostiuc
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania; Department of Legal Medicine and Bioethics, National Institute of Legal Medicine Mina Minovici, Romania
| | | | | | - Mircea Beuran
- Carol Davila University of Medicine and Pharmacy Bucharest, Romania; Department of General Surgery, Emergency Hospital of Bucharest, Romania
| |
Collapse
|
127
|
Duell EJ, Lujan-Barroso L, Sala N, McElyea SD, Overvad K, Tjonneland A, Olsen A, Weiderpass E, Busund LT, Moi L, Muller D, Vineis P, Aune D, Matullo G, Naccarati A, Panico S, Tagliabue G, Tumino R, Palli D, Kaaks R, Katzke VA, Boeing H, Bueno-de-Mesquita H, Peeters PH, Trichopoulou A, Lagiou P, Kotanidou A, Travis RC, Wareham N, Khaw KT, Quiros JR, Rodríguez-Barranco M, Dorronsoro M, Chirlaque MD, Ardanaz E, Severi G, Boutron-Ruault MC, Rebours V, Brennan P, Gunter M, Scelo G, Cote G, Sherman S, Korc M. Plasma microRNAs as biomarkers of pancreatic cancer risk in a prospective cohort study. Int J Cancer 2017; 141:905-915. [PMID: 28542740 PMCID: PMC5536971 DOI: 10.1002/ijc.30790] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
Noninvasive biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis and disease risk stratification are greatly needed. We conducted a nested case-control study within the Prospective Investigation into Cancer and Nutrition (EPIC) cohort to evaluate prediagnostic microRNAs (miRs) as biomarkers of subsequent PDAC risk. A panel of eight miRs (miR-10a, -10b, -21-3p, -21-5p, -30c, -106b, -155 and -212) based on previous evidence from our group was evaluated in 225 microscopically confirmed PDAC cases and 225 controls matched on center, sex, fasting status and age/date/time of blood collection. MiR levels in prediagnostic plasma samples were determined by quantitative RT-PCR. Logistic regression was used to model levels and PDAC risk, adjusting for covariates and to estimate area under the receiver operating characteristic curves (AUC). Plasma miR-10b, -21-5p, -30c and -106b levels were significantly higher in cases diagnosed within 2 years of blood collection compared to matched controls (all p-values <0.04). Based on adjusted logistic regression models, levels for six miRs (miR-10a, -10b, -21-5p, -30c, -155 and -212) overall, and for four miRs (-10a, -10b, -21-5p and -30c) at shorter follow-up time between blood collection and diagnosis (≤5 yr, ≤2 yr), were statistically significantly associated with risk. A score based on the panel showed a linear dose-response trend with risk (p-value = 0.0006). For shorter follow-up (≤5 yr), AUC for the score was 0.73, and for individual miRs ranged from 0.73 (miR-212) to 0.79 (miR-21-5p).
Collapse
Affiliation(s)
- Eric J. Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Núria Sala
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Samantha Deitz McElyea
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kim Overvad
- Aarhus University, Department of Public Health, Section for Epidemiology, Aarhus C, Denmark
| | | | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elisabete Weiderpass
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Lill-Tove Busund
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Line Moi
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - David Muller
- School of Public Health, Epidemiology & Biostatistics, Imperial College London, London, United Kingdom
| | - Paolo Vineis
- School of Public Health, Epidemiology & Biostatistics, Imperial College London, London, United Kingdom
| | - Dagfinn Aune
- School of Public Health, Epidemiology & Biostatistics, Imperial College London, London, United Kingdom
| | - Giuseppe Matullo
- Human Genetics Foundation (HuGeF), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute – ISPO, Florence- Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena A. Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - H.B(as) Bueno-de-Mesquita
- Dt. for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Dt. of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Dt. of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Petra H. Peeters
- Dept of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- MRC-PHE Centre for Environment and Health, Dept of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Pagona Lagiou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece
- Department of Epidemiology, Harvard School of Public Health, Boston, USA
| | - Anastasia Kotanidou
- Hellenic Health Foundation, Athens, Greece
- Department of Critical Care Medicine & Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, Greece
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Kay-Tee Khaw
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health, Research Insititute Biosanitary Granada, University Hospital Granada/University of Granada, Granada
- CIBER Epidemiology and Public Health (CIBERESP), Madrid
| | - Miren Dorronsoro
- CIBER Epidemiology and Public Health (CIBERESP), Madrid
- Basque Regional Health Department, San Sebatian, Spain
| | - María-Dolores Chirlaque
- CIBER Epidemiology and Public Health (CIBERESP), Madrid
- Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiology and Public Health (CIBERESP), Madrid
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Gianluca Severi
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | | | - Vinciane Rebours
- Pancreatology Unit, Beaujon Hospital, Clichy, France
- INSERM, University Paris, France
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Marc Gunter
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Greg Cote
- Medical University of South Carolina, Charleston, USA
| | - Stuart Sherman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Murray Korc
- Departments of Medicine and Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
- Pancreatic Cancer Signature Center, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, USA
| |
Collapse
|
128
|
Liu K, Du J, Ruan L. MicroRNA-21 regulates the viability and apoptosis of diffuse large B-cell lymphoma cells by upregulating B cell lymphoma-2. Exp Ther Med 2017; 14:4489-4496. [PMID: 29067124 DOI: 10.3892/etm.2017.5021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), one of the most frequently diagnosed non-Hodgkin lymphoma (NHL), is partly attributed to hereditary factors. MicroRNA-21 (miR-21) is an oncogenic substance that induces NHL and primarily targets tumor-suppressive molecules, such as B cell lymphoma-2 (Bcl-2). The present study explored whether Bcl-2, targeted by miR-21, would affect the development of NHL. Specimens were harvested from 55 patients with DLBCL who had undergone surgical treatment. Expression levels of miR-21 and Bcl-2 were evaluated through reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blotting. Luciferase-reporter assays were performed to investigate the potential association between miR-21 and Bcl-2. MTT assays, flow cytometric analysis and caspase-3 activity assays were used to evaluate cell viability and apoptosis of DLBCL cells, respectively. Furthermore, statistical analysis was conducted using SPSS 19.0 software and the expression levels of miR-21 and Bcl-2 within DLBCL tissues were significantly upregulated when compared to those in normal tissues (P<0.01). As predicted by TargetScan, perfect base pairing was observed between the seed sequence of mature miR-21 and the 3' untranslated region of Bcl-2 mRNA. Dual luciferase reporter gene assays also revealed that miR-21 significantly facilitated the luciferase activity of Bcl-2 wild-type, with 61% upregulation (P<0.01) observed. MTT assays demonstrated that the viability of OCI-LY3 cells was decreased when cells were transfected with miR-21 inhibitor or Bcl-2 small interfering RNA and compared with those of control and negative control groups (all P<0.05). The apoptosis rate and caspase-3 activity level of the miR-21 group were 2.73±0.48 and 0.47±0.05, respectively, which were both significantly different from the groups with lower levels of miR-21 expression levels (all P<0.01). Since miR-21 may contribute to increased viability and decreased apoptosis of DLBCL cells through targeting Bcl-2, both Bcl-2 and miR-21 are likely to serve as effective targets for developing novel DLBCL treatments in the future.
Collapse
Affiliation(s)
- Ke Liu
- Department of Hematology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jingxia Du
- Department of Pharmacology, Medical College, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Linhai Ruan
- Department of Hematology, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
129
|
Wald P, Liu XS, Pettit C, Dillhoff M, Manilchuk A, Schmidt C, Wuthrick E, Chen W, Williams TM. Prognostic value of microRNA expression levels in pancreatic adenocarcinoma: a review of the literature. Oncotarget 2017; 8:73345-73361. [PMID: 29069873 PMCID: PMC5641216 DOI: 10.18632/oncotarget.20277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/23/2017] [Indexed: 01/17/2023] Open
Abstract
Background Clinical and pathologic markers of prognosis and patterns of failure help guide clinicians in selecting patients for adjuvant therapy after surgical resection for pancreatic adenocarcinoma (PDAC). Recent studies have reported the prognostic utility of microRNA profiling in numerous malignancies. Here, we review and summarize the current literature regarding associations between microRNA expression and overall survival in PDAC patients. Materials and Methods We conducted a systematic search in the PubMed database to identify all primary research studies reporting prognostic associations between tumor and/or serum microRNA expression and overall survival in PDAC patients. Eligible articles were reviewed by the authors and relevant findings are summarized below. Results We found 53 publications that fit our search criteria. In total, 23 up-regulated and 49 down-regulated miRNAs have been associated with worse overall survival. MiR-21 is the most commonly reported miRNA, appearing in 19 publications, all of which report aberrant over-expression and association with shorter survival in PDAC. Other miRNAs that appear in multiple publications include miR-10b, −21, −34a, −155, −196a, −198, −200c, −203, −210, −218, −222, and −328. We summarize the preclinical and clinical data implicating these miRNAs in various molecular signaling pathways and cellular functions. Conclusions There is growing evidence that miRNA expression profiles have the potential to provide tumor-specific prognostic information to assist clinicians in more appropriately selecting patients for adjuvant therapy. These molecules are often aberrantly expressed and exhibit oncogenic and/or tumor suppressor functions in PDAC. Additional efforts to develop prognostic and predictive molecular signatures, and further elucidate miRNA mechanisms of action, are warranted.
Collapse
Affiliation(s)
- Patrick Wald
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - X Shawn Liu
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Cory Pettit
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Mary Dillhoff
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Andrei Manilchuk
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Carl Schmidt
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Evan Wuthrick
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Wei Chen
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| |
Collapse
|
130
|
Xia H, Zhang W, Zhang B, Zhao Y, Zhao Y, Li S, Liu Y. miR-21 modulates the effect of EZH2 on the biological behavior of human lung cancer stem cells in vitro. Oncotarget 2017; 8:85442-85451. [PMID: 29156731 PMCID: PMC5689621 DOI: 10.18632/oncotarget.20006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/19/2017] [Indexed: 12/29/2022] Open
Abstract
Non-small-cell lung cancer has a high mortality rate and poor prognosis. Therefore, novel therapeutic approaches are urgently needed to enhance patient survival rates. In this study, we investigated the effects of miR-21 and EZH2 on the biological behavior of human lung cancer stem cells in vitro. We found increased expression of EZH2 and miR-21 in LCSCs, and miR-21 overexpression increased EZH2 levels in LCSCs. In addition, EZH2 and miR-21 knockdown increased the sensitivity of LCSCs to chemo- and radiation therapy, and exogenous EZH2 expression rescued the effects of anti-miR-21. Cell proliferation was reduced by 39.2% and 69.7% in the presence of radio- or chemotherapy combined with anti-miR-21 transfection, respectively. The downstream molecules included Cdc2, cyclin B1, and Bcl-2, which are involved in the regulation of cell cycle and apoptosis and which could themselves be reduced or enhanced by changes in miR-21 and EZH2 levels in LCSCs. This study demonstrates the direct relationship between miR-21 and EZH2 which was increased by 43% after the application of the miR-21 mimic. Above data indicates that these two molecules can influence the biological behavior of LCSCs by altering their corresponding targets. Our findings support the potential roles of miR-21 and EZH2 in improving the therapeutic efficacy of clinical lung cancer treatments.
Collapse
Affiliation(s)
- Hui Xia
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China.,Department of Thoracic Surgery, PLA General Hospital, Beijing, China.,Medical School of PLA, Beijing, China
| | - Wen Zhang
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Baoshi Zhang
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Yingnan Zhao
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Yunlong Zhao
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Shaojun Li
- Department of Thoracic-Cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Yang Liu
- Department of Thoracic Surgery, PLA General Hospital, Beijing, China
| |
Collapse
|
131
|
MicroRNAs for Detection of Pancreatic Neoplasia: Biomarker Discovery by Next-generation Sequencing and Validation in 2 Independent Cohorts. Ann Surg 2017; 265:1226-1234. [PMID: 27232245 PMCID: PMC5434964 DOI: 10.1097/sla.0000000000001809] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is available in the text Objective: The aim of our study was to analyze the miRNome of pancreatic ductal adenocarcinoma (PDAC) and its preneoplastic lesion intraductal papillary mucinous neoplasm (IPMN), to find new microRNA (miRNA)-based biomarkers for early detection of pancreatic neoplasia. Objective: Effective early detection methods for PDAC are needed. miRNAs are good biomarker candidates. Methods: Pancreatic tissues (n = 165) were obtained from patients with PDAC, IPMN, or from control individuals (C), from Hospital Clínic of Barcelona. Biomarker discovery was done using next-generation sequencing in a discovery set of 18 surgical samples (11 PDAC, 4 IPMN, 3 C). MiRNA validation was carried out by quantitative reverse transcriptase PCR in 2 different set of samples. Set 1—52 surgical samples (24 PDAC, 7 IPMN, 6 chronic pancreatitis, 15 C), and set 2—95 endoscopic ultrasound-guided fine-needle aspirations (60 PDAC, 9 IPMN, 26 C). Results: In all, 607 and 396 miRNAs were significantly deregulated in PDAC and IPMN versus C. Of them, 40 miRNAs commonly overexpressed in both PDAC and IPMN were selected for further validation. Among them, significant up-regulation of 31 and 30 miRNAs was confirmed by quantitative reverse transcriptase PCR in samples from set 1 and set 2, respectively. Conclusions: miRNome analysis shows that PDAC and IPMN have differential miRNA profiles with respect to C, with a large number of deregulated miRNAs shared by both neoplastic lesions. Indeed, we have identified and validated 30 miRNAs whose expression is significantly increased in PDAC and IPMN lesions. The feasibility of detecting these miRNAs in endoscopic ultrasound-guided fine-needle aspiration samples makes them good biomarker candidates for early detection of pancreatic cancer.
Collapse
|
132
|
Li Y, Chen Y, Li J, Zhang Z, Huang C, Lian G, Yang K, Chen S, Lin Y, Wang L, Huang K, Zeng L. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci 2017; 108:1493-1503. [PMID: 28444967 PMCID: PMC5497927 DOI: 10.1111/cas.13267] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 12/14/2022] Open
Abstract
Tumor metastasis occurs naturally in pancreatic cancer, and the efficacy of chemotherapy is usually poor. Precision medicine, combining downregulation of target genes with chemotherapy drugs, is expected to improve therapeutic effects. Therefore, we developed a combined therapy of microRNA-21 antisense oligonucleotides (ASO-miR-21) and gemcitabine (Gem) using a targeted co-delivery nanoparticle (NP) carrier and investigated the synergistic inhibitory effects on pancreatic cancer cells metastasis and growth. Polyethylene glycol-polyethylenimine-magnetic iron oxide NPs were used to co-deliver ASO-miR-21 and Gem. An anti-CD44v6 single-chain variable fragment (scFvCD44v6 ) was used to coat the particles to obtain active and targeted delivery. Our results showed that the downregulation of the oncogenic miR-21 by ASO resulted in upregulation of the tumor-suppressor genes PDCD4 and PTEN and the suppression of epithelial-mesenchymal transition, which inhibited the proliferation and induced the clonal formation, migration, and invasion of pancreatic cancer cells in vitro. The co-delivery of ASO-miR-21 and Gem induced more cell apoptosis and inhibited the growth of pancreatic cancer cells to a greater extent than single ASO-miR-21 or Gem treatment in vitro. In animal tests, more scFvCD44v6 -PEG-polyethylenimine/ASO-magnetic iron oxide NP/Gem accumulated at the tumor site than non-targeted NPs and induced a potent inhibition of tumor proliferation and metastasis. Magnetic resonance imaging was used to observed tumor homing of NPs. These results imply that the combination of miR-21 gene silencing and Gem therapy using an scFv-functionalized NP carrier exerted synergistic antitumor effects on pancreatic cancer cells, which is a promising strategy for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Yaqing Li
- Department of GastroenterologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yinting Chen
- Department of GastroenterologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jiajia Li
- Department of GastroenterologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zuoquan Zhang
- Department of RadiologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Chumei Huang
- Department of GastroenterologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Guoda Lian
- Department of GastroenterologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Kege Yang
- Department of GastroenterologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Shaojie Chen
- Department of GastroenterologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Ying Lin
- Department of GastroenterologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Lingyun Wang
- Department of GastroenterologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Kaihong Huang
- Department of GastroenterologySun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Linjuan Zeng
- Department of OncologyThe Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| |
Collapse
|
133
|
Adamska A, Domenichini A, Falasca M. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int J Mol Sci 2017; 18:E1338. [PMID: 28640192 PMCID: PMC5535831 DOI: 10.3390/ijms18071338] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), which constitutes 90% of pancreatic cancers, is the fourth leading cause of cancer-related deaths in the world. Due to the broad heterogeneity of genetic mutations and dense stromal environment, PDAC belongs to one of the most chemoresistant cancers. Most of the available treatments are palliative, with the objective of relieving disease-related symptoms and prolonging survival. Currently, available therapeutic options are surgery, radiation, chemotherapy, immunotherapy, and use of targeted drugs. However, thus far, therapies targeting cancer-associated molecular pathways have not given satisfactory results; this is due in part to the rapid upregulation of compensatory alternative pathways as well as dense desmoplastic reaction. In this review, we summarize currently available therapies and clinical trials, directed towards a plethora of pathways and components dysregulated during PDAC carcinogenesis. Emerging trends towards targeted therapies as the most promising approach will also be discussed.
Collapse
Affiliation(s)
- Aleksandra Adamska
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Alice Domenichini
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
134
|
Le Large TYS, Bijlsma MF, Kazemier G, van Laarhoven HWM, Giovannetti E, Jimenez CR. Key biological processes driving metastatic spread of pancreatic cancer as identified by multi-omics studies. Semin Cancer Biol 2017; 44:153-169. [PMID: 28366542 DOI: 10.1016/j.semcancer.2017.03.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy, characterized by a high metastatic burden, already at the time of diagnosis. The metastatic potential of PDAC is one of the main reasons for the poor outcome next to lack of significant improvement in effective treatments in the last decade. Key mutated driver genes, such as activating KRAS mutations, are concordantly expressed in primary and metastatic tumors. However, the biology behind the metastatic potential of PDAC is not fully understood. Recently, large-scale omic approaches have revealed new mechanisms by which PDAC cells gain their metastatic potency. In particular, genomic studies have shown that multiple heterogeneous subclones reside in the primary tumor with different metastatic potential. The development of metastases may be correlated to a more mesenchymal transcriptomic subtype. However, for cancer cells to survive in a distant organ, metastatic sites need to be modulated into pre-metastatic niches. Proteomic studies identified the influence of exosomes on the Kuppfer cells in the liver, which could function to prepare this tissue for metastatic colonization. Phosphoproteomics adds an extra layer to the established omic techniques by unravelling key functional signaling. Future studies integrating results from these large-scale omic approaches will hopefully improve PDAC prognosis through identification of new therapeutic targets and patient selection tools. In this article, we will review the current knowledge on the biology of PDAC metastasis unravelled by large scale multi-omic approaches.
Collapse
Affiliation(s)
- T Y S Le Large
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands; Laboratory of Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, The Netherlands; Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - M F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, The Netherlands
| | - G Kazemier
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - H W M van Laarhoven
- Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - E Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy; CNR-Nano, Institute of Nanoscience and Nanotechnology, Pisa, Italy
| | - C R Jimenez
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
135
|
Lin X, Zheng L, Song H, Xiao J, Pan B, Chen H, Jin X, Yu H. Effects of microRNA-183 on epithelial-mesenchymal transition, proliferation, migration, invasion and apoptosis in human pancreatic cancer SW1900 cells by targeting MTA1. Exp Mol Pathol 2017; 102:522-532. [PMID: 28506766 DOI: 10.1016/j.yexmp.2017.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aims to explore effects of miR-183 on epithelial-mesenchymal transition (EMT) and invasion by targeting MTA1 in human pancreatic cancer (PC) cells. METHODS Totally, 108 PC patients admitted in Wenzhou Central Hospital and Wenzhou People's Hospital, The Dingli Clinical Institute of Wenzhou Medical University from March 2010 to March 2014 were enrolled. qRT-PCR and immunohistochemistry were applied to examine expression of MTA1 mRNA and protein. Samples were divided into 6 groups: blank, NC, miR-183 mimics, miR-183 inhibitors, MTA1-siRNA and miR-183 inhibitors +MTA1-siRNA groups. CCK8 method was employed for determining cell proliferation rate, flow cytometry for cell apoptosis rate, scratch test for cell migration and Transwell assay for cell invasion. qRT-PCR and Western blotting were used to determine expression of MTA1, E-cadherin and Vimentin mRNA and protein. RESULTS Positive expression rate of MTA1 was upregulated in PC tissues, and expression of miR-183 and MTA1 was associated with differentiation, migration, tumor size, TNM. The miR-183 mimics and MTA1-siRNA groups showed a decrease in proliferation, migration and invasion, whereas increased apoptosis, in comparison with blank and NC groups, as expression of MTA1 and Vimentin mRNA and protein were reduced, expression of E-cadherin mRNA and protein was elevated. Compared to blank and NC groups, the miR-183 inhibitors group exhibited enhanced proliferation, migration and invasion and inhibited apoptosis; increased expressions of MTA1 and Vimentin mRNA and protein and decreased expressions of E-cadherin mRNA and protein. CONCLUSION Our study supported that miR-183 could repress EMT and invasion of human PC cells through inhibition of MTA1 expression.
Collapse
Affiliation(s)
- Xizhou Lin
- Department of Digestive Diseases, Wenzhou People's Hospital, The Third Clinical College of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Liang Zheng
- Department of Digestive Diseases, Wenzhou People's Hospital, The Third Clinical College of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hongliang Song
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jun Xiao
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Bujian Pan
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Haichuan Chen
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiaodan Jin
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Haibo Yu
- Department of Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
136
|
Giovannetti E, van der Borden CL, Frampton AE, Ali A, Firuzi O, Peters GJ. Never let it go: Stopping key mechanisms underlying metastasis to fight pancreatic cancer. Semin Cancer Biol 2017; 44:43-59. [PMID: 28438662 DOI: 10.1016/j.semcancer.2017.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive neoplasm, predicted to become the second leading cause of cancer-related deaths before 2030. This dismal trend is mainly due to lack of effective treatments against its metastatic behavior. Therefore, a better understanding of the key mechanisms underlying metastasis should provide new opportunities for therapeutic purposes. Genomic analyses revealed that aberrations that fuel PDAC tumorigenesis and progression, such as SMAD4 loss, are also implicated in metastasis. Recently, microRNAs have been shown to play a regulatory role in the metastatic behavior of many tumors, including PDAC. In particular, miR-10 and miR-21 have appeared as master regulators of the metastatic program, while members of the miR-200 family are involved in the epithelial-to-mesenchymal switch, favoring cell migration and invasiveness. Several studies have also found a close relationship between cancer stem cells (CSCs) and biological features of metastasis, and the CSC markers ALDH1, ABCG2 and c-Met are expressed at high levels in metastatic PDAC cells. Emerging evidence reveals that exosomes are involved in the modulation of the tumor microenvironment and can initiate PDAC pre-metastatic niche formation in the liver and lungs. In this review, we provide an overview of the role of all these pivotal factors in the metastatic behavior of PDAC, and discuss their potential exploitation in the clinic to improve current therapeutics and identify new drug targets.
Collapse
Affiliation(s)
- E Giovannetti
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - C L van der Borden
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - A E Frampton
- HPB Surgical Unit, Dept. of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - A Ali
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, KP, Pakistan; Institute of Cancer Sciences, University of Glasgow, UK
| | - O Firuzi
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - G J Peters
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
137
|
Asukai K, Kawamoto K, Eguchi H, Konno M, Asai A, Iwagami Y, Yamada D, Asaoka T, Noda T, Wada H, Gotoh K, Nishida N, Satoh T, Doki Y, Mori M, Ishii H. Micro-RNA-130a-3p Regulates Gemcitabine Resistance via PPARG in Cholangiocarcinoma. Ann Surg Oncol 2017; 24:2344-2352. [PMID: 28560603 DOI: 10.1245/s10434-017-5871-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The prognosis of cholangiocarcinoma (CCA) is so poor that its chemoresistance needs to be reduced. In this study, we focused on the microRNAs (miRNAs) associated with gemcitabine resistance of CCA and assessed the clinical significance of miRNAs and their target genes. METHODS We performed miRNA microarray analysis for two CCA cell lines (CCLP-1 and MzChA-1) and their gemcitabine-resistant (GR) cells. An miR-130a-3p mimic was induced into CCA cells using lipofection, and we used pioglitazone as a peroxisome proliferator-activated receptor-γ (PPARγ) agonist in vitro. The expression of miR-130a-3p was studied in 27 intrahepatic CCA samples after laser capture microdissection (LCM) and by immunohistochemistry from patients who had undergone curative resection from March 2004 to November 2012 at Osaka University Hospital. RESULTS miR-130a-3p expression was upregulated in CCLP-1-GRs and MzChA-1-GRs significantly more than in their parental cells. Transfection of the miR-130a-3p mimic into CCA cells increased gemcitabine resistance, and we detected PPARG as a target gene of miR-130a-3p. Furthermore, pioglitazone had a synergistic effect with gemcitabine and alleviated gemcitabine resistance of CCA GR cells. Moreover, clinical examination revealed that for patients who underwent adjuvant gemcitabine therapy, those who were PPARγ positive had significantly longer disease-free survival than those who were PPARγ negative (n = 5 and 11, respectively; p = 0.027). CONCLUSIONS Our data suggest that miR-130a-3p was associated with gemcitabine resistance in CCA through PPARG, and there is a possibility that pioglitazone can be used for the treatment of CCA.
Collapse
Affiliation(s)
- Kei Asukai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ayumu Asai
- Department of Cancer Profiling Discovery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naohiro Nishida
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Hideshi Ishii
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan. .,Department of Cancer Profiling Discovery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
138
|
Chemosensitization and inhibition of pancreatic cancer stem cell proliferation by overexpression of microRNA-205. Cancer Lett 2017; 402:1-8. [PMID: 28536008 DOI: 10.1016/j.canlet.2017.05.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/26/2017] [Accepted: 05/14/2017] [Indexed: 12/23/2022]
Abstract
Treatment of pancreatic cancer with gemcitabine (GEM) is limited due to its rapid plasma metabolism and development of chemoresistance. MicroRNA (miRNA) regulates cancer stem cell (CSC) maintenance and induces chemoresistance in cancer cells. In this study, we observed differential downregulation of miR-205 (miR-205-5p) in human pancreatic cancer tissues and cells. Compared to GEM-sensitive MIA PaCa-2 cells, miR-205 was highly downregulated in GEM-resistant MIA PaCa-2R cells. Lentivirus-mediated overexpression of miR-205 inhibits MIA PaCa-2R cell proliferation after GEM-treatment. Further investigation confirmed that miR-205 alone significantly reduces the proliferation of CSCs and tumor growth in mouse models. However, miR-205 in combination with GEM was more efficient in reducing the proliferation of CSCs and 3D spheroids. Moreover, miR-205 overexpressing MIA PaCa-2R cells induced orthotopic tumor growth was significantly inhibited after intravenous administration of GEM-conjugated methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate)-graft-gemcitabine-graft-dodecanol (mPEG-b-PCC-g-GEM-g-DC) (mPEG-b-PCC-g-GEM-g-DC) polymeric micelles. Also, a reduction in CSCs, EMT and chemoresistance markers was observed in miR-205 overexpressing MIA PaCa-2R cells. Immunohistochemical analysis of orthotopic tumors showed a decrease in drug resistance protein caveolin-1 and cell proliferation marker Ki-67 in combination treatment. Overall, our findings suggest that miR-205 resensitizes GEM-resistant pancreatic cancer cells to GEM and acts as a tumor suppressor miRNA.
Collapse
|
139
|
Zhang L, Yao J, Li W, Zhang C. Micro-RNA-21 Regulates Cancer-Associated Fibroblast-Mediated Drug Resistance in Pancreatic Cancer. Oncol Res 2017; 26:827-835. [PMID: 28477403 PMCID: PMC7844724 DOI: 10.3727/096504017x14934840662335] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer deaths due to its highly aggressive biological nature and resistance to chemotherapy. Previous studies indicate that miR-21 is an important regulator in the activation of cancer-associated fibroblasts (CAFs). However, whether miR-21 in CAFs would regulate PDAC’s tumor microenvironment and lead to drug resistance remain unknown. In this study, we evaluated the relationship between CAF activation, miR-21 expression, and drug resistance using tumor samples from PDAC patients. We changed the miR-21 expression level in CAFs and tested its roles in regulating the function of CAFs. In addition, we explored the roles of miR-21 in CAFs in the development of PDAC using an animal model. We found that PDAC patients who were resistant to gemcitabine treatment tended to have higher miR-21 expression and more activated CAFs. An in vitro study showed that CAFs with high miR-21 expression had elevated MMP-3, MMP-9, PDGF, and CCL-7 expression and promoted the invasion of PDAC cell lines. miR-21 overexpression also contributed to the activation of CAFs by regulating the PDCD4 gene. The in vivo study showed that upregulating miR-21 in CAFs promoted PDAC desmoplasia and increased its drug resistance to gemcitabine treatment, but downregulating miR-21 in CAFs suppressed desmoplasia and enhanced the effect of gemcitabine. We concluded that miR-21 promoted the activation of CAFs and contributed to the drug resistance of PDAC.
Collapse
Affiliation(s)
- Lulin Zhang
- Department of Oncology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, P.R. China
| | - Jun Yao
- Department of Oncology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, P.R. China
| | - Wenyao Li
- Department of Oncology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, P.R. China
| | - Ce Zhang
- Department of Oncology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, P.R. China
| |
Collapse
|
140
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
141
|
Rovithi M, Avan A, Funel N, Leon LG, Gomez VE, Wurdinger T, Griffioen AW, Verheul HMW, Giovannetti E. Development of bioluminescent chick chorioallantoic membrane (CAM) models for primary pancreatic cancer cells: a platform for drug testing. Sci Rep 2017; 7:44686. [PMID: 28304379 PMCID: PMC5356332 DOI: 10.1038/srep44686] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
The aim of the present study was to develop chick-embryo chorioallantoic membrane (CAM) bioluminescent tumor models employing low passage cell cultures obtained from primary pancreatic ductal adenocarcinoma (PDAC) cells. Primary PDAC cells transduced with lentivirus expressing Firefly-luciferase (Fluc) were established and inoculated onto the CAM membrane, with >80% engraftment. Fluc signal reliably correlated with tumor growth. Tumor features were evaluated by immunohistochemistry and genetic analyses, including analysis of mutations and mRNA expression of PDAC pivotal genes, as well as microRNA (miRNA) profiling. These studies showed that CAM tumors had histopathological and genetic characteristic comparable to the original tumors. We subsequently tested the modulation of key miRNAs and the activity of gemcitabine and crizotinib on CAM tumors, showing that combination treatment resulted in 63% inhibition of tumor growth as compared to control (p < 0.01). These results were associated with reduced expression of miR-21 and increased expression of miR-155. Our study provides the first evidence that transduced primary PDAC cells can form tumors on the CAM, retaining several histopathological and (epi)genetic characteristics of original tumors. Moreover, our results support the use of these models for drug testing, providing insights on molecular mechanisms underlying antitumor activity of new drugs/combinations.
Collapse
Affiliation(s)
- Maria Rovithi
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Internal Medicine, Agios Nikolaos General Hospital, Agios Nikolaos, Crete, Greece
| | - Amir Avan
- Molecular Medicine Group, Department of Modern Sciences and Technologies; School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Leticia G. Leon
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Valentina E. Gomez
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, US
| | - Arjan W. Griffioen
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk M. W. Verheul
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
142
|
Rajabpour A, Rajaei F, Teimoori-Toolabi L. Molecular alterations contributing to pancreatic cancer chemoresistance. Pancreatology 2017; 17:310-320. [PMID: 28065383 DOI: 10.1016/j.pan.2016.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related death all over the world. This disease is difficult to treat and patients have an overall 5-year survival rate of less than 5%. Although two drugs, gemcitabine (GEM) and 5-fluorouracil (5-FU) have been shown to improve the survival rate of patients systematically, they do not increase general survival to a clinically acceptable degree. Lack of ideal clinical response of pancreatic cancer patients to chemotherapy is likely to be due to intrinsic and acquired chemoresistance of tumor cells. Various mechanisms of drug resistance have been investigated in pancreatic cancer, including genetic and epigenetic changes in particular genes or signaling pathways. In addition, evidence suggests that microRNAs (miRNAs) play significant roles as key regulators of gene expression in many cellular processes, including drug resistance. Understanding underlying genes and mechanisms of drug resistance in pancreatic cancer is critical to develop new effective treatments for this deadly disease. This review illustrates the genes and miRNAs involved in resistance to gemcitabine in pancreatic cancer.
Collapse
Affiliation(s)
- Azam Rajabpour
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | |
Collapse
|
143
|
Calatayud D, Dehlendorff C, Boisen MK, Hasselby JP, Schultz NA, Werner J, Immervoll H, Molven A, Hansen CP, Johansen JS. Tissue MicroRNA profiles as diagnostic and prognostic biomarkers in patients with resectable pancreatic ductal adenocarcinoma and periampullary cancers. Biomark Res 2017; 5:8. [PMID: 28239461 PMCID: PMC5320745 DOI: 10.1186/s40364-017-0087-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to validate previously described diagnostic and prognostic microRNA expression profiles in tissue samples from patients with pancreatic cancer and other periampullary cancers. Methods Expression of 46 selected microRNAs was studied in formalin-fixed paraffin-embedded tissue from patients with resected pancreatic ductal adenocarcinoma (n = 165), ampullary cancer (n=59), duodenal cancer (n = 6), distal common bile duct cancer (n = 21), and gastric cancer (n = 20); chronic pancreatitis (n = 39); and normal pancreas (n = 35). The microRNAs were analyzed by PCR using the Fluidigm platform. Results Twenty-two microRNAs were significantly differently expressed in patients with pancreatic cancer when compared to healthy controls and chronic pancreatitis patients; 17 miRNAs were upregulated (miR-21-5p, −23a-3p, −31-5p, −34c-5p, −93-3p, −135b-3p, −155-5p, −186-5p, −196b-5p, −203, −205-5p, −210, −222-3p, −451, −492, −614, and miR-622) and 5 were downregulated (miR-122-5p, −130b-3p, −216b, −217, and miR-375). MicroRNAs were grouped into diagnostic indices of varying complexity. Ten microRNAs associated with prognosis were identified (let-7 g, miR-29a-5p, −34a-5p, −125a-3p, −146a-5p, −187, −205-5p, −212-3p, −222-5p, and miR-450b-5p). Prognostic indices based on differences in expression of 2 different microRNAs were constructed for pancreatic and ampullary cancer combined and separately (30, 5, and 21 indices). Conclusion The study confirms that pancreatic cancer tissue has a microRNA expression profile that is different from that of other periampullary cancers, chronic pancreatitis, and normal pancreas. We identified prognostic microRNAs and microRNA indices that were associated with shorter overall survival in patients with radically resected pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s40364-017-0087-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Calatayud
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Oncology, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | | | - Mogens K Boisen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Jane Preuss Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai Aagaard Schultz
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, LMU, University of Munich, Munich, Germany
| | - Heike Immervoll
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Ålesund Hospital, Ålesund, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Carsten Palnæs Hansen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
144
|
Mikamori M, Yamada D, Eguchi H, Hasegawa S, Kishimoto T, Tomimaru Y, Asaoka T, Noda T, Wada H, Kawamoto K, Gotoh K, Takeda Y, Tanemura M, Mori M, Doki Y. MicroRNA-155 Controls Exosome Synthesis and Promotes Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Sci Rep 2017; 7:42339. [PMID: 28198398 PMCID: PMC5309735 DOI: 10.1038/srep42339] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
The cancer drug gemcitabine (GEM) is a key drug for treating pancreatic ductal adenocarcinoma (PDAC), but PDAC cells develop chemoresistance after long-term administration. Since the tolerance was immediately spread to every PDAC tissue in a patient, it is assumed that some certain efficient mechanisms underlay in the development of chemoresistance. Changes in the levels of particular microRNAs or alterations in intercellular communication play a dominant role in chemoresistance development, and recent data also suggest that exosomes play an important role in this process. In this study, we revealed that the loop conferred chemoresistance in PDAC cells. The loop was as follows; 1, The long-term exposure of GEM increased miR-155 expression in PDAC cells. 2, The increase of miR-155 induced two different functions; exosome secretion and chemoresistance ability via facilitating the anti-apoptotic activity. 3, Exosome deliver the miR-155 into the other PDAC cells and induce the following function. The target therapy to miR-155 or the exosome secretion effectively attenuated the chemoresistance, and these results were validated with both clinical samples and in vivo experiments. This mechanism represents a novel therapeutic target in GEM treatment to PDAC.
Collapse
Affiliation(s)
- Manabu Mikamori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shinichiro Hasegawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tomoya Kishimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yutaka Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Kansai Rosai Hospital, Inabasou 3-1-69, Amagasaki, Hyogo, 660-8511, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
- Department of Surgery, Osaka Police Hospital, Tennoji-ku Kitayamacho 10-31, Osaka, 543-0035, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
145
|
Massihnia D, Avan A, Funel N, Maftouh M, van Krieken A, Granchi C, Raktoe R, Boggi U, Aicher B, Minutolo F, Russo A, Leon LG, Peters GJ, Giovannetti E. Phospho-Akt overexpression is prognostic and can be used to tailor the synergistic interaction of Akt inhibitors with gemcitabine in pancreatic cancer. J Hematol Oncol 2017; 10:9. [PMID: 28061880 PMCID: PMC5219723 DOI: 10.1186/s13045-016-0371-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There is increasing evidence of a constitutive activation of Akt in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and chemoresistance. Therefore, we evaluated the expression of phospho-Akt in PDAC tissues and cells, and investigated molecular mechanisms influencing the therapeutic potential of Akt inhibition in combination with gemcitabine. METHODS Phospho-Akt expression was evaluated by immunohistochemistry in tissue microarrays (TMAs) with specimens tissue from radically-resected patients (n = 100). Data were analyzed by Fisher and log-rank test. In vitro studies were performed in 14 PDAC cells, including seven primary cultures, characterized for their Akt1 mRNA and phospho-Akt/Akt levels by quantitative-RT-PCR and immunocytochemistry. Growth inhibitory effects of Akt inhibitors and gemcitabine were evaluated by SRB assay, whereas modulation of Akt and phospho-Akt was investigated by Western blotting and ELISA. Cell cycle perturbation, apoptosis-induction, and anti-migratory behaviors were studied by flow cytometry, AnnexinV, membrane potential, and migration assay, while pharmacological interaction with gemcitabine was determined with combination index (CI) method. RESULTS Immunohistochemistry of TMAs revealed a correlation between phospho-Akt expression and worse outcome, particularly in patients with the highest phospho-Akt levels, who had significantly shorter overall and progression-free-survival. Similar expression levels were detected in LPC028 primary cells, while LPC006 were characterized by low phospho-Akt. Remarkably, Akt inhibitors reduced cancer cell growth in monolayers and spheroids and synergistically enhanced the antiproliferative activity of gemcitabine in LPC028, while this combination was antagonistic in LPC006 cells. The synergistic effect was paralleled by a reduced expression of ribonucleotide reductase, potentially facilitating gemcitabine cytotoxicity. Inhibition of Akt decreased cell migration and invasion, which was additionally reduced by the combination with gemcitabine. This combination significantly increased apoptosis, associated with induction of caspase-3/6/8/9, PARP and BAD, and inhibition of Bcl-2 and NF-kB in LPC028, but not in LPC006 cells. However, targeting the key glucose transporter Glut1 resulted in similar apoptosis induction in LPC006 cells. CONCLUSIONS These data support the analysis of phospho-Akt expression as both a prognostic and a predictive biomarker, for the rational development of new combination therapies targeting the Akt pathway in PDAC. Finally, inhibition of Glut1 might overcome resistance to these therapies and warrants further studies.
Collapse
Affiliation(s)
- Daniela Massihnia
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Amir Avan
- Metabolic syndrome Research center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Mina Maftouh
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Anne van Krieken
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Rajiv Raktoe
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ugo Boggi
- Department of Surgery, University of Pisa, Pisa, Italy
| | - Babette Aicher
- Æterna Zentaris GmbH, Frankfurt am Main, Frankfurt, Germany
| | | | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Leticia G Leon
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy.
| |
Collapse
|
146
|
Dong J, Zhang Z, Gu T, Xu SF, Dong LX, Li X, Fu BH, Fu ZZ. The role of microRNA-21 in predicting brain metastases from non-small cell lung cancer. Onco Targets Ther 2016; 10:185-194. [PMID: 28096685 PMCID: PMC5207466 DOI: 10.2147/ott.s116619] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective This study aimed at exploring the role of microRNA-21 (miR-21) in predicting brain metastases (BM) from non-small cell lung cancer (NSCLC). Methods A total of 132 NSCLC patients, including 68 patients with BM and 64 patients without BM, were included in the study. NSCLC cells were collected and assigned to the inhibitor (IN) group, the mock group, and the negative control (NC) group. The quantitative real-time polymerase chain reaction assay was used to detect the miR-21 expression. Cell proliferation, migration, invasion, and apoptosis were detected by colony-forming assay, MTT assay, transwell assay, and flow cytometry, respectively. Angiogenesis was measured by endothelial cell tube formation assay. Results The miR-21 expression was higher in NSCLC patients with BM than in those without BM. The miR-21 expression in the IN group was lower than that in the NC and mock groups. Compared with the NC and mock groups, the values of optical density (OD) and the colony-forming number decreased in the IN group. Compared with the NC and mock groups, cell invasion and migration abilities significantly reduced in the IN group. The IN group had higher apoptosis rate than the NC and mock groups. The tube length was shorter and the number of junction points was less in the IN group in comparison to the NC and mock groups. Conclusion miR-21 might be a potential biomarker for the development of BM in NSCLC patients and could promote the proliferation, migration, invasion, and angiogenesis of NSCLC cells.
Collapse
Affiliation(s)
- Jing Dong
- Basic Research for Oncology, North China University of Science and Technology
| | - Zhi Zhang
- Department of Oncology, Workers' Hospital of Tangshan City, Tangshan
| | | | - Shu-Feng Xu
- Department of Respiratory Medicine, The First Hospital of Qinhuangdao City, Qinhuangdao
| | | | - Xin Li
- Department of Oncology, Chengde Medical College, Chengde, People's Republic of China
| | | | | |
Collapse
|
147
|
Tan X, Lv J, Zhao G, Zhao Z, Li C, Xu Y, Hu M. MicroRNA-4656 is a prognostic factor and tumor suppressor in human pancreatic cancer through a downstream target of TrkA. J Gene Med 2016; 19. [PMID: 27936486 DOI: 10.1002/jgm.2938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND In the present study, we investigated the expression profile and functional mechanism of microRNA-4656 in human pancreatic cancer (PC). METHODS MiR-4656 expression in PC tumors was examined using a quantitative reverse transcriptase-polymerase chain reaction in 134 patients. Associations between tumorous miR-4656 expression and clinicopathological parameters of patients, as well as overall survival, were analyzed. MiR-4656 expression was also examined in PC in vitro cell lines. In Capan-1 and AsPC-1 PC cells, lentivirus-induced miR-4656 overexpression or downregulation was applied to investigate its functional regulations on PC in vitro proliferation and invasion, as well as in vivo transplant growth. The association of miR-4656 and its downstream target, the tropomyosin receptor kinase A (TrkA) gene, was investigated in both cell line and clinical pancreatic tumors. In miR-4656-overerxpressed PC cells, TrkA was overexpressed with the aim of investigating its role in miR-4656-induced functional regulation in PC. RESULTS MiR-4656 was downregulated in PC. Low tumorous miR-4656 expression was associated with a poor prognosis and overall survival of patients. MiR-4656 was also found to be downregulated in PC cell lines. MiR-4656 overexpression in Capan-1 and AsPC-1 cells significantly inhibited cancer proliferation and invasion in vitro, as well as explant growth in vivo, whereas miR-4656 downregulation had no effect on cancer development. The TrkA gene was directly bound by miR-4656, and reversely expressed in PC tumors as miR-4656. TrkA overexpression reversed the inhibitory effect of miR-4656-overexpression on PC proliferation and invasion. CONCLUSIONS MiR-4656 is expressed to a low extent and is a potential biomarker in PC. Overexpressing miR-4656 has tumor suppressive effects on PC development both in vitro and in vivo, likely through its downstream target of the TrkA gene.
Collapse
Affiliation(s)
- Xianglong Tan
- Second Department of Surgical Oncology, People's Liberation Army General Hospital, Beijing, China
| | - Jinyong Lv
- Department of Hepatobiliary, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Guodong Zhao
- Second Department of Surgical Oncology, People's Liberation Army General Hospital, Beijing, China
| | - Zhiming Zhao
- Second Department of Surgical Oncology, People's Liberation Army General Hospital, Beijing, China
| | - Chenggang Li
- Second Department of Surgical Oncology, People's Liberation Army General Hospital, Beijing, China
| | - Yong Xu
- Second Department of Surgical Oncology, People's Liberation Army General Hospital, Beijing, China
| | - Minggen Hu
- Second Department of Surgical Oncology, People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
148
|
Tsuchikawa T, Takeuchi S, Nakamura T, Shichinohe T, Hirano S. Clinical impact of chemotherapy to improve tumor microenvironment of pancreatic cancer. World J Gastrointest Oncol 2016; 8:786-792. [PMID: 27895816 PMCID: PMC5108980 DOI: 10.4251/wjgo.v8.i11.786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/19/2016] [Accepted: 09/18/2016] [Indexed: 02/05/2023] Open
Abstract
A perioperative multimodal strategy including combination chemotherapy and radiotherapy, in addition to surgical resection, has been acknowledged to improve patient prognosis. However chemotherapy has not been actively applied as an immunomodulating modality because of concerns about various immunosuppressive effects. It has recently been shown that certain chemotherapeutic agents could modify tumor microenvironment and host immune responses through several underlying mechanisms such as immunogenic cell death, local T-cell infiltration and also the eradication of immune-suppressing regulatory cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells. With the better understanding of the cell components in the tumor microenvironment and the effect of chemotherapy to improve tumor microenvironment, it has been gradually clear that the chemotherapeutic agents is two-edged sword to have both immune promoting and suppressing effects. The cellular components of the tumor microenvironment include infiltrating T lymphocytes, dendritic cells, regulatory T cells, tumor associated macrophages, myeloid derived suppressor cells and cancer associated fibroblasts. Based on the better understanding of tumor microenvironment following chemotherapy, the treatment protocol could be modified as personalized medicine and the prognosis of pancreas cancer would be more improved utilizing multimodal chemotherapy. Here we review the recent advances of chemotherapy to improve tumor microenvironment of pancreatic cancer, introducing the unique feature of tumor microenvironment of pancreatic cancer, interaction between anti-cancer reagents and these constituting cells and future prospects.
Collapse
|
149
|
Previdi MC, Carotenuto P, Zito D, Pandolfo R, Braconi C. Noncoding RNAs as novel biomarkers in pancreatic cancer: what do we know? Future Oncol 2016; 13:443-453. [PMID: 27841659 PMCID: PMC5253462 DOI: 10.2217/fon-2016-0253] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer of the digestive system, which is becoming a serious health problem worldwide. Overall survival for patients with pancreatic cancer is poor, mainly due to a lack of biomarkers to enable early diagnosis and a lack of prognostic markers that can inform decision-making, facilitating personalized treatment and an optimal clinical outcome. ncRNAs play an important role in pancreatic carcinogenesis. Here we review the literature on the role of ncRNAs as biomarkers in pancreatic cancer. We focus on the significance of ncRNAs as markers for early diagnosis, as prognostic biomarkers able to inform clinical management and as targets for novel therapeutics for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Maria C Previdi
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton, SM2 5NG, UK
| | - Pietro Carotenuto
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton, SM2 5NG, UK
| | - Domenico Zito
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton, SM2 5NG, UK
| | - Rosantony Pandolfo
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton, SM2 5NG, UK
| | - Chiara Braconi
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd, Sutton, SM2 5NG, UK.,The Royal Marsden NHS Trust London & Surrey, Downs Rd, Sutton, SM2 5NG, UK
| |
Collapse
|
150
|
Majidinia M, Yousefi B. DNA damage response regulation by microRNAs as a therapeutic target in cancer. DNA Repair (Amst) 2016; 47:1-11. [DOI: 10.1016/j.dnarep.2016.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
|